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Abstract— This paper considers the problem of synthesizing
output-feedback control laws for a class of discrete-time hybrid
systems in order for the trajectories of the system to satisfy
certain high-level specifications expressed in linear temporal
logic. By leveraging ideas from robust interpretation of tempo-
ral logic formulas and bounded-error estimation, we identify
a subclass of systems for which it is possible to reduce the
problem to a state-feedback form. In particular, we use locally
superstable hybrid observers to resolve the partial information
at the continuous level. This allows us to use recent results in
temporal logic planning to synthesize the desired controllers
based on two-player perfect-information games. The overall
control architecture consists of a hybrid observer, a high-
level switching protocol and a low-level continuous controller.
We demonstrate the proposed framework in a case study on
designing control protocols for an aircraft air management
system.

I. INTRODUCTION

Correct-by-construction controller synthesis for hybrid
systems from temporal logic specifications has attracted
considerable attention in the past decade. At present, hybrid
systems are put to use both in industrial settings and in
products such as cars and airplanes [14]. Safety-criticality
of such systems creates a need to synthesize controllers
that enforce hybrid systems to satisfy certain high-level
specifications, e.g., on safety, reliability and performance.

A typical solution for such control synthesis problems
is a hierarchical control architecture with several discrete
and continuous layers (see, for instance, [9], [7], [10], [20],
[11] and references therein). One of the limitations of these
approaches is that they rely on availability of the full system
state for feedback. However, in many applications of interest,
it is not possible to equip the system with a multitude of
sensors both for reasons of economy and physical space.
Motivated by these limitations, we propose in this paper
a framework that can guarantee correctness with limited
measurements through output feedback.

Previous work on synthesis with partial state information
has mostly focused on the discrete level [3], [15]. Except for
some special cases [8], handling the imperfect state informa-
tion at the discrete level requires a power set construction
(i.e., construction of a belief space) that has prohibitive
computational complexity. In this paper, we consider partial
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observability of the continuous state. In order not to expe-
rience a complexity blow-up at the discrete level, we deal
with the partial state information at the continuous level. We
leverage ideas from robust interpretation of temporal logic
formulas [6] and bounded-error estimation [13] to develop a
framework for synthesizing provably-correct output-feedback
control laws for discrete-time piecewise-affine systems. In
particular, for a class of systems admitting locally superstable
hybrid observers [4], [2], we show that the problem can be
reduced to a state-feedback form, which can then be solved
using available tools [21].

The rest of the paper is organized as follows. Section II
presents some background results. The problem is formally
stated and an overview of the solution strategy is given in
section III. The main results are presented in sections IV-
V. Section VI demonstrates an application of the proposed
framework to a case study on aircraft air management
systems. Finally, section VII concludes the paper with some
remarks.

II. PRELIMINARIES

A. Notation

All vector and matrix norms considered in this article will
be the infinity norms, denoted without subscripts. Therefore,
given a matrix A = (A)ij and a vector x = [x1, . . . , xn]T ,
we define ‖A‖ = maxi

∑
j |Aij |, ‖x‖ = maxi|xi|. The ith

row vector of A is written as [A]i. The row and column
spaces of A is denoted by row(A) and col(A), respectively,
with dimensions dim(row(A)) and dim(col(A)); and the
dimension of the null space is written as nullity(A). The
diameter of a set X ⊆ Rn is denoted by diam(X), and its
distance from a point p ∈ Rn by d(p,X) = infx∈X‖p− x‖.

With a point p ∈ Rn and r ∈ R, we denote the ball
centered at p with radius r as B(p, r) = {x ∈ Rn : ‖x −
p‖ ≤ r}. Lastly, given a matrix H ∈ Rm×n and a vector
k ∈ Rm, a polytope is a set P = {x : Hx ≤ k} ⊆ Rn,
where the inequality is interpreted element-wise, i.e., P =
{x : [Hx]i ≤ [k]i, i = 1, . . . ,m}.

Given a set Q, Qω (Q+) denotes the set of infinite (non-
empty finite) sequences of elements in Q.

B. System and environment models

We consider discrete-time piecewise affine systems for-
mally defined as follows.

Definition 1: A discrete-time piecewise-affine system is a
tuple S = (X, {Rk}kmax

k=1 , {Dk}kmax

k=1 ) where:
• X ⊆ Rn is a compact set called the state space.



• The regions Rk ⊆ X , Ri ∩ Rj = ∅ for i 6= j, form a
partition of X .

• Dk is the dynamics in region Rk, that is the state x
evolves with

x(t+ 1) = Akx(t) +Bku(t) + Fk + Ekδ(t)

y(t) = Ckx(t)
(1)

when x(t) ∈ Rk ⊆ X . In Eq. (1), y(t) ∈ Rl is the
measured output, u(t) ∈ U ⊆ Rm is the control input,
x(t) ∈ Rn is the state variable, and δ(t) ∈ W ⊆ Rd is
the disturbance. Ak ∈ Rn×n, Bk ∈ Rn×m, Ck ∈ Rn×l,
Fk ∈ Rn×1 and Ek ∈ Rn×d are the system matrices
corresponding to region Rk.

We let Y denote the set of outputs, that is, Y .
= {Cx :

x ∈ X}. Given a system S, a subset X ′ ⊆ X is said to
respect the dynamics if X ′ ∩Rk 6= ∅ only for a unique k.

In addition to the disturbances in the system model, we
consider an external environment to refer to the “discrete”
factors that are relevant to the operation of the system, but
do not impact its dynamics directly, i.e., not explicitly appear
in Eq. (1). Since such factors are not necessarily controlled
by the system, e.g., traffic lights, weather conditions, user
inputs etc., they are treated as adversaries. We use a simple
transition system to model environment evolution.

Definition 2: An environment model is a tuple Te =
(E , E0,→) where:
• E is a finite set of states.
• E0 ⊆ E is a set of initial states, i.e., e(0) ∈ E0.
• →⊆ E ×E is a transition relation that governs the evo-

lution of the environment. That is, (e(t), e(t+ 1)) ∈→
for all t ≥ 0.

The discrete environment is assumed to be fully observable
by the system.

Remark 1: For the clarity of the presentation, we restrict
the system dynamics to the form in Eq. (1). Our framework
can be easily extended to cases where there is measurement
noise or where the dynamics include controllable and uncon-
trollable switches (e.g., using ideas from [16], [11]). Also,
our framework allows general U,W and {Rk}kmax

k=1 sets, but,
in what follows, we assume these sets are bounded convex
polytopes to facilitate computation.

C. Linear temporal logic and protocols

Linear temporal logic (LTL) is a formal language that
extends the standard propositional logic with temporal op-
erators to express complex, temporal tasks [1]. LTL has
proven useful in e.g., software and hardware verification,
robotics and other applications of control synthesis, allowing
for succinct and expressive specification of system behavior.

1) Syntax and semantics: Before defining the syntax and
semantics of LTL, we need a few definitions. A combined
state of the system and the environment is a tuple s(t) .

=
(e(t), x(t)) ∈ E ×X and a trajectory is an infinite sequence
of states of the form s = s(0)s(1) . . . ∈ (E ×X)

ω . An
atomic proposition is a function from the set of states to
boolean true and false. We denote the set of all atomic
propositions by Π. In our context each πi ∈ Π is an indicator

function of a set JπiK = {e} ×Xi, with e ∈ E and Xi ⊆ X
is a convex polytope, wherein π evaluates to true. A set
X ′ ⊆ X is said to respect the propositions if for all x ∈ X ′
the same set of propositions hold.

The syntax of an LTL formula over a set of atomic
propositions Π is given by the following grammar:

ϕ ::= true|π|ϕ1 ∧ ϕ2|¬ϕ| © ϕ|ϕ1Uϕ2,

where π ∈ Π, and ϕ1 and ϕ2 are LTL formulas. The
symbols ∧, ¬, © and U stand for the logical operators
conjunction, negation and temporal operators next and until,
respectively. These operators can be used to define additional
operators such as disjunction (∨), implication (→), always
(�) and eventually (♦). We will consider specifications in an
assume/guarantee form

ϕ
.
= ϕe → ϕs, (2)

where ϕe encodes assumptions on the environment and ϕs
specifications of the desired system behavior.

Satisfaction of a formula ϕ at a state s(t) in a trajectory
s is denoted by s(t) |= ϕ and is defined by letting

1) s(t) |= true;
2) For any atomic proposition π, s(t) |= π if s(t) ∈ JπK;
3) s(t) |= ϕ1 ∧ ϕ2 if s(t) |= ϕ1 and s(t) |= ϕ2;
4) s(t) |= ¬ϕ if s(t) 6|= ϕ;
5) s(t) |=©ϕ if s(t+ 1) |= ϕ;
6) s(t) |= ϕ1Uϕ2 if ∃j ∈ N s.t. s(i) |= ϕ1, s(j) |= ϕ2,
∀i ∈ [t, j).

The trajectory s satisfies the formula ϕ if s(0) |= ϕ. We
say that a formula ϕ of the form (2) is satisfied by the system
if it is satisfied by all possible trajectories of the system
which are consistent with the dynamics in (1) and for all
environment behaviors captured by the environment model.

A state-feedback control protocol C is a partial function
on non-empty sequences of states of the system with

C : (E ×X)
+ × E → U

(s(0), s(1) . . . , s(t− 1), e(t)) 7→ u(t)
(3)

where u(t) is the input signal to be used in the subsequent
time-step. Lastly, by letting r(t) .

= (y(t), e(t)), we define an
output-feedback control protocol as

C : (E × Y )
+ × E → U

(r(0), r(1) . . . , r(t− 1), e(t)) 7→ u(t)
(4)

where u(t) is decided upon by only using the measured
output.

2) Robust satisfaction of LTL formulas: Following [6],
this section describes a robust interpretation of LTL formulas.
Given π ∈ Π, define πε, by JπεK = {(e, x) ∈ JπK : (e, x′) ∈
JπK, ∀x′ ∈ B(x, ε)}. JπK denotes a robust version of the
atomic proposition JπK, which will be used in connection
with estimation errors below. We can extend the robustness
properties to general LTL formulas as follows. Take ϕ as a
formula written on Negation Normal Form [5]. Form ¬Π =
{¬π : π ∈ Π} and let Π̂ = Π ∪ ¬Π. Now, interpreting ϕ
as a formula over Π̂, replace all atomic propositions π by



πε and denote the resulting formula by ϕε. We say that a
system satisfies a formula ϕ ε-robustly if it satisfies ϕε.

III. PROBLEM FORMULATION AND SOLUTION STRATEGY

Next, we formally state the problem and give an overview
of the proposed solution.

Problem 1: Given a system S = (X, {Rk}kmax

k=1 ,
{Dk}kmax

k=1 ), an environment Te = (E , E0,→), a set Π of
propositions together with an LTL formula ϕ as in (2), and
a set X0 ⊆ X that respects the propositions and dynamics,
construct an output feedback control protocol that satisfies
ϕ for all initial conditions x(0) in X0 and for all possible
environment behaviors in Te using only the measured output
y.

We denote an instance of Problem 1 as a tuple
(S,X0, Te, ϕ). When a solution to a problem (S,X0, Te, ϕ)
exists, we say the problem is realizable.

Starting from a system model given in the form of Def. 1
and an LTL specification in the form of (2), we use an ap-
proach centered on observer estimations of the state space in
order to solve Problem 1. The proposed framework exploits
the hierarchical approach considered in earlier work [20],
[16] and consists of the following steps:

1) Find a locally superstable observer with an appropriate
equalized performance level and redefine the system
dynamics and LTL specifications based on the esti-
mated state.

2) Produce a discrete abstraction based on the redefined
dynamics.

3) Use existing techniques in automata theory to design
a control protocol guaranteeing correctness of the
system.

4) Implement the automaton for continuous execution by
combining the observer with low-level controllers.

In section IV , we discuss certain types of observers that are
suitable for steps 1 and 4. In section V, we prove that given
such an observer, one can still guarantee correctness when
using the redefined dynamics in steps 2 and 3 and treating
the problem as a state-feedback problem as in [20], [16]. We
also briefly overview the results from [20], [16] necessary to
complete these design steps.

The overall control architecture shown in Fig. 1 consists
of a hybrid observer, a high-level switching protocol and a
low-level continuous controller.

IV. OBSERVER DESIGN

In order to utilize possible partially known state informa-
tion, we use observers

O : (Y × U)
∗ → X

(p(0), p(1) . . . , p(t− 1)) 7→ x̂(t)
(5)

where p(t)
.
= (y(t), u(t)) and x̂(t) is an estimate of the

state. The estimation error at time t is denoted by ξ(t)
.
=

x(t)− x̂(t). The design of an observer is made more difficult
for piecewise-affine systems as an error in the estimate
ambiguities the underlying dynamics. Moreover, any atomic
proposition π ∈ Π holds true in a limited region JπK ⊆

High-level
controller

Low-level
controller

Plant

Observer

δ

u

e

x̂

y

Control protocol

Fig. 1. The proposed control architecture.

E × X; and (e, x̂) ∈ JπK does not imply (e, x) ∈ JπK.
Therefore, upper bounds on the estimation errors are needed.

Typically, optimal observers that minimize the estimation
error when there are persistent disturbances can be arbitrar-
ily complex even for linear systems [18], [13]. Instead of
seeking optimal bounds, we adopt the notion of equalized
performance from [2] to characterize observers.

Definition 3: [Equalized performance] An observer is
said to achieve an equalized performance level µ if, whenever
‖ξ(t)‖ ≤ µ, we have ‖ξ(t+ 1)‖ ≤ µ.

For a piecewise-affine system as in Def. 1, we consider
fixed-complexity locally-affine observers of the form

x̂(t+ 1) = (Ak−LkCk)x̂(t) +Bku(t) +Fk +Lky(t), (6)

with a collection of linear filter gains Lk ∈ Rn×l, one for
each Rk.

Proposition 1: Consider an observer of the form (6).
Assume, for the time being, that the observer has perfect
knowledge of k (i.e., the region Rk the true state x(t) is in)
at all times.1 Then, choosing the filter gains Lk in Eq. (6)
such that

‖Ak − LkCk‖ ≤ 1− maxδ∈W ‖Ekδ‖
ε

(7)

for all k leads to an equalized performance level ε.
Proof: Since k is known by assumption, the estimation

error evolves as

ξ(t+ 1) = (Ak − LkCk)ξ(t) + Ekδ(t). (8)

By equating the norms of both sides of Eq. (8) and with
simple manipulation, one can see that if ‖ξ(t)‖ ≤ ε and
Eq. (7) holds, we have ‖ξ(t+ 1)‖ ≤ ε.

Definition 4: [Locally detectable system] An observer of
the form (6) that satisfies Eq. (7) is called a locally super-
stable observer with equalized performance ε. A piecewise
affine system is called locally detectable with performance
level ε if it admits a locally superstable observer with
equalized performance ε.

1Note that this is true at t = 0 because X0 respects the dynamics. In
section V, we show how to synthesize the control protocol so that it chooses
the consequent control inputs u to ensure this at later time steps.



Note that this condition is more restrictive than the notion
of detectability as, firstly, detectability only concerns the
behavior of a trajectory as time goes to infinity, and secondly,
the existence of a matrix L such that ‖A − LC‖ < 1 as in
Eq. (7) is a sufficient condition for detectability of (A,C).

Finally note that checking if a system is locally super-
stable with a given performance level and if so, finding the
corresponding filter gains, can be efficiently performed via
linear programming.

A. Conditions on system matrices for superstability

In this section, we present an alternative characterization
of a subclass of systems for which there exist locally
superstable observers with equalized performance ε. These
characterizations can provide guidelines for designing the
measurement matrices Ck, when sensor selection is part of
the design. Proofs of the following propositions can be found
in [12].

Proposition 2: There exists a family of filter gains Lk for
a system of the form (1) with ‖Ak−LkCk‖ ≤ ε if and only
if for each k, there exists a Dk ∈ Rn×n with

1) row(Ak +Dk) ⊆ row(Ck)
2) ‖Dk‖ < ε.
Note that as dim(col(CTk )) ≤ l, a filter achieving the

required bound is more easily constructed when Ak + Dk

has low rank or when l → n, which intuitively corresponds
to the two cases where either Ak + Dk does not hold
much information or when Ck gives practically full state
information, respectively.

Proposition 3: If there exists a family of filter gains Lk
for a system of the form (1) with ‖Ak − LkCk‖ ≤ ε, then
for each k, there exists a Dk ∈ Rn×n with

1) nullity(ATk +DT
k ) ≥ n− l

2) ‖Dk‖ < ε.
Note that this sufficiently characterizes the systems for

which the developed framework is possible to use.

V. REDUCTION TO STATE FEEDBACK

Obviously, if we can ensure that the estimated state tra-
jectory robustly satisfies an LTL formula and the estimation
error can be kept globally bounded, then the true trajectory
satisfies the LTL formula. This fact is stated formally next.

Theorem 1: Let s = s(0)s(1)... be an infinite sequence
where s(t) = (e(t), x(t)) for all t. Similarly, define ŝ =
ŝ(0)ŝ(1)... where ŝ(t) = (e(t), x̂(t)) for all t. Given an LTL
formula ϕ, if there exists a bound ε ≥ 0 such that ŝ |= ϕε

and ||x̂(t)− x(t)|| ≤ ε for all t, then s |= ϕ.
Proof: Follows directly from the definition of robust

satisfaction of LTL formulas.
In order to be able to employ this result, we need to

establish a global bound ε on the estimation error using lo-
cally superstable observers. We first consider an intermediate
result.

Lemma 1: Let S = (X, {Rk}kmax

k=1 , {Dk}kmax

k=1 ) be a
system. If S is locally detectable with performance level
diam(X0) and x̂(t) ∈

⋃kmax

k=1 R̂k for all t ≥ 0, where R̂k
.
=

{x ∈ Rk : B(x, diam(X0)) ⊆ Rk} then ‖ξ(t)‖ ≤ diam(X0)
for all t ≥ 0.2

Proof: Since S is locally detectable with performance
level diam(X0), there exist Lk such that Eq. (7) holds. By
Proposition 1, the estimation error can be bounded if the
unique region Rk with x ∈ Rk is known. By the assumptions
in problem formulation 1, this is known at t = 0 and we
proceed by induction on t. Given x(t) ∈ Rk, we know
‖ξ(t)‖ ≤ diam(X0). By the definition of the shrunk regions,
d(x(t), R̂j) > diam(X0), for j 6= k so if x̂(t) 6∈ R̂k, then
‖ξ(t)‖ = ‖x(t) − x̂(t)‖ ≥ d(x(t), R̂j) > diam(X0), which
contradicts the induction hypothesis. Therefore, x̂(t) ∈ R̂k
and, in the next time step, we can measure x̂(t + 1) ∈ R̂j ,
for some 1 ≤ j ≤ kmax and obtain ‖ξ(t+ 1)‖ ≤ diam(X0),
by Proposition 1. This concludes the induction step and the
proof is done.

We associate each locally detectable system with another
system whose outputs are equal to its states.

Definition 5: Given a locally detectable system S =
(X, {Rk}kmax

k=1 , {Dk}kmax

k=1 ) that admits a locally superstable
observer with performance level ε and corresponding gains
Lk, the ε-robust observer system Ŝ = (X̂, {R̂k}kmax

k=1 ,

{D̂k}kmax

k=1 ) is given by the following parameters:

• X̂ =
⋃kmax

k=1 R̂k,
• R̂k = {x ∈ Rk : B(x, ε) ⊆ Rk},
• D̂k is the dynamics in region R̂k, with

x̂(t+ 1) = Âkx̂(t) + B̂kû(t) + F̂k + Êk δ̂(t)

ŷ(t) = x̂(t),
(9)

where Âk = Ak, B̂k = Bk, F̂k = Fk, Êk = LkCk,
û(t) ∈ Û = U and δ̂(t) ∈ Ŵ = B(0, ε).

An observer for S as in Eq. (6) is said to be consistent with
an ε-robust observer system Ŝ if they use the same gains Lk.

Now we state the main result of this section where ε-
robust observer systems are used to pose an alternative
perfect-information problem, the solution of which provides
a solution to Problem 1.

Theorem 2: Define ε′
.
= diam(X0). Given an instance

(S,X0, Te, ϕ) of Problem 1, assume S is locally de-
tectable with performance level ε′. Let Ŝ = (X̂, {R̂k}kmax

k=1 ,

{D̂k}kmax

k=1 ) be a ε′-robust observer system for S. Then,
if there exists a state-feedback control protocol for Ŝ that
makes the system satisfy ϕε

′
for some initial condition

x̂(0) ∈ X0 ∩ X̂ and for all possible environment behaviors
in Te, (S,X0, Te, ϕ) is realizable. Moreover, an output-
feedback protocol for S can be constructed by using an
observer consistent with the dynamics of Ŝ and by driving
the system S with the same control signals as applied to Ŝ.

Proof: By definition, the state-feedback control pro-
tocol for Ŝ that makes the system satisfy ϕε

′
ensures that

x̂(t) ∈ X̂ for all t, i.e., the states remain within the state-
space of the system. Therefore, by Lemma 1, the estimation

2To be precise, a performance level strictly less than diam(X0) is required
to accommodate trajectories with x(t) on a border between two regions.
However, such cases are negligible from a practical standpoint and will be
disregarded.



error can be globally bounded by ε′ for any initial condition
x̂(0) ∈ X0∩X̂ while running the system S and the observer
with the input signal from this protocol. Finally, invoking
Theorem 1 concludes the proof.

A. Overview of full-information synthesis

This section briefly describes the process of obtaining
state-feedback control protocols. The full details can be
found in e.g., [16], [20].

Based on previous work [16], [20], a discrete synthesis
procedure can be phrased as a two-player perfect information
game, where the environment is treated as an adversary, i.e.,
it is assumed to make the worst-case transitions consistent
with its transition relation in Def. 2 and the assumption
ϕe part of the specification. In order to incorporate the
piecewise affine system in this game, constructing a finite
transition system representing the dynamics is required [20].
This construction relies on partitioning the continuous state-
space to create discrete-states and solving short-horizon con-
strained reachability problems between regions to establish
the transition relations.

In order to solve the state-feedback synthesis problem
stated in Theorem 2, we create a discrete-transition system
for the ε-robust observer system, where the reachability
computations are performed on shrunk regions. The first
step in doing so produces a proposition preserving partition
X =

⋃n
i=1 Pi respecting the system dynamics. Assuming

Pi to be a convex polytope defined by Hix ≤ ki, a shrunk
polytope can then be defined as

Ĥix ≤ k̂i, (10)

where Ĥi = Hi and [k̂i]j = [ki]j − ε‖[Hi]j‖. This gives the
following result.

Proposition 4: If ‖ξ(t)‖ ≤ ε and x̂(t) ∈ P̂i, then x(t) ∈
Pi.

Proof: We have Hix(t) = Hi (x(t)− x̂(t) + x̂(t)) =
Hi (x(t)− x̂(t)) + Ĥix̂(t). In the last equality, ‖x(t) −

ˆx(t)‖ ≤ ε, and by construction, [Ĥix̂(t)]j ≤ [ki]j−ε‖[Hi]j‖,
so we obtain [Hix(t)]j ≤ [Ĥix̂(t)]j + ε‖[Hi]j‖ ≤ [ki]i −
ε‖[Hi]i‖+ ε‖[Hi]j‖ = [ki]j .

Now, appealing to Theorem 2, transitions for the estimated
state x̂ between regions P̂i and P̂j lead to transitions of
the actual state between regions Pi and Pj , meaning that
algorithms for control synthesis [21], [17] applied directly to
the estimated system in Definition 5 lead to control protocols
of the original system in Problem 1.

Lastly, note that if a region Pi in Proposition 4 is given by
a union of several convex polytopes, shrinking each of these
will yield a valid, although conservative, region for control
synthesis.

We summarize the ideas above in the following algorithm:
1) Establish a proposition preserving partition X =⋃n

i=1 Pi of the state space domain X , respecting the
system dynamics.

2) Shrink each region Pi. Establish transition relations for
each of the new polytopes P̂i.

3) Force x̂ to transition between the shrunk polytopes.

VI. CASE STUDY: AIR MANAGEMENT SYSTEM OF
AIRCRAFT

This section uses a simplified and linearized model of an
air management system (AMS) of an aircraft as a test-case
for the theory developed in sections II-V above.

A conventional AMS operates by admitting ambient air
into the engines of an aircraft and forwarding this to a so
called pressurization and air conditioning kit, where pressure
is controlled by electrical compressors, temperature by a heat
exchanger (HX) and possibly expansion cooling in a turbine,
and finally humidity by a high pressure water extraction
loop [14]. The AMS needs to be designed so as to supply
sufficient pressure to the cabin at bearable temperature and
humidity, preferably under comfortable conditions. It is also
responsible for providing the cabin with its supply of fresh
oxygen. Restrictions in the amount of power that can be
supplied to the electronics and sensitivity of sensors to e.g,
high temperature, exist; also, freezing of different parts of
the craft pose operational problems. Lastly, the AMS should
be fault tolerant as it is a critical part of the craft.

TABLE I
THE SYMBOLS USED IN THE SIMPLIFIED AMS MODEL.

Symbol Unit Description
Measurable states

Tx
◦ C Temperature of metal in heat exchanger

Tc
◦ C Temperature of cabin

Non-measurable state
pv kPa Outlet air pressure of valve 1

Controllable variables
C1 Valve coefficient for valve 1
C2 Valve coefficient for valve 2
Wa kg/s Mass flow rate of cold inflow in HX

Switched variables
Ta K Temperature of cold inflow in HX (ambient air)
Te K Temperature of the air from the engine

Other derived variables
Wi kg/s Incoming mass flow rate of the air from the engine
Wv kg/s Mass flow rate of the air that goes through valve 2
Wh kg/s Mass flow rate of the air that goes through the HX
Th K Outlet air temperature of the HX

Constant variables
pe kPa Pressure of the air from the engine
pc kPa Pressure of the cabin
Wf kg/s Mass flow rate passing through the fan

TABLE II
NUMERICAL VALUES USED IN THE SIMPLIFIED AMS MODEL

Symbol Value Description
Measurable states

Tx 297.2 K Equilibrium value
Tc 268 K Equilibrium value

Non-measurable state
pv 136791 Pa Equilibrium value

Controllable variables
C1 0.155 Equilibrium value
C2 0.18 Equilibrium value
Wa 2.49 kg/s Equilibrium value

Switched variables
Ta -39, 161 ◦ C Arbitrary value
Te 207, 25 ◦ C Arbitrary value

Constant variables
pe 275.790 kPa Arbitrary value
pc 101.325 kPa Arbitrary value

A simplified schematic of an AMS is included in Figure VI
and the details of the model can be seen in [12]. The symbols
used in this section are given in Table I with numerical



Fig. 2. A simplified AMS model. Variables in this figure are defined in
Table I.

values listed in Table II. The units of the parameters are
suppressed in the text below. We introduce switching to
the system by assuming the engine temperature to toggle
uncontrollably between Te = 207 and Te = 25. Also, the
airplane can switch its dynamics by having ambient air at
either Ta = −39 or heated to Ta = 161. The uncontrollable
switches are assumed to have a time scale larger than the
sampling time of the controller, and is here set to 0.5 seconds.

We consider the state space X = {[Tc, Tx, pv]T ∈ R3 :
13 ≤ Tc ≤ 33, −25 ≤ Tx ≤ 15, 101.325 ≤ pv ≤ 275.790}.
Due to the non-linear dynamics of the system, the model
results in a set of piecewise affine and linearized dynamics,
with three different regions of definition, for every choice
of the two environmental and controllable switching modes.
These are determined by R1 = {[Tc, Tx, pv]T ∈ X :
101.325 ≤ pv ≤ 137.895}, R2 = {[Tc, Tx, pv]T ∈ X :
137.895 ≤ pv ≤ 202.65} and R3 = {[Tc, Tx, pv]T ∈ X :
202.65 ≤ pv ≤ 275.790}, respectively. The control inputs
are given by U = {[C1, C2,Wa]T ⊆ R3 : 0 ≤ C1, C2 ≤
1, 0 ≤ Wa ≤ 8.316}. Lastly, in order to obtain interesting
results with limited hardware, the B-matrices obtained are
amplified by a factor of 7.5. In all, this gives a discrete-time
switched piecewise affine system with dynamics of the formTc(t+ ∆t)

Tx(t+ ∆t)
pv(t+ ∆t)

 = Ak

Tc(t)Tx(t)
pv(t)

+Bk

C1(t)
C2(t)
Wa(t)

+

+Fk + Ekδ(t)

y(t) =

[
1 0 0
0 1 0

]Tc(t)Tx(t)
pv(t)

 ,
(11)

for k = 1, 2, 3. We use a sampling time ∆t = 0.1 seconds.

A. Specifications

We assume the cabin crew to be able to set the reference
values of Tc to hot (Tc ∈ I1 = [23.5, 25]), cold (Tc ∈
I2 = [21, 22.5]) or intermediate (Tc ∈ I3 = [22.5, 23.5]).
Cabin crew input is treated as the environment E . The
system should eventually reach the reference levels and
stay within these levels until told otherwise and we require
the environment to not change the reference value until

the reference interval has been reached. Also, the cabin
temperature should always stay within the temperature range
Tc ∈ [21, 25]. Lastly, we require to always have non-freezing
heat exchanger temperature in order to prevent freezing. In
order to phrase this in LTL, we represent the cabin crew
reference value by a level variable l ∈ {1, 2, 3} which
corresponds to when the reference value is hot, cold and
intermediate, respectively. We also introduce a timer t ∈
{0, 1, . . . , 5} and require the reference values to be constant
when t 6= 5 in order to increase the time scale of the
reference value change. The specifications then become:

ϕe → ϕs,

ϕe =

(
3∧
i=1

� ((l = i ∧ Tc ∈ Ii)→©(l) = i)

)
∧

∧� ((t 6= 5)→ (©(t) = t+ 1))∧
∧� ((t = 5)→ (©(t) = 0))∧
∧� ((t 6= 5)→ (©(l) = l)) ,

ϕs =

(
3∧
i=1

�(l = i→ ♦Tc ∈ Ii)

)
∧

∧

(
3∧
i=1

�((l = i ∧ Tc ∈ Ii)→©(Tc) ∈ Ii)

)
∧

∧�♦(Tx ≥ 0).

(12)

The controllers were synthesized using the Temporal
Logic Planning (TuLiP) Toolbox [21], which is a software
package designed for temporal logic motion planning inter-
facing with JTLV [17]. The techniques considered in this
article are, however, not limited to this particular choice of
software.

B. Simulation

A sample simulation is included in Figures 3-4 below,
where the initial error in Tc and Tx were 0.0175 and the
initial error in pv was 1.75. The disturbance term was
bounded by 0.016 and 1.6 for Tc, Tx and pv , respectively.
For these values and the numerical values of the system
matrices, Propositions 2 and 3 can be seen to guarantee
existence of a locally superstable observer. With the time t in
minutes, the simulation runs with the reference temperature
set to intermediate for 0 ≤ t < 4, 16 ≤ t < 20, hot for
4 ≤ t < 10 and cold for 10 ≤ t < 16. In the figures, note
the reference following of the cabin temperature and that
Tc and pv always remain within the state space. The error
magnitudes never exceed their initial values, due to local
superstability and reduce to the magnitude of the disturbance
term during the simulation. Numerically, ‖Tc(t)− T̂c(t)‖ ≤
0.016, ‖Tx(t) − T̂x(t)‖ ≤ 0.016, ‖pv(t) − p̂v(t)‖ ≤ 1.6 for
all times. Note that Tc has an error term due to the effect
of the disturbance for which the observer cannot compensate
between a time step and the next.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we described a framework for synthesizing
correct-by-construction control protocols for discrete-time
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Fig. 3. Cabin temperature for the sample AMS simulation
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Fig. 4. Pipe fork pressure for the sample AMS simulation

piecewise-affine systems using only partial state information.
The main insight of the proposed approach is to resolve the
uncertainty in the continuous state at the continuous level
of a hierarchical controller so that it is possible to solve a
full information problem at discrete level. Ideas from robust
estimation were used to design appropriate local observers
that are synergistically integrated with the controller stack to
achieve global bounds on the estimation errors. The approach
was demonstrated on a case-study in the form of an air
management system of aircraft.

Future research will consider employing nonlinear or
higher-order observers within the proposed framework. An-
other interesting direction is to investigate whether the rela-
tion between the dynamics of a system and the corresponding
bounded-error observers can be characterized in terms of
alternating approximate simulation relations [19].
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