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Abstract— This paper considers an outlier detection problem
for a collection of vehicles or agents. These agents are repre-
sented by Markov decision processes and the trajectory data
are assumed available. The work aims to learn the intentions
or reward functions of agents, and infer the anomalous agents
whose intentions differ from the majority. To achieve this,
we propose a joint inverse reinforcement learning framework,
which enables learning of a common reward function that
captures the behavior of the majority as well as individual
rewards for normal and abnormal agents. An example on
the detection and analysis of driving behaviors is provided,
demonstrating the effectiveness of the proposed framework.

I. INTRODUCTION

The detection of anomalous or outlying behaviors can be
useful in a broad range of applications, including health-
care [1], [2], finance [3], robotics [4], and more recently,
transportation [5]–[7]. Transportation systems, composed of
many vehicles or agents, are usually safety-critical. Thanks
to the development of smart infrastructures and devices, large
amounts of vehicle-driving data are made accessible to learn
the nominal driving behaviors as well as to identify interest-
ing or outlying behaviors. Detecting such outlying behaviors
at run-time can be important to avoid interruptions to the
traffic flow. Offline detection and characterization of such
behaviors can also be useful, for instance, in generating inter-
esting test cases for training and testing autonomous driving
software [8] or directly reasoning about driver intents at run-
time [9]. Reward functions have been considered a succinct,
expressive and generalizable representation to characterize
the system dynamical behavior [10]–[13] and, therefore,
intentions of drivers can be effectively distinguished in the
space of reward functions. Inverse Reinforcement Learning
(IRL) aims to learn the reward function of a particular driver
via the observation of its driving behavior. By characterizing
the behavior via the reward function, it becomes easier to
determine which drivers differ substantially from others.
Nevertheless, a representative reward function for behaviors
of the majority can be hard to learn when outliers prevail.
To address this issue, we aim to adapt IRL to learn a reward
function which represents the behavior of the majority, and

Toyota Research Institute (“TRI”) provided funds to assist the authors
with their research but this article solely reflects the opinions and conclu-
sions of its authors and not TRI or any other Toyota entity.

1D. Li, Z. Liu, and N. Ozay are with EECS,
University of Michigan, Ann Arbor, MI 48109, USA
{ecedanli;zexiang;necmiye}@umich.edu

2M.L. Shehab and N.Ozay are with the Robotics Institute, University of
Michigan, Ann Arbor, MI 48109, USA {mlshehab}@umich.edu
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to detect potential outlier behaviors in the collection due to
different identified rewards.
Related work: Inverse Reinforcement Learning (IRL) has
been successful at representing intentions for a variety of
purposes in vehicle driving and traffic modeling applications.
In learning driving behaviors, the work in [11] used IRL
in a simple, 3-lane car driving simulation where a human
expert demonstrated trajectories of five different driving
styles, and the resulting algorithm learned reward functions
that qualitatively match the demonstrated driving styles. To
deal with more complex driving scenarios characterized by
large state spaces, the work of [14] improved this method by
integrating Deep Q-Learning (DQN) in the inner loop of IRL
and generated safe and sound trajectories for that scenario.
Similar questions were also addressed via a Maximum-
Entropy Deep IRL algorithm proposed in [15], where the
authors modeled the vehicles using finite-state Markov De-
cision Processes (MDPs) and the resulting reward functions
were validated by the generated policies in comparison to
the demonstrated ones. To achieve a more reactive, dynamic
driver intention-prediction, the work in [16] used a hierar-
chical IRL algorithm and validated the methodology on a
ramp-merging scenario. Various other applications of IRL
were also considered, e.g. in [17], [18], [19], [20]. In need of
the resilience and security of transportation systems, anomaly
detection has also been considered recently. In [21], authors
used a Bayesian IRL approach to reason about anomalies in
the driving data from a single vehicle. In contrast, our work
aims to jointly learn a representative reward function for a
collection of vehicles in a way that is robust to outliers, while
simultaneously detecting the anomalous agents and learning
their rewards. There are also techniques beyond IRL for
anomaly detection, for instance using temporal logics [22],
[23], and applications of anomaly detection in assessment of
driving behaviors [9].
Statement of contributions: We propose a novel joint op-
timization problem, using a finite-state/action MDP agent
model, to distinguish a majority of agents with similar
behaviors from a smaller set of agents whose behaviors
are noticeably different from the majority. This problem is
shown to be equivalent to a mixed integer linear program,
which can be relaxed to a standard linear program for
efficiency. Moreover, we extend the framework to handle
incomplete policy information, that can simply be deduced
from agent trajectories. To the best of our knowledge, this
is the first implementation of a joint optimization problem
which simultaneously learns the individual rewards of each



agent, learns a representative reward for the majority, and
identifies anomalies.
Notation: Let R, N, Rn and Rm×n respectively denote
the space of real numbers, natural numbers, n-dimensional
vectors and m-by-n matrices. For an R ∈ Rn, we denote by
R⊤ the transpose of R and write R > 0 if all components are
positive. We respectively denote 1-norm and infinity norm of
the vector R by ∥R∥1 and ∥R∥∞, and we let ∥R∥0 denote the
number of non-zero entries of R. For a P ∈ Rn×n, we denote
the value at an entry (s, s′) by [P]ss′ , where s and s′ are
the row and column index, respectively. The cardinality of a
finite set N ⊂ N is written as |N |. Specifically, the symbol
1n is a short-hand notation for the vector (1, . . . , 1)⊤ ∈ Rn

and 0n is that for (0, . . . , 0)⊤ ∈ Rn. Given a set S ⊂ Rn, we
define an indicator function 1S : Rn → R, where 1S(s) = 1
if s ∈ S, or otherwise 0.

II. PROBLEM FORMULATION

Consider a collection of N independent agents and denote
by N := {1, . . . , N} their index set. We represent each
agent i ∈ N by a finite-state and finite-action Markov
Decision Process (MDP), denoted by a tuple MDPi :=
(S,A, {Psa}, Ri), where S and A respectively are the set
of states and actions with the cardinality |S| = n and
|A| = m. The collection {Psa} contains all state-transition
probabilities from any state s ∈ S with any action a ∈ A,
and we define Psa(s

′) := P(s′ | s, a) with P a conditional
probability measure on s′ ∈ S. We assume that each agent
i holds a reward function Ri : S → R and operates under
a stationary policy πi : S → A which, for any s0 ∈ S ,
maximizes the expected, discounted and cumulative rewards

max
πi

{
V π(s0) := E[

∞∑

t=0

γtRi(st)|π, s0]
}
,

where we call V π : S → R the value function with the
discount factor γ ∈ (0, 1), and the expectation is taken over
st+1 ∼ Pstat

with the action selected as at = πi(st), t =
0, 1, . . .. Notice that each agent owns an unknown reward
function as well as an optimal policy, which characterizes
the behavior of the agent. In this work, we assume that the
majority of the agents behave in a similar and common way,
namely, they can be represented by similar, if not the same,
reward functions. We denote the set of these agents by Mc ⊂
N and, other than this, we denote by M = N \Mc the set
of anomalous agents who behave significantly different from
the majority. In particular, we have |Mc| > |M|. To make
it clear, let V be the space of reward functions and give a
metric d : V × V → R for V . We assume agents in Mc

satisfy the following property.

Assumption II.1 (Common behaviors are endowed with
similar reward functions) There exists a representative
reward R0 and a threshold parameter ϵ > 0 so that, for
any agents i ∈ Mc, d(Ri, R0) ≤ ϵ. Furthermore, for any
j ∈ M, d(Rj , R0) > ϵ.

Assumption II.1 distinguishes in the reward-function space
agents with common behaviors from those with different
goals. In this work, we aim to learn a representative reward
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Fig. 1: Proposed anomaly detection framework

for the normal agents in Mc and meanwhile detecting
candidates in M, which are outliers. To do this, we consider
two problems as follows:
Problem 1: Given S, A, {Psa} and policies {πi}i∈N , find
a representative reward R0 and individual rewards Ri such
that for all i ∈ M, d(R0, Ri) > ϵ and for all i ∈ Mc,
d(R0, Ri) ≤ ϵ for some ϵ > 0.
Problem 2: Given S, A, {Psa}, and some finite state
and action trajectories {τi := (s

(i)
0 , s

(i)
1 , . . . , s

(i)
Ti
), ηi :=

(a
(i)
0 , a

(i)
1 , . . . , a

(i)
Ti
)}i∈N for each agent i obtained under op-

timal policies, find a representative reward R0 and individual
rewards Ri such that for all i ∈ M, d(R0, Ri) > ϵ and for
all i ∈ Mc, d(R0, Ri) ≤ ϵ for some ϵ > 0.

Notice that Problem 1 requires the knowledge of the poli-
cies while Problem 2 requires only state-action trajectories.
A special case of Problem 2 is that all trajectories of agents
are complete, i.e., for any agent i ∈ N and any s ∈ S ,
there exists a time t so that s

(i)
t = s. In such a scenario,

two problems are identical. In the following, we start from a
solution to Problem 1 and then further deal with the scenario
when the sample trajectories {τi, ηi} are incomplete or the
lengths {Ti}i are too small for policies to be fully recovered.

III. METHODOLOGY

This section first presents our high-level approach, then
provides the details of the proposed joint inverse reinforce-
ment learning mechanism which learns the reward functions
of agents as well as detects the anomalies.

A. A General Framework

Our complete framework is demonstrated in Fig. 1. To
solve Problems 1 and 2, our starting point is the availability
of agent models. These models should be well-defined in
the sense that the state space S, action space A, and the
state-transition mappings {Psa} together encode all possible
behaviors independent of the reward. We build these models
from training data according to section III-B. Given such
models, test state trajectories {τi}, as well as policies {πi}
or action trajectories {ηi}, we obtain reward functions that
these policies optimize, by solving a large-scale, joint Inverse
Reinforcement Learning (IRL) problem. Then, the result-
ing representative reward function enables us to obtain a
threshold-based anomaly detector, which identifies anomalies
that belong to the set M. Finally, we address information-
fusion techniques when only incomplete trajectories are
available. Such a scenario results in a similar and tractable
optimization problem.



B. The Data-driven Model of Agents

Suppose that the actual system has a state space X and
an action space U that can contain infinitely many elements.
To model the actual system by an MDP with n states in S
and m actions in A, we partition the state space X into n
subsets {Xi}ni=1, where any state x in Xi is mapped to the
ith state of the MDP in S. Similarly, the action space U is
partitioned into m subsets {Ui}mi=1, where any action u in
Ui is mapped to the ith action in A.

Assume that a set {(xi, ui, x
′
i)}pi=1 of sampled transitions

of the actual system is available. Given the partitions {Xi}ni=1

and {Ui}mi=1, we map each transition (xi, ui, x
′
i) of the

actual system into a transition (si, ai, s
′
i) of the MDP. Then,

for each tuple (s, a, s′) in S × A × S , the state-transition
probability Psa(s

′) of the MDP is estimated by

Psa(s
′) =

D(s, a, s′)∑
s′′∈S

D(s, a, s′′)
,

where D(s, a, s′) is the number of times that the transition
(s, a, s′) occurs in the mapped data set {(si, ai, s′i)}pi=1. To
have a well-defined state-transition probability {Psa}, we
require that the data set {(si, ai, s′i)}pi=1 visits all the states
with all possible actions for at least once.

C. Learning a Representative Reward Function

To learn a representative reward function, first of all, we
need to assume that non-trivial1 reward functions of all
agents exist. Notice that such an assumption depends on the
selected models and the available trajectory data. For sim-
plicity, let us first characterize the space of reward functions
for a single agent following ideas in [10]. Then, we propose
an optimization problem which learns a representative reward
function for possibly all, common agents.

Consider an agent MDP := (S,A, {Psa}, R) with the
optimal policy π, |S| = n and |A| = m. By the Bellman’s
principle of optimality, the following relation [24] holds:

V π(s) = R(s) + γ
∑

s′∈S
Psπ(s)(s

′)V π(s′), ∀s ∈ S,

V π(s) ≥ V µ(s), ∀s ∈ S, ∀µ : S → A,

where γ ∈ (0, 1) ⊂ R. With the abuse of notation, let
us respectively denote by V π ∈ Rn and R ∈ Rn the
vector form of V π(s) and R(s), s ∈ S , where V π :=
[V π(s1), . . . , V

π(sn)]
⊤ and R := [R(s1), . . . , R(sn)]

⊤. In
particular, we write the state-transition matrix under a policy
µ as Pµ ∈ Rn×n, where, for an entry (s, s′), we select
[Pµ]ss′ := Psµ(s)(s

′). As a result, we have

V π = R+ γPπV π and V π ≥ V µ, ∀ µ. (1)

To derive an equivalent condition on the existence of the
reward functions, we have two observations. First, the map-
ping between the reward function R and the optimal value
function V π is a bijection: R = (I − γPπ)V π because Pπ

is a stochastic matrix and γ ∈ (0, 1), thus (I − γPπ) is
invertible. Then, the existence of R is equivalent to that of

1A function is non-trivial if its image set is not a singleton.

V π . Second, the inequality in (1) holds for any policy µ.
Now, consider a policy µ to be an one-step extension of π at
the initial state s0, i.e. µ(s0) ̸= π(s0) and µ(st) = π(st) for
all st ∈ S and any t > 0. We consider such perturbations
over all possible initial state s0 ∈ S, resulting in the
expected reward of the policy µ being V µ = R + γPµV π .
Consequently, a condition equivalent to the optimality is

(Pπ − Pµ)V π ≥ 0, with µ(s) ∈ A \ {π(s)}, ∀s ∈ S.
Notice that there are at most n(m− 1) constraints. Next, let
Xµ := Pπ −Pµ and recall that Xµ1n = 0n, |[Xµ]ss′ | ≤ 1.
Therefore, finding a reward function is equivalent to finding
a nonnegative2 vector z so that Xµz ≥ 0 for all possible
µ. However, nontrivial solutions to z may not exist for
particular systems and optimal policies given, as showing
in the following example.

Example III.1 (Non-trivial reward functions may not
exist) Consider a 2-dimensional MDP where S := {s1, s2}
and A := {stay, switch}. The action stay and switch
respectively retain and change the state with the probability
1. Given that the optimal policy is switch for both state s1
and s2. Then, the only possible rewards are trivial ones.

Furthermore, we show the closed form solutions to reward
functions for a system with two states and a given optimal
policy in the following lemma.

Lemma III.1 (Explicit Reward functions of 2-
dimensional systems) Given an MDP with |S| = 2
and given a policy π that optimizes a set R of unknown
reward functions. Then, all reward functions R ∈ R can be
written in the following form: R = α12−(I2−γPπ)[0,∆]

⊤,
α ∈ R, with either ∆ ≥ 0 or ∆ ≤ 0.

Proof: To find R, we equivalently aim to find z :=
[z1, z2]

⊤ ∈ R2
≥0 so that Xµz ≥ 0 for all possible µ, with

Xµ in the following parameterized form

Xµ := Pπ−Pµ =

[
λµ
1 , −λµ

1

λµ
2 , −λµ

2

]
, for some λµ

1 , λ
µ
2 ∈ [−1, 1],

where (λµ
1 , λ

µ
2 ) depends on π and is parameterized by µ.

There are three possibilities for solutions to {Xµz ≥ 0}µ:
1) all parameters in Z := {λµ

1 , λ
µ
2}µ are nonnegative: 2)

there exist η1, η2 ∈ Z which have different signs; and 3)
all parameters in Z are negative. We know that each pair of
parameters (λµ

1 , λ
µ
2 ) satisfies:

λµ
1 (z1 − z2) ≥ 0, λµ

2 (z1 − z2) ≥ 0.

For the case 1), we have z1 − z2 ≥ 0. Now, consider
solution z = [α, α−∆]

⊤ with α ∈ R and ∆ ≥ 0. We
find explicit reward functions, written as R = α(1− γ)12 −
(I2 − γPπ)[0,∆]

⊤. As α can be arbitrary, we achieve the
form as in the lemma. For the case 2), since η1, η2 must
have different signs, then z = α12, α ∈ R, resulting in
trivial reward functions R = α(1 − γ)12. This is again in
form of the solution as in the lemma. Case 3) achieves the
same form, with ∆ ≤ 0.

2Notice that whenever Xz ≥ 0, Xẑ ≥ 0 for any ẑ = z + α1n, α ∈ R.



Intuitively, Lemma III-C says that, with a given π, the
number of reward functions optimized by π is infinite and, all
these rewards R fall in one of the following three situation: 1)
R(s1) > R(s2), 2) R(s1) < R(s2) and 3), R(s1) = R(s2).
Therefore, Example III.1 and Lemma III-C indicate that a
given model with a policy does not necessarily guarantee
existence of a nontrivial reward function. Further, even when
the policy is optimal, it does not necessarily come from a
unique reward function and, we can only learn the reward
function of an agent in an equivalence class. Then, without
loss of generality, we learn reward functions whose range is
in the unit interval and, we characterize the set of feasible
reward functions for an agent i ∈ N by

Rβ
i :=

{
R : S → [0, 1]

R = (I − γPπi)V πi ,
(Pπi − Pµ)V πi ≥ β,
∀µ(s) ∈ A \ {πi(s)}, s ∈ S,

}
, (2)

where the nonnegative parameter β ∈ Rn quantifies the
degree of the optimality compared to alternative policies.
The larger the β⊤1n, the smaller the number of rewards
in Rβ

i and, the larger the difference between the optimal
value function V π and the rest of value functions {V µ}. In
particular, we write Ri := R0

i , which contains all reward
functions that satisfy the optimality condition, including
those trivial ones.

In the following, we consider selecting a representative
reward function R0 that solves Problems 1 and 2. To do this,
let us denote by ℓ : Rn(N+2) → R, (R0, R1, . . . , RN , β) 7→
R, the loss function which encodes the classification of the
anomaly as well as the determination of R0 so that it is
close to all normal agents’ reward functions. Then, we seek
for solutions of an optimization problem, defined as follows:

min
R0, Ri, i ∈N

ℓ(R0, R1, . . . , RN , β),

s. t. Ri ∈ Rβ
i , ∀i ∈ N ,

(P)

where β can be an a-priori and fixed margin, or a decision
variable to be jointly optimized. In the following section, we
propose several loss functions ℓ so that solutions to (P) are
efficient and, in the mean time, our goal can be achieved.

D. Reward-based Behavior Classification and Detection

To enable the behavior classification and anomaly detec-
tion, a possible loss function is the number of agents that
cannot be represented by R0. In other words, we consider
the reward-distance function L : Rn(N+1) → RN , where

L(R0, R1, . . . , RN ) := (d(R0, R1), d(R0, R2), . . . , d(R0, RN )),

with d a metric on the space of reward functions, and we
select the loss function ℓ to be the cardinality function (also
known as 0-norm) of L, ℓ := ∥L∥0. The cardinality function
promotes sparsity and aims to make as many Ri’s equal to
R0 as possible. Such a selection clusters similar rewards and
meanwhile allows for the learning of the actual number of
anomalous agents, i.e., an unknown value |M|. Further, we
would like to mention that the optimality margin β plays
a role in determining the representative reward function. To
exclude trivial reward functions, we use β > 0 as a hyperpa-
rameter. Precisely, we consider d(R0, Ri) := ∥R0−Ri∥1, i ∈

N , and ℓ := λ/N∥L∥0 − 1/nβ⊤1n +1/(nN)
∑

i∈N ∥Ri∥1
with a given hyper-parameter λ > 0. Notice that, in ℓ,
the first term encodes our goal which clusters agents that
are similar; the second regulates optimality of the learned
rewards; and the third promotes sparse rewards. Particularly,
we choose large λ if we solely emphasize on our goal
of clustering. Consequently, we write Problem (P) in the
following form:

min
β,R0,

Ri,V
πi , i ∈N

λ

N
∥L∥0 −

1

n
β⊤1n +

1

nN

∑

i∈N
∥Ri∥1,

s. t. Ri = (I − γPπi)V πi , ∀i ∈ N ,

(Pπi − Pµ)V πi ≥ β,

∀µ(s) ∈ A \ {πi(s)}, s ∈ S, i ∈ N ,

β ≥ 0n, 0 ≤ Ri ≤ 1, ∀i ∈ N .

(P)

The selected cardinality function results in a discontinuous
objective function, which renders Problem (P) intractable.
In the following, we investigate an equivalent problem for-
mulation so that solutions to (P) is the same as that to a
mixed-integer linear program.

Lemma III.2 (Mixed-integer formulation is exact) Let
us introduce auxiliary variables x ∈ {0, 1}N , y ∈ RN and
zi ∈ Rn, i ∈ N . Then, the solutions to (P) are the same as
those to the following problem:

min
x,y,β,R0,

Ri,V
πi ,zi, i ∈N

λ

N
x⊤1N − 1

n
β⊤1n +

1

nN

∑

i∈N
∥Ri∥1,

s. t. all constraints in (P), β ≥ 0n,

R0 −Ri ≤ zi, ∀i ∈ N ,

Ri −R0 ≤ zi, ∀i ∈ N ,

[z1
⊤1n, z2

⊤1n, . . . , zN
⊤1n]

⊤ ≤ y,

0N ≤ y ≤ nx, x ∈ {0, 1}N .
(MILP)

Proof: We achieve such a conclusion by equivalently re-
formulating the objective function of (P) using the definition
of function L, metric d, and the binary, cardinality-indicator
variable x.

To find solutions of (P), Lemma III.2 indicates that we
only need to solve Problem (MILP), which is a large-
scale mixed-integer linear program. Notice that solving Prob-
lem (MILP) generally is NP-hard. Alternatively, we can
consider a convex relaxation of (MILP) with x being a
continuous variable in [0, 1]N . Then, the resulting problem
becomes a linear program, which employs, in the original
objective function ℓ, ∥L∥1 in the place of ∥L∥0, and such a
formulation can be efficiently solved in practice. Later, we
use the convex relaxation for more efficient solutions.

Solutions to Problem (MILP) or its relaxation result in
a representative reward function R0 as well as rewards
{Ri}i∈N learned for each agents, which enable a threshold-
based classifier for anomaly detection. Therefore, given a
threshold ϵ > 0, the set M of anomalous agents can
be determined by identifying agent i with Ri satisfying
d(R0, Ri) > ϵ, i.e., Mc := {i ∈ N | d(R0, Ri) ≤ ϵ}. Notice



that the effectiveness of the detector depends on solutions
to (MILP) as well as a proper threshold ϵ given.

E. Scalable Information Fusion on Multiple-Agents Data

In this section, we consider how a-priori information of
agents can be infused into Problem (MILP) or its relaxation.

The challenge of Problem 1 and 2 is the evaluation
of constraints, especially the deduction of policy-related
matrices Pπi , i ∈ N . Notice that, in Problem 1, the agent
model {Psa} and policies {πi}i∈N are available, resulting
in explicit formulas of matrices Pπi , i ∈ N , with each entry
(s, s′) being [Pπi ]ss′ := Psπi(s)(s

′). Therefore, Problem
1 can be readily solved by a monolithic solution to Prob-
lem (MILP). In contrast, matrices {Pπi}i∈N in Problem 2
must be estimated using agent-trajectory data {τi, ηi}i, or
equivalently {(s(i)t , a

(i)
t )}i,t. Here, for any agent i ∈ N ,

state s ∈ S and action a ∈ A, we denote by Q(i)
s (a) :=∑

t 1{s}(s
(i)
t )1{a}(a

(i)
t ) the total number of data points so

that (s(i)t , a
(i)
t ) = (s, a) over all possible t. Then, the values

{Q(i)
s (a)}a encode the empirical distribution of optimal

actions of an agent i at the state s. For simplicity, we select
the policy to be

πi(s) ∈ argmax
a∈A

Q(i)
s (a), i ∈ N , s ∈ S. (3)

When all the states of agents have been visited in the
trajectory data available, the above formula recovers matrices
{Pπi}i∈N and we solve Problem 2 via the solution to
Problem (MILP) directly. Otherwise, there exists at least
one agent i which visited the state space partially. In such a
scenario, let us denote by S(i)

visited the set of visited states in
the trajectory data {(s(i)t , a

(i)
t )}t and we employ the policy-

selection rule (3) for all agents over visited states. Because
of the missing information on the unvisited states, reward
functions must be learned partially. In the following, we
propose the information fusion technique which learns a
common reward function that combines trajectories from
multiple agents. For an agent i ∈ N , we define a state-
selection matrix Hi ∈ Rhi×n where hi := |S(i)

visited|, and
rows of Hi are the rows of the identity matrix In whose
indices are those of the elements in S(i)

visited. For example,
given the set S = {1, 2, 3, 4} and S(i)

visited = {2, 4}, we have
Hi =

[
0 1 0 0
0 0 0 1

]
. Then, each agent i must have a reward

in a relaxed set of Rβ
i as follows:

Rrelax
i,β :=

R : S → R

HiR = Hi(I − γPπi)V πi ,
Hi(Pπi − Pµ)V πi ≥ Hiβ,

∀µ(s) ∈ A \ {πi(s)}, s ∈ S(i)
visited,

R ≥ 0, 0 ≤ V πi ≤ 1,

 .

Notice how the number of constraints reduces due to the
missing information and how the bounds on the range of R
are moved to that of V by leveraging the bijection map. As
a consequence, unvisited state entries of R become arbitrary
in [0, 1] and, each set Rrelax

i,β provides the characterization of
visited entries using the available data from agent i. Consider
such information of all agents in N , we learn a common

Fig. 2: A follower-centric driving behavior model.

reward R0 by solving a variant of Problem (P) as follows:

min
β,R0,

Ri, i ∈N

λ

N
∥L∥0 −

1

h0
1h0

⊤H0β +
1

nN

∑

i∈N
∥Ri∥1,

s. t. Ri ∈ Rrelax
i,β , ∀i ∈ N , β ≥ 0n,

(Prelax)
where H0 and h0 respectively are the state-selection matrix
and its rank corresponding to the set ∪i∈NS(i)

visited. Prob-
lem (Prelax) can be equivalently reformulated as a problem
similar to (MILP), which provides us with a tractable formu-
lation in case the trajectory data are incomplete or limited.
In such a formulation, unvisited entries of the representative
reward function R0 will be rendered to zero. Furthermore,
for each i ∈ N , unvisited entries of Ri will be equal to
their corresponding entries in R0. Consequently, solutions
to Problem (Prelax) result in representative reward entries
H0R0 as well as reward entries {HiRi}i∈N learned for
each agent, enabling a similar threshold-based classifier for
anomaly detection. In words, given a threshold ϵ > 0, the set
M of anomalous agents can be determined by identifying
agent i with Ri satisfying d(HiR0, HiRi) > ϵ, where the
metric d is the ∞-norm on the reduced space. Then, we find
Mc := {i ∈ N | ∥HiR0 −HiRi∥∞ ≤ ϵ}.

IV. APPLICATION IN DRIVING BEHAVIOR ANALYSIS

In this section, we study vehicle interactions and employ
the proposed framework for detecting anomalous driving
behaviors. To characterize the vehicle interaction, we rep-
resent a follower-leader vehicle pair as an agent and con-
sider the model of the agent as in Fig. 2. To analyze the
proposed framework, we consider two case studies with and
without known policies, corresponding to Problems 1 and
2, respectively. In particular, the first case study leverages
a given MDP model and known agent policies, examines
the equivalence class of rewards which can be learned, and
analyzes the effectiveness of the proposed framework. In the
second case study, we employ trajectory data collected from
a simulator, use it to learn data-driven MDP models, and
evaluate our framework on new data from the simulator. In
such a scenario, actual agent rewards are unknown and most
agent trajectories are incomplete, i.e., each trajectory visits
only some subset of the states. Consequently, we focus on
the empirical analysis of the solution.

A. Case Study A

To study highway driving behaviors and test our frame-
work in detecting anomalous agents, we define a 2-
dimensional system state s := (ve, vp), where the first
component is the speed of the follower, ego vehicle, and the
second is that of the leader, preceding vehicle. For simplicity,



Fig. 3: Equivalence class of reward functions where each color represents a class that results in the identical optimal policy.

we consider discrete system states where each vehicle’s
speed is either fast or slow, and define S := {fast, slow}2,
with n := |S| = 4. In particular, a state s = (fast, slow) indi-
cates the ego-vehicle speed ve being fast and the preceding-
vehicle speed vp being slow. Furthermore, we assume that
only the ego vehicle can be controlled and we select the
action space to be a 2-dimensional vector a := (as, al),
where the first component is the action related to speed and
the second is that to lane position. Again, we consider a
discrete action space and define A := {keep, change}2, with
m := |A| = 4. For instance, an action a = (change, keep)
means changing the speed and keeping the lane position for
the ego vehicle. Based on the selected state and action spaces,
we propose an MDP model with the following transition
probabilities given all possible actions (ao

1, a
o
2, a

o
3, a

o
4):

Pao
1 =

.99 .01 0 0
.01 .98 0 .01
.01 0 .98 .01
0 0 .01 .99

 , Pao
2 =

 .5 .5 0 0
.01 .99 0 0
0 0 .5 .5
0 0 .5 .5

 ,

Pao
3 =

.01 0 .98 .01
0 .01 .01 .98
.98 .01 .01 0
.01 .98 0 .01

 , Pao
4 =

 0 0 .5 .5
0 0 .5 .5
.5 .5 0 0
.01 .99 0 0

 ,

where both row and column indices of matrices are states
in the order so

1 = (slow, slow), so
2 = (slow, fast),

so
3 = (fast, slow), so

4 = (fast, fast), and actions taken
for those transition probabilities are ao

1 = (keep, keep),
ao
2 = (keep, change), ao

3 = (change, keep), ao
4 =

(change, change). Notice how these matrices are related to
the agent model {Psa} as described in Section III-C.
Equivalence class of reward functions: Given an MDP,
there are many reward functions that would lead to the same
optimal policy. To explore this, we uniformly sample 21n

non-trivial reward functions in the space [0, 1]n and derive
optimal policies of these reward functions via the classical
policy iteration approach [25]. Overall, there can be nm =
256 possible policies and, among all these policies, only 24
policies are optimal for non-trivial reward functions sampled.
Apparently, there exist policies which can not be optimal for
any non-trivial reward functions and, a policy can be optimal
for multiple reward functions. Such a result coincides with
our observation in Example III.1 and, therefore, we must
learn a representative reward from an equivalence class. To
verify this, Fig. 3 visualizes the space of reward functions

Fig. 4: Solution R0, M returned by the proposed framework,
with parameters λ = 10 and ϵ = 0.1. The left figure is the
learned rewards projected onto (so

2, s
o
3, s

o
1)-space and the right is

onto (so
1, s

o
3, s

o
4)-space.

NC 1 NC 2 ϵ = 0.01 ϵ = 0.1 ϵ = 0.5
accuracy 0.75 0.25 0.84 0.95 0.93

F1 0 0.39 0.82 0.9 0.87

TABLE I: Framework performance in Case A, compared to
baseline naive classifiers NC1 and NC2.

R ∈ Rn where each point indicates a sampled reward
function and the color indicates a particular optimal policy
derived using that function. Notice that we sliced the four
dimensional reward space over the dimension (slow, slow)
for visualization purposes.

Next, we numerically evaluate the proposed framework on
test data and demonstrate the solution to Problem 1 with the
given agent policies and a threshold ϵ.
Test data: We consider the anomaly detection Problem 1
given policies {πi}i∈N with |N | = 100. These policies are
obtained using policy-iteration from the known set of reward
functions, denoted by {Rtrue

i }i∈N . We assume there roughly
are |Mc| = 90, 80, 70, 60 normal agents with {Rtrue

i }i∈Mc

being random rewards with the mean value (0.1, 0, 0.2, 1).
And the corresponding anomalous agents have rewards ran-
domly sampled from the uniform distribution in [0, 1]n.
Notice that random anomalous agents can also take rewards
close to those of normal agents. Finally, we emphasize that
only policies are available for the proposed framework but
the rewards are not.
Anomaly detection: We solve the linear programming re-
laxation of the problem (MILP) with λ = 10. We denote the
obtained rewards by (R0, R1, . . . , RN ). Then, we select the
detection threshold to be ϵ := 0.01, 0.1, 0.5 and determine
the set of abnormal agents by M := {i ∈ N | d(R0, Ri) >



ϵ}. As an example, Fig. 4 demonstrates the distribution
of the actual rewards {Rtrue

i }i∈N together with the learned
representative reward R0 with roughly 70 normal agents and
ϵ = 0.1. Notice that agents with the red color are classified
as the anomaly, and those with the blue color are normal
ones. For each |Mc| = 90, 80, 70, 60, we run the method 10
times using the randomized data sets. Below are the results.
Discussion: We use the accuracy and F1 score to measure
the performance of the anomaly detection. Precisely, the
accuracy is the ratio of correctly predicted samples to all
samples and F1 := 2/(precision−1 + recall−1), where the
precision is the ratio of correctly predicted anomalies to
the total predicted anomalies and the recall is the ratio
of correctly predicted anomalies to all actual anomalies.
Intuitively, F1 score balances the rates of false positive and
false negative, and a high F1 validates the effectiveness of the
detection. To validate this, we use two very naive zero-rule
detectors, where detector NC 1 classifies all as normal agents
and detector NC 2 classifies all as anomalous agents. With
various thresholds ϵ, we compare the performance of our
detector with that of the naive detectors in Table. I. These
values are averaged over those measures in each scenario
with |Mc| = 90, 80, 70, 60. Notice that the proposed ap-
proach performs generally better than the baseline.

B. Case Study B

Here, we use a vehicle simulator to generate data for the
model construction as well as that for anomaly detection.
The simulator is developed based on the Intelligent Driver
Model [26], [27] as well as MOBIL [27], where we consider
a three-lane highway with a collection of cars driving at
the mean speed around 30 m/s. The data are generated
by tuning car-following behavior as well as lane-change
behavior in IDM and MOBIL, respectively. Except for the
standard setting in [27], we generate normal and anomalous
agents by changing the safe distance parameter s0 in IDM
and politeness parameter p in MOBIL. Intuitively, s0 is set
an order of magnitude smaller for normal agents than for
anomalous agents, while the distance between centers of p
values for these two group of agents is 0.25.

In this case, we have access to control actions of the ego
vehicle as well as trajectories of all vehicles in the simulator.
Based on this, we use a set {Di}100i=1 of 100 trajectories for
the system-model estimation and provide a separate data set
for anomaly detection.
Data-based model: To construct the model, we write each
time step i of the trajectory data as a tuple (xi, ui, xi+1),
where the state xi := (xe

i, x
p
i , di) respectively consists of

ego-vehicle speed, the relative speed between the leader and
follower, and the headway distance; the action ui consists
of a binary variable in {keep, change} indicating if the
vehicle performs a lane-change and a continuous variable in
R indicating the acceleration of the vehicle. As discussed in
Section III-B, we construct the MDP by partitioning the state
space of the actual system into 27 rectangular grids, mapped
to 27 states in S . In particular, thresholds {27, 31}(m/s),
{−4, 4}(m/s) and {50, 100}(m) are used to partition com-
ponents of the states, respectively. Furthermore, we manually

select two thresholds ±0.5m/s2 that maps the vehicle accel-
eration into three discrete actions {accel, keep, decel}. Here
accel (or decel) indicates that the vehicle is accelerating (or
decelerating), and keep indicates that the vehicle maintains
the current speed with a near-zero acceleration in the given
thresholds. Thus, the action space U is mapped to 6 actions
in A := {keep, change} × {accel, keep, decel}. Notice how
the state and action spaces of the MDP are extended from
those in Case A, resulting in a more realistic model.
Anomaly detection: To evaluate our approach, we build a
data pool of |N | = 50 agents where the rate of anomalies,
denoted by ra, is selected to be 10%, 20%, 30%, 40%. We
test the framework on various |M| or ra as well as the
detection thresholds ϵ = 0.05, 0.1, 0.15. For each given ra
and ϵ, we run our method 10 times with randomized data
selections. The resulting detection measures z are in Fig. 5.
Results: We use the accuracy and F1 score to measure the
performance of the anomaly detection and these metrics
are defined in the Case Study A. The results are again
compared with two naive zero-rule detectors as well as
two naive sampling-based detectors where the detector NC3
classifies each agent as normal or abnormal with the same
probability and NC4 does that with the probability ra being
anomalous. We also compare our results with k-Shape [28]
and Kernel K-means (KKM) [29], which are unsupervised
learning algorithms used in time-series clustering. The inputs
to both of these methods are the raw driving trajectories
and the desired number of clusters (2 in our case). Each
method then outputs two clusters and assigns each driver
to a respective cluster. We consider the cluster with the
larger number of members to be the normal agents cluster
and calculate the classification results accordingly. Results
are shown in Table. II. Notice how the baseline contrasted
with the proposed framework and how our approach trade
off accuracy with F1 score. Intuitively, the higher the F1

score, the higher the ability to identify anomalies with that
given threshold ϵ and anomaly rate ra. To further verify the
performance, Fig. 5 provides all agents’ detection measures
z which are respectively associated with the parameter ra :=
10%, 20%, 30%, and 40%. In the figure, each line is one
single test, where the x-axis is the index of agents and y-
axis is the detection measure z of that agent. Measures on
the actual, human-classified normal agents are colored blue
and that on anomalous are red. In particular, the averaged
detection measure is highlighted in figures. It can be seen
that, the lower the threshold ϵ, the lower the precision but
the higher the recall. Furthermore, anomalous agents tend to
have uniformly-higher detection measures and as the ratio
of anomalies increases, the detection ability decrease if the
threshold is fixed. In practice, the threshold parameter ϵ can
be tuned to optimize the performance of the framework.

V. CONCLUSIONS

A novel, reward-based detection framework is proposed
to identify agents with anomalous behaviors. The proposed
framework identifies anomalies in the given data set and
provides a representative reward which is robust w.r.t. out-
liers. An application in detecting abnormal driving behavior



(accuracy, F1) NC 1 NC 2 NC 3 NC 4 k-shape KKM ϵ = 0.05 ϵ = 0.1 ϵ = 0.15
ra = 0.1 (0.90, 0) (0.10, 0.18) (0.50, 0.17) (0.82, 0.10) (0.88, 0.02) (0.57, 0.18) (0.56, 0.34) (0.78, 0.49) (0.85, 0.53)
ra = 0.2 (0.80, 0) (0.20, 0.33) (0.50, 0.29) (0.68, 0.20) (0.80, 0) (0.54, 0.27) (0.64, 0.52) (0.83, 0.58) (0.81, 0.44)
ra = 0.3 (0.70, 0) (0.30, 0.46) (0.50, 0.37) (0.58, 0.30) (0.72, 0.16) (0.53, 0.36) (0.62, 0.57) (0.73, 0.46) (0.74, 0.35)
ra = 0.4 (0.60, 0) (0.40, 0.57) (0.50, 0.45) (0.52, 0.40) (0.60, 0.03) (0.56, 0.47) (0.55, 0.61) (0.59, 0.49) (0.62, 0.32)
avg. rates (0.75, 0) (0.25, 0.39) (0.5, 0.32) (0.65, 0.25) (0.75, 0.05) (0.55, 0.32) (0.59, 0.51) (0.73, 0.51) (0.76, 0.41)

TABLE II: Framework performance in Case B, compared to baselines NC1, NC2, NC3, NC4, k-shape and KKM.
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Fig. 5: Statistics of the detection measure z. Each dot is the
measure of a single tested agent, except that the highlighted dot
is the averaged measure over 10 tests for that agent index. The
blue portion are measures of the labeled normal agents and the red
are those of anomalous ones.

is studied in detail. Future work will focus on the extension
of the framework to online detection scenarios and incor-
porating logical structure in addition to rewards to improve
interpretability. We are also interested in using the learned
rewards (both for normal and for anomalous agents) for
downstream tasks like generating test scenarios for evaluat-
ing autonomous driving algorithms. Another direction is to
develop similar anomaly detection techniques by adopting
more recent IRL methods. This will allow for capturing
rich feature-based rewards and expanding to the continuous
domains.

REFERENCES

[1] A. Ukil, S. Bandyoapdhyay, C. Puri, and A. Pal, “IoT healthcare
analytics: The importance of anomaly detection,” in IEEE Conf. on
advanced information networking and applications, 2016, pp. 994–
997.

[2] M. Fahim and A. Sillitti, “Anomaly detection, analysis and prediction
techniques in IoT environment: A systematic literature review,” IEEE
Access, vol. 7, pp. 81 664–81 681, 2019.

[3] M. Toledano, I. Cohen, Y. Ben-Simhon, and I. Tadeski, “Real-time
anomaly detection system for time series at scale,” in Workshop on
Anomaly Detection in Finance, 2018, pp. 56–65.

[4] A. Bezemskij, G. Loukas, R. Anthony, and D. Gan, “Behaviour-based
anomaly detection of cyber-physical attacks on a robotic vehicle,”
in Int. Conf. on ubiquitous computing and communications and Int.
symposium on cyberspace and security, 2016, pp. 61–68.

[5] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM computing surveys, vol. 41, no. 3, pp. 1–58, 2009.

[6] F. V. Wyk, Y. Wang, A. Khojandi, and N. Masoud, “Real-time sensor
anomaly detection and identification in automated vehicles,” T-ITS,
vol. 21, no. 3, pp. 1264–1276, 2019.

[7] M. Riveiro, M. Lebram, and M. Elmer, “Anomaly detection for road
traffic: A visual analytics framework,” T-ITS, vol. 18, no. 8, pp. 2260–
2270, 2017.

[8] D. Zhao, H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K. Nobukawa,
and C. S. Pan, “Accelerated evaluation of automated vehicles safety
in lane-change scenarios based on importance sampling techniques,”
T-ITS, vol. 18, no. 3, pp. 595–607, 2016.

[9] C. Yang, A. Renzaglia, A. Paigwar, C. Laugier, and D. Wang, “Driving
behavior assessment and anomaly detection for intelligent vehicles,”
in IEEE Int. Conf. on Cybernetics and Intelligent Systems and IEEE
Conf. on Robotics, Automation and Mechatronics, 2019, pp. 524–529.

[10] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in ICML, vol. 1, 2000, p. 2.

[11] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in ICML, 2004, p. 1.

[12] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial
inverse reinforcement learning,” ICLR, 2018.

[13] D. Vasquez, B. Okal, and K. Arras, “Inverse reinforcement learning al-
gorithms and features for robot navigation in crowds: an experimental
comparison,” in IROS, 2014, pp. 1341–1346.

[14] S. Sharifzadeh, I. Chiotellis, R. Triebel, and D. Cremers, “Learning
to drive using inverse reinforcement learning and deep q-networks,”
NeurIPS, 2016.

[15] C. You, J. Lu, D. Filev, and P. Tsiotras, “Advanced planning for
autonomous vehicles using reinforcement learning and deep inverse
reinforcement learning,” Robotics and Autonomous Systems, vol. 114,
pp. 1–18, 2019.

[16] L. Sun, W. Zhan, and M. Tomizuka, “Probabilistic prediction of
interactive driving behavior via hierarchical inverse reinforcement
learning,” in ITSC, 2018, pp. 2111–2117.

[17] Q. Zou, H. Li, and R. Zhang, “Inverse reinforcement learning via
neural network in driver behavior modeling,” in IEEE Intelligent
Vehicles Symposium (IV), 2018, pp. 1245–1250.

[18] Z. Wu, L. Sun, W. Zhan, C. Yang, and M. Tomizuka, “Efficient
sampling-based maximum entropy inverse reinforcement learning with
application to autonomous driving,” IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 5355–5362, 2020.

[19] S. Rosbach, V. James, S. Großjohann, S. Homoceanu, and S. Roth,
“Driving with style: Inverse reinforcement learning in general-purpose
planning for automated driving,” in IROS, 2019, pp. 2658–2665.

[20] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner,
“Large-scale cost function learning for path planning using deep
inverse reinforcement learning,” The Int. Journal of Robotics Research,
vol. 36, no. 10, pp. 1073–1087, 2017.

[21] M. H. Oh and G. Iyengar, “Sequential anomaly detection using inverse
reinforcement learning,” in ACM SIGKDD Int. Conf. on Knowledge
Discovery & data mining, 2019, pp. 1480–1490.

[22] C. Yoo and C. Belta, “Rich time series classification using temporal
logic,” in Robotics: Science and Systems XIII, MIT, 2017.

[23] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and
detection of anomalous behavior,” IEEE Transactions on Automatic
Control, vol. 62, no. 3, pp. 1210–1222, 2017.

[24] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,
pp. 34–37, 1966.

[25] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[26] A. Kesting, M. Treiber, and D. Helbing, “Enhanced intelligent driver
model to access the impact of driving strategies on traffic capacity,”
Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 368, no. 1928, pp. 4585–
4605, 2010.

[27] M. Treiber and A. Kesting, “Traffic flow dynamics,” Traffic Flow
Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Hei-
delberg, pp. 983–1000, 2013.

[28] J. Paparrizos and L. Gravano, “k-shape: Efficient and accurate clus-
tering of time series,” in ACM SIGMOD Int. Conf. on management of
data, 2015, pp. 1855–1870.

[29] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral
clustering and normalized cuts,” in ACM SIGKDD Int. Conf. on
Knowledge discovery and data mining, 2004, pp. 551–556.


