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Abstract— Existing safety control methods for non-stochastic
systems become undefined when the system operates outside the
maximal robust controlled invariant set (RCIS), making those
methods vulnerable to unexpected initial states or unmodeled
disturbances. In this work, we propose a novel safety control
framework that can work both inside and outside the maximal
RCIS, by identifying the worst-case disturbance that can be
handled at each state and constructing the control inputs
robust to that worst-case disturbance model. We show that such
disturbance models and control inputs can be jointly computed
by considering an invariance problem for an auxiliary system.
Finally, we demonstrate the efficacy of our method both in
simulation and in a drone experiment.

I. INTRODUCTION

Constraints are ubiquitous in control tasks for safety-critical
systems, such as lane keeping for autonomous vehicles,
overload protection in power systems, and obstacle avoidance
for mobile robots. The goal of safety control is to synthesize
controllers that can guarantee a system operates under its
safety constraints indefinitely. Many methods have been
developed over the years that can provide such safety
guarantees, such as viability theory [3], reference governers
[9], safety supervisory control [14], [16], robust control barrier
function [12], and Hamilton-Jacobi reachability [4]. The key
behind all those methods is to find a set of states such that if
the system starts from this set, the system can be controlled
to stay within this set against the worst-case disturbance,
without violating any safety constraints. Such a set is called
a robust controlled invariant set (RCIS) of the system.

Notably, there exists a unique maximal RCIS that contains
all possible RCISs given some safety constraints. Controllers
synthesized by the aforementioned methods are defined only
if the system initially operates in the maximal RCIS, since
otherwise the worst-case disturbance is able to force the
system to violate the safety constraints in finite time. However,
in practice, the system may be initialized outside the maximal
RCIS or exit the maximal RCIS due to unexpected distur-
bances. In those cases, the system may still operate safely and
even re-enter the maximal RCIS, as long as the disturbance
is not completely adversarial (or to put it differently, the
disturbance behaves collaboratively to some extent). The core
question here is how to synthesize controllers that can seize
the opportunity to keep the system safe when the disturbance
is not entirely adversarial. Apparently the aforementioned
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methods do not answer this question since they become
undefined outside the maximal RCIS.

Similar issues also arise in the field of reactive synthesis for
finite transition systems and have been addressed by recent
works [2], [6]. The main idea there is that if a winning strategy
robust to all disturbances does not exist, one should pick a
strategy at least as good as the other strategies in terms of the
amount of disturbances it can be robust to. These ideas are
also applied in the context of abstraction-based control [15]
and finite-horizon constrained optimal control [8]. Inspired
by this line of work, in this letter, we present a novel safety
control framework that finds control inputs that are safe
against the largest possible disturbance set. Compared with
the existing safety control methods restricted by the maximal
RCIS, our method has the following benefits:
• The proposed controller provides the same safety guar-

antees as the existing methods when the system operates
inside the maximal RCIS.

• When outside the maximal RCIS, the proposed controller
is robustly safe against the largest amount of disturbance
within a predefined template set.

• The proposed controller is well-defined as long as
a constraint violation is evitable with some possible
collaboration from the disturbance.

In addition, we show that the proposed controller can be
synthesized by finding the maximal RCIS (or its inner approx-
imation) of an auxiliary system one dimension higher than
the original system, using a technique from [17]. Therefore,
toolboxes developed for existing safety control methods can
be directly applied to synthesize the proposed controllers.
Numerical examples show that our method improve the safety
of the system outside the maximal RCIS significantly.

In terms of related works, Li et al. in [13] propose a method
to extend the domain of reference governer potentially beyond
the maximal RCIS by solving a time-optimal control problem
when the reference governer is undefined. Shown by the
numerical examples in Section IV, our method outperforms
the one in [13] significantly when the system is outside the
maximal RCIS. If we allow the system of interest to be
stochastic, controllers based on the maximal probabilistic
RCIS as in [1], [7] can minimize the chance of constraint
violation in the infinite horizon even if the system is outside
the maximal RCIS, which might be appropriate when the
statistics of the disturbance is known. On the other side,
our method works without knowing the statistics of the
disturbances, and is more computationally tractable since
RCISs are much easier to compute than probabilistic RCISs.

Notation: We denote the real line and the set of non-
negative numbers by R and N. For two sets X and Y , f : X ⇒



Y denotes a set-valued function from X to Y . The projection
of a set X onto its first n coordinates is denoted by π1:n(X).
The Minkowski sum of two sets X and Y is denoted by
X +Y = {x+y | x ∈ X ,y ∈Y}. For a singleton set, we denote
the sum {x}+Y by x+Y for short. For two sets X and Y , their
set difference and symmetric set difference are denoted by
X\Y and X	Y := (X\Y )∪ (Y\X) respectively. For a matrix
A ∈ Rn×n, a scalar α ∈ R, and a subset X of Rn, we denote
the sets AX := {Ax | x ∈ X} and αX := {αx | x ∈ X}.

II. PRELIMINARIES

We consider a discrete-time linear system Σ

Σ : x+ = Ax+Bu+Ed, (1)

with state x ∈Rn, input u ∈Rm, and disturbance d ∈D⊆Rl .
The disturbance set D contains all possible disturbances. Let
Sxu denote the set of desired state-input pairs, which we call
the safe set of the system. We assume that both D and Sxu
are convex polytopes, and moreover D is compact.

A disturbance model ∆ : Rn ⇒ D is a function that assigns
a subset ∆(x) of D to each x∈Rn. Given a disturbance model
∆, if the disturbance input satisfies the constraint d ∈ ∆(x)
at each time step, we say the disturbance is generated by ∆.
Given a controller u : Rn→ Rm and a disturbance model ∆,
the k-step forward reachable set Rk

Σ
(x0,u,∆) from the initial

state x0 is defined recursively by

Rk+1
Σ

(x0,u,∆) = {(x+,u(x+)) | ∃(x,u) ∈Rk
Σ(x0,u,∆),

x+ ∈ Ax+Bu+E∆(x)}, (2)

with R0
Σ
(x0,u,∆) = {(x0,u(x0))}. Intuitively, Rk

Σ
(x0,u,∆)

contains all possible state-input pairs reached at time k from
x0 by the closed-loop system when the disturbance d is
generated by ∆.

A. Robust Safety Control Framework

Given the system Σ, the safe set Sxu, and a disturbance
model ∆, the robust safety control problem tries to solve for
the set of all the initial states x0 where there exists u : Rn→
Rm such that

Rk
Σ(x0,u,∆)⊆ Sxu, ∀k ≥ 0. (3)

Indeed, the maximal set of such initial states is called the
maximal RCIS Cmax of Σ with respect to Sxu and ∆. There
is also an alternative characterization of the maximal RCIS
Cmax: Given the system Σ, the safe set Sxu, and a disturbance
model ∆, a set C⊆Rn is an RCIS of Σ with respect to Sxu and
∆ if for all x∈C, there exists an input u such that (x,u)∈ Sxu
and Ax+Bu+E∆(x)⊆C. Then, the maximal RCIS Cmax is
the union of all RCIS of Σ with respect to Sxu and ∆. Given
an RCIS C with respect to Sxu and ∆, the admissible input
set A (x,C) at a state x is defined as

A (x,C) = {u | (x,u) ∈ Sxu, Ax+Bu+E∆(x)⊆C}. (4)

A controller u satisfies the condition in (3) for any initial
state x0 ∈Cmax if and only if for all x ∈Cmax,

u(x) ∈A (x,Cmax). (5)

Most of existing works on safety control consider a special
case of the robust safety control problem, which we denote
as Problem 1, where the disturbance model ∆all is such
that ∆all(x) = D for all x ∈Rn. We denote the corresponding
maximal RCIS as Cmax,1 [5]. As an application of (5), if a
reference controller ure f is given, a robust safety supervisor u
that satisfies (3) with respect to ∆all for all x0 ∈Cmax,1 can be
synthesized by minimally modifying the reference controller,

u(x) = min
u∈A (x,Cmax,1)

‖u−ure f (x)‖2
2, ∀x ∈Cmax,1. (6)

Note that the robust safety supervisor in (6) is not defined
for states outside Cmax,1. In particular, the admissible input
set A (x,Cmax,1) is empty for any x 6∈ Cmax,1. This is not
problematic if the system starts from Cmax,1 and the dis-
turbance is always in D, ensuring that the system stays in
Cmax,1 indefinitely. But those assumptions may be unreliable
in practice, potentially causing an inadvertent exit from Cmax,1.
As a result, the safety control framework described in this
subsection is exceedingly susceptible to potential violations
of those assumptions.

B. An Opportunistic Safety Control Problem

Let D be a collection of Borel subsets of the disturbance
set D, with D ∈D . We call D the disturbance template set.
For a given controller u and an initial state x0, let P(u,x0)
be the collection of disturbance models ∆ : Rn→D for which
the safety specification in (3) is satisfied, that is

P(u,x0) := {∆ : Rn→D |Rk
Σ(x,u,∆)⊆ Sxu,∀k ≥ 0}.

We further define P(x0) := ∪uP(u,x0), that is the set of
disturbance models a controller can possibly be robust to
when the system starts at x0.

With these new notations, Problem 1 can be rephrased as
finding u such that the worst-case disturbance model ∆all is
in P(u,x0) for a given x0. Note that ∆all is the worst-case
disturbance model in the sense that if the safety specification
in (3) is satisfied for ∆all , it is satisfied for any ∆ : Rn→D
with respect to the same x0 and u. Then, it is clear that when
∆all is not contained by P(x0) (that is when x0 6∈ Cmax,1),
Problem 1 has no solutions. Apparently, a better strategy is
to find a controller u robust to the worst-case disturbance
model available in P(x0) (if ∆all is not)1. In this case, we
synthesize a controller that is doing its best to keep the system
within the safety constraints, as long as P(x0) is nonempty.

To formalize this idea, we need to identify the
worst-case disturbance model in P(x0). Here we use
a simple criterion. Let µ be a Borel measure on D.
For any disturbance models ∆1 and ∆2, we define
γ(∆1,∆2)(x) := supx∈Rn |µ(∆1(x)	∆2(x))|. This function γ

is a pseudometric in the space of disturbance models,
measuring the distance between two disturbance models.
Then, since we know ∆all is the worst-case disturbance

1Under the partial order given by ∆1 ≤ ∆2 iff ∆1(x) ⊆ ∆2(x),∀x ∈ Rn,
it can be shown that ∆all is the unique maximal element in the set of
disturbance models, and P(u,x) is a lower set with respect to this partial
order. Thus, being safe against one disturbance model ∆ ∈P(x0) implies
being safe against all disturbance models less than ∆.



model among all disturbance models, we simply consider
the nearest point in P(x0) to ∆all with respect to γ as
the worst-case disturbance model in P(x0). As a result,
finding a controller robust to the worst-case disturbance
model in P(x0) is equivalent to finding u that minimizes the
distance γ(P(u,x0),∆all) := inf∆∈P(u,x0) γ(∆,∆all) between
the set P(u,x0) and ∆all (by default γ(P(u,x0),∆all) =+∞

if P(u,x0) is empty). Based on the above discussion, we
pose an opportunistic safety control problem.

Problem 2. Given the system Σ with its safe set Sxu,
synthesize a controller u∗ : Rn→ Rm such that

(i) ∆all ∈P(u∗,x) for x ∈Cmax,1;
(ii) u∗ minimizes2 the distance between P(·,x) and ∆all
with respect to the pseudometric γ for x 6∈Cmax,1.

Point (i) above assures that any solution u∗ to Problem
2 provides safety guarantees as strong as that to Problem
1 when the system operates in the maximal RCIS Cmax,1.
When outside Cmax,1, point (ii) assures that u∗ provides extra
robustness guarantees compared with solutions to Problem 1.
Besides, if Cmax,1 is empty, Problem 1 has no solution, but a
solution u∗ to Problem 2 may still exist.
Remark 1. The conservativeness and computational tractabil-
ity of the solutions u∗ to Problem 2 depend on the measure µ

over D and the disturbance template set D . A trivial choice
is D = {D}, under which Problem 2 degrades to Problem 1 .

III. CONSTRUCTION OF u∗

In this section, we show how to construct a solution u∗ to
Problem 2. As noted in Remark 1, we need to first specify the
measure µ and the disturbance template set D . We choose
the measure µ to be the Lebesgue measure on Rl but restrict
it to D. We assume that µ(D)> 0 3. The disturbance template
set is chosen to be

D = {ud +αD | ud ∈ (1−α)D, α ∈ [0,1]}. (7)

That is, the disturbance template set D contains all the subsets
of D that have the same shape as D. This collection of
disturbance sets is rich enough since it contains uncountably
many subsets of D scaled to different sizes and positioned at
various places, as demonstrated in Fig. 1a. At the same time,
D is simple enough for constructing u∗, which is shown next.

For each α ∈ [0,1], we define an auxiliary system Σα

Σα : x+ = Ax+Bu+E(ud +d), (8)

with A, B, and E the same as in (1), and ud , d ∈Rl . In addition
to u, we introduce a new control input ud . The maximal RCIS
of Σα with respect to the safe set Sxu,α := Sxu× (1−α)D
and the disturbance model ∆α := α∆all is denoted by Cmax,α .

Intuitively, in Σα , we split the disturbance input in Σ into
two parts, namely that ud ∈ (1−α)D and d ∈αD, and turn ud
into a control input. When α = 1, Cmax,α is just the maximal
RCIS Cmax,1 of Σ with respect to Sxu and ∆all defined in

2Point (ii) does not necessarily imply point (i) since γ(P(u,x),∆all) = 0
does not imply ∆all ∈P(u,x) (unless P(u,x) is closed).

3Otherwise, D lies in a subspace of Rl , which implies we should lower l.

(a) D and ud +αD (b) Cmax,α and Cmax,[0,1]

Fig. 1: Demonstration of the disturbance template set D in
(7) and the maximal RCIS Cmax,α of Σα .

Section II-A. As α goes to 0, Σα has more control power
and less uncertainty, and thus Cmax,α monotonically expands
as α goes to 0, as demonstrated in Fig. 1b . When α = 0,
we have full control of the disturbances in D. Hence for any
initial state x0 not in Cmax,0, we cannot find a controller and
a disturbance model such that (3) is satisfied. In other words,
P(x0) is empty if and only if x 6∈ Cmax,0. The following
theorem draws a connection between Cmax,α and solutions
u∗ to Problem 2.

Theorem 1. For any state x ∈ Cmax,0, let α∗(x) be the
maximal α ∈ [0,1] such that x ∈Cmax,α . Then, a controller
u∗ is a solution to Problem 2 if and only if for all x ∈Cmax,0,
there exists ud ∈ Rl such that

(u∗(x),ud) ∈A (x,Cmax,α∗(x)), (9)

where A (x,Cmax,α∗(x)) is the admissible input set of the
system Σα with respect to Sxu,α and ∆α , with α = α∗(x).
In addition, the distance between P(u∗,x) and ∆all satisfies

γ(P(u∗,x),∆all) =

{
(1−α∗(x)l)µ(D) x ∈Cmax,0,

+∞ o.w.
(10)

The proof of Theorem 1 is in the appendix. Intuitively, if a
state x is in Cmax,α , we can find u :Rn→Rm and ud :Rn→Rl

such that the disturbance model ud +∆α is in P(u,x). It
can be shown that by taking α = α∗(x), ud +∆α is actually
the worst-case disturbance model in P(x0) and is contained
by P(u∗,x) for any u∗ satisfying (9). Furthermore, when
α∗(x) = 1, ud +∆α = ∆all . Thus, both points in Problem 2
are fulfilled by u∗. Applying Theorem 1, given a reference
controller ure f , we propose an opportunistic safety supervisor

u(x) = min
(u,ud)∈A (x,Cmax,α∗(x))

‖u−ure f (x)‖2
2 (11)

This opportunistic safety supervisor is defined over Cmax,0,
larger than the domain Cmax,1 of the robust safety supervisor in
(6). Recall that when x0 is not in Cmax,0, it becomes inevitable
to violate the safety constraints no matter what the controller
and the disturbance do. The opportunistic safety supervisor
becomes undefined only in this extreme case.
Remark 2. Our results also hold for Problem 2 with dis-
cretized α : Let αi for i from 0 to N be an increasing sequence
of scalars such that 0 = α0 < α1 < · · ·< αN = 1. Let

D = {ud +αiD | ud ∈ (1−αi)D, i ∈ {0, · · · ,N}}. (12)



We redefine α∗(x) to be the maximal αi such that x ∈Cmax,αi .
Theorem 1 with this redefined α∗(x) holds for the disturbance
set D in (12). The only benefit for using D in (12) instead
of (7) is that to construct u∗, we only need Cmax,α for finitely
many α (versus a continuum of α in [0,1]).

A. The One-shot Computation of Cmax,α

In this subsection, we show how to compute Cmax,α for all
α ∈ [0,1] in one shot. Consider a new auxiliary system Σ[0,1]

Σ[0,1] :
[

x+

α+

]
=

[
Ax+Bu+E(ud +d)

α

]
, (13)

where we introduce a new state α ∈ [0,1] and a new control
input ud ∈ Rl . Define the safe set Sxu,[0,1] of Σ[0,1] by

Sxu,[0,1] = {(x,α,u,ud) |(x,u,ud) ∈ Sxu,α ,α ∈ [0,1]}. (14)

Let ∆[0,1] be the disturbance model such that ∆[0,1](x,α)=αD
for all (x,α) ∈ Rn× [0,1]. We denote the maximal RCIS
of Σ[0,1] with respect to Sxu,[0,1] and ∆[0,1] by Cmax,[0,1].
Since Sxu and D are both polytopes, it can be shown that
Sxu,[0,1] is a polytope and the maximal RCIS Cmax,[0,1] can
be approximated by the standard iterative method [14], [17].
Once we have Cmax,[0,1], Cmax,α ′ is just equal to the slice of
Cmax,[0,1] through α = α ′, for any α ′ ∈ [0,1], as shown in Fig.
1b . Furthermore, given Cmax,[0,1] and x, the value α∗(x) can
be easily obtained by solving a linear program.
Remark 3 (Computational cost). Compared with the robust
safety control framework, our method needs to compute the
maximal RCIS Cmax,[0,1] for a system one dimension higher
than the original system Σ (cf., (13) vs. (1)) and thus has a
higher offline computational cost.

At runtime, given the current state x and Cmax,[0,1], we
first solve one linear program to check if x ∈Cmax,0 and find
α∗(x), and then solve the quadratic program in (11). For
a comparison, the robust safety control framework solves
one linear program to check if x ∈Cmax,1 and then solve the
quadratic program in (6). The runtime computational cost of
the two frameworks should be similar.
Remark 4. If the maximal RCIS Cmax,[0,1] cannot be com-
puted exactly, one can use any controlled invariant inner
approximation of Cmax,[0,1] in (11), with the cost of extra
conservativeness.

IV. NUMERICAL EXAMPLES

The maximal RCISs Cmax,[0,1] in the examples are computed
using MPT3 [11] equipped with GUROBI [10] in MATLAB.
The code and video can be accessed from https://
haochern.github.io/OpSafe/.

A. Adaptive Cruise Control

We consider the car-following example in [13]. The goal is
to maintain the relative distance ∆s and the relative velocity
∆v between the ego vehicle and the front vehicle within a
safe range. The system is modeled by a discretized double
integrator with states x = (∆s,∆v). The model parameters can
be found in [13]. The control input and the disturbance are
the acceleration u of the ego vehicle and the acceleration

d ∈ [−dmax,dmax] of the front vehicle respectively. The safe
set is given by |∆s−15| ≤ 5, |∆v| ≤ 5, and |u| ≤ 2.

The reference controller ure f = 0.2842∆s+0.8056∆v, with
a saturation limit at ±2. We implemented the robust and
the opportunistic safety supervisors in (6) and (11) and the
safety protection and extension governer in [13], assuming
dmax = 1. To evaluate those three safety supervisors at states
with different values of α∗(x), we generated 10 groups X0,i
of initial states, where X0,i contains 1000 states uniformly
sampled in Cmax,0.1∗i\Cmax,0.1∗(i+1) for i from 0 to 9. That
is, each x0 ∈X0,i has α∗(x0) between 0.1i and 0.1(i+ 1).
Note that X0,i is disjoint from the maximal RCIS Cmax,1 for
all i, since we want to evaluate how the controllers perform
outside the maximal RCIS.

For each initial state x0 in X0,i, we generate a random
disturbance sequence in [−dmax,dmax] and then run simula-
tions for each safety supervisor for 500 steps. During the
simulation, if a safety supervisor becomes undefined, we
switch to the reference controller. Thus, for each group index
i and dmax, we have 1000 trajectories starting from X0,i under
each safety supervisor. We evaluate the performance with two
metrics: the average exit time the system first exits the safe
set (taken to be 500 when the system never exits Sxu), and the
safety rate, the ratio of trajectories remaining in Sxu through
the entire simulation period out of a total of 1000 trajectories.
The average exit time and the safety rates of the three safety
supervisors for dmax = 1 and 1.05 are shown in Fig. 2. First
note that both metrics of all the safety supervisors grow with
the group index i. This is expected since the initial states
with a higher value of α∗(x) have worst-case disturbances
in P(x0) closer to ∆all and thus are easier to be kept within
the safe set. Comparing curves in different colors in Fig. 2,
we observe that the performance of the safety supervisors
degrade as the disturbances is sampled in a range larger than
the assumed one. Finally, comparing curves in the same color,
we observe that the proposed safety supervisor outperforms
the safety supervisors in (6) and in [13] in both metrics for
all groups of initial states and all dmax. In particular, when
unexpected disturbances appear (by increasing dmax from
1 to 1.05), the proposed safety supervisor has much larger
average exit time than the other two, as shown in Fig.2a,
and is the only one among the three that has nonzero safety
rates, as shown in Fig. 2b, showing that the proposed method
enhances the safety of the system significantly when the
system operates outside the maximal RCIS.

B. Lane Keeping Control

We consider a highway driving scenario where we want
to keep the lateral position of a vehicle within given lane
boundaries. We use the 4-dimensional linearized bicycle
model in [16] with respect to the constant longitudinal velocity
30m/s, discretized with time step 0.1s. The states are the
lateral displacement y, the lateral velocity v, the yaw angle
∆Ψ, and the yaw rate r. The control input is the steering angle
u. The safe set is given by constraints |y| ≤ 0.9, |v| ≤ 1.2,
|∆Ψ| ≤ 0.05, |r| ≤ 0.3, and |u| ≤ π/2. The disturbance of the
system is the road curvature d with |d| ≤ dmax.

https://haochern.github.io/OpSafe/
https://haochern.github.io/OpSafe/


(a) Average exit time (b) Safety rate

Fig. 2: The average exit time and safety rates of the safety
supervisors in (6) (robust) and (11) (opportunistic), and the
safety governer in [13] in the adaptive cruise control example.

(a) Average exit time (b) Safety rate

Fig. 3: The average exit time and the safety rate of the robust
safety supervisor in (6) and the opportunistic safety supervisor
in (11) in the lane keeping example.

The reference controller ure f is ure f =−Kx subject to a
saturation limit at ±π/2, where K is determined through
solving an LQR problem (with Q = I and R = 0). Then, we
implement the proposed safety supervisor in (11) and the
robust safety supervisor in (6), assuming dmax = 0.08. For
this example, the safety governer in [13] is infeasible for
all x and thus is excluded. We assess the safety supervisors
in the same manner as in Section IV-A. Fig. 3 illustrates
the average exit time and the safety rate for both safety
supervisors under simulations with dmax = 0.08, 0.12, and
0.16. Similar to the previous example, the performance of
the safety supervisors is improved as the initial states have a
higher value of α∗(x), and degrades as the disturbance range
used in the simulation exceeds that used in control synthesis.
Comparing curves in the same color in Fig. 3 , the proposed
safety supervisor consistently outperforms the robust safety
supervisor across all groups of initial states and all dmax.
Notably, the performance of our approach at dmax = 0.12
(50% larger than the assumed dmax) is even better than the
performance of the robust safety supervisor at dmax = 0.08,
highlighting its enhanced safety and resilience to unexpected
disturbances when the system operates beyond the maximal
RCIS Cmax,1.

C. Safe Tracking for Aerial Vehicle

We tested our approach on the drone platform Crazyflie
2.1 in a task of cruising around designated waypoints in the
horizontal plane while avoiding entering hazardous region
(red region in Fig. 4). We use a built-in controller to keep the
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(a) No measurement noise

− 1.5 − 1.0 − 0.5 0.0 0.5 1.0 1.5

X Position

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

Y
 P

o
s
it

io
n

hazard area

Landmarks

0

1

-inf

ro
b
u
s
t

0

1

-inf

o
p
p
o
rt
u
n
is
ti
c

(b) With measurement noise

Fig. 4: The drone trajectories in x-y plane under the safety
supervisors in (6) (yellow-red) and (11) (blue-dark blue). The
color of the curves reflects the value of α∗(x) along the
trajectories.

altitude of the drone constant, and then control its horizontal
motion by sending the reference velocities ux and uy in the x, y
axes to a lower-level controller in the period of 0.1s. Validated
by the flight data, the drone dynamics in x and y axes under the
lower-level controller are decoupled, homogeneous, and linear.
Thus, we model the dynamics in x and y by two identical
3-dimensional linear systems with states sx = (x,vx,ux,−1)
(or sy = (y,vy,uy,−1), respectively), where x and vx are the
position and velocity in x axis, and ux,−1 is the previous
reference velocity ux. The system matrices are learned from
data via least square with the disturbance set the convex
hull of the prediction error. The safe set of Σx is given by
constraints |x| ≤ 1, |vx| ≤ 1, |ux| ≤ 1, and |ux,−1−ux| ≤ 0.5.
The setup for the system in y axis is the same.

We synthesize one reference tracking controller for each
subsystem in form of ure f ,∗ =−K(s∗− sre f ,∗) (∗ is a place-
holder for x or y) subject to a saturation limit of ±1, where K
is determined through solving a LQR problem (with Q = 3I
and R = I). We then implement the safety supervisors in
(6) and (11) to supervise ure f ,∗. For the experiments, we
pick 24 waypoints to form a big “M”, as shown by the
checkmarks in Figure 4. Part of the waypoints is picked
outside the safe region such that the reference controller
without any supervision would steer the drone to the unsafe
region. During the experiments, we switch to the reference
controller whenever the safety supervisor is undefined. Since
the drone is initialized within Cmax,1, both safety supervisors
are able to maintain the drone within the safe region, as
shown by Fig. 4a. To make this task more challenging, we
repeat this experiment with the state measurements corrupted
by an additional Gaussian noise with standard deviation
0.05. Subject to this unexpected measurement noise, our
opportunistic safety supervisor still successfully keeps the
drone within the safe region, while the robust safety supervisor
in (6) fails as shown in Fig. 4b.

V. CONCLUSION

In this work, we present an opportunistic safety control
framework that extends the domain of safety controllers
beyond the maximal RCIS. This is achieved by designing a
controller that is robustly safe against as much disturbance as
possible. Our approach can be trivially extended for nonlinear
systems, which we consider in future. We also want to



extend these results to probabilistic settings, by using a given
or learned probability measure µ instead of the Lebesgue
measure used in this work.

APPENDIX

A. Proof of Theorem 1

In this section, we denote the distance γ(P(u,x),∆all)
between P(u,x) and ∆all by r(x,u) for short.

Lemma 1. For any given (x,α)∈Rn+1, the minimal distance
infu r(x,u) at x is less than or equal to (1− α l)µ(D) if
and only if x ∈Cmax,α . Furthermore, a controller u satisfies
r(x,u) ≤ (1−α l)µ(D) for all x ∈Cmax,α if and only if for
all x ∈Cmax,α ,

u(x) ∈A (x,Cmax,α), (15)

where A (x,Cmax,α) is the admissible input set of Σα .

Proof. We first show the “if” direction. Pick an arbitrary
x ∈Cmax,α . Since Cmax,α is the maximal RCIS of Σα , there
exist u : Rn→ Rm and ud : Rn→ (1−α)D such that

Rk
Σα
((x,α),(u,ud),∆α)⊆ Sxu,α , ∀k ≥ 0. (16)

Define the disturbance model ∆(x) := ud(x)+αD∈D for all
x̄∈Rn. By the construction of Σα and Sxu,α , (16) implies that
Rk

Σ
(x,u,∆)⊆ Sxu for all k ≥ 0. That is, ∆ ∈P(u,x). Hence,

inf
u

r(x,u)≤r(x,u)≤ γ(∆,∆all) = (1−α
l)µ(D), (17)

where the last equality uses the property of Lebesgue measure
µ(αD) = α l µ(D) (recall that D⊆Rl). Also, by Section II-A,
we know that u satisfies (15). Hence, we proved the “if”
direction of both statements in Lemma 1.

Next, we pick an arbitrary (x,α) such that infu r(x,u)≤
(1−α l)µ(D). By the definition of r(x,u), for any integer
i≥ 1/α , there exist ui : Rn→Rm and ∆i : Rn→D such that
∆i ∈P(ui,x) and γ(∆i,∆all)< (1−α l

i )µ(D), with αi := α−
1/i > 0. By the definition of D in (7), there exists ud : Rn→
(1−αi)D such that ud(x)+αiD⊆∆i(x) for all x∈Rn. Hence,
∆i ∈P(u,x) implies that the disturbance model ud +αiD is
in P(u,x) as well. That is, Rk

Σ
(x,ui,ud +αiD)⊆ Sxu for all

k ≥ 0, which is further equivalent to

Rk
Σαi

(x,(ui,ud),∆αi)⊆ Sxu,αi , ∀k ≥ 0. (18)

By definition, (18) implies that x ∈Cmax,αi , that is, (x,αi) ∈
Cmax,[0,1]. Since Cmax,[0,1] is closed, we know that (x,α) =
limi→∞(x,αi) ∈Cmax,[0,1] as well. This completes the proof
for the first statement in Lemma 1.

Now suppose that u is a controller satisfying r(x,u)≤ (1−
α l)µ(D) for all x ∈Cmax,α . We pick an arbitrary x ∈Cmax,α .
Clearly, (x,u(x))∈ Sxu. For all i≥ 1/α , there exists ∆i :Rn→
D such that ∆i ∈P(u,x) and γ(∆i,∆all) < (1−α l

i )µ(D).
Thus, for all d ∈ ∆i(x),

Rk
Σ(Ax+Bu(x)+Ed,u,∆i)⊆ Sxu, ∀k ≥ 0, (19)

which implies that r(Ax + Bu(x) + Ed,u) ≤ (1− α l
i )µ(D)

for all d ∈ ∆i(x). Based on the first statement of Lemma
1, we have (Ax + Bu(x) + Ed,αi) ∈ Cmax,[0,1] for all d ∈

∆i(x). Since γ(∆i,∆all)< µ(D)−µ(αiD), there exists ud,i ∈
(1 − αi)D such that ud,i + αiD ⊆ ∆i(x). Thus, we have
(Ax + Bu(x) + E(ud,i + d),αi) ∈ Cmax,[0,1] for all d ∈ αiD.
Since D is compact, there exists a subsequence of ud,i that
converges to a point ud ∈ (1−α)D. We abuse the notation
a bit and denote this subsequence by ud,i again. Then, we
have Ax+Bu(x)+E(ud +αD)⊆Cmax,α and (x,u(x)) ∈ Sxu,
which implies u(x) ∈A (x,Cmax,α).

Proof of Theorem 1 . Point (i) of Problem 2 is trivially
satisfied by u∗ since (9) implies (5) with respect to Cmax,1
for x ∈Cmax,1. For point (ii), according to (10), a controller
u∗ minimizes r(x, ·) for all x ∈ Rn if and only if r(x,u∗)≤
(1−α∗(x)l)µ(D) for all x ∈Cmax,0, which is equivalent to
the condition in (15) due to Lemma 1. Equation (10) is just
a direct application of Lemma 1.
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