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Abstract— This paper addresses the problem of (in)validation
of polynomial state-space models, that is, checking whether
a discrete-time uncertain polynomial state-space model can
explain noisy experimental input/output data. We first recast
this problem as a polynomial optimization problem and present
asymptotically tight invalidation certificates by appealing to
well-known moments-based relaxations. In the second part of
the paper, we show how a model-based run-time fault detection
algorithm can be developed based on a notion of T -detectability,
which enables the proposed model invalidation approach to be
applied in receding horizon fashion to detect faults. The efficacy
of the proposed methods are illustrated with some numerical
and practical examples.

I. INTRODUCTION

In recent years, there is a growing interest in safety,
reliability and security of Cyber-Physical Systems (CPS).
CPS are integrations of networks and embedded computers
with physical processes, which are controlled with feedback
loops. Our every-day life depends on the reliability of cyber-
physical systems such as traffic control systems, advanced
automotive systems, environmental control systems, critical
infrastructure control (electric power, water resources, and
communications systems), defense systems, and smart struc-
tures [1], [2]. Therefore, detecting anomalies and faults in
such systems in real-time is an important challenge [3], [4].
Many physical systems can be represented or approximated
by polynomial state-space models. As a result, these models
play an important role in the analysis of cyber-physical
systems. In this work, we initially investigate the model
invalidation problem for polynomial state-space models, and
consequently, propose a theoretical framework that allows us
to utilize a model invalidation approach to detect faults and
anomalies in real-time.

Originally, model invalidation was developed by robust
control community as a tool to build trust in the models
obtained from system identification or to improve those mod-
els [5]. More recently, model invalidation approaches have
been developed for continuous-time polynomial systems [6],
polynomial implicit difference equations [7] and switched
auto-regressive models [8]–[10].

Fault detection has been an important field of research in
different communities. From the control perspective, most of
the fault detection approaches are based on residual gener-
ation and evaluation [11]. The residuals could be generated
by parameter estimation techniques [12] or output and state
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observers [11], [13]. As an alternative to residual generation,
set-membership fault detection methods have been proposed
both for passive [14] and active [15]–[17] fault detection.
Our approach falls into the category of set-membership
passive fault detection approaches but instead of computing
explicit set representations, we keep implicit constraints to
represent sets. In our earlier work [18], we have considered
invalidation of switched state-space models. Additionally,
we have introduced the notion of T -detectability for a
fault model that enables applying model invalidation in a
receding horizon fashion to detect faults, if a fault model
is known a priori. In this paper, we extend these results
to polynomial state-space models. Although conceptually
similar, the extension requires totally different computational
techniques. The computational techniques used in [18] are
satisfiability modulo theory (with linear arithmetic) and
mixed integer linear programming, which are not applicable
when the system dynamics are polynomial. In comparison to
the earlier approaches for invalidation of polynomial models,
we provide asymptotically tight conditions as opposed to the
sufficient conditions in [6], and our approach incorporates all
the data through a trajectory (crucial for extensions to run-
time fault detection), whereas the approach in [6] uses only
initial and final states of a trajectory.

Our contributions in this paper are two-fold. First, we ad-
dress the model invalidation problem for polynomial models,
by recasting it as a polynomial optimization problem and
leveraging moment-based relaxation techniques, which take
into account the sparse structure of the problem. This is
similar in spirit to the techniques used in [7], [10]. Second,
we adapt the concept of T -detectability of a fault model to
polynomial models, and propose a computational framework
to calculate T , if it is finite. This framework is also based
on polynomial optimization that is relaxed to a semidefinite
programming problem, which provides certificates for T -
detectability. Moreover, the relaxations used for invalidation
are shown to be consistent, in a sense made precise later in
the paper, with the T -detectability certificates, therefore the
detection guarantees are preserved even when one solves the
relaxed invalidation problem online using a sliding window.

The paper structure is as follows. In Section II, some pre-
liminaries and notations are described. Section III explains
the model invlidation approach proposed for polynomial
models. The relation between model invalidation and fault
detection as well as the concept of T -detectability are high-
lighted in Section IV. We represent the effect of uncertainty
in Section V, and illustrative examples are provided in
Section VI. Finally, conclusions are made in Section VII.



II. PRELIMINARIES

In this section, we introduce some notation as well as some
basic concepts that are essential for the proposed algorithm.

A. Notation

x ∈ Rn denotes a vector and M ∈ Rn×m represents a
matrix, where Mi,j indicates the element on ith row and jth
column of the matrix M. The infinity norm of a vector x is
denoted by ‖x‖∞. M � N indicates that the matrix M − N
is positive semi-definite. p(x) denotes a polynomial in x.

B. Polynomial optimization and moments-based relaxations

The approach proposed in this paper is built on some re-
sults from polynomial optimization and problem of moments
literature [19]–[21]. Consider the polynomial optimization
problem:

p∗K := min
x∈K

p(x) (P1)

over a compact semialgebraic set, K ⊂ Rn, defined by c
polynomial inequalities. That is, K := {x ∈ Rn | qk(x) ≥
0, k = 1, . . . , c}. Problem (P1) is typically non-convex
and NP-hard. Alternatively, consider the following infinite
dimensional convex problem:

p̃∗K := min
µ∈P(K)

Eµ[p(x)] (P2)

where P(K) is the set of positive Borel measures on the
set K with µ(K) = 1. In [19], it is shown that problems
(P1) and (P2) have the same optimal value. Moreover, an
alternative (yet still infinite dimensional) characterization of
the feasible set of the functional optimization problem (P2)
exists in terms of positive semi-definiteness of the so-called
moment M and localization L(qkm) matrices constructed
from the moments m of distributions supported on K 1,
and the objective function becomes a linear function of
the moments. Although M and L are infinite dimensional
matrices, they can be truncated to obtain a relaxation. In
particular, the truncated moment and localization matrices
up to order r are defined as follows:

Mi,j
r (m) = mααα(i)+ααα(j) for all i, j ≤ Sr (1)

Li,jr (qkm) =
∑
βββ

qk,βββ(l)mβββ(l)+ααα(i)+ααα(j)

for all i, j ≤ S
r−

⌊
dk
2

⌋ (2)

where Sr =

(
r + n
n

)
is the number of monomials in Rn up

to order r, qk,βββ denotes the coefficient of monomial xβββ in
polynomial qk(x) with degree dk. The main result of [19] is
the following.

1Recall that for a given multi-sequence ααα = [α1, . . . , αn] of nonnegative
integers, the αααth moment of a distribution µ supported on K is given by
mααα = Eµ(xααα) :=

∫
K xαααµ(dx), where xααα is the monomial xα1

1 . . . xαn
n .

Theorem 1: Let

p∗r = min
m

∑
ααα

pαααmααα (3)

s.t. Mr(m) � 0

Lr(qkm) � 0, k = 1, . . . , c.

As r goes to infinity, p∗r approaches p∗K from below.

C. Running Intersection Property and Sparse Structure

In general, even the truncated matrices in (1)-(2) can
have a large size if the original polynomial optimization
problem involves too many variables. On the other hand,
if the polynomials involved has a sparse structure satisfying
the so-called running intersection property, this structure can
be utilized to obtain multiple smaller sized linear matrix
inequality constraints, where most of the moment variables
corresponding to cross moments are eliminated [20].

Definition 1: Consider problem (P1), and a finite collec-
tion {Ii}l

′

i=0, where each Ii is a subset of variables in x,
with

⋃l′
i=0 Ii = {x1, x2, . . . , xn}. Assume that the objective

function can be partitioned as p(x) =
∑l
j=1 pj(x), where

each pj(x) depends only on the variables in Ii for some i
(of j). In addition, each of the polynomials qk(x), defining
K, depends also only on the variables in Ii for some i (of
k). Then, the problem (P1) is said to satisfy the running
intersection property if the collection {Ii}l

′

i=0 satisfies

Ii+1 ∩
i⋃

j=0

Ij ⊆ Ir for some r ≤ i. (4)

If the running intersection property is satisfied, the follow-
ing hierarchy of semidefinite programs can be constructed:

p̄∗r = min
m

l∑
j=1

∑
ααα(j)

pj,ααα(j)mααα(j) (5)

s.t. Mr(mIi) � 0, i = 0, . . . , l′

Lr(qkmIi(k)
) � 0, k = 1, . . . , c,

where pj,ααα(j) denotes the coefficient of the ααα(j)th monomial
in the polynomial pj , and Mr(mIi) and Lr(mIi(k)

) indicate
the moment and localization matrices associated with vari-
ables in Ii, and Ii(k), respectively. Similar to Theorem 1, we
have the following.

Theorem 2: Consider problems (P1) and (5). As r goes
to infinity, p∗r approaches p∗K from below.
For more details on moments-based polynomial optimization
and the relation to the running intersection property, see [20],
[21].

III. MODEL INVALIDATION

A. Problem Definition

In this section, the problem of model invalidation for
discrete-time polynomial state-space models is described. We
consider polynomial models of form:

G(X ,U , E , f) (6)



where X ⊂ Rn is the set of states, U ⊂ Rnu is the set
of admissible inputs, E captures both Ep ⊂ Rn and Em ⊂
Rny , the set of possible process and measurement noise, and
finally, f is the polynomial defining the state equations as
follows:

x(k + 1) = f
(
x(k),u(k)

)
+ Epηηηp(k) (7)

y(k) = x(k) + Emηηηm(k) (8)

where x,u and y denote the state, input and output vectors,
respectively. The process and measurement noise vectors are
represented by ηηηp and ηηηm, and Ep and Em denote how the
noise vectors affect the states and outputs.

For simplicity we consider all the sets X ,U , Ep and
Em to be infinity norm balls, with sizes M,U, εp and εm,
respectively. By the definition above, we assume that the
noisy states are being observed as outputs. The results of
this work can be easily extended to the case in which the
output is a polynomial function of the states. In order to state
the model invalidation problem, we first define the behavior
of the polynomial model.

Definition 2: The length-N behavior associated with a
polynomial system G is the set of all input-output trajectories
in the interval [0, N ] compatible with G, given by the set

BNpoly(G) :=
{
{u(k),y(k)}Nk=0, | u(k) ∈ U and ∃x(k) ∈ X ,
ηηηp(k) ∈ Ep, ηηηm(k) ∈ Em s.t. (7), (8) holds

for k = 0, . . . , N
}
.

We call BNpoly(G) just the behavior of the system G through-
out this paper.
Now we can state the model invalidation problem for polyno-
mial systems. In words, given an input-output data sequence
and a polynomial model, model invalidation problem is to
determine whether or not the data is compatible with the
model. This can be formally stated in terms of behaviors as
follows:

Problem 1: Given
{
u(k),y(k)

}N
k=0

, an input-output se-
quence, and a polynomial model G, determine whether or
not the input-output sequence is contained in the behavior
of G. That is, whether or not the following is true{

u(k),y(k)
}N
k=0
∈ BNpoly(G). (9)

B. Approach

An optimization-based approach is proposed in this work
to tackle the model invalidation problem. Let us first define

φk(y,u, ηηηm, ηηηp, ) := f
(
y(k)− Emηηηm(k),u(k)

)
+ Epηηηp(k)

−y(k + 1) + Emηηηm(k + 1) ∀k ∈ [0, N − 1],
(10)

by combining the state and output equations. Note that
φk(y,u, ηηηm, ηηηp) is a vector of functions of the size of states.

Consider the following optimization problem:

ε∗ = min
ηηηm,ηηηp,ε

ε (PMI)

s. t. φk(y,u, ηηηm, ηηηp) = 0, ∀k ∈ [0, N − 1]

‖y(k)− ηηηm(k)‖∞ ≤M, ∀k ∈ [0, N ]

‖u(k)‖∞ ≤ U, ∀k ∈ [0, N ]

‖ηηηp(k)‖∞ ≤ εp, ‖ηηηm(k)‖∞ ≤ ε, ∀k ∈ [0, N ].

Then, we can state the following proposition:
Proposition 1: Given the input-output sequence,{
u(k),y(k)

}N
k=0

, and the polynomial model G, the
model is invalidated by input-output sequence, if ε∗ > εm,
and vice versa if ε∗ ≤ εm.

Proof: Direct consequence of definitions.
The choice of measurement noise bound to be a variable is
arbitrary. One can as well choose the process noise bound,
input or state bounds as an optimization variable. Even
though the problem can also be stated as a polynomial fea-
sibility problem, the optimization form gives a quantitative
notion of invalidation. That is, by comparing the optimal
objective value and the a priori bounds, it is possible to assess
how ”far” the model is from being valid or invalid. Similar
optimization problems can also be used to derive bounds on
uncertain parameters if such bounds are not known a priori.

Problem (PMI) is not necessarily a convex problem, be-
cause of the constraints defined by φ functions, which can
be any arbitrary polynomial. We leverage moments-based
relaxation techniques to solve this problem but first, we show
that (PMI) satisfies the running intersection property.

Proposition 2: Problem (PMI) satisfies running intersec-
tion property.

Proof: Define Ik = {ε,ηηηm(k), ηηηm(k+1), ηηηp(k)},∀k ∈
[0, N − 1], and IN = {ε,ηηηm(k)}. Then at each time,
k ∈ [0, N ], the only variables which appear in the objective
function and constraints are listed in Ik. Since,

{ε,ηηηm(k + 1)} ⊆ Ik ∀k ∈ [0, N − 1],

condition (4) is satisfied and therefore running intersection
property holds.
Let P rMI,rel be the moments-based relaxation of problem (PMI)
of the form (5) with relaxation order r.

Proposition 3: Given input-output data sequence, let εr
denote the optimal value of P rMI,rel. If εr > εm, then the
model is invalid.

Proof: From Theorem 2, the optimal value of P rMI,rel
converges to ε∗ from below, so we have εr ≤ ε∗. Therefore,
εm < ε∗.

IV. FAULT DETECTION

In this section, the application of the proposed model
invalidation scheme in fault and anomaly detection is pre-
sented. Let us first recall the definition of anomaly and fault
from [18].

Definition 3: An input-output sequence {u(k),y(k)}Nk=0

is called abnormal for a polynomial model G if and only if
{u(k),y(k)}Nk=0 /∈ BNpoly(G).



Definition 4: A fault model for a polynomial system
G = (X ,U , E , f) is another polynomial system Gf =
(X f ,Uf , Ef , ff ) with the same number of states, inputs and
outputs.

As seen from Def. 3, if the a priori model G captures
the behavior of the nominal system, the data being invalid is
equivalent to an abnormal behavior occurring in the system.
This allows us to apply the proposed model invalidation to
detect generic abnormalities that might happen in the system,
which can include faults, attacks or failures. However, the
size of (PMI) increases by time-horizon. The next question is
that if we have some information about the fault such as a
model as defined by Def. 4, can we detect it more efficiently?
In the next step, we answer this question, but first we make
the following assumption on faults.

Assumption 1: We assume that all the faults are persistent,
that is once they occur, the system starts evolving according
to them.

Definition 5: A fault model Gf for a polynomial system
G is called T -step detectable if BNpoly(G) ∩ BNpoly(Gf ) = ∅
for all N ≥ T , where T is a positive integer.
It is clear from the definition that if a fault model is T -step
detectable, it is also T ′-step detectable for all T ′ ≥ T .

Proposition 4: Given a T -step detectable fault model Gf

for a polynomial model G, under Assumption 1, the existence
of the fault can be verified by checking, at each time k∗, if the
solution of (PMI) satisfies ε∗ ≥ εm for input-output sequence
{u(k),y(k)}k∗k=k∗−T or not.

Proof: The proof is similar to that of Proposition 3 in
[18].

If an explicit fault model exists and it is T -detectable
for some finite T , Proposition 4 enables us to solve an
optimization problem of size T at each time step in order to
detect that particular fault. Next, we propose an optimization-
based approach to verify whether for a given T , a fault is
T -detectable for a system or not. Consider the following
optimization problem:

ε̃ = min
ηηη,η̄ηη,u,y,ε

ε (PT )

s.t. f
(
y(k)− Emηηηm(k),u(k)

)
+ Epηηηp(k)− y(k + 1)

+ Emηηηm(k + 1) = 0, ∀k ∈ [0, T − 1]

ff
(
y(k)− Efmη̄ηηm(k),u(k)

)
+ Efp η̄ηηp(k)− y(k + 1)

+ Efmη̄ηηm(k + 1) = 0, ∀k ∈ [0, T − 1]

‖u(k)‖∞ ≤ min(U,Uf ), ∀k ∈ [0, T ]

‖y(k)− Emηηηm(k)‖∞ ≤M, ∀k ∈ [0, T ]

‖y(k)− Efmη̄ηηm(k)‖∞ ≤ M̄, ∀k ∈ [0, T ]

‖ηηηp(k)‖∞ ≤ εp, ‖ηηηm(k)‖∞ ≤ ε, ∀k ∈ [0, T ]

‖η̄ηηp(k)‖∞ ≤ ε̄p ‖η̄ηηm(k)‖∞ ≤ ε̄m, ∀k ∈ [0, T ],

where ηηη represents both process and measurement noise
variables. Then, we can state the following proposition:

Proposition 5: Given the a priori and fault models, G and
Gf , the fault model is T−detectable for G if and only if
ε̃ > εm.

Proof: Direct consequence of definitions.

Similar to problem (PMI), it can be shown that optimization
problem (PT ) also satisfies the running intersection property.
Therefore, T -detectability certificates can be obtained using
a relaxation of the form (5). Let P rT,rel be the moments-based
relaxation of (PT ) of the form (5) with relaxation order r,
and denote the optimal value of P rT,rel with ε̃r.

Proposition 6: Given a model G, fault model Gf and T ,
let ε̃r denote the optimal value of P rT,rel. If ε̃r > εm, then Gf

is T -detectable.
Proof: Follows from Theorem 2.

For a given T , if the solution of P rT,rel results in an objective
value greater than εm, the fault is T−detectable. That is, if
one can solve the invalidation problem (PMI) exactly, then,
by Propositions 4 and 5, it is enough to use only data from
a window of size T , to declare the existence of the fault.
One question that remains is that whether this is still true
if one solves a relaxed version P rMI,rel at run time. This is
established next.

Theorem 3: If a fault model Gf is shown to be T -
detectable using P rT,rel and if this fault occurs at time t∗, then
using data {u(k),y(k)}t

∗+T
k=t∗ , P rMI,rel will have an objective

value greater than εm, that is, under Assumption 1, the fault
is guaranteed to be detected using the relaxed problem P rMI,rel
in receding horizon manner.

Proof: Let P rMI,rel({u(k),y(k)}t+Tk=t ) be the moments-
based relaxation of problem (PMI) of the form (5) with
relaxation order r parametrized by data {u(k),y(k)}t+Tk=t ,
and let εo({u(k),y(k)}t+Tk=t ) be its objective value. Let

ε∗ := min
{u(k),y(k)}t+T

k=t

εo({u(k),y(k)}t+Tk=t ) (11)

s.t. {u(k),y(k)}t+Tk=t ∈ B
T
poly(Gf ).

We need to show ε∗ > εm. Problem (11) can be rewritten
as:

ε∗ := min
η̄ηη,u,y

εo({u(k),y(k)}t+Tk=t ) (12)

s.t. ff
(
y(k)− Efmη̄ηηm(k),u(k)

)
+ Efp η̄ηηp(k)−

y(k + 1) + Efmη̄ηηm(k + 1) = 0, ∀k ∈ [t, t+ T − 1]

‖u(k)‖∞ ≤ Uf , ∀k ∈ [t, t+ T ]

‖y(k)− Efmη̄ηηm(k)‖∞ ≤ M̄, ∀k ∈ [t, t+ T ]

‖η̄ηηp(k)‖∞ ≤ ε̄p ‖η̄ηηm(k)‖∞ ≤ ε̄m, ∀k ∈ [t, t+ T ].

A relaxation P ′ of (12) can be obtained by replacing the
monomials in η̄ηη,u,y with moment variables of order upto
r. The objective value ε′ of P ′ satisfies ε′ ≤ ε∗. Note that P ′

has bilinear terms containing moments of η̄ηη,u,y multiplying
those of ηηη inside εo(·). This corresponds to an independence
assumption between the distributions these moments belong
to. Adding redundant equalities in P ′ and taking Kronecker
products with appropriately constructed moment matrices,
result in a new problem P ′′ with the same objective value ε′.
Finally, relaxing the independence assumption and replacing
the bilinear terms with cross-moment variables lead to P rT,rel.
Since P rT,rel is obtained as a relaxation of P ′′, we have ε̃r ≤
ε′. Moreover, since T -detectability certificate was obtained



via P rT,rel (Proposition 6), we have ε̃r > εm. Therefore, ε∗ >
εm.

Remark 1: Note that in general, if multiple faults can oc-
cur, running model invalidation in receding horizon fashion,
we can only conclude the occurrence of a fault but might
not be able to differentiate them. This is related to the
concepts of fault identifiability and isolability [22]. This can
potentially be done by checking detectability across different
fault models, but left for future work.

V. UNCERTAINTY

In this section, we consider uncertainty in the parameters
of the polynomial models and propose necessary changes
to the model invalidation framework (PMI) so that it can
handle uncertain models. Let us first define what we mean
by the uncertainty in polynomial models. We can write any
polynomial a product of two vectors as follows:

f(x,u) = cTq, (13)

where q is the vector of monomials in x and u; and c is the
vector of corresponding coefficients.

Definition 6: The polynomial model, G(X ,U , E , f̃) has
uncertainty if f̃(x,u,∆c∆c∆c) has the following form:

f̃(x,u,∆c∆c∆c) = (c + ∆c∆c∆c)Tq, (14)

where ∆c∆c∆c is the uncertainty vector, |Tc∆c∆c∆c| < 1σ̄, Tc is a
diagonal matrix that scales the bound on different elements
of uncertainty vector, 1 is a vector of ones of the appropriate
size, and σ̄ is a constant.
For simplicity of notation, let us define φ̃k for all k as
follows:

φ̃k(y,u, ηηηm, ηηηp,∆c) := f̃
(
y(k)− Emηηηm(k),u(k),∆c

)
+

Epηηηp(k)− y(k + 1) + Emηηηm(k + 1) ∀k ∈ [0, T ]. (15)

With this notation, if the data matches the system equations
at time k, φ̃k(y,u, ηηηm, ηηηp,∆c) = 0. In order to address the
model invalidation problem, one needs to take into account
the effect of the uncertainty vector. Consider the following
problem:

σ∗ = min
ηηηm,ηηηp,∆c,σ

σ (P∆)

s. t. φ̃k(y,u, ηηηm, ηηηp,∆c) = 0, ∀k ∈ [0, N ]

‖y(k)− ηηηm(k)‖∞ ≤M, ∀k ∈ [0, N ]

‖Tc∆c‖∞ ≤ σ, ‖u(k)‖∞ ≤ U, ∀k ∈ [0, N ]

‖ηηηp(k)‖∞ ≤ εp, ∀k ∈ [0, N ]

‖ηηηm(k)‖∞ ≤ εm, ∀k ∈ [0, N ].

The model is invalidated by data, if σ∗ > σ̄ and vice versa,
if σ∗ ≤ σ̄. Proceeding along the same lines as in Section
IV, an optimization problem to certify T -detectability of an
uncertain system can be defined.
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Fig. 1. The invalidation results over 20 trials (left) when there is a mismatch
between the parameters of the model that generated the data is β times those
of the a priori model, and (right) when the data is generated with noise,
bounded by α times the a priori noise bound.

VI. ILLUSTRATIVE EXAMPLES

In this section, we consider one set of numerical examples
and an application-motivated example to illustrate the effi-
cacy of the methods proposed in this paper. All the examples
are implemented on a 3.5 GHz machine with 32 GB of
memory running Ubuntu. For the implementation of model
invalidation approach and finding T for T−detectability, we
used Yalmip [23] and SparsePOP [24]. All the approaches
and examples are implemented in Matlab, and are available
as part of MI4Hybrid2 toolbox.

A. Numerical Examples

Consider a discrete-time pendulum model with friction:

x1(k + 1) = x1(k) + 0.3x2(k)

x2(k + 1) = 0.9x2(k)− 0.3 sin(x1(k)).
(16)

First, we replace the sin(x1) with its fourth order Taylor
series expansion around zero. The outputs of the system are
noisy measurements of the states. The measurement noise
bound is assumed to be 0.1. In addition, we assume both
states are bounded in the range [−2, 2].

1) Model Invalidation Example: In this example, the
tightness of model invalidation is illustrated by slightly
changing the measurement noise bound. The output sequence
is generated from (16), while the measurement noise is
generated uniformly from the set α[−0.1, 0.1]. The model
invalidation algorithm is applied to input-output sequence of
size 50, generated from (16) with different α values. The
run is repeated for 20 times for each α and the number of
invalidations are illustrated in Fig. 1. In the second set of
examples, we fix α at 1, and change the parameter β, which
is multiplied with Taylor series expansion of the right-hand
side of (16). The run is repeated for 20 times for noise that is
randomly generated with bound 0.1. Fig. 1 illustrates that the
model invalidation approach is tight, that is a slight mismatch
in the parameters or noise bounds can be detected even with
low relaxation orders. Note also that when the noise bound
ratio is less than or equal to 1, the data is generated by a
valid model. Even though the data sequences are generated
by a slightly different model than the a priori model, they
can still be valid behaviors of the original system, which can
be the case for the trials that are not invalidated in Fig. 1.

2https://github.com/data-dynamics/MI4Hybrid



2) Computation Time Results: In this example, we inves-
tigate how the computation time scales as the data length
increases. Two cases are considered: (i) when the input-
output sequence is valid for model (16) and (ii) when it is
invalid. The model invalidation algorithm is applied to both
cases 10 times for each time horizon. Fig. 2 illustrates the
mean and standard deviation of the run-time results obtained.
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Fig. 2. Model invalidation run-time increase almost linearly with the
increase in time horizon for both valid and invalid data.

3) Quantitative Measure of the Validity of Data: Consider
the discrete-time pendulum model in (16). The goal of this
example is to demonstrate how we can practically use the
optimal value obtained from P rMI,rel as a measure of how
“far” the model is from being valid. In this example, the
sin(x) term is replaced with its Taylor series expansion of
orders 2, 4, 6 and 8 around zero, and P 4

MI,rel is solved for the
data generated from the nonlinear model (16) while the a
priori model is the polynomial approximation obtained from
the Taylor series expansion. For each order, an output data
sequence of length 20 is used. Fig. 3 shows that by increasing
the order of Taylor expansion, the optimal solution to P 4

MI,rel,
ε4 decreases, which means the model becomes closer to
being valid. The ε4 values can be used as a measure of how
valid is a polynomial model to represent a nonlinear model.
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Fig. 3. The optimal value of P 4
MI,rel versus the order of the Taylor series

expansion.

B. Moore-Greitzer Jet Engine Model

Jet engine compression systems are subject to control
studies, which are aimed to analyze and avoid their instability
against rotating stall and surge [25]. A polynomial state
space model with uncertainty for the stabilized jet engine
compression system with no stall is obtained in [26], and
we discretized it using the Euler’s discretization method as

follows:

Φ(k + 1) = Φ(k)− Ts
(
Ψ(k) +

3

2
Φ2(k) +

1

2
Φ3(k)

)
+ σ

Ψ(k + 1) = Ψ(k) + 3TsΦ(k)− TsΨ(k)
(17)

where, Φ is the mass flow and Ψ is the pressure rise. The
measurements are the noisy states with noise vector ηηηm.

Fault Description: We assume that the fault model for
this system is caused by the bias in the mass flow rate that
can be an influence of rotating stall in compression system.
The rotating stall in this system shows itself as a region of
severely reduced flow that rotates at a fraction of the rotor
speed. The faulty model, then is described as follows:

Φ(k + 1) = Φ(k)− Ts
(
Ψ(k) +

3

2
Φ2(k) +

1

2
Φ3(k)

)
+ σ

+bf

Ψ(k + 1) = Ψ(k) + 3TsΦ(k)− TsΨ(k),

(18)

where bf indicates the faulty bias. The output of faulty
model is noisy measurements (with η̄ηηm) of the states.

The following assumptions are made on the model: the
sampling time Ts = 0.2, the faulty bias bf = 0.1, the
maximum possible uncertainty σ = 0.12, and the infinity
norm bound on the noise is equal to 0.05 for both ηηηm and
η̄ηηm. Fig. 4 illustrates the outputs of the two following cases
with initial condition [2 3]T for the two states:
1. The fault occurs at time sample 10.
2. The fault occurs at time sample 90.
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Fig. 4. The outputs of jet engine model when fault occurs at time sample
10 (top), and when it occurs at time sample 90 (bottom).

The two vertical dotted lines indicate where the fault is
occurred for each case. The goal of this example is to illus-
trate the advantage of knowing a given fault is T−detectable,
and showing how the invalidation approach proposed here
can be employed for receding horizon fault detection. By
applying the T−detectability approach, we discover that the
fault model (18) is T−detectable for a priori model (17) with
T = 6. Now, we gradually move a window of size 7 over all
the samples, starting at time 7. We refer to the window at
time k as Wk = [k− 6, k]. The model invalidation approach
then is applied to each window. For case 1, the model is
not invalidated until W12, and all the instances after that



are invalidated. The same thing happens for the case 2, at
W92. This indicates that the proposed approach is able to
detect faults just two samples after it occurs. One can ask
“why the T−detectability approach finds T = 6, but the
faults can be detected in the windows of size 3?”. To answer
this question we note that first, the relaxation order to find
T = 6 is 3 in this example, so we might find smaller T
with higher relaxation orders. Second, the T−detectability
approach finds T such that no inputs, outputs, measurement
and process noise can fall into the behavior of the system,
however, in the model invalidation problem, input-output
data sequence is fixed. In other words, the T−detectability
approach checks the worst case scenario and finds T such
that even the worst case cannot be explained by the model.
Hence, even though we obtain a T , often it is possible to
detect the fault in a window of the size smaller than T .

The mean time to run model invalidation approach on a
window of size 7 is 2.4131 seconds. Suppose we do not
know that the fault is 6−detectable and apply invalidation
over the window of size 100 samples, then the run-time is
287.3850 seconds. Hence, the results on T−detectability of
faults play an important role on being able to use the model
invalidation approach for real-time fault detection.

VII. CONCLUSION

In this work, we proposed a tractable model invalidation
approach for possibly uncertain polynomial state-space mod-
els, and discussed how it can be used for fault or anomaly
detection. By recasting the model invalidation problem as a
polynomial optimization problem, a quantitative notion of a
model being valid or invalid was obtained, which was further
shown to be asymptotically tight. Moreover, we introduced
the notion of T -detectability of a fault with a polynomial
state-space representation, with respect to a given polynomial
system model, and presented an optimization-based approach
that can be used to compute T . The algorithm proposed
for obtaining a T -detectability certificate is shown to be
consistent with the relaxation used for model invalidation.
This is important mainly because it allows us to apply model
invalidation on a window of size T to detect faults, which
are T -detectable. This paves the way toward real-time fault
detection. Finally, the performance of the proposed methods
is verified on numerical and application-motivated examples.

As future work, we will investigate how to use
T−detectability to guide sensor selection. We are also in-
terested in extending some of the ideas presented in this
paper to networked systems where sensory data is collected
locally and partially shared between different nodes at run-
time, therefore decentralized fault detection algorithms are
required.
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