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Abstract: This work extends recent results on lifted controlled invariant sets for discrete-time
controllable linear systems to non-convex safe sets, consisting of a union of polytopes. First,
we show how to construct a closed-form expression of an invariant set in an extended state
and input space using additional binary variables. A more efficient encoding is also provided
albeit with additional conservativeness. By avoiding the projection of this set onto the original
state space, we use this implicit representation in the lifted space as a supervisor in an online
planning context where the safe set grows as new information about the environment is sensed.
An example with a double-integrator model with a LiDAR sensor is used to demonstrate the
overall approach.
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1. INTRODUCTION

For systems, such as self-driving vehicles, mobile robots
and airplanes, it is crucial to synthesize controllers to
guarantee safety. For instance, for a self-driving vehicle,
the vehicle needs to stay within the lane all the time
unless it is overtaking other vehicles; or for a wheeled
robot navigating a building, the robot needs to avoid any
obstacles and other moving objects in the environment and
reach its goal area. For these two control tasks, we identify
two common features of the safety constraints in real-world
applications: (a) The safety constraints can vary over time;
(b) The safety constraints can be nonconvex.

Controlled invariant sets are the standard means to deal
with the safety constraints in controller synthesis. How-
ever, for discrete-time linear systems, the standard itera-
tive method of computing the maximal controlled invari-
ant sets (see Bertsekas (1972); Vidal et al. (2000)) is (a)
time consuming, making its online computation infeasi-
ble (b) only computationally tractable for convex safety
constraints. Therefore, there is a gap between the safety
constraints encountered in the real world and the safety
constraints standard invariant set methods can handle.

Recent work addressing computational efficiency includes
Anevlavis and Tabuada (2019, 2020); Anevlavis et al.
(2021)), where a novel method is proposed to compute
a controlled invariant set in two steps: First, an implicit
controlled invariant set in a lifted space is constructed.
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Second, the implicit controlled invariant set is projected
onto a subspace, where the projection is controlled invari-
ant. Building on this result, we propose two methods in
this paper to compute implicit controlled invariant sets for
nonconvex safety constraints. More specifically, the main
contributions of this work include:

i. We propose a novel method to compute implicit con-
trolled invariant sets within nonconvex safe sets for
discrete-time linear systems subject to disturbances
(Algorithm 1 in Section 3). The projection of the
implicit controlled invariant sets onto a subspace is
proven to be controlled invariant.

ii. We extend the L-invariance formulation in our pre-
vious work Anevlavis et al. (2021) for nonconvex
safe sets (Algorithm 2 in Section 3). We show that
Algorithm 2 is more conservative than Algorithm 1,
but Algorithm 2 is more scalable.

iii. Inspired by the safe navigation problem in Bajcsy
et al. (2019), we demonstrate the use of our implicit
controlled invariant sets in the task of navigating a
robot through an unknown environment. The safety
constraints are generated and updated online based
on the LiDAR data. The effectiveness of our method
is illustrated by simulations (Section 4).

For the related works dealing with nonconvex constraints:
Bajcsy et al. (2019) propose a HJ-reachability-based
method that enables online computation of the backward
reachable set of the unsafe regions, whose complement
is a controlled invariant set. This framework can work
with nonconvex safe sets, but the HJ-reachability-based
method works for continuous-time systems and the back-
ward reachable set can only be calculated approximately.
Wang et al. (2019) compute the maximal invariant sets
for discrete-time linear systems with nonconvex smooth



constraints, but their method is only applicable to au-
tonomous systems without control and is potentially time-
consuming as it solves a series of semi-definite programs. Li
et al. (2020) compute controlled invariant sets for the class
of nonconvex safe sets whose complement is a polytope.
The main idea is similar to the standard iterative method
in Bertsekas (1972) but it customizes the algorithm for the
specific class of nonconvex safe sets. Compared with our
method, this method cannot handle more general noncon-
vex safe sets and it is potentially as time-consuming as
the standard method. A broader class of works related to
nonconvex constraints in control can be found in the liter-
ature for online path planning, where instead of computing
a controlled invariant set, the efforts are on generating safe
trajectories that do not collide with the unsafe regions. For
instance, Liu et al. (2017) treat the moving pedestrians
as the unsafe regions, which leads to a nonconvex time-
varying safe set, and verifies the safe motions online based
on reachability analysis.

Notation: For a vector x, xi is the i th entry of x and
|x| is the absolute value of x defined element-wise. With
a slight abuse of notation, the cardinality of a set U is
denoted by |U |. The concatenation of vectors x ∈ Rn and
y ∈ Rm is denoted by (x, y) ∈ Rn+m. The summation of a
point x and a set Y is defined by x+Y = {x+ y | y ∈ Y };
the summation and difference of two sets X and Y are
defined by X + Y = {x + y | x ∈ X, y ∈ Y } and X −
Y = {x | x + Y ⊆ X}. The linear transformation of a set
X under matrix T is denoted by TX = {Tx | x ∈ X}. The
projection of a set X in Rn onto the first m coordinates,
m < n, is denoted by Proj1:m(X) = {(x1, · · · , xm) |
(x1, · · · , xm, · · · , xn) ∈ X}. The Cartesian product of sets
X and Y is denoted by X × Y , or X2 when Y = X.

2. PRELIMINARIES

We consider a discrete-time linear system

Σ : x(t+ 1) = Ax(t) +Bu(t) + d(t), (1)

with state x ∈ Rn, input u ∈ Rm and disturbance
d ∈ D ⊆ Rn. The set D encodes the constraints on the
disturbance d, represented by a polytope in Rn.

Assumption 1. The system matrix A is nilpotent. That is,
there exists a non-negative integer h, h ≤ n, such that
Ah = 0.

Remark 1. Any controllable system with state and input
constraints can be equivalently converted to a linear sys-
tem as in (1) with the matrix A nilpotent and the input
u unconstrained. See Section II of Anevlavis and Tabuada
(2019) and Remark 1 of Anevlavis et al. (2021) for the
details.

The safety constraints imposed on the state x is repre-
sented by a union S = ∪Ni=1Si of polytopes Si ⊆ Rn for i
from 1 to N . We call S the safe set of the system Σ.

A set C ⊆ S is a controlled invariant set of Σ within the
safe set S if for all x ∈ C, there exists an input u ∈ Rm

such that Ax+Bu+D ⊆ S.

Problem statement: Given the system Σ, compute a con-
trolled invariant set of Σ within the safe set S.

Given the system Σ, a control signal u : N→ Rm and the
initial state x(0), the k-step reachable set Rk

u(x(0)) is the

set of all possible states x(k) at time k under the input

sequence (u(t))k−1t=0 and an arbitrary disturbance sequence

(d(t))k−1t=0 in Dk, which can be explicitly expressed as
follows:

Rk
u(x(0)) = Akx(0) +

k−1∑
t=0

Ak−t−1 [Bu(t) +D] . (2)

We define xk(x, u) = Akx+
∑k−1

t=0 A
k−t−1Bu(t) and Dk =∑k−1

i=0 A
iD. Since Ah = 0, Dk = Dh for all k ≥ h. The

expression of Rk
u(x(0)) can be rewritten as

Rk
u(x(0)) = xk(x(0), u) +Dk. (3)

Note that the first term xk(x(0), u) above is the nominal

state of system at time k under control inputs (u(t))k−1t=0
when the disturbance term is equal to 0; the second
term Dk is the set of derivations from the nominal state
xk(x0, u) at time k due to the disturbance in D. When
k = 0, we adopt the convention that D0 = {0} and
R0

u(x(0)) = x0(x(0), u) = x(0).

3. CONTROLLED INVARIANCE IN NONCONVEX
SETS

In this section, we first develop a novel method that
represents an implicit controlled invariant set by a set
of mixed-integer linear inequalities in a lifted space. The
projection of the implicit controlled invariant sets onto a
lower dimensional subspace is controlled invariant. Differ-
ent from our previous work Anevlavis et al. (2021), our first
method does not specify any structure in the controller and
works with nonconvex constraints. In the second part of
this section, we provide a direct extension of Method 2
in Anevlavis et al. (2021) to nonconvex constraints. The
second method is more conservative than the first method,
as a periodic structure is imposed as one constraint of
the controller. But we show that the second method is
more scalable than the first method, due to the lower
dimensionality of the lifted space.

The key idea of both methods is to restrict the input u

within a finite subset Û = {u1, u2, · · · , uL} of Rm. The

cardinality L of Û is a design parameter selected by users.

Due to the finiteness of the input set Û and the nilpotency
of the matrix A, given any initial state x0 ∈ Rn, the
total number of the distinct k-step reachable sets Rk

u(x0)
is finite, revealed by the following theorem.

Theorem 1. Given any control signal u : N → Û , the
cardinality of the set {Rk

u(x0)}∞k=0 of k-step reachable sets
for all k ≥ 0 is less than or equal to h+ Lh.

Proof. By (3), the reachable set Rk
u(x0) is the sum of

xk(x(0), u) and Dk. Since u(t) ∈ Û for all t and Ak = 0 for
all k ≥ h, we can verify that {xk(x(0), u)}∞k=0 and {Dk}∞k=0
are both finite sets. Thus, the set of all the reachable sets
are finite. The cardinality of {Rk

u(x0)}∞k=0 can be easily
obtained by solving a combinatorial problem. �

Since the set of all reachable sets is finite, given the initial

state and any control signal with codomain restricted to Û ,
we can check if the closed-loop trajectory stays in the safe
set indefinitely by checking finitely many set containments.
That enables our closed-form construction of controlled



invariant sets in two moves: We first construct a set Clift in
a high-dimensional space. Clift contains all pairs of initial

state x0 and input set Û for which there exists a control

signal u : N → Û such that the closed-loop trajectory
stays within the safe set indefinitely. Then, we show that
the projection of Clift onto its first n coordinates is a
controlled invariant set of Σ within the safe set S.

Let us define the lifted set formally: Clift is the set
of points (x0, u1, · · · , uL) satisfying that there exists a
control signal u : N → {ui}Li=1 such that the reachable
states Rk

u(x0) at time k is contained by the safe set S for
all k ≥ 0. That is,

Clift ={(x0, u1, · · · , uL) | Û = {ui}Li=1,

∃u : N→ Û , Rk
u(x0) ⊆ S, ∀k ≥ 0}. (4)

Suppose that we can write Clift in closed form. If we
project Clift onto the first n coordinates, the projection

consists of the states where there exist a finite set Û ⊆ U
with |Û | = L and a control signal u : N → Û ensuring
x(k) ∈ S for all k ≥ 0. That is, the projection belongs
to a controlled invariant set within S. It is shown by the
following theorem that the projection is actually controlled
invariant by itself.

Theorem 2. The projection Proj1:n(Clift) of Clift onto
the first n coordinates is a controlled invariant set of Σ
within S.

Proof. By the construction of Clift, a state x ∈
Proj1:n(Clift) if and only if there exists a controller ux :

N→ Û such that all future states reachable from x under
the control of ux are within S. Let x′ be a future state
reached from x under ux at time t. It is clear that all
the future states reached by x′ under the control of ux
after time t stay within S. Thus, x′ ∈ Proj1:n(Clift) and
for any x ∈ Proj1:n(Clift), there exists a u such that for
all x′ ∈ Ax + Bu + ED, x′ ∈ Proj1:n(Clift). That is,
Proj1:n(Clift) is a controlled invariant set within S. �

So far, we know that the projection of Clift is a controlled
invariant set, but we do not know how to construct Clift in
a tractable way. The following theorem provides a useful
observation for constructing Clift.

Theorem 3. The set Clift defined in (4) is equal to the set
of points (x0, u1, · · · , uL) for each of which there exists a

control signal u : N → Û such that Rk
u(x0) ⊆ S for all k

from 0 to h+ Lh. That is,

Clift ={(x0, u1, · · · , uL) | Û = {ui}Li=1,∃u : N→ Û ,

Rk
u(x0) ⊆ S,∀0 ≤ k ≤ h+ Lh}. (5)

Proof. We denote the right hand set of (5) by C ′lift. By

definition of Clift in (4), C ′lift ⊇ Clift. Thus, it is left to

show that C ′lift ⊆ Clift.

Let (x0, u1, · · · , uL) ∈ C ′lift. Then there exists an u :

N → Û guaranteeing Rk
u ⊆ S for k from 0 to h + Lh.

By Theorem 1, the number of all the possible reachable
sets are less than or equal to h+ Lh. Thus, we know that

the sequence of reachable sets (Rk
u(x0))h+Lh

k=0 must repeat

at some time between 0 and h+Lh. That is, there exists k1,
k2 ∈ [0, h+Lh] such that k1 < k2 and Rk1

u (x0) = Rk2
u (x0).

Then, we can construct a new controller v(t) : N → Û
satisfying that v(t) = u(t) for t from 0 to k1 − 1 and
v(t) = u(k1 + δ(t)) for t ≥ k1, where δ(t) is equal to the
modulo (t − k1) mod (k2 − k1). It is easy to check that
v(t) guarantees the k-step reachable set of x0 for all k ≥ 0

belong to the set {Rk
u(x0)}k2

k=0. Thus, by definition of Clift

in (4), (x0, u1, · · · , uL} ∈ Clift. �

According to (5) in Theorem 3, Clift can be encoded by
a set of mixed integer linear inequality constraints. We
first introduce the mixed integer formulation of each sub-
constraint in (5) and then glue all together.

Define the constant M = +∞ (or a large enough number),
and denote the vector with all entries equal to 1 by 1. To

encode the constraints u(k) ∈ Û for k from 0 to h+Lh−1,
we introduce binary variables ak,i ∈ {0, 1} for i from 1 to

L. Then, u(k) ∈ Û if and only if there exists ak,i ∈ {0, 1}
for i from 1 to L such that

|u(k)− ui| ≤ (1− ak,i)M1,
L∑

i=1

ak,i ≥ 1 (or

L∑
i=1

ak,i = 1),
(6)

Next, note that Rk
u(x0) ⊆ S is equivalent to xk(x0, u) ∈

S−Dk, where xk(x0, u) is a linear function of x0, u(0), ...,
u(k−1) and S−Dk is a union of polytopes in Rn. Suppose

S − Dk = ∪Nk
j=1Sj,k where Sj,k = {x | Hj,kx ≤ hj,k} is a

polytope in Rn for each j from 1 to Nk. Then, Rk
u(x0) ⊆ S

if and only if there exists sk,j ∈ {0, 1} for j from 1 to Nk

such that
Hj,kxk(x0, u) ≤ hj,k + (1− sk,j)M1,
Nk∑
j=1

sk,j ≥ 1 (or

Nk∑
j=1

sk,j = 1).
(7)

Denote the vector consisting of variables ak,i for k from 0
to h+Lh−1 and i from 1 to L by α, and denote the vector
consisting of variables sk,j for k from 0 to h + Lh and j
from 1 to Nk by ξ. Also, denote µ = (u(0), u(1), · · · , u(h+
Lh − 1)). Then, by (6) and (7), we can construct the set
Cmix of points (x0, u1, · · · , uL, µ, α, ξ) satisfying the mixed
integer constraints:

∀k, 0 ≤ k ≤ h+ Lh − 1,∀i, 1 ≤ i ≤ L :

|u(k)− ui| ≤ (1− ak,i)M1,

L∑
i=1

ak,i ≥ 1;

∀k, 0 ≤ k ≤ h+ Lh,∀j, 1 ≤ j ≤ Nk :

Hj,kxk(x0, u) ≤ hj,k + (1− sk,j)M1,

Nk∑
j=1

sk,j ≥ 1.

(8)

By the construction of Cmix, the closed-form expression of
Clift can be obtained by projecting of Cmix onto the first
n + mL coordinates, that is Clift = Proj1:(n+mL)(Cmix).
Or if we project Cmix onto the first n coordinates, we
obtain the controlled invariant set Proj1:n(Clift) directly.

Remark 2. If it is hard to find the polytopes Sj,k such that

∪Nk
j=1Sj,k = S−Dk, we can instead find Sj,k such that the

union of Sj,k inner approximates S−Dk, that is ∪Nk
j=1Sj,k ⊆

S − Dk. In this case, Proj1:(n+mL)(Cmix) is an inner
approximation of Clift. Most importantly, it can be proven



that the projection Proj1:n(Cmix) ⊆ Proj1:n(Clift) is still
a controlled invariant set within S. �

By Remark 2, if S = ∪Nj=1Sj is the union of polytopes Sj ,
one feasible Sj,k can be as simple as Sj −Dk for j from 1
to N . The method of computing controlled invariant sets
by projecting Cmix is summarized as Algorithm 1. Note

Algorithm 1 Full Input Encoding

for all k from 0 to h do
Construct Sj,k such that ∪Nk

j=1Sj,k = S − Dk (or

∪Nk
j=1Sj,k ⊆ S −Dk)

end for
Construct Cmix using constraints in (8).
return Proj1:n(Cmix).

that Cmix is a polytope (since all constraints are given by

linear inequalities) in space Rn+m(L+h+Lh)×{0, 1}b, where

b = (n+Lh)L+
∑h−1

k=1 Nk+(h+Lh−h+2)Nh. The number
of auxiliary variables introduced in Cmix is m(h + Lh) +∑h−1

k=1 Nk + (h + Lh − h + 2)Nh. Thus, the projection of
Cmix does not scale well when L is large. To obtain a more
tractable method, we introduce a simplification of Cmix

inspired by the L-invariance formulation in Anevlavis et al.
(2021).

The idea is very intuitive: When constructing Cmix, we in-
troduce the binary variables ak,i and continuous variables
u(k) to encode all possible control signals u that map N to

Û . If we fix the structure of the control signal u, then we
can get rid of ak,i and u(k) and lower the dimension of the
lifted set. One reasonable structure of u used in Anevlavis
et al. (2021) is to circulate from u1 to uL recursively, that
is, for t ≥ 0,

u(t) = ucir(t) := u(t mod L)+1, (9)

where (t mod L) is the remainder when t is divided by L.
We denote this control signal by ucir.

We define another lifted set CL, similar to Clift, but with
this fixed control signal, that is,

CL = {(x0, u1, · · · , uL) | Rk
ucir

(x0) ⊆ S,∀k ≥ 0}. (10)

Anevlavis et al. (2021) shows that the projection Proj1:n(CL)
of CL onto the first n coordinates is controlled invariant 1 .

Under this specific control signal ucir, we can easily verify
that

{Rk
u(x0)}∞k=0 = {Rk

u(x0)}h+L−1
k=0 . (11)

Thus, CL can be encoded by the following mixed integer
linear inequalities: Let sk,j be binary variables for k from
0 to h + L − 1 and j from 1 to Nk. Denote the vector
consisting of all sk,j by ξ. Let Cmix,L be the set of points
(x0, u1, · · · , uL, ξ) satisfying the mixed integer constraints:

∀k, 0 ≤ k ≤ h+ L− 1,∀j, 1 ≤ j ≤ Nk :

Hj,kxk(x0, ucir) ≤ hj,k + (1− sk,j)M1,
Nk∑
j=1

sk,j ≥ 1,

(12)

where recall that xk(x0, ucir) is a linear function of x0, u1,

..., uL. Note that there are just
∑h−1

k=1 Nk +LNh auxiliary

1 Anevlavis et al. (2021) considers the case where S is convex. But
the same argument easily extends to the case that S is nonconvex.
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Fig. 1. The workspace of the robot: The initial position, the target
position and the unsafe region are respectively indicated by the
yellow arrowhead, the cyan point and the dark area.

variables, which is much less than the auxiliary variables
introduced for constructing Cmix.

Note that similar to Remark 2, if we compute Sj,k whose
union inner approximates S − Dk, Proj1:n(CL) is still
a controlled invariant set within S. We summarize this
simplified method to compute controlled invariant set in
Algorithm 2.

Algorithm 2 L-Invariance Input Encoding

for all k from 0 to h do
Construct Sj,k such that ∪Nk

j=1Sj,k = S − Dk (or

∪Nk
j=1Sj,k ⊆ S −Dk)

end for
Construct Cmix,L using constraints in (12).
return Proj1:n(Cmix,L).

Note that Algorithm 2 can be extended for control signals
other than ucir, or even consider multiple different control
signals by introducing more auxiliary binary variables as in
Algorithm 1. The trade-off here is between the scalability
and the size of the resulting invariant sets.

As a final note, we want to highlight that for certain
applications, we do not have to project Cmix or Cmix,L

and thus avoid the computational cost of the projection
operation. For example, if the goal is to find a safe input
for some given state, it can be achieved by solving a mixed
integer linear program with constraints in Cmix or Cmix,L.
We apply this idea in the following section.

4. CASE STUDY

In this section, we apply the proposed method to a
robot navigation problem: We want to navigate a robot
from the initial position to the target region in the map
shown by Figure 1. We assume that the map is unknown
in the beginning and is built online based on LiDAR
measurements. During the navigation process, the robot
needs to avoid colliding with the obstacles, indicated by
the dark area in Figure 1. This case study is inspired by
the robot navigation problem in Bajcsy et al. (2019).



4.1 Robot dynamics

Many nonlinear robot systems can be transformed into
multiple-integrator dynamics by feedback linearization,
such as the unicycle model (see De Luca et al. (2001)). For
this reason, we model a ground robot in the X-Y plane by
a double-integrator model:

Σc :

{
ẍ = u1
ÿ = u2,

(13)

where (x, y) is the position of the robot and u1, u2 are
the control inputs. Denote vx = ẋ and vy = ẏ. The
states of Σc consist of (x, y, vx, vy). For simplicity, we
assume that the system has no disturbance term. The
continuous-time system in (13) is discretized with time
step ∆t, via forward Euler method. As the discretized
system is controllable, our method is applicable according
to Remark 1. Also, in order to handle the input constraints,
we lift the discretized system to a system with an extended
state space (x, y, vx, vy, u1, u2) (the details can be found in
the references listed in Remark 1).

4.2 The online safety constraints

The safe set consists of two parts: First, the absolute values
|ui| of control inputs are bounded by a constant umax for
i = 1, 2. The absolute values |vx|, |vy| of velocities are
bounded by a constant vmax.

Second, we want to constrain (x, y) to stay within the
obstacle-free region, shown by the white nonconvex area
in Figure 1. To make the problem more challenging,
we assume that the map is unknown to the robot, but
a LiDAR sensor attached to the robot can sense the
environment. The sensing range of the LiDAR is a disk
with radius equal to 100 m, centered at the robot position
(x, y). Suppose that M(t) ⊆ R2 is the obstacle-free region
confirmed by the LiDAR data up to time t. Note that
M(t) ⊆ M(t + 1) for all t ≥ 0. Ideally, M(t) should
be the safety constraint on (x(t), y(t)) at time t. But, in
practice the convex decomposition of M(t) contains more
and more pieces over time, which significantly increases the
computation time. We denote MB(t) as the union of the
10 largest rectangles in M(t) that contain (x(t), y(t)). To
reduce the computation burden, we specify MB(t), instead
of M(t), as the safety constraint on (x, y) at time t.

Combining the above constraints, define

S(t) ={(x, y, vx, vy, u1, u2) | (x, y) ∈MB(t), |vx| ≤ vmax,

|vy| ≤ vmax, |ui| ≤ umax, i = 1, 2}
We use the set S(t) as the safe set at time t, generated
online based on the LiDAR measurements.

4.3 Control framework

The overall control framework is shown in Figure 2. At the
initialization stage, a blank 2-dimensional occupancy grid
map is created, and a reference trajectory is generated by
the path planner assuming no obstacles.

At each time instant t, the map is updated based on
the latest LiDAR measurements. Then, the path planner
checks if the current reference trajectory collides with
known obstacles in the current map. If a collision is

Fig. 2. The overall control framework

detected, a new reference path that does not collide
with any known obstacles is generated. Next, a nominal
controller provides a candidate control input (u1(t), u2(t))
that tracks the reference path.

To supervise the candidate control input, we construct the
obstacle-free region M(t) and the safe set S(t), defined
in Section 4.2 based on the current map. Algorithm 2
takes the safe set S(t) as input and returns the lifted set
Cmix,L(t). Given the robot state (x(t), y(t), vx(t), vy(t)) at
time t and a time index t′ ≤ t, we define the set Usafe(t, t

′)
of safe inputs by

Usafe(t, t
′) = {(u1, u2) | |ui| ≤ umax, i = 1, 2, (14)

(x, y, vx, vy) ∈ Proj1:4(Cmix,L(t′))},
where x = x(t)+vx(t)∆t, y = y(t)+vy(t)∆t, vx = vx(t)+
u1∆t, and vy = vy(t) + u2∆t.

Assume that Usafe(0, 0) is nonempty. The following theo-
rem guarantees that there always exists a t′ ≤ t such that
Usafe(t, t

′) is nonempty for all t ≥ 0.

Theorem 4. If Usafe(t, t
′) is nonempty and (u1(t), u2(t)) ∈

Usafe(t, t
′), then Usafe(t+ 1, t′) is nonempty.

Proof. (Sketch) Since (u1(t), u2(t)) ∈ Usafe(t, t
′), by

construction of Usafe(t), (x(t+1), y(t+1), vx(t+1), vy(t+
1)) ∈ Proj1:4(Cmix,L(t′)). Note that Proj1:6(Cmix,L(t′))
is a controlled invariant set within S(t′). Thus, it is easy
to show that there exists ui(t + 1) with |ui(t + 1)| ≤
umax such that (x(t + 2), y(t + 2), vx(t + 2), vy(t + 2)) ∈
Proj1:4(Cmix,L(t′)), and thus Usafe(t+ 1, t′) 6= ∅. �

Finally, let t∗ ≤ t be the latest time index such that
Usafe(t, t

∗) is nonempty. The supervisor projects the can-
didate input (u1(t), u2(t)) onto the set Usafe(t, t

∗), re-
sulting in the safe input (u1(t), u2(t)). The safe input
(u1(t), u2(t)) is the actual control commands sent to the
robot. As a direct corollary of Theorem 4, the robot
satisfies all the safety constraints defined in Section 4.2
indefinitely under the proposed control framework.

Corollary 1. Assume that Usafe(0, 0) is nonempty and
(x(0), y(0)) ∈ M(0) and |vx(0)|, |vy(0)| ≤ vmax. The
proposed control framework guarantees that (x(t), y(t)) ∈
M(t), |vx(t)|, |vy(t)| ≤ vmax and |ui(t)| ≤ umax with
i = 1, 2 for all t ≥ 0.

Proof. According to Theorem 4, Usafe(t, t
∗) is nonempty

for all t ≥ 0. By definition of Usafe(t, t
∗), (u1(t), u2(t)) ∈

Usafe(t, t
∗) implies that (a) |ui(t)| ≤ umax with i = 1, 2

and (b) (x(t + 1), y(t + 1)) ∈ M(t∗) ⊆ M(t + 1) and (c)
|vx(t + 1)|, |vy(t + 1)| ≤ vmax. (b) and (c) are due to the
fact that Proj1:4(Cmix,L(t∗)) ⊆ M(t∗) × [−vmax, vmax]2.
�



4.4 Simulation setup and results

We use a linear feedback controller as the nominal
controller. The supervisor is implemented by a mixed
integer programming that computes the projection of
(u1(t), u2(t)) onto Usafe(t, t

∗) directly from Cmix,L(t∗).
The MATLAB Navigation Toolbox is used to simulate
the LiDAR sensor, update the occupancy grid map and
generate the reference path based on the A* algorithm.

In the simulation, the parameters are L = 10, ∆t = 0.1s,
vmax = 30m/s, umax = 40m/s2. We run the simula-
tion in MATLAB R2020b on a laptop with i7-8650 CPU
and 16 GB memory. The mixed-integer programming is
implemented via YALMIP (Lofberg (2004)) and solved
by GUROBI (Gurobi Optimization (2020)). The average
computation time for constructing the lifted set Cmix,L(t)
and solving the mixed-integer programming at each time
step is 1.68s. The average computation time shows the effi-
ciency of our method, considering the safe set is nonconvex
and being updated at every time step.

The simulation results are shown in Figure 3: The robot
reaches the target region at t = 20.4s, and thanks to
the supervisor, the robot satisfies the input and velocity
constraints and stays within the time-varying safe region
(white area in the right column of Figure 3) all the time. As
a comparison, when the supervisor is disabled, the velocity
constraint is violated at time t = 2.7s. The full simulation
video can be found at https://youtu.be/k1OdIr4YB8k .
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(a) t = 0s
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(b) t = 8s
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(c) t = 20.4s

Fig. 3. Simulation screenshots at times t = 0s, 8s and 20.4s. For
figures on the left, the reference path and the robot’s actual
trajectory are shown by the red and blue curves; the disk of
the blue rays is the LiDAR measurements; the position and
direction of the arrowhead indicate the position and moving
direction of the robot. For figures on the right, the white
and grey areas indicate the obstacle-free region M(t) and the
unknown region; the purple boxes are the 10 largest boxes in
M(t) that contain the current robot position, whose union is
MB(t).
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