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ABSTRACT
Modern control synthesis methods that are capable of de-
livering safety guarantees typically rely on finding invari-
ant sets. Computing and/or representing such sets becomes
intractable for high-dimensional systems and often consti-
tutes the main bottleneck of computational procedures. In
this paper we instead analytically study a particular high-
dimensional system and propose a control strategy that we
prove renders a set invariant whenever it is possible to do so.
The control problem—the mode-counting problem with two
modes in one dimension—is inspired by scheduling of ther-
mostatically controlled loads (TCLs) and exhibits a trade-off
between local safety constraints and a global counting con-
straint. We improve upon a control strategy from the litera-
ture to handle heterogeneity and derive sufficient conditions
for the strategy to solve the problem at hand. In addition,
we show that the conditions are also necessary for the prob-
lem to have a solution, which implies a type of optimality
of the proposed control strategy. We outline more general
problem instances where the same control strategy can be
implemented and we give sufficient (but not necessary) con-
ditions for the closed-loop system to satisfy its specification.
We illustrate our results on a TCL scheduling example.

Keywords
Control of switched systems; Energy applications

1. INTRODUCTION
Formal safety verification of control systems and control

synthesis techniques that automatically generate controllers
with safety guarantees provide principled alternatives to test-
ing and simulation before system deployment. Most of these
techniques rely on computation of invariant sets or con-
trolled invariant sets in order to show that the system trajec-
tories do no leave the part of the state-space that is deemed
safe [3]. Computing and/or representing invariant sets often
becomes infeasible as the geometry of such sets can be fairly
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complex for high dimensional hybrid systems [16]. To partly
alleviate this challenge, Hafner and Del Vecchio show that,
for monotone systems, it is easier to devise an algorithm
that checks whether a given state is inside, at the boundary,
or outside of the maximal invariant set [6]. Instead of com-
puting the invariant set explicitly, such an algorithm is then
used within a supervisory controller in order to guarantee
safety. A related recent result for cooperative systems [14]
shows that if the goal is to find a (not necessarily maximal)
controlled invariant set contained inside a rectangular set,
there is almost no loss of generality in restricting attention
to periodic input sequences, which again enables focusing on
the controller instead of sets.

In this paper we seek another alternative: instead of com-
puting the maximal invariant set, can we propose a con-
troller and show that it enforces invariance of the maxi-
mal controlled invariant set, whenever that set is nonempty?
This question is non-trivial to answer for arbitrary systems;
therefore, we focus on a particular class of high dimensional
switched systems, motivated by the thermostatically con-
trolled load (TCL) coordination problem.

TCLs include air conditioners, water heaters, refrigera-
tors, etc., that operate within a certain temperature range,
called dead band, around a temperature set point. TCL own-
ers are typically indifferent to small temperature perturba-
tions around their desired set point. The idea behind TCL
coordination is that an electric utility company can leverage
this flexibility—which becomes meaningful for large collec-
tions of TCLs—to shape aggregate demand on the grid.

The efforts to model aggregate TCL systems can be traced
back to 1985, when an aggregate model based on the Focker-
Planck partial differential equation (PDE) was proposed [10].
The paper borrowed ideas from statistical physics: just as
a large collection of particles can be described by a density,
a large number of TCLs can be approximately represented
by a “TCL density” function whose evolution is governed
by a PDE. More recent work along the same lines have fo-
cused on models which are more amenable to control so that
the flexibility in TCL operating conditions can be used to
help improve power grid operations. In [5] a PDE-model
with exposed parameters for the temperature dead band is
derived, thus enabling analysis of control of these parame-
ters. Another area of work has been focused on developing
finite-state models. These are obtained by partitioning the
TCL temperature range into “bins”, and using discrete-time
Markov chains to describe the evolution of a probability dis-
tribution over the resulting discrete state space [8, 15, 4]. In



addition, estimation techniques for these models have been
proposed to lower the amount of information required at a
central control node [11].

As illustrated in [4, 5], if a universal set point temperature
is imposed across a collection of TCLs, it can be treated as a
control input that can be shaped in order to track reference
demand. However, the tracking capability comes at the cost
of modifying the set point temperature, which may result
in a conflict with end user preferences. In [15, 7] a differ-
ent approach is followed: the on/off-state of each individual
TCL is treated as a potential control input. This additional
control freedom can leverage more of the flexibility within
a temperature range and can therefore potentially achieve
reference tracking without violating end user constraints.

This approach is generalized in [13] into the so-called mode-
counting problem. The fundamental challenge in such a
problem is to satisfy local state constraints while simultane-
ously controlling the aggregate number of subsystems that
are in a given mode. Such a constraint is important in TCL
coordination: turning too many TCLs on or off at the same
time may overload the electricity grid. The cited paper pro-
poses a controller synthesis technique based on an approx-
imately bisimilar abstraction and solves a discrete mode-
counting problem on the abstraction via a linear program.
In theory, the method can solve the mode-counting problem
to an arbitrary precision, but it assumes knowledge of initial
conditions.

In this paper we first focus on a special case of the mode-
counting problem that is inspired by the TCL scheduling
problem, where each individual subsystem has two modes
and one-dimensional continuous dynamics. We show that
a generalization of a control policy proposed in [7] is in a
certain sense optimal for a heterogeneous family of TCLs,
and derive analytic feasibility limits. The analysis shows
that the control policy enforces invariance of the maximal
controlled invariant set, without the need to explicitly deal
with or express the controlled invariant set itself.

The problem at hand is related to schedulability theory.
Previous work has identified the similar feasibility limits in
the linear setting [12], but without showing that the control
policy in [7] is in fact optimal. Another related work is [2]
which considers schedulability of hybrid constant-rate sys-
tems, subsequently generalized to bounded-rate systems [1].
These papers present feasibility results in the form of linear
programs that scale with the number of aggregate dynami-
cal modes—in our case 2N . By contrast, we provide closed-
form formulas and an easy-to-implement control policy that
achieves invariance whenever it is theoretically feasible.

This paper is structured as follows: the remainder of this
section introduces relevant notation and formalizes the prob-
lem statement. In the following Section 2 we introduce time
to exit—a key concept that is a novel addition to the policy
in [7] and provides an abstraction that makes heterogeneity
invisible to the central coordinator. Subsequently, in Section
3, we propose a control strategy to solve the problem and
present our main results regarding its performance. Suffi-
cient conditions for the strategy that apply in more general
settings are presented in Section 4. The results are illus-
trated with simulations in Section 5 before the paper is con-
cluded in Section 6. The proofs of the main results have
been deferred to the appendix.

1.1 Preliminaries
We first introduce some notation. A set of integers from

1 to N is written as [N ] = {1, 2, . . . , N}. The indicator
function of a set A is denoted 1A(x) and is equal to 1 if
x ∈ A and to 0 otherwise. We use the Nabla operator ∇xf
to denote the Jacobian of f with respect to x.

We will work with the usual definition of the flow φf (x, t)
of a vector field f : Rn → Rn. It is the solution at time t of
the following differential equation:

d

ds
y(s) = f(y(s)),

y(0) = x.

Clearly, the flow operator satisfies the relation

d

dt
φf (x, t) = f (φf (x, t)) ,

a fact that will be used extensively later in the paper.

1.2 Problem statement
In most of the literature on TCL modeling and control

a one-dimensional linear switched ODE is used to model an
individual TCL. A TCL has the two modes on and off, each
inducing a globally stable equilibrium point. The temper-
ature range between the two equilibria constitute the at-
tainable temperatures. Typically, a subrange of this tem-
perature range (the dead band) forms acceptable end user
states, i.e., local safety constraints. Since the dead band
is necessarily located between the equilibria, it follows that
the flows corresponding to the two modes are sign-definite
and have opposing signs. The following generalized problem
formulation captures these characteristics.

Problem 1. Given N subsystems with states {xi}i∈[N ]

s.t. xi ∈ R, obeying the dynamics

d

dt
xi(t) =

{
f ioff

(
xi(t)

)
if σi(t) = off,

f ion
(
xi(t)

)
if σi(t) = on,

(1)

local safe sets Si = [ai, ai], and global mode-counting bounds
[Kon,Kon], construct an aggregate switching policy {σi}i∈[N ]

such that for all trajectories xi : R+ → R:

xi(t) ∈ Si, ∀i ∈ [N ], t ∈ R+, (2)

Kon ≤
N∑
i=1

1{on}
(
σi(t)

)
≤ Kon, ∀t ∈ R+. (3)

In accordance with the TCL setting, we assume that f ioff
is strictly positive on S and that f ion is strictly negative.
With these assumptions, the on mode will always transport
the state “downwards”, while the off mode transports “up-
wards”, as illustrated in Figure 1. In order for the problem
to have a solution the initial conditions of all xi’s must evi-
dently be inside their safe sets Si.

Eq. (2) represents a local safety constraint while (3) is
a global constraint that requires coordination between the
different subsystems. Both constraints are trivial to satisfy
by themselves, but when they have to be taken into account
simultaneously a conflict arises. In this paper we propose
a control strategy that resolves this conflict and prove that
under certain assumptions—that apply for TCL dynamics—
it is the best possible strategy.
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Figure 1: Illustration of the TCL scheduling prob-
lem with homogeneous local safety constraints; ai =
a and ai = a for all i ∈ [N ]. Each subsystem is illus-
trated with a colored circle; those that are in mode
on are in blue and those that are in mode off are
in red. The local safety constraints stipulate that
each subsystem must remain in the interval [a, a],
while the global mode-counting constraint restricts
the number of subsystems that can be in mode on

at a given time. When a subsystem switches mode
the direction of movement is reversed due to the
assumption on signs of fon and foff.

The aggregate dynamics can be seen as an N -dimensional
switched system with 2N aggregate modes. For N ’s in the
tens or hundreds of thousands, conventional computer-assisted
analysis methods that do not exploit the symmetries of the
problem become intractable.

2. TIME TO EXIT
In order to treat a heterogeneous family of subsystems in

a cohesive manner we introduce time to exit as a way to
assess the urgency to switch a given subsystem. As a one-
dimensional quantity that abstracts away heterogeneity, the
concept is well suited for general problems with constraints
on mode counts. We therefore present formulas for arbitrary
n-dimensional systems, although the main focus in this pa-
per is the special setting with one-dimensional subsystems.
The time to exit with respect to a set S ⊂ Rn is the minimal
time it takes for the flow to reach the boundary of S.

Definition 1. Given a set S ⊂ Rn, for x ∈ S and a
vector field f : Rn → Rn, the time to exit Tf (x) is the time
it takes for the flow of f starting in x to reach ∂S:

Tf (x) = inf {τ ≥ 0 : φf (x, τ) ∈ ∂S} .
If the set S is not transient, Tf (x) might be equal to +∞.
In the following we assume that the time to exit is finite,
which is the case in Problem 1. We next define an operator
that maps a given point x to the point on ∂S where the flow
of f starting in x exits S.

Definition 2. For f : Rn → Rn and x ∈ S with Tf (x) <
+∞, the exit point Uf (x) is

Uf (x) = φf (x, Tf (x)) .

We now analyze the dynamic evolution of the time to exit
Tf . It is clear that Tf decreases with unit speed along a
trajectory of f itself. Using the Lie derivative, this fact is
expressed as LfTf (x) = −1. However, we are also inter-
ested in how the time to exit with respect to f , Tf , varies

along trajectories of a second vector field g. The infinitesi-
mal change is given in terms of the Lie derivative LgTf .

Proposition 1. Assume that ∂S is C1 at Uf (x). Then
the Lie derivative of Tf (x) with respect to g is expressed as
follows:

LgTf (x) = −

(
n̂SUf (x)

)T
(∇xφf )|(x,Tf (x)) g(x)(

n̂SUf (x)

)T
f(Uf (x))

, (4)

where n̂Sx is the outward-pointing unit normal of ∂S at x.

Proof. By definition of the Lie derivative:

LgTf (x) =
d

ds

∣∣∣∣
s=0

Tf (φg(x, s))

=
d

ds

∣∣∣∣
s=0

inf
{
τ : φf

(
x+ g(x)s+O(s2), τ

)
∈ ∂S

}
=

d

ds

∣∣∣∣
s=0

inf

{
τ :

φf (x, τ) + (∇xφf )|(x,τ) g(x)s

+O(s2) ∈ ∂S

}

=
d

ds

∣∣∣∣
s=0

Tf (x) + inf

τ :

φf (x, Tf (x) + τ)

+ (∇xφf )|(x,Tf (x)+τ) g(x)s

+O(s2) ∈ ∂S

 .

For a small τ , φf (x, Tf (x)+τ) = Uf (x)+f (Uf (x)) τ+O(τ2).
Since Uf (x) ∈ ∂S, it follows that the τ that achieves the
infimum must counteract the effect of the s-term along the
normal of ∂S, as displayed in Figure 2. Ignoring second-
order terms, this is expressed by the relation

0 =
〈
n̂SUf (x), f(Uf (x))τ + (∇xφf )|(x,Tf (x)+τ) g(x)s

〉
,

which, given that
〈
n̂SUf (x), f(Uf (x))

〉
6= 0, by the implicit

function theorem describes an implicit mapping s 7→ τ de-
fined around the origin, such that 0 7→ 0. By writing

(∇xφf )|(x,Tf (x)+τ) = (∇xφf )|(x,Tf (x)) +O(τ);

differentiating the implicit relation with respect to s; and
letting s→ 0; the result is obtained.

The identity in Proposition 1 depends in an intricate way
on the geometry of S and the vector field flow lines. We
remark that the derivative of the flow operator with respect
to the initial condition x can be written as the solution η(t)
of a matrix-valued ODE obtained by linearizing f along the
flow [17, p. 154]:

η(0) = I,
d

ds
η(s) = (∇xf)|φf (x,s) η(s). (5)

3. A SWITCHING STRATEGY FOR PROB-
LEM 1

We now apply the theory developed in the previous section
to the study of Problem 1—the mode-counting problem for
a collection of one-dimensional two-mode switched systems.
In the interest of keeping notation simple, we omit the f ’s
in subscripts and write φion instead of φfion , and similarly for
T , U , and L.

First we adapt Proposition 1 for the simplified geometry of
Problem 1; one-dimensional sign-definite vector fields allow
us to evaluate the exit point mapping without solving an
ODE.



∂S

x

Uf (x)
f(Uf (x))τ

n̂S
Uf (x)

(∇xφf )|(x,Tf (x)) g(x)s

g(x)s

Figure 2: Illustration of the effect an infinitesimal
movement along the vector field g(x) has on the exit
time Tf (x) with respect to f . A movement g(x)s at
x is propagated along the flow line of f and results
in the infinitesimal movement ∇xφf (x, Tf (x))g(x)s at
Uf (x). To compensate for this movement, τ must be
chosen so that f(Uf (x))τ counteracts the effect in the
normal direction.

Proposition 2. For the dynamics (1) and the safe set
Si = [ai, ai], the expressions in Proposition 1 simplify to:

LioffT ion(x) = −f
i
off(x)

f ion(x)
, LionT ioff(x) = − f ion(x)

f ioff(x)
. (6)

Proof. In the interest of brevity we do not solve (5) but
opt for a simpler argument. For a one-dimensional vector
field f we can for a small h write

φf (x+ h, t) = φf (x, t+ h/f(x) +O(h2))

= φf
(
φf (x, t), h/f(x) +O(h2)

)
= φf (x, t) + hf(φf (x, t))/f(x) +O(h2).

Thus we get,

∇xφf (x, t) = lim
h→0

h
f(φf (x,t))

f(x)
+O(h2)

h
=
f(φf (x, t))

f(x)
.

Turning to (4), the simple geometry yields U ion(x) = ai and
n̂Uon(x) = −1. Thus,

f ion(φ
i
on(x, T

i
on(x))) = f ion(U

i
on(x)) = f ion(a

i),

which gives

LioffT ion(x) = −f
i
on(a

i)f ioff(x)

f ion(x)
/f ion(a

i) = −f
i
off(x)

f ion(x)
.

The expression for LionT ioff(x) is derived in an analogous fash-
ion.

Now, motivated by the control strategy proposed in [7],
we propose a strategy for Problem 1 that only switches a
subsystem if either the local state constraint or the global
mode-counting bounds are about to be violated. In the ref-
erenced paper, the strategy was found to have good track-
ing performance1 and robustness in a mildly heterogeneous
setting, but no formal analysis was carried out. A key nov-
elty in our work is that we use time to exit—rather than
state value—to select which subsystem to switch to preserve
mode-counting bounds. This modification allows us to work
with truly heterogeneous collections of subsystems.
1Using the terminology of this paper, tracking translates to
time-varying mode-counting bounds.

Strategy 1. Switch subsystem i at a time instant t if
one of the following conditions occur:

1. If T ioff(x
i(t)) = 0, switch subsystem i to on,

2. If T ion(x
i(t)) = 0, switch subsystem i to off,

3. If
∑
j∈[N ] 1{on}

(
σj(t+)

)
< Kon for t+ > t, select the

subsystem i in mode off with the largest time to on-
exit, i.e.

i = arg max
j∈[N ] : σj(t)=off

T jon(x
j(t)),

and switch it to on. If the bound is still violated at t+,
repeat step 3.

4. If
∑
j∈[N ] 1{on}

(
σj(t+)

)
> Kon for t+ > t, select the

subsystem i in mode on with the largest time to off-
exit, i.e.

i = arg max
j∈[N ] : σj(t)=on

T joff(x
j(t)),

and switch it to off. If the bound is still violated at
t+, repeat step 4.

Remark 1. In the event that more than Kon subsystems
simultaneously satisfy the condition in 1., or analogously for
Kon and condition 2., the strategy above is not well defined
with respect to the dynamics. This is however a measure-
zero event in the space of initial conditions. Let’s call ag-
gregate states where several subsystems have identical and
non-zero times to exit degenerate. Since a mode perturba-
tion (i.e., switching off some systems in the on mode while
simultaneously switching on some systems in the off mode)
can be applied whenever the system is in a degenerate state,
we can without loss of generality disregard degenerate states
provided that the initial condition itself is not degenerate.

Alternatively, degenerate cases can be handled by adding a
time margin τ > 0 to the switching condition: if the times to
exit of several subsystems cross into the margin region [0, τ ]
simultaneously, switch one subsystem i1 when it crosses the
margin (T i1(xi1) = τ) and space out the remaining switches
linearly such that the last switch for subsystem ik occurs at
the boundary when T ik (xik ) = 0.

Our results regarding the performance of this strategy rely
on two assumptions. The first is a mild assumption that
allows us to analyze the flow in a vicinity of the end points.

Assumption 1. The functions f ion and f ioff are continu-

ous at ai and at ai for all i ∈ [N ].

Secondly, we state an assumption that is crucial for proving
“optimality” of Strategy 1.

Assumption 2. The functions f ion and f ioff are monoton-

ically decreasing in Si for all i ∈ [N ].

Crucially, this assumption holds for typical TCL models,
since the (absolute) flow velocity of a stable one-dimensional
linear system is necessarily monotonically decreasing towards
its equilibrium point. We are now in a position to state the
main results of this paper.



Theorem 1. Assume that Assumption 1 holds and that
the initial condition is not degenerate in the sense of Remark
1. Then, if ∑

i∈[N ]

LioffT ion(ai)
1 + LioffT ion(ai)

> Kon, and, (7a)

∑
i∈[N ]

LionT ioff(ai)
1 + LionT ioff(ai)

> N −Kon, (7b)

then Strategy 1 solves Problem 1.

Strategy 1 can also be used to satisfy time-varying mode-
counting bounds.

Corollary 1. Consider a generalization of Problem 1
with piecewise constant time-varying mode-counting bounds
Kon(t) and Kon(t). If (7) holds for all t ∈ R+, then Strategy
1 enforces (2)-(3) for all t ∈ R+.

The next result shows that under the additional monotonic-
ity assumption the inequalities (7) are also (almost) neces-
sary conditions for Problem 1 to have a solution.

Theorem 2. Assume that Assumption 1 and 2 hold. If
the strict version of (7) is violated, i.e.,∑

i∈[N ]

LioffT ion(ai)
1 + LioffT ion(ai)

< Kon, or, (8a)

∑
i∈[N ]

LionT ioff(ai)
1 + LionT ioff(ai)

< N −Kon, (8b)

then Problem 1 has no solution.

The proofs of these two results are presented in the ap-
pendix. Together, Theorem 1 and 2 allow us to make a
conclusion about the maximal controlled invariant2 set con-
tained in the global safety set

S =


∏
i∈[N ]

{(xi, σi)} :

Kon ≤
∑
i∈[N ]

1{on}(σ
i) ≤ Kon,

xi ∈ Si, ∀i ∈ [N ]

 . (9)

Corollary 2. Assume that Assumptions 1 and 2 hold.
Then, if (8) holds, the maximal controlled invariant set con-
tained in S is empty. Otherwise, the maximal controlled
invariant set contained in S is equal, up to closure, to S
itself.

Proof. Only the case when neither (7) nor (8) is true
remains. In this case, due to monotonicity we can pick an
ε > 0 such that (7) is satisfied for the modified bounds
(ai)′ = ai + ε, (ai)′ = ai − ε. Hence, the set

S′ =


∏
i∈[N ]

{(xi, σi)} :

Kon ≤
∑
i∈[N ]

1{on}(σ
i) ≤ Kon

ai + ε ≤ xi ≤ ai − ε ∀i ∈ [N ]

 .

is a controlled invariant set contained in S. Letting ε → 0
gives the result.

2A set S is controlled invariant if for all initial states x(0) ∈
S, there is a switching policy such that x(t) ∈ S for all t ≥ 0.

Remark 2. If the monotonicity assumption Assumption
2 does not hold, a variation of Strategy 1 may still be op-
timal. Assume that two points (ai)′ and (ai)′ can be found
such that (ai)′ < (ai)′, and such that

(ai)′ ∈ arg max
x∈Si

LioffT ion(x), (ai)′ ∈ arg max
x∈Si

LionT ioff(x).

Then, if Strategy 1 is redefined to force switches at (ai)′ and
(ai)′, the results from Theorem 1 and 2 still apply provided
that initial conditions are within the range

[
(ai)′, (ai)′

]
.

4. CONTROL STRATEGY GENERALIZA-
TIONS

In the previous section we proposed Strategy 1 and proved
that it enforces invariance whenever it is possible to do so
in the setting with one-dimensional subsystems. Here we
outline more general problem instances where the strategy
can be applied, and give conditions analogous to (7) that
guarantee that the strategy solves Problem 1. However, the
additional generality comes at the cost of potential conser-
vativeness: there are no results analogous to Theorem 2 in
these cases. The proofs of these generalizations follow that
of Theorem 1.

4.1 Uncertainty in vector fields
Suppose that there is some bounded parametric uncer-

tainty di ∈ Di present in the dynamics, i.e.,

d

dt
xi(t) = f iσi(t)

(
xi(t), di(t)

)
, di(t) ∈ Di, (10)

but that f ion(x, d) < 0 for all (x, d) ∈ Si × Di and that
f ioff(x, d) > 0 for all (x, d) ∈ Si ×Di.

Time to exit is no longer defined for such a system, but
if the “undisturbed” time to exit corresponding to d = 0
is used, Strategy 1 can still be implemented. If the worst-
case disturbance is taken into account at the boundaries
of the Si’s, the following inequalities are obtained, that—if
fulfilled—guarantee that the strategy solves Problem 1.∑

i∈[N ]

min
di∈Di

f ioff(a
i, di)

−f ion(ai, di) + f ioff(a
i, di)

> Kon, and, (11a)

∑
i∈[N ]

min
di∈Di

f ion(a
i, di)

−f ion(ai, di) + f ioff(a
i, di)

> N −Kon. (11b)

4.2 Higher-dimensional systems
The concept of time to exit is defined for systems of arbi-

trary dimension, so Strategy 1 can be implemented also for
arbitrary mode-counting problems provided that the time to
exit can be computed. To arrive at sufficient conditions for
correctness, we divide the boundary ∂Si of the local safety
set Si into parts ∂Sion and ∂Sioff where the on and off modes
may exit, respectively:

∂Sioff =
{
x ∈ ∂Si :

〈
n̂S

i

x , f
i
off(x)

〉
≥ 0
}
, (12a)

∂Sion =
{
x ∈ ∂Si :

〈
n̂S

i

x , f
i
on(x)

〉
≥ 0
}
. (12b)

We will propose sufficient conditions to guarantee that the
maximal invariant set contained in S is equal to S itself,
which is sufficient for Strategy 1 to solve the generalized
version of Problem 1. First, we require that the distance
between the sets ∂Sioff and ∂Sioff is lower bounded by some



ε > 0 for all i ∈ [N ]. If, furthermore, the following general-
izations of (7) hold:∑

i∈[N ]

min
ai∈∂Si

off

LioffT ion
(
ai
)

1 + LioffT ion (ai)
> Kon, and, (13a)

∑
i∈[N ]

min
ai∈∂Si

on

LionT ioff
(
ai
)

1 + LionT ioff
(
ai
) > N −Kon, (13b)

then S is controlled invariant.
For higher-dimensional systems the maximal controlled

invariant set contained in S may exhibit a complicated ge-
ometry. In the one-dimensional case under the monotonic-
ity assumption, it is, as stated in Corollary 2, either empty
or equal (up to closure) to S itself. In higher dimensions
there is no corresponding result. Therefore, even if (13)
does not hold, Strategy 1 may be able to enforce invariance
of a smaller set.

5. EXAMPLE: TCL SCHEDULING
We illustrate the results with simulations of an aggregate

TCL system. Following [7], the dynamics of an individual
TCL can be modeled as follows:

d

dt
θi(t) = −a(θi(t)− θa)− bPm × 1{on} (σi(t)) . (14)

We generated a heterogeneous collection of 1000 TCL’s by
sampling the parameter values a, θa, b and Pm around nom-
inal values3, and sampled individual temperature dead band
parameters ai and ai uniformly from [19, 20.9] and [21, 23],
respectively. In the sampling we made sure that fundamen-
tal problem assumptions were satisfied; in particular, that
f ion < 0 and f ioff > 0 on [ai, ai]. When this is true, both f ion
and f ioff are also monotonically decreasing on the safe set.
Therefore Assumptions 1 and 2 hold and therefore condition
(7) is tight.

Evaluating (7) showed that the largest possible Kon is 323,
and the smallest possible Kon is 250 for the generated collec-
tion. In other words, any mode-counting bounds [Kon,Kon]
with Kon ≤ 323 and Kon ≥ 250 can be satisfied indefinitely
while also respecting local safety constraints. Figure 3 dis-
plays the resulting mode-on-count during a simulation of
Strategy 1 where the imposed mode-counting bounds are
varying within the feasible values discussed above. Infor-
mation about the times to exit is shown in Figure 4 and
temperature traces of three individual TCL’s are depicted
in Figure 5.

Remark 3. In the simulation a sample time 0.01 h was
used to implement Strategy 1. Rather than switching a TCL
at the instant it reaches the boundary of Si, it is switched at
the sample instant if it exited Si during the last sample pe-
riod. This implementation is practical due to its simplicity,
but will lead to brief violations of local safety constraints.
However, it follows from the monotonicity property and the
reasoning in the appendix that no single state constraint will
be permanently violated, and there is an upper bound on
the magnitude of the violation that goes to 0 as the sam-
ple time decreases. The violations could also be corrected for
by shrinking the local safety constraints by an appropriate
margin.

3The nominal values were chosen as a = 0.25, b = 1.25,
θa = 28.6, Pm = 5.6.
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Figure 3: Actual mode-on-count (solid blue) and im-
posed mode on counting bounds (dashed green) in a
Simulation of Strategy 1 for an example with 1000
heterogeneous TCL’s. As can be seen, the imposed
bounds are satisfied throughout the simulation.

If Strategy 1 is implemented in continuous time, it is shown
in the appendix that it will not result in Zeno behavior as long
as (7) holds.

6. CONCLUSIONS
In this paper we studied the mode-counting problem with

two modes in one dimension, and proposed a control strat-
egy that we proved to be optimal in a certain sense. Our
analysis is grounded on careful consideration of the hybrid
nature of the closed loop dynamics, where the control strat-
egy imposes switching based on local end user constraints
and global mode-counting constraints. The results imply
tight bounds on the performance that can be achieved in
steady state in TCL coordination applications, as demon-
strated in Section 5.

Future work will be focused on two objectives. Firstly,
we are interested in further investigating the short-horizon
control properties of TCL scheduling. It can be shown that
Strategy 1 is not the best possible strategy if (8) holds, in
the sense that there is a different strategy that maintains S
invariant for a longer time (although no strategy can achieve
invariance indefinitely). By finding strategies that maximize
the time until local safety constraint violation we hope to put
forward control schemes with short-term optimality condi-
tions and simultaneously derive analytical bounds on track-
ing performance for larger classes of time-varying counting
constraints. Similar control schemes will also be relevant
to additional control objectives like minimizing the number
of switches uniformly or on average while maintaining local
safety and counting constraints.

Secondly, we hope to discover additional settings where
the same approach can be applied: to propose a strategy and
prove that it enforces invariance under some assumptions.
When this is achievable, the control strategy becomes an
implicit representation of a controlled invariant set. In this
work the maximal controlled invariant set turned out to be
either empty, or equal (up to closure) to the safe set itself.
This is typically not the case; for more complex situations
an implicit definition of a controlled invariant set through a
control strategy may be the only practical option.
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Figure 4: Time to exit for the simulation in Figure
3. The plots show maximal, average, and minimal
times to exit for the two modes. As can be seen, the
minimal times to exit remain above 0 which implies
that local safety constraints are satisfied. In the lat-
ter part of the simulation, the lower mode-on-bound
Kon is equal to 320 which is close to the largest fea-
sible value 323. As a result, the subsystems congre-
gate at the lower boundary which is illustrated by
the fact that the times to on exit approach 0. This
confirms the tightness of condition (7).
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Figure 5: Illustration of temperature movement of
three individual TCL’s depicted in red, blue, and
green. The dashed lines indicate heterogeneous lo-
cal state constraints. As can be seen, Strategy 1
switches an individual TCL whenever those local
safety constraints are about to be violated. Other
switches are the result of necessity to enforce global
mode-counting constraints. In the latter part of the
simulation the imposed mode-on-count is high, as
shown in Figure 4. As a consequence, the individ-
ual TCL’s group in the lower parts of their temper-
ature spectra, since the on fields f ion are relatively
weaker there, thus enabling staying in mode on dur-
ing a larger fraction of the time. The reverse holds
around t = 5 h where the imposed mode-on-count is
low.

APPENDIX
The proofs of Theorem 1 and 2 rely on a series of lemmas
that are presented first. By without loss of generality ex-
cluding degenerate cases (c.f. Remark 1), subsystems can be
assumed to arrive at boundaries ai and ai one by one. In this
case, Strategy 1 enforces the constraints (2)-(3) for all times
that the closed loop trajectory is defined. The challenge is
to show that the trajectory is defined for all times which
amounts to ruling out Zeno behavior [9]—accumulation of
switching instances at a time tZ beyond which the solution
is undefined.

Lemma 1. Zeno behavior can only occur for Strategy 1 if
a group I ⊂ [N ] of subsystems all congregate at either their
lower or upper boundaries, but not both. That is, either
xi(t)→ ai for all i ∈ I, or, xi(t)→ ai for all i ∈ I.

Proof. By the definition of Zeno behavior, an infinite
number of switches must take place over a finite time inter-
val [0, tZ). These switches must necessarily be undertaken
by subsystems in some subset I ⊂ [N ], and we may assume
that all subsystems in I switch an infinite amount of times
by excluding those that do not. Consider a single subsys-
tem i ∈ I and some interval [t0, tZ) so that the duration
between switches of i is less than δ, where δ can be chosen
arbitrarily small by adjusting t0. By inspection of Strategy
1, it follows that either T ion(x

i(t)) ≤ δ or T ioff(x
i(t)) ≤ δ for

all t ∈ [t0, tZ). Hence xi(t) approaches either ai or ai.
We show that all systems in I must congregate at either

the lower boundaries ai or the upper boundaries ai, but
not both. This trivially holds when I is a singleton. Now,
assume for contradiction that I can be partitioned into non-
empty sets I and I such that xi(t) → ai for i ∈ I and
xj(t) → aj for j ∈ I. By the same construction as above,
we pick a δ > 0 and an associated time interval [t0, tZ) such
that T ion(x

i(t)) ≤ δ and T joff(x
j(t)) ≤ δ for all i ∈ I, all j ∈ I,

and all t ∈ [t0, tZ). This is a contradiction of the behavior of
Strategy 1. Indeed, for δ small enough T jon(x

j) > T ion(x
i) for

all i ∈ I, j ∈ I, in which case 1) xi would never be switched
from off to on unless all systems in I are already in on,
and 2) xj would never be switched from on to off unless
all systems in I are already in off. But in such a situation
no switches occur at all. Therefore either I = I or I = I,
which shows that either all subsystems congregate at ai, or
all subsystems congregate at ai.

Lemma 2. If Zeno behavior occurs by a group subsystems
I ⊂ [N ] congregating at their lower boundaries ai, then

lim
t→tZ

∑
i∈I

T ion(x
i(t)) = 0,

where tZ is the Zeno time.

Proof. It suffices to remark that the time between switches
for a subsystem i ∈ I goes to 0 as t→ tZ , and that supt′>t T

i
on(x

i(t′))
is upper bounded by the maximal time between switches on
the interval [t, tZ).

Lemma 3. Zeno behavior at the lower boundaries ai for
subsystems I ⊂ [N ] implies that exactly

max(0,Kon −N + |I|)
of the subsystems in I are in mode on for times close to the
Zeno time.



Proof. We first show that all subsystems that are not in
I must be in mode on. Assume that Zeno behavior occurs
for a subset I ⊂ [N ] at the lower boundary, and assume for
contradiction that there is a subsystem j ∈ [N ] \ I that is in
mode off for all times t ∈ [t0, tZ) for some t0. By Lemma
2, T ion(x

i(t)) → 0 for all i ∈ I as t → tZ . It follows that
T jon(x

j(t)) > T ion(x
i(t)) for t close enough to tZ , so Strategy

1 switches subsystem j to on before switching subsystem i
to on, for all i ∈ I. This is a contradiction.

Now, a subsystem in I can only be switched to mode on

when condition 3. of Strategy 1 occurs. It follows that
there are exactly Kon subsystems in mode on for all times
t ∈ [t0, tZ), and out of those,

Kon −min(Kon, N − |I|) = max (0,Kon −N + |I|)

are members of I.

Lemma 4. If (7) holds, then

−max (Kon + |I| −N, 0) +
∑
i∈I

LioffT ion
(
ai
)

1 + LioffT ion (ai)
> 0

for all sets I ⊂ [N ].

Proof. If the max evaluates to 0, the inequality is evi-
dently valid. If not, it suffices to note that

LioffT ion
(
ai
)
/
(

1 + LioffT ion
(
ai
))

< 1 for all i ∈ [N ]

to obtain

−Kon + (N − |I|) +
∑
i∈I

LioffT ion
(
ai
)

1 + LioffT ion (ai)

≥ −Kon +
∑
i∈[N ]

LioffT ion
(
ai
)

1 + LioffT ion (ai)
> 0.

Lemma 5. Under Assumption 2, LioffT ion(x) is monoton-

ically decreasing in Si.

Proof. By assumption, both f ion < 0 and f ioff > 0 are
monotonically decreasing in Si. From Proposition 2:

LioffT ion(x) = f ioff(x)/(−f ion(x)).

As a quotient of a positive monotonically deceasing func-
tion and a positive monotonically increasing function, it is
monotonically decreasing.

The following proofs use the concept of a cycle in the state
space which we introduce next.

Definition 3. A cycle for subsystem i is a continuous
trajectory segment xi(t) on the bounded interval [0, τon+τoff]
with exactly one switch such that xi(0) = xi(τon + τoff).

In the following we use a wider notion of a cycle as a collec-
tion of trajectory segments that—when patched together—
satisfy Definition 3. The subsequent proofs rely on partition-
ing a trajectory into such generalized cycles, as illustrated
in Figure 6. Any trajectory can be divided into cycles with
the possible exception of bounded time intervals. We state
this precisely in the next lemma.

b2 b1 b1 b2

xi(t)

t

Figure 6: Illustration of cycle partitioning of a tra-
jectory xi(t). The segment plotted in solid blue is
a true cycle in the sense of Definition 3: it starts
in mode off at b1, reaches b1, switches to mode on,

and returns to b1. Therefore b1 = φioff(τoff, b1) and

b1 = φion(τon, b1), where τoff and τon are the times spent
in mode off and on, respectively. The segments
marked in red can be patched together to form a
cycle.

Lemma 6. A trajectory xi(t) defined on an interval [t0, t1]
that satisfies the state constraints (2) can be divided into
cycles in a way such that the duration of time not captured
by cycles is at most

max
t∈[t0,t1]

(
T ion(x

i(t)), T ioff(x
i(t))

)
. (15)

Proof. Any segment [t′0, t
′
1] such that xi(t′0) = xi(t′1)

can be recursively partitioned into cycles, as illustrated in
Figure 6. The bound (15) captures the maximal possible
time duration during which xi(t) 6= xi(t′) for all t 6= t′.

From the definition of a cycle it follows that the time
interval for a cycle starting in mode off can be divided into a
mode-off interval [0, τoff] and a mode-on interval [τoff, τoff+
τon]. The next lemma relates these times to the relative
strengths of the vector fields, which is captured by LioffT ion.
This result also applies for cycles that are not connected in
time, such as the red cycle in Figure 6.

Lemma 7. Consider a cycle for subsystem i with time τon
in mode on and time τoff in mode off. Let b and b be the
extremal values of xi(t) during the cycle. Then,

τoff∫
s=0

LioffT ion
(
φioff(s, b)

)
ds

τon + τoff
≤ LioffT ion (b)

1 + LioffT ion (b)
. (16)

Furthermore, if f ioff and f ion are continuous at b:

lim
τoff→0

τoff∫
s=0

LioffT ion
(
φioff(s, b)

)
ds

τon + τoff
=

LioffT ion (b)

1 + LioffT ion (b)
.

Proof. Let b = φioff(τoff, b) be the maximal value of xi(t)
during the cycle. By twice re-parameterizing an integral we



can write τon as

τon =

τon∫
s=0

ds =
¯
b∫

x=b̄

dx

f ion(x)

by ch. of vars:

x = φion(s, b)

dx = f ion (x) ds

 =

b̄∫
x=

¯
b

− dx

f ion(x)

=

τoff∫
s=0

−f
i
off

(
φioff(s, b)

)
f ion (φioff(s, b))

ds


by ch. of vars:

x = φioff(s, b)

dx = f ioff

(
φioff(s, b)

)
ds


=

τoff∫
s=0

LioffT ion
(
φioff(s, b)

)
ds.

It follows that the left-hand side of (16) is actually an expres-
sion for τon/(τon + τoff)—the fraction of time spent in mode
on during the cycle. Furthermore, by denoting τon(τoff) =
τoff∫
s=0

LioffT ion
(
φioff(s, b)

)
ds,

τoff∫
s=0

LioffT ion
(
φioff(s, b)

)
ds

τon + τoff
=

1
τoff

τon(τoff)

1 + 1
τoff

τon(τoff)
. (17)

The mapping x 7→ x/(1 + x) is strictly increasing for x ≥
0, therefore (17) attains its maximal value for the largest
possible 1

τoff
τon(τoff). By Lemma 5;

1

τoff
τon(τoff) =

1

τoff

τoff∫
s=0

LioffT ion
(
φioff(s, b)

)
ds

≤ 1

τoff
τoff sup

u∈[0,τoff]

LioffT ion
(
φioff(u, b)

)
= LioffT ion (b) .

Plugging this into (17) proves the first claim. By taking the
limit of the integral, it follows given the continuity assump-
tion that the maximum is approached as τoff → 0.

Proof of Theorem 1. We need to prove that the strat-
egy does not induce Zeno behavior. Assume for contradic-
tion that Zeno behavior occurs at t = tZ but that (7) holds.
Then by Lemma 1 we can select a subset of subsystems
I ⊂ [N ] that congregate at the (w.l.o.g.) lower boundaries
ai.

Consider a time t < tZ such that all switches that oc-
cur after t are switches of subsystems in I. We can pick a
τ > 0 such that the trajectory is defined on the whole time
interval [t, t+ τ ]. Define τ∗on = maxi∈I sups≥t T

i
on(x

i(s)). By
Lemma 2, τ∗on → 0 as t → tZ . Consider the evolution of∑
i∈I T

i
on(x

i(t)) on the interval [t, t+ τ ]:∑
i∈I

T ion(x
i(t+ τ)) =

∑
i∈I

T ion(x
i(t))

+

t+τ∫
s=t

d

ds

∑
i∈I

T ion(x
i(s)) ds.

(18)

By Lemma 3, out of the |I| subsystems in I, max(Kon+ |I|−
N, 0) are in mode on. We recall that

d

ds
T ion(x

i(s)) =

{
−1 if σi(s) = on,

LioffT ion(xi(s)) if σi(s) = off.

By splitting the integral we can therefore write

t+τ∫
s=t

∑
i∈I

d

ds
T ion(x

i(s)) ds =
∑
i∈I

t+τ∫
s=t

d

ds
T ion(x

i(s)) ds (19)

=
∑
i∈I


∫

s∈[t,t+τ ]

σi(s)=on

d

ds
T ion(x

i(s)) ds+

∫
s∈[t,t+τ ]

σi(s)=off

d

ds
T ion(x

i(s)) ds


= −max (Kon + |I| −N, 0) τ +

∑
i∈I

∫
s∈[t,t+τ ]

σi(s)=off

LioffT ion(xi(s)) ds.

We consider the remaining integral. Each subsystem i in I
will reach ai, switch to off, travel“upwards”until T ion(x

i(t)) =
τ i,con for some τ i,con < τ∗on, switch to on, and finally reach ai

again. We can thus partition the trajectory into a set of cy-
cles Cyci in the sense of Definition 3. We split the integral
above accordingly and obtain the following inequality due
to possibly omitting times at the beginning and the end of
[t, t + τ ] that are not part of complete cycles (c.f. Lemma
6).

∫
s∈[t,t+τ ]

σi(s)=off

LioffT ion(xi(s)) ds ≥
∑

c∈Cyci

τ
c,i
off∫

s=0

LioffT ion(φioff(ai, s)) ds,

where τ c,ioff is the time spent in mode off by subsystem i
during cycle c. By Lemma 7 we can bound this from below
as∑
c∈Cyci

τ
c,i
off∫

s=0

LioffT ion(φioff(ai, s)) ds

=
∑

c∈Cyci

(
τ c,ioff + τ c,ion

)( LioffT ion(ai)
1 + LioffT ion(ai)

− δ(τ c,ioff)

)

≥ (τ − δτ )

( LioffT ion(ai)
1 + LioffT ion(ai)

− δ
)
,

where δ = maxi maxc δ(τ
c,i
off)→ 0 as τ∗on → 0 and δτ < τ has

been subtracted to compensate for time before and after
cycles. We thus obtain a lower bound for (19) as

t+τ∫
s=t

∑
i∈I

d

ds
T ion(x

i(s)) ds

≥

 −max (Kon + |I| −N, 0)

+
∑
i∈I

LioffT ion(ai)
1 + LioffT ion(ai)

− δ|I|

 (τ − δτ ) .

Now, by letting τ → τZ = tZ − t in (18);

0 ≥
∑
i∈I

T ion(x(t))︸ ︷︷ ︸
≥0

+

−max (Kon + |I| −N, 0)

+
∑
i∈I

LioffT ion(ai)
1 + LioffT ion(ai)

− δ|I|


︸ ︷︷ ︸

A

(τZ − δτZ )︸ ︷︷ ︸
B

.

As t→ tZ , B → 0 from above, and

A→ −max (Kon + |I| −N, 0) +
∑
i∈I

LioffT ion
(
ai
)

1 + LioffT ion (ai)
,



which is strictly positive by Lemma 4. This is a contradic-
tion of the last inequality, and thus of the Zeno behavior.

Proof of Theorem 2. We assume that the first inequal-
ity in (8) holds; the other case can be treated symmetri-
cally. Assume for contradiction that a switching strategy
{σi(t)}i∈[N ] that generates infinite-time trajectories satisfy-
ing the constraints of Problem 1 exists. Then,

d

dt

∑
i∈[N ]

T ion(x
i(t)) ≤ −Kon +

∑
i∈[N ]

σi(t)=off

LioffT ion(xi(t)). (20)

We integrate the right-hand sum over an interval [0, tf ],

tf∫
s=0

∑
i∈[N ]

σi(t)=off

LioffT ion(xi(s)) ds =
∑
i∈[N ]

∫
s∈[0,tf ]

σi(s)=off

LioffT ion(xi(s)) ds,

and seek to bound the integral for each i ∈ [N ]. By Lemma
6 the trajectory can be partitioned into complete cycles
c ∈ Cyci with extremal points bc and bc so that the whole
interval [0, tf ] is covered except possibly for a total duration
∆i
tf at the beginning and the end of the interval [0, tf ]. We

divide the integral into contributions from these cycles and
use Lemma 7,

∫
s∈[0,tf ]

σi(s)=off

LioffT ion
(
xi(s)

)
ds =

∑
c∈Cyci

τ
c,i
off∫

s=0

LioffT ion
(
φioff(s, bc)

)
ds

≤
∑

c∈Cyci

(
τ c,ioff + τ c,ion

) LioffT ion(bc)
1 + LioffT ion(bc)

≤
(
tf −∆i

tf

) LioffT ion(ai)
1 + LioffT ion(ai)

.

By Lemma 6 the non-cycle time ∆i
tf is bounded indepen-

dently of tf as ∆i
tf ≤ max

(
T ion(a), T ioff(a

i)
)
.

Using this upper bound and (8), integrating (20) yields∑
i∈[N ]

T ion(x
i(tf ))−

∑
i∈[N ]

T ion(x
i(0))

≤ −Kontf +
∑
i∈[N ]

LioffT ion(ai)
1 + LioffT ion(ai)

(tf − ∆̄i
tf )

≤

−Kon +
∑
i∈[N ]

LioffT ion(ai)
1 + LioffT ion(ai)

 tf − ∆̄tf

≤ −εtf − ∆̄tf

for some ε > 0 and where ∆̄tf is bounded independently

of tf and i since each ∆i
tf is uniformly bounded. Letting

tf → ∞ results in a violation of state constraints, which
is a contradiction of the correctness of the switching strat-
egy.
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