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Abstract— Motivated by the problem of capacity allocation
in aggregate systems of thermostatically controlled loads, we
seek to optimize the time of invariance—the maximal time
that a scheduler can maintain local safety constraints without
exceeding an aggregate capacity constraint. Having previously
characterized conditions when the time of invariance is infinite,
this paper focuses on situations when no scheduler can satisfy
all constraints indefinitely.

We derive a lower bound for the optimal time of invariance,
and leverage ideas from optimal control to propose control
strategies with associated lower bounds on the resulting times
of invariance. We also analyze the optimality gap. The results
are illustrated on a 10,000-dimensional example.

I. INTRODUCTION

Thermostatically controlled loads (TCLs) include air con-
ditioners, water heaters, refrigerators, etc., that operate
around a given temperature fixed point. End users of TCLs
are typically indifferent to small temperature variations
around the desired fixed point. While not significant for
a single system, the aggregate flexibility of large families
of TCLs can be leveraged by utility companies to shape
aggregate demand. The aggregate system can be thought of
as a battery that can be charged and discharged [6] in order
to balance the total load on the grid over time.

Efforts to control large families of TCLs frequently appear
in the literature. As demonstrated in [4, 5], a universal
fixed point temperature can be imposed across a family of
TCLs to achieve tracking goals. However, such a universal
approach may violate end user requirements that are not
necessarily uniform. Another approach is to partition the
temperature range into “bins” and model intra-bin transitions
as a discrete-time Markov process [3]. In these and other [11,
6] methods the on/off-state of each individual TCL is treated
as a potential control input. This additional control freedom
can leverage more of the flexibility within a temperature
range and can therefore potentially achieve reference tracking
without violating end user constraints.

Previous work has been demonstrated effective in simu-
lations, but the methods do not provide formal guarantees
on performance. Motivated by this shortcoming, in [9] we
introduced the mode-counting problem: a class of problems
where local safety constraints (i.e., maximal deviation from
desired temperature) are in conflict with a global constraint
on the number of systems that are allowed to be in a
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certain mode (i.e., reference tracking error). Our initial
solution approach was in the form of an integer linear
program from which—if feasible—a correct controller could
be extracted. We further studied the TCL-inspired setting of
one-dimensional subsystems with two modes (on and off)
in [10], and gave a precise characterization of when the
infinite-horizon mode-counting problem has a solution. How-
ever, the situations when a solution exists turned out to be
rather narrow for practical purposes: we found an aggregate
flexibility of around 6% (trackable signals as a fraction of
the maximal power) when imposing infinite-horizon bounds,
whereas applications often require a flexibility upwards of
60% but for relatively short durations [7].

In this paper we therefore further study the situation when
the infinite-horizon mode-counting problem lacks a solution,
and propose control strategies that satisfy the constraints as
long as possible—we call the maximal time of satisfaction
the time of invariance. If a low-level capacity allocator
can provide guarantees on its time of invariance given a
reference power signal and the current state of its system,
that information can be fed to a high-level capacity allocator
to make informed decisions.

The technical approach is based on a formulation of
the problem as a time-optimal control problem where the
objective is to maximize the time until a certain set is
reached. We propose a heuristic value function for the
optimal control problem from which a control strategy can
be derived via the Hamilton-Jacobi-Bellman (HJB) equation;
similar approaches have previously been considered e.g. in
pursuit-evasion games [12]. By assessing how close the value
function is to satisfying the HJB equation, we can also bound
the optimality gap.

The paper is structured as follows. The remainder of
this section introduces relevant concepts from our previous
work and formalizes the problem statement. In Section II
we under-approximate the time of invariance and use the
lower bound to define control strategies with associated per-
formance guarantees derived in Section III. We showcase our
results on numerical examples in Section IV and conclude
the paper in Section V.

A. Time to exit

In order to obtain a homogeneous measure to compare
the imminence of constraint violation across heterogeneous
families of TCLs, we introduced time to exit in [10]—the
time it takes for a system to violate its safety constraints if
left unattended.



Definition 1: Given a set S ⊂ Rn, for x ∈ S and a vector
field f : Rn→Rn, the time to exit Tf (x) is the time it takes
for the flow φ f : Rn×R+→ Rn of f starting in x to reach
∂S:

Tf (x) = inf
{

τ ≥ 0 : φ f (x,τ) ∈ ∂S
}
.

In the following we assume that Tf (x)<+∞, i.e., that the
set S is transient under the flow of f . The dynamics of the
time to exit are captured in the following result.

Proposition 1 ([10]): Assume that ∂S is C1 at U f (x),
where U f (x) is the exit point

U f (x) = φ f
(
x,Tf (x)

)
.

Then the Lie derivative LgTf (x) of Tf (x) with respect to a
second vector field g is expressed as follows:

LgTf (x) =−

(
n̂S

U f (x)

)T
(∇xφ f )

∣∣
(x,Tf (x))

g(x)(
n̂S

U f (x)

)T
f (U f (x))

, (1)

where n̂S
x is the outward-pointing unit normal of ∂S at x.

As intuition suggests, L f Tf (x) =−1: the time to exit with
respect to f decreases with unit speed along trajectories of f
itself. The expression in (1) is difficult to evaluate in general
settings, but easy for the one-dimensional systems considered
in this paper.

B. Problem statement

Problem 1: Let [N] denote the set of integers {1, . . . ,N}.
Consider a collection of N one-dimensional subsystems with
states xi ∈ R, for i ∈ [N], with dynamics

d
dt

xi(t) =

{
f i
off

(
xi(t)

)
if σ i(t) = off,

f i
on

(
xi(t)

)
if σ i(t) = on,

(2)

local safe sets Si = [ai,ai], and bounds [Kon,Kon] on the
number of subsystems that can simultaneously be in mode
on (i.e. global mode-counting bounds). Given initial posi-
tions x0 = [x1

0, . . . ,x
N
0 ], compute a time of invariance TI(x0)

and construct an aggregate switching policy {σ i}i∈[N] such
that for all trajectories xi : [0,TI(x0)]→ R:

xi(t) ∈ Si, ∀i ∈ [N], t ∈ [0,TI(x0)],

Kon ≤ ∑
i∈[N]

1{on}
(
σ

i(t)
)
≤ Kon, ∀t ∈ [0,TI(x0)],

where 1X (x) is the indicator function of the set X that is
equal to 1 if x ∈ X and to 0 otherwise. �

We are interested in making TI(x0) as large as possible
and assess how it compares to the optimal time of invariance
T ∗I (x0). We make an assumption on the signs of the vector
fields, namely that the off field always transports the
state “upwards”, and that the on field transports the state
“downwards”, as depicted in Fig. 1.

Assumption 1: For i ∈ [N] and all x ∈ Si, f i
off(x)> 0 and

f i
on(x)< 0.

With this assumption the systems can be thought of as air
condition units operating in hot weather conditions: when
they are turned on the temperature decreases, and, when
they are turned off the temperature converges towards the
warmer outdoor temperature.

Mode: off

Mode: on

Switch
Switch

Ton(x2)

Toff(x1)

x
a ax2x1

Fig. 1. Illustration of TCL system with homogeneous constraints [a,a]. The
time to off exit Toff(x) is the time it takes to reach the upper boundary
a for a system in mode off, and conversely for Ton(x).

In the following the notation is simplified and we write
L i
on =L f i

on
, T i

on = Tf i
on

, and analogously for the off mode.
For the one-dimensional subsystems in Problem 1 the times
to exit then satisfy [10]:

L i
offT i

on(x) =−
f i
off(x)
f i
on(x)

, L i
onT i

off(x) =−
f i
on(x)

f i
off(x)

.

In our previous paper [10] we showed that if

∑
i∈[N]

L i
offT i

on(a
i)

1+L i
offT i

on(ai)
> Kon, and, (3a)

∑
i∈[N]

1
1+L i

onT i
off(a

i)
< Kon, (3b)

then T ∗I (x0) = +∞ for any x0 s.t. xi
0 ∈ Si, and we provided

a control strategy that achieves invariance indefinitely. On
the other hand, we also gave a converse result based on the
following assumption:

Assumption 2: The functions f i
on and f i

off are monoton-
ically decreasing in Si for all i ∈ [N].

This assumption corresponds to flow velocities that de-
crease in the directions of the flows. Such a condition is
typically true in a system that is converging towards its
equilibrium. Under this assumption, if the strict version of
either inequality in (3) is violated, then no control strategy
can achieve indefinite invariance, so T ∗I (x0) < +∞ for any
x0. In this paper we study this latter case. If (3b) is strictly
violated then (3a) holds, and vice versa. Due to symmetry
we can therefore without loss of generality restrict attention
to the case when (3b) is strictly violated:

Assumption 3: The following inequality holds:

∑
i∈[N]

1
1+L i

onT i
off(a

i)
> Kon. (4)

Going back to the air conditioner analogy, Assumption 3
represents a situation when ∑i∈[N]

1
1+L i

onT i
off(ai)

air condition
units must be allowed to turn on simultaneously in order to
indefinitely maintain all temperatures below the upper limits.
However, there is a too restrictive power consumption con-
straint Kon on the maximal number that can simultaneously
be turned on, which means that it is impossible to satisfy the
temperature constraints xi(t)≤ ai over an infinite horizon. In
the rest of the paper we disregard the lower bounds ai since
they can be satisfied over an infinite horizon, and focus on
satisfying xi ≤ ai for as long as possible.



II. CONTROL STRATEGIES

We re-formulate Problem 1 as an optimal control problem,
and leverage tools from optimal control theory to construct
a control strategy C. The strategy is based on a lower bound
of the optimal time of invariance and we show that C will
always achieve a time of invariance greater than the lower
bound. Moreover, we investigate how much the lower bound
differs from the optimum.

A. Reformulation as an optimal control problem

We first introduce a convexified version of the dynamics
(2), where the mode of a subsystem is described by a number
α ∈ [0,1] rather than by the discrete action set {off,on}.
The convexified dynamics are as follows:

d
dt

xi(t) = (1−α
i(t)) f i

off

(
xi(t)

)
+α

i(t) f i
on

(
xi(t)

)
. (5)

As can be seen α i(t)= 0 in (5) corresponds to σ i(t)=off
in (2), and, conversely, α i(t) = 1 corresponds to σ i(t) = on.
Although the set of permissible control actions in (2) is a
strict subset of that in (5), any trajectory of (5) can be tracked
to arbitrary precision by the dynamics in (2) by sliding mode
control and fast switching1. We let x = [x1, . . . ,xN ]T be the
state of the aggregate system, and can write the aggregate
dynamics as

d
dt

x(t) = (1N−α(t))� foff(x(t))+α(t)� fon(x(t)),

x(0) = x0,

α : R+→ ∆N
(
Kon

)
,

(6)

where � denotes element-wise product, 1N is the column
vector of N ones, and the set of admissible controls ∆N

(
Kon

)
is defined as follows:

∆N(K) =

{
α ∈ RN | 0≤ α

i ≤ 1, ∑
i∈[N]

α
i = K

}
.

We point out that in the absence of lower state bounds, there
is no benefit in selecting α such that ∑i∈[N] α

i <Kon whereby
we may restrict control to ∆N

(
Kon

)
. If we let S = ΠN

i=1Si be
the aggregate safe set we can now associate T ∗I (x0) to the
value V ∗(x0) of an optimal control problem

V ∗(x0) = sup
α

{∫
∞

0
1S(x(s)) ds s.t. (6) holds

}
.

It is obvious that T ∗I (x0) ≤ V ∗(x0); we conjecture that
T ∗I (x0) = V ∗(x0) for all x0 ∈ S, but the applicability of our
results is not affected by whether that conjecture is true or
not. By applying the principle of optimality it follows that
V ∗(x) is a viscosity solution [1, 2] of the following stationary
partial differential equation (PDE):

max
α∈∆N

(
Kon

) ∑
i∈[N]

∂V (x)
∂xi

[
(1−α

i) f i
off(x

i)

+α
i f i
on(x

i)

]
=−1S(x). (7)

The left-hand side maximizes the time derivative of V
which, along trajectories generated by selecting the maxi-
mizing α , should be equal to −1 inside S and to 0 otherwise.

1Sliding modes require a weak notion of solutions (e.g. Carathéodory)
but in this paper we abstain from precise technical discussions.

Unfortunately this PDE is difficult to solve for the type
of high-dimensional systems we are interested in. However,
from (7) we know that the optimal control input α∗ should
be selected so as to achieve the maximum in (7). By
disregarding the term that is constant in α , the optimal input
can be written as the feedback

α
∗(x) ∈ argmax

α∈∆N

(
Kon

) ∑
i∈[N]

α
i ∂V ∗(x)

∂xi ( f i
on(x

i)− f i
off(x

i)). (8)

Motivated by this way to extract an input, we pursue a three-
stage approach.

1) Construct an analytical under-approximation T−I (x) of
the optimal time of invariance T ∗I (x).

2) Substitute T−I (x) for V ∗(x) in (8) to construct a strat-
egy C which achieves an unknown time of invariance
TC

I (x)> T−I (x).
3) Analytically bound the optimality gap between V ∗(x)

and T−I (x).

B. Under-approximation of the time of invariance
We derive a lower bound of the time of invariance for

linear systems, the reason being that in order to accurately
assess the time of invariance some future information must
be taken into account. If a nonlinear system can be under-
approximated by a linear system, in the sense that T i

off(x
i)

is always smaller in the approximation, the results still hold.
We also give a looser lower bound in the end of this section
that holds without further assumptions on the dynamics. For
now, we assume that

f i
off(x

i) = γ
i
(
−xi +b

i
)
, f i

on(x
i) = γ

i (−xi +bi) . (9)

Here, bi and b
i

are the mode on and off equilibrium
points of subsystem i, respectively, and Assumption 1 is
equivalent to the condition bi < ai < b

i
, which we assume

to be fulfilled in the following. In addition, Assumption 2 is
fulfilled due to linearity.

For linear systems, the time to off exit given a constant
input α i ∈ [0,1] (the time it takes to reach ai, c.f. Fig. 1) is

T i
off(x

i
0,α

i) =
1
γ i log

(
b̃i(α i)− xi

0

b̃i(α i)−ai

)
=

1
γ i log

(
1+

ai− xi
0

b̃i(α i)−ai

)
,

(10)

where b̃i(α i) = b j
α j +(1−α j)b

j
is the equilibrium point of

(9) resulting from the input α i. Using the inequality log(1+
x)≥ 2x/(2+x) for x≥ 0, it follows that T i

off(x
i
0,α

i) can be
lower bounded by T i−

off(x
i
0,α

i) defined as follows:

T i−
off(x

i
0,α

i) =
1
γ i

 ai− xi
0

b
i−α

i(b
i−bi)− ai + xi

0
2

 . (11)

Our strategy to lower bound the time of invariance
amounts to selecting a weight vector α ∈ ∆N

(
Kon

)
that

maximizes the minimal lower bound across all N subsystems.
Then the strategy of applying α as a constant input until the
first subsystem violates its constraint will achieve a time of
invariance of at least mini∈[N] T

i−
off(x

i
0,α

i).



A reasonable approach would be to select a weight vec-
tor that results in lower bounds that are uniform across
subsystems. However, if there are large disparities in the
initial conditions such a selection is not possible with α ∈
∆N
(
Kon

)
—α i can become negative for some subsystems. To

arrive at a feasible α we use Algorithm 1 to iteratively sort
out such subsystems before assigning weights to remaining
subsystems that result in uniform lower bounds.

Algorithm 1: Selection of subsystem weights.

Data: N subsystem positions xi
0 ∈ Si for i ∈ [N]

Result: Weights α ∈ ∆N
(
Kon

)
, index set J∗ ⊂ [N]

1 Set J = [N], α i =−1 ∀ i ∈ J
2 while mini α i < 0 do
3 forall i ∈ J do

4

α
i =

(
Kon+

(
b

i− 1
2

(
ai + xi

0
)

ai− xi
0

)
∑
j∈J

γ i

γ j

a j− x j
0

b
j−b j

−∑
j∈J

b
j− 1

2

(
a j + x j

0

)
b

j−b j

/

(
b

i−bi

ai− xi
0

∑
j∈J

γ i

γ j

a j− x j
0

b
j−b j

)

5 J = J \{i ∈ J : α i < 0}
6 forall i ∈ [N]\ J do
7 α i = 0

8 return α,J∗ = J

Since the index set J is strictly decreasing over algorithm
iterations, the algorithm will terminate. Below we will prove
that T−I (x0,J∗) is a lower bound on the time of invariance
resulting from the weight selection, where

T−I (x0,J) =

∑
i∈J

ai− xi
0

γ i
(

b
i−bi

)
∑
i∈J

b
i− 1

2

(
ai + xi

0
)

b
i−bi

−Kon

. (12)

Proposition 2: In the inner forall loop α is are assigned
in a way such that T i−

off(x
i
0,α

i) = T−I (x0,J) for all i ∈ J.
Proof: Follows by inserting the expression for α i on

Line 4 into (11).
We also need to establish that the α i’s are feasible.
Proposition 3: Algorithm 1 terminates with a non-empty

index set J∗ and α ∈ ∆N
(
Kon

)
.

Proof: It is easy to verify that ∑i∈J α i = Kon after line
4 in Algorithm 1, which implies that at least one α i must be
positive and hence J∗ is non-empty at termination. It is also
clear that α i ≥ 0 for all i ∈ [N] at termination. What remains
to show is that α i ≤ 1; we do this by establishing that

Kon < ∑
i∈J

b
i− 1

2 (a
i + xi

0)

b
i−bi

(13)

is true at the beginning of each iteration, from which it
follows that α i ≤ 1 for all i by inspection of Line 4.

We now establish (13). First remark that, when J = [N],

(13) is a result of Assumption 3 and the fact that xi
0≤ ai < b

i
.

Assume for induction that (13) holds at the beginning of the
while loop, we prove that it holds also for J \J′ where J′ ⊂ J
is the set of indices excluded on Line 5. For all i∈ J′, α i < 0
and therefore by Proposition 2

T i−
off(x

i
0,0)> T i−

off(x
i
0,α

i) = T−I (x0,J), (14)
from which the following can be derived by summing over
i ∈ J′:

∑
i∈J′

ai− xi
0

γ i
(

b
i−bi

)
∑
i∈J′

b
i− 1

2

(
ai + xi

0
)

b
i−bi

>

∑
j∈J

a j− x j
0

γ j
(

b
j−b j

)
∑
j∈J

b
j− 1

2

(
a j + x j

0

)
b

j−b j
−Kon

. (15)

This expression can be used to derive

∑
i∈J\J′

b
i− 1

2

(
ai + xi

0
)

b
i−bi

> Kon+ ∑
i∈J′

b
i− 1

2

(
ai + xi

0
)

b
i−bi

×

 ∑i∈J
1
γ i

(
ai− xi

0
)(

b
i−bi

)
∑i∈J′

1
γ i

(
ai− xi

0

)(
b

i−bi
) −1

 ,
from which (13) follows also for J replaced by J \ J′,
by positivity of the term in brackets. This completes the
induction argument.
Finally, we conclude that T−I (x0,J∗) is a lower bound on the
time of invariance achieved by the selection in Algorithm 1.

Theorem 1: Given a point x0 ∈ S, the strategy of assigning
the constant α obtained in Algorithm 1 results in a time of
invariance of at least T−I (x0,J∗).

Proof: We have already established that T−I (x0,J∗) =
T i−
off(x

i
0,α

i) for all i ∈ J∗. All subsystems i ∈ [N] \ J∗ have
been assigned α i = 0, and we have that

T i−
off(x

i
0,0)> T−I (x0,J)

for some J ⊃ J∗. We show that T−I (x0,J) is decreasing over
the while iterations, from which it follows that T i−

off(x
i
0,0)>

T−I (x0,J∗) as required. Remark that the following two alge-
braic conditions are equivalent for ci ≥ 0 and c5 < c3:

c2

c4
>

c1 + c2

c3 + c4− c5
⇐⇒ c1 + c2

c3 + c4− c5
>

c1

c3− c5
.

This equivalence can be used to transform (15) (which is
on the left-hand side form) into the inequality T−I (x0,J) >
T−I (x0,J \ J′) (which can be written on the right-hand side
form), which completes the proof.

We point out that the reverse of inequality (14) necessarily
holds for all i ∈ J∗, that is,

i ∈ J∗ ⇐⇒ T i−
off(x

i
0,0)≤ T−I (x0,J∗). (16)

In the following we just write T−I (x0) = T−I (x0,J∗) since J∗

depends on x0 via Algorithm 1, and we also define T−I (x0)
to be zero outside of S:

T−I (x0) = 0 for x0 6∈ S.

C. An easy-to-implement strategy

We now use the under-approximation T−I (x) to propose
a strategy C that achieves a time of invariance of at least
T−I (x). Motivated by the selection of controls in (8) we



propose to dynamically select feedback weights αC(x(t))
such that

α
C(x(t))∈ argmax

α∈∆N

(
Kon

) ∑
i∈J∗

∂T−I (x(t))
∂xi γ

i

[
−xi(t)+b

i

−α
i(b

i−bi)

]
. (17)

Two subtleties occur here: a subsystem i only contributes
to T−I (x(t)) if i ∈ J∗, where J∗ is determined by Algorithm
1 in a way such that (16) holds for x(t). Furthermore,
T−I (x(t)) = 0 if x(t) 6∈ S. By incorporating these side condi-
tions in the partial derivative2, the following two rules must
be taken into account when selecting the maximizing αC in
(17):

1) If xi(t) = ai, then α i must be such that

(1−α
i)b

i
+α

ibi ≤ ai (18)
in order to prevent xi from exiting Si.

2) If T i−
off(x

i(t),0) = T−I (x), then α i must be such that
d
dt

T i−
off(x

i(t),0)≤ d
dt

T−I (x(t)) (19)

in order to maintain i in the index set J∗.
Both of these conditions are linear in α and are therefore

easy to write as a linear program. In addition, the α returned
by Algorithm 1 is a feasible solution with objective value
equal to −1. The feasibility is thus guaranteed, but it may
be possible to find an α that achieves a larger objective value
than −1, which may result in a time of invariance larger than
T−I (x0).

D. Relaxed “lazy” strategy

The strategy C will in general introduce sliding surfaces
in the state space, which means that it generates trajec-
tories with non-integer switching signals. Since a physical
subsystem can only be in mode on or off this is impos-
sible in practice. Although non-integer trajectories can be
approximated by fast switching (chattering in the limit), such
fast switching is not user-friendly and may cause premature
equipment failure. For this reason it is appropriate to give up
some time of invariance in favor of reducing the switching
frequency.

In our previous work [10] (see also [8, 6]) we proposed a
“lazy” switching strategy that only applies integer inputs 0
and 1 (corresponding to the physical modes off and on).
Inspired by this we propose an event-based relaxed strategy
L that always maintains Kon system in mode on, and that
only acts if either a safety constraint xi ∈ Si is about to be
violated, or if a subsystem i is about to exit the index set J∗.

“Lazy” strategy L: Initialize by switching on any Kon

subsystems in J∗. At time t only perform a switch if one of
the following conditions occur:

1) If xi(t) ≥ ai, switch i to on while switching off
subsystem j∗ for

j∗ ∈ argmax
j∈Jon

T j
off(x

j(t)),

where Jon is the set of subsystems in J∗ that are in
mode on.

2The boundary analysis can be done rigorously with Heaviside and Dirac
delta functions, but we opted for a (hopefully) more readable presentation.

2) If T i−
off(x

i(t),0) ≥ T−I (x(t)), switch i to off while
switching on subsystem j∗ for

j∗ ∈ argmin
j∈Joff

T j
off(x

j(t)),

where Joff is the set of subsystems in J∗ that are in
mode off.

E. Myopic strategy for nonlinear systems

We finally revisit the nonlinear setting and propose a
general strategy based on the lower bound

T	I (x) =
∑

i∈J∗

T i
off(x

i)

1+L i
onT i

off(xi)

∑
i∈J∗

1
1+L i

onT i
off(xi)

−Kon

. (20)

Just as in Algorithm 1, the set J∗ should be determined
recursively in a way such that T	I (x) ≥ T i

off(x
i) for all

i ∈ J∗. The lower bound (20) is myopic in the sense that
it only considers the current times to off exit T i

off(x
i)

and their instantaneous derivatives L i
onT i

off(x
i). However,

as demonstrated later it can still achieve good results when
used as a foundation in the switching rule (8). Also this
strategy can be turned into a lazy strategy by disregarding
optimization and just ensuring that the index set J∗ remains
the same.

III. COMPARISONS OF TIMES OF INVARIANCE

In the following we study the value of d
dt T−I (x(t)) along

different trajectories by further investigating the left-hand
side of (7). Roughly speaking, if there is no way to achieve
a time derivative much larger than -1, then T−I (x) should
be close to the optimal value V ∗(x), and hence also to the
optimal time of invariance T ∗I (x). Conversely, if even a non-
optimizing strategy such as the lazy strategy does not result
in a time derivative much smaller than −1, then that strategy
should achieve a time of invariance close to T−I (x). By
expanding the partial derivative, as shown in the Appendix,
the following expression is obtained for α ∈ ∆N

(
Kon

)
in the

linear case.

∑
i∈J∗

∂T−I (x)
∂xi γ

i
[
−xi +α

ibi +(1−α
i)b

i
]
=−1

+

∑
i∈J∗

T−I (x)γ i
(

b
i− xi

)
−
(
ai− xi

)
2(b

i−bi)
− T−I (x)γ iα i

2

∑
j∈J∗

b
j− 1

2 (a
j + x j)

b
j−b j

−Kon

.

(21)

As a side note, we can here identify a simple switching
rule for the strategy C, which simply is to maximize α i for
the subsystems with the smallest γ i’s while respecting (18)-
(19).

The main theoretical results of this paper are based on
upper and lower bounds on the expression in (21): an upper
bounds gives information about how close T−I (x) is to the
optimal value function of (7), while a lower bound allows us
to give a guaranteed performance bound for a “lazy” strategy
that does not attempt to optimize.



Proposition 4: Provided that γ iT−I (x0)≤ 2 for all i, then
(21) is bounded above by −1+εT−I (x) along all trajectories
starting at x0 regardless of α , where ε is as follows:

ε =

1
2

(
∑

i∈J∗
γ

i b
i−ai

b
i−bi

2+ γ iT−I (x0)

2− γ iT−I (x0)
− min
α∈∆N(Kon)

∑
i∈J∗

α
i
γ

i

)

∑
i∈J∗

b
i−ai

b
i−bi

−Kon

.

The denominator in this bound is large when there is a
large gap in (4). A larger gap implies a smaller time of
invariance, meaning that the bound is tighter when the time
of invariance is small.

Proof: First we remark that −(ai−xi)≤ 0, so that term
in (21) can be disregarded. Furthermore, from (16) we get
for γ iT−I (x)≤ 2

b
i− xi ≤ (b

i−ai)

(
2+ γ iT−I (x)
2− γ iT−I (x)

)
. (22)

Since the mapping x 7→ (2+ x)/(2− x) is increasing with x
on [0,2), and we know that T−I (x) decreases with time, we
can replace T−I (x) with T−I (x0). Inserting these inequalities
into (21) and applying (13) concludes.

Secondly, we give a bound from below which corresponds
to an actor making the “worst possible” choices.

Proposition 5: Provided that γ iT−I (x0)≤ 2 for all i, then
(21) is bounded below by −1−|ε|T−I (x) along all trajecto-
ries starting at x0 regardless of α , where ε is as follows:

ε =

1
2

(
∑

i∈J∗
γ

i b
i−ai

b
i−bi

−γ iT−i (x0)

2− γ iT−I (x0)
− max
α∈∆N(Kon)

∑
i∈J∗

α
i
γ

i

)

∑
i∈J∗

b
i−ai

b
i−bi

−Kon

.

Proof: Follows like above by noting that b
i−xi≥ b

i−ai

and deriving the following inequality from (16):

−(ai− xi)≥−(bi−ai)
γ iT−I (x)

1− γ iT−I (x)/2
. (23)

The reason that these results do not hold for γ iT−I (x0)> 2
can be traced back to the approximation log(1+x)≥ 2x/(2+
x) that we used to lower bound the times to exit. When
x→∞, 2x/(2+x)→ 2 so the approximation becomes “non-
invertible” for log(1+ x)≥ 2.

Next we prove that the strategy C achieves a time of
invariance of at least T−I (x). The strategy C maximizes the
expression in (21), and per the discussion in Section II-C
an α will always exists such that d

dt T−I (x(t)) ≥ −1 along
trajectories of C.

Proposition 6: The time of invariance achieved by C,
TC

I (x), satisfies
TC

I (x)≥ T−I (x).
Proof: Consider a trajectory xC(t) starting at x0 gener-

ated by C, we know that d
dt T−I (xC(t))≥−1. Integrating up

to a time τ gives T−I (xC(τ))−T−I (x0)≥−τ. Set τ = TC
I (x0),

then T−I (xC(τ)) = 0 and the result follows.
Finally, we prove a general two-sided bound that allows

us to bound T L
I and T ∗I in terms of T−I .

Proposition 7: Consider a a strategy D such that along
trajectories xD(t) generated by D,

d
dt

T−I (xD(t))Q−1+ εT−I (xD(t)), (24)

where Q is either ≤ or ≥. Then the time of invariance
achieved by D, T D

I (x), satisfies

T−I (x)R
1− e−εT D

I (x)

ε
.

Proof: Integrating (24) up to time τ along a trajectory
xD(t) starting at x0, we get

−e−ετ T−I (xD(τ))−T−I (x0)Q
e−ετ −1

εC .

Setting τ = T D
I (x0) gives T−I (xD(τ)) = 0 and thus

T−I (x0)R
1− e−εT D

I (x0)

ε
.

Considering Proposition 4 and 5 the following two corollar-
ies now immediately follow:

Corollary 1: Under the condition in Proposition 4, the
lower approximation of time of invariance T−I (x) satisfies

T−I (x)≥ 1− e−εT ∗I (x)

ε
.

Corollary 2: Under the condition in Proposition 5, the
lazy strategy L achieves a time of invariance T L

I (x) of at
least T L

I (x)≥
1
|ε| log(1+ |ε|T−I (x)).

To summarize we have shown that
1− e−εT ∗I (x0)

ε
≤ T−I (x)≤ TC

I (x)≤ T ∗I (x),

and, in addition, that the lazy strategy is guaranteed to
achieve a time of invariance expressed in terms of T−I (x).

Note that the results in this section are independent of
the particular choice of T−I (x) in Section II-B: any lower
bound T̂I(x) of the time of invariance defines a strategy
through (17), and we can bound how far T̂I(x) is from
the optimal by assessing how close it is to satisfying the
Hamilton-Jacobi-Bellman equation (7). An advantage of the
under-approximation T−I (x) used in this paper is that it is
cheap to compute and results in a simple decision rule, which
facilitates implementation.

IV. EXAMPLES

We now illustrate the results developed in the previous
sections on collections of TCLs. We employ the model
proposed in e.g. [6] where the dynamics of an individual
TCL with state θ i are

d
dt

θ
i(t) =−γ

i(θ i(t)−θ
i
a)−biPi

m×1{on}
(
σ

i(t)
)
.

Equivalently, the system can be written on the previous form
as

d
dt

θ
i(t) =

{
γ i
(
−θ i(t)+b

i
)

if σ i(t) = off,

γ i
(
−θ i(t)+bi) if σ i(t) = on,

for b
i
= θ i

a and bi = θ i
a−biPi

m.
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Fig. 2. Illustration of how the different times of invariance compare on an example with two subsystems. The data for the upper plots is analytic while
the achieved times of invariance in the lower plots come from simulations of the strategies C, L (lazy) and M (myopic), respectively. As can be seen, all
strategies achieved times of invariance above the guaranteed lower bounds, and the bounds are tighter for low times of invariance.

A. Illustrations of times of invariance in two dimensions

Fig. 2 illustrates how the different times of invariance vary
over the state space for an example with two subsystems3.
The plots show the analytic times of invariance T−I (x) and
T	I (x) that serve as guaranteed lower bounds for strategies
C and the myopic strategy M based on the alternative lower
bound (20), respectively. Moreover, from Corollary 2 we can
obtain a guaranteed lower bound on the time of invariance
achieved by the lazy strategy L. The guarantee is relatively
strong for times of invariance less than 1, but for longer times
of invariance it is quite conservative.

B. High-dimensional example

Next we consider a collection of 10,000 air condition units
with randomized parameter values4. For this particular con-
figuration, our previous results [10] imply that at least 6,391
subsystems must be allowed to be turned on simultaneously
in order to keep all temperatures θ i below the upper bounds
ai indefinitely; by contrast we imposed Kon = 2000 which
implies T ∗I (θ0)<+∞ for any initial condition θ0. Computing
the actual value of T ∗I (θ0) requires solving a constrained
10,000-dimensional optimal control problem for each given
initial condition. In contrast, our method gives a closed-form
control strategy that, although not optimal, has guaranteed
performance bounds which makes it useful for planning.

For this initial condition the under-approximation of the
time of invariance is T−I (θ0) = 0.95h. Using Corollary 2
the time of invariance achieved by the “lazy” strategy is
bounded below by 0.86h, but the actual time of invariance
achieved was significantly better at T L

I (θ0)= 0.96h, as shown
in Figs. 3 and 4. In addition, Corollary 1 guarantees that the
optimal time of invariance is bounded as T ∗I (θ0)≤ 1.1h. The

3The parameters in the example are γ1 = 0.25◦C/h, a1 = 22◦C, b
1
= 35◦C,

b1 = 17◦C, γ2 = 0.3◦C/h, a2 = 22◦C, b
2
= 38◦C, b2 = 16◦C.

4Parameters were sampled uniformly: γ i ∈ [0.125◦C/h,0.375◦C/h],ai =

22◦C, θ i
0 ∈ [ai−5◦C,ai], b

i ∈ [32◦C,35◦C], and bi ∈ [14◦C,17◦C].
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Fig. 3. Selected trajectories of six subsystems during a simulation of the
lazy strategy; the states of all subsystems remain below the upper bound
ai = 22◦C up until the achieved time of invariance T L

I (θ0) = 0.96h.

average number of switches per subsystem was 3.6 with no
system switching more than 10 times, which showcases the
practicality of the “lazy” strategy.

For comparison, naı̈vely using the strategy in e.g. [6]
achieved a time of invariance of 0.67h, or 30% shorter, for
this example. The difference between the strategy in this
paper and our earlier “lazy” strategy in [10] that accounts
for heterogeneity is more subtle: that strategy achieves the
same time of invariance on this example but may perform
worse for certain initial conditions that lead to violations of
2) in Section II-D.

V. CONCLUSIONS

In this paper we proposed a method to approximately
solve a very high-dimensional but structured optimal control
problem. Our proposed method is on closed form and has
guaranteed performance bounds, which makes it useful for
planning; in addition we bounded the worst-case optimality
gap. For practical purposes we also suggested a lazy version
of the control strategy, which allows to trade off performance
against a low switching frequency.

Current work is focused on tightening the theoretical
guarantees, as well as incorporating the method in a higher-
level planning framework that uses the theoretical guarantees
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Fig. 4. Illustration of how the estimated times to exit vary during the
simulation. The lower bound (14) of time to off exit is plotted for six
different subsystems, along with the lower bound on time of invariance
T−I (θ(t)). The trajectories above T−I (θ(t)) belong to subsystems that are
not part of the index set J∗: even when turned off they will satisfy their
safety constraint for at least a duration T−I (θ(t)).

to distribute loads in a clever fashion. We are also interested
in enhancements to provide a minimal dwell time guarantee,
and in a better understanding of the trade off between
minimal dwell time and time of invariance. Finally, we
believe that similar ideas can be relevant in other applications
as a strategy to counteract large but short-lived disturbance
signals.
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APPENDIX

Here we derive the expression for d
dt T−I (x) in Section II-

C. First remark that T−I (x) only depends on subsystems in

the index set J∗ this ∂T−I (x)
∂xi = 0 for i 6∈ J∗. By differentiating

(12) we obtain for i ∈ J∗:

∂T−I (x)
∂xi =

− 1

γ i
(

b
i−bi

) +
T−I (x)

2
(

b
i−b j

)
∑
j∈J∗

b
j− 1

2

(
a j + x j

)
b

j−b j
−Kon

.

Thus,
d
dt

T−I (x) = ∑
i∈J∗

∂T−I (x)
∂xi γ

i
[
−xi +α

ibi +(1−α
i)b

i
]

=

∑
i∈J∗

(
− 1

b
i−bi

+
γ iT−I (x)

2(b
i−bi)

)[
−xi +b

i−α
i(b

i−bi)
]

∑
j∈J∗

b
j− 1

2

(
a j + x j

)
b

j−b j
−Kon

=

(
∑

i∈J∗
−
(

b
i− 1

2

(
ai + xi

)
b

i−bi
−α

i

)
+

xi− 1
2

(
ai + xi

)
b

i−bi

+
γ iT−I (x)

2(b
i−bi)

[
−xi +b

i
]
− γ iT−I (x)α i

2

)

/

(
∑
j∈J∗

b
j− 1

2

(
a j + x j

)
b

j−b j
−Kon

)

=−1+
∑

i∈J∗

T−I (x)γ i
(

b
i− xi

)
−
(
ai− xi

)
2(b

i−bi)
− T−I (x)γ iα i

2

∑
j∈J∗

b
j− 1

2 (a
j + x j)

b
j−b j

−Kon

.
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