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ABSTRACT
Customizing autonomous vehicles to align with user preferences

while ensuring safety may significantly impact their adoption. Col-

lecting user preference data by asking a large number of comparison

questions can be demanding. In this work, we use active learning

along with temporal logic descriptions of constraints to enable safe

learning of preferences with a reduced number of questions. We

take a Bayesian inference approach combined with Weighted Sig-

nal Temporal Logic (WSTL), resulting in a WSTL formula that can

rank signals based on user preferences and be used for correct-and-

custom-by-construction control synthesis. Our method is practical

for formulas and signals with various complexity since we compute

STL-related values offline. We provide an upper bound for the num-

ber of answers in disagreement with user answers. We demonstrate

the performance of our method both on synthetic data and by hu-

man subject experiments in an immersive driving simulator. We

consider two driving scenarios, one involving a vehicle approach-

ing a pedestrian crossing and the other with an overtake maneuver.

Our results over synthetic experiments with ground truth weight

valuation show that our query selection algorithm converges faster

than random query selection. Human subject study results show

an average agreement of 94% with user answers during training,

and 79% during validation (which increases to 86% when restricted

to high confidence results).

CCS CONCEPTS
• Theory of computation → Modal and temporal logics; •
Computing methodologies→ Learning to rank; • Mathemat-
ics of computing→ Bayesian computation.
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1 INTRODUCTION
People have different comfort and performance preferences for au-

tonomous driving. Customization of autonomous vehicles’ driving

styles is a critical aspect of enhancing user satisfaction. This can

be done by leveraging learning from users’ driving demonstrations

or asking pairwise comparison questions over different driving

behaviors. Surveys indicate that users’ driving preferences are usu-

ally distinct from their driving styles [1], which puts emphasis on

learning using pairwise comparison questions. However, we need

to consider safety at all times while integrating preferences on au-

tonomous vehicles. Exclusively relying on preferences may result

in unsafe behaviors and potentially catastrophic failures. Therefore,

our goal is to customize the autonomous vehicle behaviors within a

well-defined safety rule set. Personalizing autonomous algorithms

with safety guarantees will better improve the safety of the road,

as users will be less likely to disable it, allowing for a decrease in

accidents caused by human errors [16].

As discussed in [19], preference learning frameworks for safety-

critical applications have three desirable properties: (i) expressiv-
ity: the model should be able to capture different preferences, (ii)

safety: the model should never prefer a rule-violating behavior

over a rule-satisfying one, (iii) integration: the final model should

be easy to integrate into downstream controller synthesis tasks.

One approach to represent safety guarantees is to use formal logic.

Pairwise comparisons to learn rule-based or logical constructs for

driving behaviors have been considered in [17] for capturing com-

mon sense behaviors, in [21] to tailor driving style classes, and

in [19] for personalization. Helou et al. [17] conduct an extensive

study with over 65 participants to create a consensus over reason-

able driving behavior, Karlsson et al. [21] compute a defensiveness

score from pairwise questions to better categorize the driving style

of the user as defensive, neutral or aggressive. Karagulle et al. [19]

do not use pre-defined driving styles but incorporate logical struc-

ture to solve the safety-guaranteed preference learning problem.

They argue that drivers have a general rule set in their mind, but

they assign different importance to subrules. All these approaches

use offline data sets, where participants are asked a fixed set of

comparison questions. Here, a question consists of a pair of driving

behaviors/videos, and an answer indicates the user’s preference

within this pair. The authors in [19] acknowledge that the extensive

number of questions posed to users was said to be cumbersome.
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In this work, we introduce an active learning framework that

integrates safety guarantees into preference learning. We incorpo-

rate temporal logic formalism into a Bayesian learning approach.

We leverage human preference models from psychology and in-

cludeWeighted Signal Temporal Logic (WSTL) satisfaction measure

weighted robustness into the human preference mechanism. The

framework provides specific benefits: (1) it is provably safe since a

rule-violating signal can never have a greater weighted robustness

value than a rule-satisfying one, (2) it is practical for many types

of formulas and real-life applications, as we compute weighted ro-

bustness values offline, (3) it learns the preferences with a reduced

number of questions with respect to offline learning methods by

leveraging a greedy question-selection algorithm with expected

information gain maximization. It is demonstrated that such greedy

question selection methods select both informative and easy com-

parison questions when learning reward functions consistent with

preferences [2]. Our framework uses a similar greedy approach

to learn a weight valuation for a given WSTL formula in a way

that more preferable behaviors satisfy this formula with higher

weighted robustness values. Therefore, this formula can be readily

used for controller synthesis to generate behaviors that are correct

and maximally preferred by the user. We also establish a theoretical

bound that quantifies the gap between the output weight valuation

and an optimal weight valuation in terms of the maximum number

of answers in agreement with user preferences.

To validate our approach, we conduct two sets of experiments:

one employing synthetic data and another involving human sub-

jects. Experiments with synthetic data aim to test the adaptability of

the framework to different conditions. We also use these synthetic

experiments to determine some of the hyper-parameters used in

our method. Then, we conduct a human subject study, where the

participants experience different driving behaviors in an immersive

driving simulator. They are asked about their preferences in two

different scenarios: one involving the vehicle approaching a pedes-

trian crossing and the other the vehicle performing an overtake

maneuver. With these experiments, we demonstrate the ability of

the proposed framework to capture human preferences.

2 LITERATURE REVIEW
Preference learning aims to predict a preference order for a set

of options from an individual’s preferences [14]. This is achieved

by finding a utility function that ranks preferences in such a way

that preferred items will have a greater value than their counter-

parts. Preference learning can be done offline or online. Training

learning models in an online fashion has been studied for different

reasons. One of the hypotheses supporting active learning is that

selecting the next data point may help learners to perform better

with less training data [32]. In the context of preference learning,

active learning can ease the burden from teachers for answering
comparison questions [18, 26].

In autonomous systems, active preference learning is used to

infer system behaviors from expert choices [2, 11, 31, 34]. For in-

stance, in inverse reinforcement learning, preferences are used to

learn a reward function. Some active preference-based learning

works propose different query selection methods. Sadigh et al. [31]

introduce a volume removal method that maximizes the expected

volume to be removed by answering a comparison pair. Biyik et

al. [2] use maximum expected information gain to select the next

query. Wilde et al. [34] solve the same problem by maximizing

regret under some constraints. None of these works consider safety.

Cosner et al. [7] propose a safety-aware method for preference-

based learning using Control Barrier Functions, which encode state

constraints.

For safety-critical applications, encoding rules as temporal logic

formulas is a popularmethod in controller synthesis [24, 30], motion

planning [12, 23] and learning applications [20, 29]. Temporal log-

ics allow specifying complex rules beyond simple state constraints.

We can additionally incorporate preferences into logic [27, 33].

Venkatesh [33] proposes a new temporal logic grammar that helps

with expressing preferences over different formulas. Mehdipour

et al. [27] propose a weighted extension to Signal Temporal Logic

(WSTL), which gives different importance to subrules of a formula.

They also propose a control synthesis method to be used with

WSTL formulas when the weights are known. However, from an

end-user perspective, it may be hard to interpret the weights and

define preferences using weights in a temporal logic formula, so

there needs to be an intermediate step to infer the weights based

on user preferences. Works in [13, 35] present parametric exten-

sion to WSTL, namely Parametric Weighted Signal Temporal Logic

(PWSTL). Karagulle et al. [19] propose an offline learning approach

to learn the weights of a PWSTL formula from pairwise compar-

isons. Yet, it is indicated that the number of questions asked during

training was cumbersome for users to answer. Active learning may

help in reducing the number of questions and obtaining better per-

formance, which motivates the current paper. To the best of our

knowledge, our paper is the first work in the literature that solves

the active preference learning problem with safety guarantees over

complex logical structures.

3 PRELIMINARIES ON STL, WSTL, AND
PWSTL

STL is a temporal logic proposed to reason about signals 𝜎 : T→
R𝑛 , where T is the time domain and R𝑛 is an 𝑛-dimensional real

domain [25]. Domain T can be infinite Z≥0 or finite [0, 𝑡𝑓 𝑖𝑛𝑎𝑙 ] ⊂
Z≥0. An STL formula 𝜙 is given by the syntax

𝜙 := ⊤ | 𝜋 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | 𝜙1U[𝑎,𝑏 ]𝜙2,

where ⊤ is Boolean true, 𝜋 is a predicate of the form 𝜋 (𝑠 (𝑡)) :=

𝑓𝜋 (𝑠 (𝑡)) ≥ 0 where 𝑓𝜋 : R𝑛 → R, ¬ is the negation operator,

∧ is the conjunction operator, and U[𝑎,𝑏 ] is the (bounded) until
operator, which is a temporal operator. We define the time interval

for temporal operators with subscript [𝑎, 𝑏]. We omit the subscript

when the interval covers the total time length of the signal. Other

common operators are derived in the usual way: disjunction is 𝜙1 ∨
𝜙2 = ¬(¬𝜙1 ∧ ¬𝜙2), (bounded) eventually is ^[𝑎,𝑏 ]𝜙 = ⊤U[𝑎,𝑏 ]𝜙 ,
and (bounded) always is □[𝑎,𝑏 ]𝜙 = ¬(^[𝑎,𝑏 ]¬𝜙). The set of all

well-formed STL formulas is denoted as ^. If a signal 𝑠 satisfies

a formula 𝜙 at time 𝑡 , it is shown as 𝑠𝑡 |= 𝜙 . If it violates at 𝑡 ,

it is shown as 𝑠𝑡 ̸ |= 𝜙 . The qualitative semantics of STL can be

found in [25]. STL has quantitative semantics as well, which is a

measure of satisfaction or violation of the formula by the signal. As

a quantitative semantics, we use the traditional robustness metric
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definition in [9]. Robustness metric 𝜌 : R𝑛 ×F ×T→ R𝑒 is defined
recursively as:

𝜌 (𝑠,⊤, 𝑡) = ∞,
𝜌 (𝑠, 𝜋, 𝑡) = 𝑓𝜋 (𝑠 (𝑡)),
𝜌 (𝑠,¬𝜙, 𝑡) = −𝜌 (𝑠, 𝜙, 𝑡),

𝜌 (𝑠, 𝜙1 ∧ 𝜙2, 𝑡) = min

(
𝜌 (𝑠, 𝜙1, 𝑡), 𝜌 (𝑠, 𝜙2, 𝑡)

)
,

𝜌 (𝑠, 𝜙1U[𝑎,𝑏 ]𝜙2, 𝑡) = max

𝑡 ′∈[𝑡+𝑎,𝑡+𝑏 ]

(
min

(
𝜌 (𝑠, 𝜙2, 𝑡

′),

min

𝑡 ′′∈[𝑡,𝑡 ′ ]
𝜌 (𝑠, 𝜙1, 𝑡

′′)
) )
.

Robustness for derived operators can be defined similarly. The

robustness metric 𝜌 is sound, i.e., 𝜌 (𝑠, 𝜙, 𝑡) > 0 =⇒ 𝑠𝑡 |= 𝜙 and

𝜌 (𝑠, 𝜙, 𝑡) < 0 =⇒ 𝑠𝑡 ̸ |= 𝜙 . Robustness at 𝑡 = 0 is shown as 𝜌 (𝑠, 𝜙).
Note that for finite signals where 𝑡𝑓 𝑖𝑛𝑎𝑙 < ∞, time interval [𝑡 +𝑎, 𝑡 +
𝑏] in temporal operators may exceed the time length of the signal.

In this case, time interval can be taken as [𝑡 + 𝑎,min(𝑡 + 𝑏, 𝑡𝑓 𝑖𝑛𝑎𝑙 )]
assuming that 𝑡 + 𝑎 ≤ 𝑡𝑓 𝑖𝑛𝑎𝑙 , and a slight modification gives finite

semantics [8].

WSTL represents priorities and preferences in STL formulas [27].

While operators are interpreted as in STL, the syntax extends STL

syntax as

𝜙 := ⊤ | 𝜋 | ¬𝜙 | 𝜙1 ∧𝑤 𝜙2 | 𝜙1U𝑤1,𝑤2

[𝑎,𝑏 ] 𝜙2,

where𝑤 ∈ R2

+ and𝑤
1,𝑤2 ∈ R(𝑏−𝑎+1)+ are the weights. The quanti-

tative semantics of WTSL is called weighted robustness, denoted as

𝑟 : R𝑛 ×F ×T→ R. We adopt WSTL formalism with the following

quantitative semantics, denoted 𝑟 (𝑠, 𝜙, 𝑡):
𝑟 (𝑠,⊤, 𝑡) =∞
𝑟 (𝑠, 𝜋, 𝑡) = 𝜌 (𝑠, 𝜋, 𝑡)
𝑟 (𝑠,¬𝜙, 𝑡) = −𝑟 (𝑠, 𝜙, 𝑡),

𝑟 (𝑠, 𝜙1 ∧𝑤 𝜙2, 𝑡) = min

(
𝑤1𝑟 (𝑠, 𝜙1, 𝑡),𝑤2𝑟 (𝑠, 𝜙2, 𝑡)

)
,

𝑟 (𝑠, 𝜙1U𝑤1,𝑤2

[𝑎,𝑏 ] 𝜙2, 𝑡) = max

𝑡 ′∈[𝑡+𝑎,𝑡+𝑏 ]

(
min

(
𝑤1

𝑡 ′−𝑡−𝑎+1𝑟 (𝑠, 𝜙2, 𝑡
′),

𝑤2

𝑡 ′−𝑡−𝑎+1 min

𝑡 ′′∈[𝑡,𝑡 ′ )
𝑟 (𝑠, 𝜙1, 𝑡

′′)
))
.

(1)

Derived operators have weighted robustness definitions as:

𝑟 (𝑠, 𝜙1 ∨𝑤 𝜙2, 𝑡) = max

(
𝑤1𝑟 (𝑠, 𝜙1, 𝑡),𝑤2𝑟 (𝑠, 𝜙2, 𝑡)

)
,

𝑟 (𝑠,□𝑤[𝑎,𝑏 ]𝜙, 𝑡) = min

𝑡 ′∈[𝑡+𝑎,𝑡+𝑏 ]
(𝑤𝑡 ′−𝑡−𝑎+1𝑟 (𝑠, 𝜙, 𝑡 ′)),

𝑟 (𝑠,^𝑤[𝑎,𝑏 ]𝜙, 𝑡) = max

𝑡 ′∈[𝑡+𝑎,𝑡+𝑏 ]
(𝑤𝑡 ′−𝑡−𝑎+1𝑟 (𝑠, 𝜙, 𝑡 ′)) .

(2)

As in STL robustness, 𝑟 (𝑠, 𝜙) is weighted robustness at 𝑡 = 0.

Quantitative semantics defined in (1) and (2) is sound [19]. STL

and WSTL formulas can be represented with a syntax tree [22].

Nodes of this syntax tree denote operators, and edges denote the

connection between operators and operands. With a slight abuse

of notation, the edge weights denote weights of the WSTL formula.

The most important subrule is the one that affects the final

robustness value. Consider two different driving scenarios, where in

the first one, vehicle needs to satisfy𝜑1 and𝜑2, that is,𝜑 = 𝜑1∧𝑤𝜑2,

and in the second one vehicles needs to avoid 𝜑3 or 𝜑4 at all times,

that is 𝜑 ′ = ¬(𝜑3 ∧𝑤 𝜑4). For the case when 𝑟 (𝑠, 𝜑1) = 𝑟 (𝑠, 𝜑2), the
subrule with smaller weight value affects 𝑟 (𝑠, 𝜑). However, when
𝑟 (𝑠, 𝜑3) = 𝑟 (𝑠, 𝜑4), the subrule with greater weight value affects

𝑟 (𝑠, 𝜑 ′). Therefore, the magnitude of weights is not easy to interpret

but the order of weighted robustness values is interpretable. We

define root weights as the weights associated with the weighted

operator closest to the root of its syntax tree. For instance, for 𝜑 , the

root of its syntax tree has the operator ∧𝑤 and the root weights are

𝑤 . For 𝜑 ′, the root of its syntax tree has ¬, which is not a weighted

operator, so we look at its children until we find aweighted operator,

which is again ∧𝑤 . Hence, root weights of 𝜑 ′ are 𝑤 . One of the
properties of WSTL formulas is root-layer homogeneity.

Lemma 1 (Root-layer homogeneity, Lemma 2 of [19]). Let 𝜙
be a WSTL formula with root weights𝑤 , and �̃� = 𝛼𝑤 be a valuation
with 𝛼 > 0. We have 𝑟 (𝑠, 𝜙W=�̃�) = 𝛼𝑟 (𝑠, 𝜙W=𝑤).

Finally, PWSTL is a parametric extension of WSTL. In WSTL,

weights are unknown parameters (cf., [35]). We denote the set of

unknown parameters asW and denote PWSTL formulas as 𝜙W .

A PWSTL formula results in a WSTL formula 𝜙W=𝑤 with the

valuation𝑤 of parameters.

4 PROBLEM STATEMENT AND MOTIVATION
Given a driving scenario, we assume people follow a set of traffic

rules, representable by an STL formula. Within all rule-abiding be-

haviors, different people might prefer different behaviors. Weights

in the WSTL formalism can be used to express such differences.

That is, we assume each user (possibly subconsciously) has a weight

valuation𝑤𝐻 that captures their preferences and our goal is to learn

this𝑤𝐻 . The weighted robustness of the WSTL formula with val-

uation 𝑤𝐻 can be seen as a utility function that assigns greater

robustness value to preferred signals than their non-preferred coun-

terparts for all pairs. Consider that we have a candidate PWSTL

formula 𝜙W that specifies the scenario rule set. We denote the set

of signals that we ask pairwise questions from as S = {𝜎𝑖 }𝐾𝑖=1
. The

set of all questions created from this set is Q = {𝑞𝑖 𝑗 = (𝜎𝑖 , 𝜎 𝑗 ) : 𝑖 ∈
{1, 𝐾 − 1}, 𝑗 ∈ {𝑖 + 1, 𝐾}}. The problem we aim to solve is:

Problem 1. Given a formula 𝜙W , a set S of signals that satisfy
𝜙 , and the corresponding question set Q, find a valuation𝑤∗ forW
by adaptively selecting questions from Q based on previous answers
that “best" estimates𝑤𝐻 .

A proper metric that measures the “best" estimate will be for-

malized in the next section.

5 METHODOLOGY
Problem 1 is a combinatorial active learning problem. To formalize

it, we first present some simplifications to the problem and our

modeling choice for human decision-making. This will allow us

to recast the problem as a Bayesian active learning problem with

noisy observations [15, 28]. We will then propose an algorithm to

solve it.

As a first step, we sample a finite set Ω𝑊 of𝑀 weight valuations

from the intersection of a unit norm ball and the positive quadrant.

Restricting the weight valuations to this region is without loss of

generality as shown in [19]. Moreover, uniform random sampling of

weights is shown to be sufficient in capturing human preferences in

several driving scenarios [19], hence we will search for an estimate

of 𝑤𝐻 in Ω𝑊 . We model the individual’s weight valuation as a

random variable𝑊 over Ω𝑊 , with a known prior distribution. In
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particular, we use a uniform prior, i.e., 𝑃 (𝑊 = 𝑤) = 1

𝑀
for all

𝑤 ∈ Ω𝑊 .
1

As mentioned earlier, a question consists of a signal pair 𝑞𝑖 𝑗 =

(𝜎𝑖 , 𝜎 𝑗 ) and an answer is a choice within this pair. We represent

the answer for the question 𝑞𝑖 𝑗 as a random variable 𝐴𝑖 𝑗 , which

takes values fromA = {0, 1}. Here,𝐴𝑖 𝑗 = 0 means choosing 𝜎𝑖 over

𝜎 𝑗 , and 𝐴𝑖 𝑗 = 1 means vice versa. We assume the answers to each

question are independent of each other given𝑊 . Bradley-Terry

model is commonly used to represent people’s decision-making

mechanism [3]. We incorporate our weighted robustness definition

into this model:

𝑃 (𝐴𝑖 𝑗 = 𝑘 | 𝑞𝑖 𝑗 ,𝑤) = (1−𝑘 )𝑒
𝑟 (𝜎𝑖 ,𝜙W=𝑤 )+𝑘𝑒𝑟 (𝜎𝑗 ,𝜙W=𝑤 )

𝑒𝑟 (𝜎𝑖 ,𝜙W=𝑤 )+𝑒𝑟 (𝜎𝑗 ,𝜙W=𝑤 )

=
𝑒
Δ𝑟𝑤 (𝑞𝑖 𝑗 )+𝑘 (1−𝑒Δ𝑟

𝑤 (𝑞𝑖 𝑗 ) )
1+𝑒Δ𝑟𝑤 (𝑞𝑖 𝑗 )

,

(3)

where Δ𝑟𝑤 (𝑞𝑖 𝑗 ) = 𝑟 (𝜎𝑖 , 𝜙W=𝑤)−𝑟 (𝜎 𝑗 , 𝜙W=𝑤). Note that the prob-
ability in (3) satisfies 𝑃 (𝑘 |𝑞,𝑤) ∈ [0, 1], and its magnitude depends

on the weighted robustness difference of signals Δ𝑟𝑤 (𝑞𝑖 𝑗 ). We want

this difference to represent the decisiveness level of the human on

this question. If the value of 𝑃 (𝐴𝑖 𝑗 = 𝑘 |𝑞𝑖 𝑗 ,𝑤) is close to 0 or 1,

it reads the user has a strong opinion on their preferences. If it

is close to 0.5, it reads the person cannot definitely decide on the

preference. However, Δ𝑟𝑤 (𝑞𝑖 𝑗 ) depends also on weight value mag-

nitudes. If weight values are too small, weighted robustness values

will be small, and so do robustness differences. This may result in

an unfair bias towards weight valuations with larger weights. Let

Δ𝑟 = min𝑤∈Ω𝑊
min𝑞∈Q |Δ𝑟𝑤 (𝑞) | be the minimum of absolute val-

ues of weighted robustness difference for all pairs in Q and for all

𝑤 in Ω𝑊 . Given the root-layer homogeneity property in Lemma 1,

we can lower bound Δ𝑟 by scaling up root-layer weights, while

keeping the preference ordering induced by the weights invariant.

This gives us a hyper-parameter to adjust the human decisiveness

level.

To attempt Problem 1, we need a question selection policy and

a criterion to choose the best estimate in Ω𝑊 based on human

answers. A question selection policy 𝜋 determines which question

to pick from Q next based on the answers so far. If we restrict

the number of questions to 𝐵, the policy 𝜋 returns a sequence of

questions and answers Γ𝜋 = (𝑞𝜋
1
, 𝑎𝑞𝜋

1

), . . . , (𝑞𝜋
𝐵
, 𝑎𝑞𝜋

𝐵
), which is a

random variable. Let us define the entropy 𝐻 of𝑊 given 𝜋 :

𝐻 (𝑊 | 𝜋) � EΓ𝜋 [𝐻 (𝑊 | Γ𝜋 )] .
One common objective value is to maximize the information gain

𝐼 (𝜋 ;𝑊 ) = 𝐻 (𝑊 )−𝐻 (𝑊 | 𝜋), which is equivalent to minimizing the

conditional entropy 𝐻 (𝑊 | 𝜋) since the first term does not depend

on the policy. So, the active question selection problem becomes

that of minimizing 𝐻 (𝑊 | 𝜋) = −∑𝑤∈Ω𝑊
𝑃 (𝑤 | 𝜋) log(𝑃 (𝑤 | 𝜋))

for a budget 𝐵 of questions.

Problem 2. Given a formula 𝜙W , a set S of signals that satisfy
𝜙 , the corresponding question set Q, and Ω𝑊 , find an optimal policy
𝜋∗ by solving

𝜋∗ ∈ arg min𝜋 𝐻 (𝑊 | 𝜋)
s.t. |𝛾𝜋 | ≤ 𝐵. (4)

1
Through the rest of the paper, we use uppercase letters for random variables and

lowercase for their values/realizations. For a random variable 𝑉 , we often shorten

𝑃 (𝑉 = 𝑣) as 𝑃 (𝑣) when it is clear from the context.

Problem 2 is generally hard [4, 6], but an effective greedy solution

is commonly used, which we adopt in this work. At each step,

we pose a question pair, we get the answer from the human, and

we update our posterior distribution over weight valuations𝑊

accordingly. We represent all question-answer tuples until step

𝑁 as 𝛾𝑁 := {(𝑞𝑖 , 𝑎𝑖 )}𝑁𝑖=1
. Note that 𝛾𝑁 is a (partial) realization

of the random variable Γ𝜋 for the policy being used. Let Q𝑁 =

{𝑞𝑖 }𝑁𝑖=1
⊆ Q be the set of questions we have already selected. By

the human decision model assumption, answers do not depend

on the order of questions, that is, 𝑃 (𝑎 |𝑞,𝑤,𝛾𝑁 ) = 𝑃 (𝑎 |𝑞,𝑤). We

denote the probability distribution after 𝑁 steps as 𝑃 (𝑊 |𝛾𝑁 ). For
the greedy query selection policy, we select the question that gives

maximum expected information gain over weight valuations. It can

be shown as 𝐼 (𝑊 ; (𝑞, 𝑎) |𝛾𝑁 ) = 𝐻 (𝑊 |𝛾𝑁 ) − 𝐻 (𝑊 |𝛾𝑁 ∪ {(𝑞, 𝑎)}),
hence it is the decrement that is achieved in the objective function

in Equation (4) when choosing a single question 𝑞 and getting the

answer 𝑎, given the observations so far. Then, our greedy query

selection policy solves

𝑞∗ ∈ arg max

𝑞∈Q\Q𝑁
E𝐴 [𝐼 (𝑊 ; (𝑞,𝐴) | 𝛾𝑁 )], (5)

at each iteration. When we substitute the entropy definition of

the information gain, we note that 𝐻 (𝑊 |𝛾𝑁 ) is the same for all

questions. We have 𝑃 (𝑤, 𝑎 |𝑞,𝛾𝑁 ) = 𝑃 (𝑎 |𝑞,𝑤)𝑃 (𝑤 |𝛾𝑁 ). Therefore,
the optimization Equation (5) can be written as

𝑞∗ ∈ arg max

𝑞∈Q\Q𝑁

∑
𝑎∈A
𝑤∈Ω𝑊

𝑃 (𝑎 |𝑞,𝑤)𝑃 (𝑤 |𝛾𝑁 ) 𝑓𝛾𝑁 (𝑎, 𝑞,𝑤) .

with 𝑓𝛾𝑁 (𝑎, 𝑞,𝑤) = log

( 𝑃 (𝑎 |𝑞,𝑤 )𝑃 (𝑤 |𝛾𝑁 )∑
𝑤∈Ω𝑊

𝑃 (𝑎 |𝑞,𝑤 )𝑃 (𝑤 |𝛾𝑁 )
)
. We know 𝑃 (𝑎 |𝑞,𝑤)

from the humanmodel (3) and discuss how to obtain the conditional

probabilities 𝑃 (𝑤 |𝛾𝑁 ) next.
Note that the set of remaining questions shrinks with every step.

Once the user provides an answer 𝑎∗ to the question, we update the
posterior of weight valuations using Bayes’ Rule for each𝑤 ∈ Ω𝑊 :

𝑃 (𝑤 |𝛾𝑁+1) =
𝑃 (𝑎∗ |𝑞∗,𝑤)𝑃 (𝑤 |𝛾𝑁 )∑

𝑤∈Ω𝑊

𝑃 (𝑎∗ |𝑞∗,𝑤)𝑃 (𝑤 |𝛾𝑁 )
. (6)

This probability represents the probability of𝑤 being the correct

valuation. Therefore, to determine the best estimate for𝑤𝐻 , we use

the most likely valuation

𝑤∗ = arg max

𝑤∈Ω𝑊

𝑃 (𝑤 |𝛾𝑁+1), (7)

where 𝛾𝑁+1 = 𝛾𝑁 ∪ {(𝑞∗, 𝑎∗)} is the selection criterion.

Problem 2 includes question limit 𝐵. Another natural limit to

terminate asking questions is to ask all questions in Q, which can

happen if 𝐵 > |Q|. We also add a third termination condition that

depends on the posterior probability of the most likely valuation.

If the framework is confident enough that the most likely valua-

tion represents the human’s answers, then we can terminate early.

Therefore, the third termination condition is 𝑃 (𝑤∗ |𝛾𝑘 ) ≥ 𝑃𝑡ℎ𝑟𝑒𝑠ℎ .
The workflow can be summarized in Algorithm 1. Lines 1-3

correspond to initialization, lines 6-7 select the query, line 8 sets

the user answer, lines 9-10 update the probability distribution, and

line 11 picks the most likely valuation.
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(a) Pedestrian Scenario: Vehicle approaching an intersection with a
stop sign while a pedestrian is crossing. The traffic rule says to stop
before the stop sign and keep a safe distance from the pedestrian.

(b) Overtake scenario: Vehicle completing an overtaking maneuver on
the highway. There is a speed limit enforced and the ego vehicle must
keep a safe distance from the lead vehicle.

Figure 1: Experiment scenarios simulated with CARLA.

Algorithm 1 An algorithm for active preference learning of WSTL

formula

Input S = {𝜎1, 𝜎2, . . . , 𝜎𝐾 }
1: Ω𝑊 ← 𝑀 Uniform Samples

2: Q ← {(𝜎𝑖 , 𝜎 𝑗 ) : 𝑖 ∈ {1, . . . , 𝐾 − 1}, 𝑗 ∈ {𝑖 + 1, 𝐾}}
3: 𝑘 ← 0, 𝛾𝑘 = ∅, 𝑃 (𝑤 |𝛾𝑘 ) = 1

𝑀
, ∀𝑤 ∈ Ω𝑊

4: while 𝑃 (𝑤∗) < 𝑃𝑡ℎ𝑟𝑒𝑠 or 𝑘 ≤ 𝐵 or Q ≠ ∅ do
5: 𝑞∗ ← Equation (5)

6: Q ← pop(Q, 𝑞∗)
7: 𝑎∗ ← 𝛾𝐻 (𝑞∗)
8: 𝛾𝑘+1 ← 𝛾𝑘 ∪ {(𝑞∗, 𝑎∗)}
9: 𝑃 (𝑤 |𝛾𝑘+1) ← Equation (6)

10: 𝑤∗ ← Equation (7)

11: 𝑘 ← 𝑘 + 1

12: end while
Output𝑤∗

6 MODEL ANALYSIS AND THEORETICAL
GUARANTEES

To understand how a valuation differs from another, we compare

their preferences in pairs. We assume that there exists a hypotheti-

cal person whose internal weight valuation is𝑤 . This person should

pick a deterministic answer to questions. To determine these poten-

tial answers that are tied to𝑤 , we compute the maximum likelihood

estimate of answers to a question, 𝑎𝑤𝑞 = arg max𝑎∈A 𝑃 (𝑎 |𝑞,𝑤). For
the sake of simplicity, we say that 𝑎𝑤𝑞 is the answer that the weight

valuation𝑤 would pick. Then, we compute agreement on answers

between the two weight valuations given a question set. The agree-

ment between𝑤1 and𝑤2 over set Q𝑘 , denoted agr(𝑤1,𝑤2,Q𝑘 ), is
computed as

agr(𝑤1,𝑤2,Q𝑘 ) =

∑
𝑞∈Q𝑘 1(𝑞)𝑎𝑤1

𝑞 =𝑎
𝑤

2

𝑞

|Q𝑘 |
,

where 1(·) is the indicator function. The agreement is the percent-

age of questions on which realizations parameterized by two weight

valuations have the same answer. User agreement of valuation 𝑤

is the agreement between 𝑤 and a partial realization 𝛾𝑘 over Q𝑘 ,
denoted as agr𝐻 (𝑤,𝛾𝑘 ),

agr𝐻 (𝑤,𝛾𝑘 ) =
∑
𝑞𝑖 ∈Q𝑘 1(𝑞)𝑎𝑤𝑞𝑖 =𝑎𝑖

|Q𝑘 |
.

Our method aims to find a weight valuation that best represents

the user. A suitable valuation should match user preferences while

considering potential inconsistencies due to reasons discussed ear-

lier. Otherwise, we may overfit the training data. Thus, we do not

want to output a valuation that necessarily gives the maximum

agreement on seen questions and answers. However, we still need

to keep the agreement as a metric in our decision mechanism. We

can leverage our human preference model to quantify the trade-off

between agreement and generalizability. Putting a lower bound to

the minimum of absolute values of robustness differences Δ𝑟 , we
provide a bound for agreement between the most likely weight

valuation and a valuation having the maximum agr𝐻 .

Theorem 1. Assume that 𝑃 (𝑎 |𝑞,𝑤) ∈ [0, 𝑢] ∪ [1 − 𝑢, 1] where
0 ≤ 𝑢 ≤ 0.5 for all answers to questions in Q and for all 𝑤 in Ω𝑊 .
Let 𝛾𝐿 be a partial realization, and Q𝐿 be the set of questions we have
already selected. Let𝑤∗ be the most likely valuation after 𝐿 questions
and �̄� be a weight valuation with the maximum user agreement,
that is, �̄� ∈ arg max𝑤∈Ω𝑊

agr𝐻 (𝑤,𝛾𝐿). After asking 𝐿 questions,

the agreement agr(𝑤∗, �̄�,Q𝐿) ≥ 1 − log(1−𝑢 )
log(𝑢 ) .

Proof. To prove the lower bound on agreement, we examine

the worst-case scenario. Assume that �̄� picks all answers in agree-

ment with human answers but stays at the least decisive side, that is

𝑃 (𝑎 |𝑞, �̄�) = 1−𝑢, for all (𝑞, 𝑎) ∈ 𝛾𝐿 . Other weight valuations in Ω𝑊
pick 𝐿−𝑁 answers in agreement with human answers while staying

around the most decisive side 𝑃 (𝑎 |𝑞,𝑤) ≊ 1, and pick 𝑁 answers

in disagreement with human answers while staying at the least

decisive side 𝑃 (𝑎 |𝑞,𝑤) = 𝑢. After 𝐿 questions, the posterior of �̄�

is
2 𝑃 (�̄� |𝛾𝐿) = (1−𝑢 )𝐿

(1−𝑢 )𝐿+(𝑀−1)𝑢𝑁 , and the posterior of other weight

2
Initializing prior distribution uniformly, the probability update after 𝑘 questions is

𝑃 (𝑤 |𝛾𝑘 ) =
∏
( (𝑞𝑖 𝑗 ,𝑎𝑖 𝑗 ) ∈𝛾𝑘 ) 𝑃 (𝑎𝑖 𝑗 |𝑞𝑖 𝑗 ,𝑤)∑

𝑤′ ∈Ω𝑊
∏
( (𝑞𝑖 𝑗 ,𝑎𝑖 𝑗 ) ∈𝛾𝑘 ) 𝑃 (𝑎𝑖 𝑗 |𝑞𝑖 𝑗 ,𝑤)

.
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valuations 𝑤 ∈ Ω𝑊 \ �̄� is 𝑃 (𝑤 |𝛾𝐿) = 𝑢𝑁

(1−𝑢 )𝐿+(𝑀−1)𝑢𝑁 . If we are

to choose a weight valuation 𝑤∗ ∈ Ω𝑊 \ �̄� , we have 𝑃 (𝑤∗ |𝛾𝐿) ≥
𝑃 (�̄� |𝛾𝐿). Thus, we have 𝑢𝑁 ≥ (1−𝑢)𝐿 , and 𝑁 ≤ 𝐿

𝑙𝑜𝑔 (1−𝑢 )
𝑙𝑜𝑔 (𝑢 ) . Agree-

ment between 𝑤∗ and �̄� over Q𝐿 is agr(𝑤∗, �̄�,Q𝐿) = 𝐿−𝑁
𝐿
≥

1 − 𝑙𝑜𝑔 (1−𝑢 )
𝑙𝑜𝑔 (𝑢 ) . □

The bound 𝑢 represents the trust we have in human answers.

Please note that as 𝑢 approaches to 0, 𝑁 approaches to 0 as well.

We can define this probabilistic bound in terms of the weighted

robustness difference of signals.

Lemma 2. IfΔ𝑟 ≥ Δ𝑟∗, then 𝑃 (𝑎 |𝑞,𝑤) ∈
[
0, 𝑒−Δ𝑟

∗

1+𝑒−Δ𝑟∗
]
∪
[

1

1+𝑒−Δ𝑟∗ , 1
]

for all questions, answers, and weight valuations in Ω𝑊 .

The proof directly follows Equation (3). Note that by using root-

layer homogeneity, we scale up root-layer weights and set Δ𝑟∗.
This step is added after line 1 in Algorithm 1. With Theorem 1, we

put a bound to the disagreement level that the most likely weight

valuation can have.

Another point to look at is the performance of selecting ques-

tions greedily, as is done in our algorithm, compared to the optimal

solution of Problem (4). While the greedy algorithms are known to

be widely effective in practice [6], it is interesting to understand if

they can perform poorly in some extreme cases or whether one can

provide performance guarantees under certain conditions. Prior

work has shown that when the answers are deterministic, i.e., when

𝑢 = 0, information gain is adaptive submodular [15], which guaran-

tees that the greedy approach provides a constant factor suboptimal

solution to Problem (4). However, 𝑢 = 0 is not a good model for

human decision-making as it does not take into account the un-

certainty in users’ answers. On the other hand, when using the

human model in Equation (3), we are in the noisy Bayesian learning

setting for which adaptive submodularity-based guarantees are no

longer valid for our cost function [4, 15]. On the other hand, we

can still provide suboptimality guarantees for this approach using

the results in [6] if we were to allow repetition of questions. In this

setting, the suboptimality gap increases proportional to the mini-

mum squared total variation between the distributions 𝑃 (𝐴|𝑞,𝑤)
for a given 𝑞 and different𝑤 , which essentially is an indication of

how informative the answers to a question are for identifying the

underlying weight valuation.

7 EXPERIMENTS
In this section, we present an empirical analysis of the framework’s

performance. Following this, we share the results of a human-

subject study conducted using an immersive driving simulator. Our

studies involve two distinct driving scenarios.

Driving Scenarios: The first scenario is an intersection with a stop
sign wherein a pedestrian is crossing the crosswalk. An illustrative

screenshot is shown in Figure 1a. The candidate rule set for this

behavior can be expressed as 𝜙𝑝 = 𝜙𝑟𝑝 ∧𝜙𝑐𝑝 , where 𝜙𝑟𝑝 = □(𝑑 ≥ 2) ∧
^□[0,1] (𝑣 = 0) denotes the traffic rule, and 𝜙𝑐𝑝 = □(𝑎 ≤ 10 ∧ ¤𝑎 ≤
30) denotes comfort related specifications. Variable 𝑑 represents

the distance of the ego vehicle to the pedestrian, 𝑣 , 𝑎, and ¤𝑎 denote
the ego vehicle’s speed, acceleration, and jerk, respectively. The

comfort rule is trivially true for all vehicles behaving reasonably, it

is included to increase preference capturing power of the formula by

adding more weights to the weight set. Note that 𝜌 (𝑠, 𝜙) ≤ 0 for all

signals in the signal domain, since 𝑣 = 0 predicate only holds with a

robustness value of 0 or is violated with a negative robustness value.

Therefore, after ensuring that all signals in S satisfy 𝜙 , we treat

the speed predicate as Boolean with quantitative robustness value

infinity, it is practically removed from the robustness computation

of a series of conjunctions as in [19].

The second scenario involves overtaking behavior on a highway.

A screenshot is shown in Figure 1b. The candidate rule set is defined

as 𝜙𝑜 = 𝜙𝑟𝑜 ∧ 𝜙𝑐𝑜 , where 𝜙𝑟𝑜 = □(𝑑 ≥ 2), and 𝜙𝑐𝑜 = □(𝑑𝑙𝑎𝑡 ≥
0) ∧□(𝑑𝑙𝑜𝑛𝑔 ≥ 0) ∧□(𝑣𝑟𝑒𝑙 ≥ 0). Variable 𝑑 , 𝑑𝑙𝑎𝑡 , and 𝑑𝑙𝑜𝑛𝑔 denote
total distance, lateral distance, and longitudinal distance from the

ego’s longitudinal axis to the lead vehicle, respectively. Variable

𝑣𝑟𝑒𝑙 is the relative speed of the ego vehicle with respect to the lead

vehicle. Note that 𝜙𝑐𝑜 is trivially true for all vehicles that complete

a safe overtaking. These sub-formulas in 𝜙𝑐𝑜 increase flexibility to

capture underlying preferences.

Simulator: The simulator shown in Figure 2 utilizes a 6-degree

of freedom motion base, 250
◦
projection system, and the CARLA

simulator for physics modeling [10] along with ROS2. For both

scenarios “Town 5" of CARLA is used.

Figure 2: An instance from the human subject studies with
the simulator running the pedestrian scenario.

Trajectory generation: Trajectory generation is completed using

the simulator when the motion base is activated. To generate natu-

ralistic and distinguishable trajectories, we relied on professional

racing drivers. Drivers are prompted to drive each scenario with

only simple stylistic cues such as “aggressive” or “cautious”, and

the rest is left to their expertise. For both scenarios, we produced 17

trajectories that satisfy 𝜙𝑝 or 𝜙𝑜 . These trajectories can be replayed

using CARLA, and related signals are used in the framework to

generate pairwise comparison questions.

7.1 Synthetic Experiments
In this series of experiments, we aim to evaluate the framework’s

performance under various conditions. For synthetic experiments,

we randomly select a weight valuation as the correct valuation𝑤𝐻

of a human. This valuation is then utilized to generate responses to
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questions, mimicking how a human with the underlying answering

mechanism would answer. When we work with noise-free answers,

for a question pair 𝑞 if 𝑎𝑤
𝐻

𝑞 = 𝑘 , then the answer provided by this

hypothetical human is also 𝑘 .

The query selection performance. In this analysis, we include the

correct weight valuation in the sample set Ω𝑊 . Thus, under the

assumption of no noise in answers, we know that there is at least

one weight valuation in the sample set that has 100% agreement

with the hypothetical person. With confidence level 𝑃𝑡ℎ𝑟𝑒𝑠ℎ = 99%,

and no limit on the number of questions we can ask, we want to

assess how often we converge to the correct weight valuation, and

how many questions it takes to converge to the correct weight

valuation when questions are selected randomly. We complete 100

runs, where in each run, we select a random correct valuation in

Ω𝑊 , run our framework with the information gain query selection

method, and then run it with random question selection.

Table 1: Convergence analysis: our query method vs. ran-
dom selection. Convergence rate (CR): the percentage of cor-
rect valuation being in the most likely valuation. Mean, std,
and median indicate average, standard deviation, and me-
dian question numbers for algorithm termination. ‘s(i)’ is for
the pedestrian scenario, and ‘s(ii)’ is for the overtake. ‘Ours’
refers to our framework, and ‘Random’ to random selection.

Method

CR Mean Std Median

s (i) s (ii) s (i) s (ii) s (i) s (ii) s (i) s (ii)

Ours 98% 100% 18.1 10.4 29.80 0.68 10 10

Random 98% 100% 37.02 26.07 33.58 12.65 25.5 24

Statistics for this experiment are presented in Table 1. In both sce-

narios, results highlight the effectiveness of query selection based

on information gained in reducing the length of the questionnaire.

We observe a few instances with a high number of questions caus-

ing a shift in the mean to greater values. However, the median stays

remarkably low, at just 10 questions for both scenarios. Overall,

the median number of questions required for convergence is 2 − 3

times lower than random selection.

The effect of different probabilistic bounds 𝑢. In Theorem 1, we

establish a lower bound for the agreement between the most likely

valuation and a valuation that maximizes user agreement. When

we include the correct weight valuation into the sample set Ω𝑊 ,

this theorem provides a lower bound for the user agreement of

the most likely valuation. According to the theorem, if 𝑢 ≊ 0,

1 − log(1 − 𝑢)/log(𝑢) = 1 and if 𝑢 = 0.5, 1 − log(1 − 𝑢)/log(𝑢) = 0.

In this set of experiments, we aim to assess how varying values of 𝑢

impact the user agreement of the most likely weight valuation and

its generalizability. We set the limit for the number of questions to

20, and confidence threshold 𝑃𝑡ℎ𝑟𝑒𝑠 = 99%.

Figure 3 illustrates the results. Notably, the user agreement in the

training data is almost always 100%. This result is expected for lower

values of 𝑢 (higher values of Δ𝑟∗) since likelihood function values

from the Bradley-Terry model are close to 0 or 1. Consequently, for

a question, when a realization of weight valuation picks an answer

in disagreement, its posterior becomes negligible. After 20 ques-

tions, all valuations that share the same answers for these questions

end up with almost equal posterior probabilities. Therefore, the

most likely valuation is one of the many valuations that answer

training set questions in the same manner as the correct valuation.

However, here, the challenge is for unseen questions. The most

likely valuation performs poorly in the agreement for all questions,

indicating overfitting to training data. With increasing 𝑢, we ob-

serve that the overall agreement reaches 100% in both scenarios,

and we converge to the correct valuation. The convergence region

is depicted by the pink region in the figure. Additionally, in the

range of 𝑢 ∈ [0.32, 0.46], the number of questions required is less

than 12. As𝑢 continues to increase, the number of questions needed

for convergence increases. Based on this analysis, we choose 𝑢 in

[0.32, 0.46] for all experiments.

Resilience to noisy answers. In this set of experiments, we ana-

lyze the framework’s resilience to inconsistent answers. We will

use the Bradley-Terry model to determine noisy answers. In this

experiment, we limit the number of questions to 12. We also set the

confidence level to 𝑃𝑡ℎ𝑟𝑒𝑠 = 99%, and 𝑢 = 0.4. The answer mecha-

nismworks in the following way: for a question𝑞, we pick a random

number a ∈ [1−𝑢, 1], if max(𝑃 (𝐴 = 0|𝑞,𝑤𝐻 ), 𝑃 (𝐴 = 1|𝑞,𝑤𝐻 )) > a ,
we select the answer that𝑤𝐻 would give. Otherwise, we randomly

assign an answer to this question. In essence, this approach simu-

lates the notion that people are more likely to stick to their answers

on questions for which they have strong opinions, while other-

wise, it may result in inconsistent responses. With this setup, we

complete 100 runs.

Table 2: Resilience to noisy answers: “CR" is the convergence
percentage to the correct valuation. “Train Agreement" and
“Overall Agreement" denote agreement between the most
likely and the correct valuation (when not converged to) for
the training and overall question sets. “Min" and “Max" are
minimum and maximum values within the respective sets.

Scenario CR

Train Agreement Overall Agreement

Min Max Min Max

Pedestrian 96% 91.66% 100% 88.97% 100%

Overtake 97% 100% 100% 79.47% 100%

Table 2 shows the performance of the framework with noisy

answers. In both scenarios, noisy answers have a diminishing effect

on the convergence rate. However, even when convergence to

the correct valuation is not achieved, the framework’s agreement

performance remains promising, especially in the overall question

set. For both scenarios, themost likely valuation consistently attains

an agreement performance of at least 91.67% even with a question

limit of 12. This indicates that in a real-life study where people

would give inconsistent answers, we expect that the most likely

scenario can be generalized to unseen questions.

Performance analysis when the correct valuation is out of sample
set. In the final set of synthetic experiments, we assess the per-

formance when the correct valuation is not inside the sample set
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Figure 3: The effect of different𝑢 limits over the performance of themost likely valuation. The orange plot is the user agreement
in the training set. Theorem 1 puts a lower bound to this value. The teal plot is the user agreement in all questions. The pink
region shows the 𝑢 interval that the framework converges to the correct weight valuation.

Ω𝑊 . That means, we cannot converge to the correct valuation,

but we can assess the agreement performance of the most likely

valuation over the training and overall question set. In this setup,

we set 𝑢 = 0.4, question limit to 20, and confidence threshold to

𝑃𝑡ℎ𝑟𝑒𝑠 = 99%. We complete 100 runs.

Table 3: Out-of-sample performance: performance analysis
when the correct valuation is not in the sample set. “# Qs" de-
notes the average number of questions needed to terminate,
“Mean" and “Std" are the average agreement and standard
deviation in agreement for the given set.

Scenario # Qs

Train Agreement Overall Agreement

Mean Std Mean Std

Pedestrian 13.36 95.32% 6.59% 88.20% 8.53%

Overtake 10.91 97.55% 4.97% 82.88% 6.64%

Table 3 presents statistics for out-of-sample experiment. We

can see that, with small standard deviation values, we can obtain

agreement close to 90% for the overall question set. Therefore,

even when the correct valuation is not in the sample set, with

weight valuations in the sample set, the outcome can give promising

agreement values for unseen questions.

All four synthetic experiments demonstrate that in a real-life

study, setting a reasonably small question number limit, with an

assumption on the likelihood probability, even when the participant

is giving inconsistent answers, we can output a valuation that can

generalize over unseen questions. Now, we will continue with the

human subject study.

7.2 Human Subject Study
The goal of the study is to assess the preference-capturing perfor-

mance of the framework over participants, who can potentially

give inconsistent answers. The human subject study was conducted

with 11 participants. One participant’s overtake data was discarded,

giving 21 total completed cases. Participants have an average age

of 29.77 and gender percentage is 45.4% female, 54.6% male.

We use the driving simulator described above with participants

in the driver’s seat of the cabin while the motion base remains

deactivated. An instance from the study is shown in Figure 2. We

present themwith a series of questions based on their prior answers,

where we show two trajectories played sequentially. Participants

can replay any trajectory as many times as needed. We limit the

number of questions to 12, set the probabilistic bound 𝑢 = 0.36, and

set a confidence threshold 99%, based on findings from synthetic

experiments. This study was approved by IRBwith protocol number

20221727.

We refer to questions we use to infer a weight valuation as train-
ing questions. We then pose three more validation questions to assess
the success of the most likely valuation. The weighted robustness of

theWSTL formula with the most likely weight valuation serves as a

ranking function for trajectories. In the validation questions, partic-

ipants compare the trajectory with the highest weighted robustness

value to (i) the lowest-value trajectory, (ii) the median-value trajec-

tory, and (iii) a randomly selected one. Depending on the number of

replays, a study per scenario takes less than 20 minutes to complete.

Figure 4 shows the performance results for each participant, re-

vealing a correlation between the agreement in training and valida-

tion questions and the confidence level of the most likely valuation.

Across all scenarios, we find that four cases have a confidence level

less than the threshold. Among these instances, three cases have

less than 34% user agreement in the validation set, covering 75% of

instances with validation agreement below 34%. On the flip side, in
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Figure 4: Human subject study results. Teal bars show the confidence level of the most likely valuation, and pale turquoise
bars show the maximum level. Pale orange bars show the number of training questions and orange bars show the number of
answers that the most likely valuations give in agreement with user answers. Pale pink bars represent validation questions
(three for all), and pink bars show the user agreement of the most likely valuation over validation questions.

57% of cases across all scenarios, the most likely valuation manages

to achieve 100% user agreement in validation questions. Moreover,

in 72.7% cases where we have full user agreement in training ques-

tions, we also have full agreement in validation questions. When

the confidence level is above the threshold, the framework’s ability

to capture preferences and its generalizability performance show

promise. In fact, our results exceed 80% user agreement in training

and validation sets for 16 out of 21 cases. When all participants are

considered, we achieve 79% agreement in the validation set. The

performance on the validation set further increases up to 86% agree-

ment when only the cases where the most likely weight valuation

has confidence level above the threshold are considered. Hence,

higher confidence in the most likely weight valuation can yield

better generalization.

Finally, we investigate if signal pairs that are often selected as

questions in the study have any common properties. For a subset

of six participants, we collected their question logs: question pairs

posed in order, and replay requests for trajectories in each question

pair. We observe that some pairs are posed to more participants

than others, whereas some pairs are never chosen. In Figure 5,

we show the distance to pedestrian signals 𝑑 of three different

trajectories. This signal is one of the propositions in the pedestrian

formula. Pair (2, 10) is posed to three participants, which makes

this pair one of the most repeated ones. Moreover, this pair is

always posed in the first half of the study. Pair (0, 10) is posed
to two participants, whereas pair (0, 2) is never chosen. A quick

observation reveals that signals 0 and 2 follow a similar pattern,

while signal 10 is fairly distinguishable from others. Moreover, when

we take the Euclidean distance of these pairs separately, including

acceleration and jerk signals, we saw that the distance between

pair (0, 2), ∥𝜎0 − 𝜎2∥ = 78.75, whereas ∥𝜎0 − 𝜎10∥ = 210.75, and

∥𝜎2 − 𝜎10∥ = 168.67. As the query selection method is expected to

choose informative and distinguishable signals, this observation is

in line with the claims of the framework.

We also observe replay requests throughout the study. Our initial

premise anticipates an inverse correlation between replay times

and confidence levels as well as agreements: if a participant asks

for replays many times, this may imply that they are hesitant in

their choices, and thus prone to give inconsistent answers. How-

ever, our findings are inconclusive for this claim. As an example, in

the pedestrian scenario, Participant 7 completes their study with-

out any replay requests, while Participant 11 asks for replays five

times. Nonetheless, both participants have high confidence levels

for their most likely valuation, and their training and validation set

agreements are 100% as shown in Figure 4.

Figure 5: Some examples of distance to the pedestrian signal
𝑑 , extracted from the simulations used in questions for the
pedestrian scenario.

By learning the weights of a WSTL formula, we are essentially

learning a personalized robustness metric. We finally make a few

observations on the rankings induced by the learned robustness

metrics. As 𝑑 values in Figure 5 and Euclidean distance values show,

signals 0 and 2 exhibit similar patterns. However, similarities in one

signal channel do not usually mean similar preferences when they

are compared to other signals, or equal preferences when they are

compared to each other. For instance, Participant 3 ranks signal 0

as the second highest. However, the same participant ranks signal 2

as the eleventh. On the other hand, for Participant 6, signal 2 is the

fifth signal, whereas signal 0 is the thirteenth. Recall that question

pair (0, 2) was never chosen. This shows us that using temporal

logic can help infer more complex characteristics over signals than

Euclidean distance. As another interesting data point, we see that

signal 14 is ranked fourth for Participant 11. However, even adding
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a small Gaussian noise to signal 14 makes this signal violate the STL

formula 𝜙𝑝 , thus not to be chosen over any rule-satisfying signal for

safety. Recall that the soundness property of WSTL guarantees that

a rule-violating signal can never have a positive robustness value.

That is, the noisy signal is the last in the rank order as its weighted

robustness value is negative whereas all others are positive. This

shows that using logical structures benefits the preference learning

framework by making it more responsive to safety violations due

to noise or other deviations.

8 CONCLUSION AND FUTUREWORK
In this work, we present an active approach for customizing au-

tonomous vehicles to align with user preferences while ensuring

safety. Offline learning methods may require large training datasets,

which can be impractical to gather from one person for person-

alization. To mitigate this challenge, we leverage active Bayesian

inference and incorporate Weighted Signal Temporal Logic (WSTL),

which yields a WSTL formula that can be used in correct-and-

custom-by-construction control synthesis. Its adaptability to for-

mulas and signals of varying complexity and length, enabled by

the offline computation of STL-related values, makes this method

practical in complex and real-life situations. We provide a theo-

retical bound for the agreement level of the most likely valuation.

While our work focuses on the autonomous driving application,

the methodology is general and can be readily applied in other

safety-critical cyber-physical-human systems that can benefit from

personalization.

In both sets of experiments, our findings highlight the success of

the query selection algorithm over random query selection. Notably,

in synthetic experiments, our algorithm not only converges to an

optimal weight valuation within our search set with a reduced

questionnaire length but also exhibits promising performance in

capturing user preferences during training and in generalizability.

As a future work, an implementation of this framework into

controller-synthesis algorithms like the one proposed in [5] would

show us potential challenges in connecting two problems. An

open direction leveraging the complete correct-and-custom-by-

construction controller synthesis pipeline is to close the loop of

the personalization framework by automating and including the

trajectory generation step into it. This requires almost real-time

controller synthesis using WSTL constraints. Another problem to

consider is reasoning about preferences over a wider set of scenar-

ios based on learning results over a smaller but significant scenario

set. Driving scenarios often consist of common patterns that may be

leveraged for generalization to a common driving behavior scheme.
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