
Control design for hybrid systems with TuLiP: The temporal logic
planning toolbox

Ioannis Filippidis1, Sumanth Dathathri1, Scott C. Livingston2, Necmiye Ozay3, Richard M. Murray1

Abstract— This tutorial describes TuLiP, the Temporal Logic
Planning toolbox, a collection of tools for designing controllers
for hybrid systems from specifications in temporal logic. The
tools support a workflow that starts from a description of
desired behavior, and of the system to be controlled. The
system can have discrete state, or be a hybrid dynamical
system with a mixed discrete and continuous state space. The
desired behavior can be represented with temporal logic and
discrete transition systems. The system description can include
uncontrollable variables that take discrete or continuous values,
and represent disturbances and other environmental factors
that affect the dynamics, as well as communication signals that
affect controller decisions.

A control design problem is solved in phases that involve
abstraction, discrete synthesis, and continuous feedback control.
Abstraction yields a discrete description of system dynamics in
logic. For piecewise affine dynamical systems, this abstraction
is constructed automatically, guided by the geometry of the dy-
namics and under logical constraints from the specification. The
resulting logic formulae describe admissible discrete behaviors
that capture both controlled and environment variables. The
discrete description resulting from abstraction is then conjoined
with the desired logic specification. To find a controller, the
toolbox solves a game of infinite duration. Existence of a discrete
(winning) strategy for the controlled variables in this game is a
proof certificate for the existence of a controller for the original
problem, which guarantees satisfaction of the specification. This
discrete strategy, concretized by using continuous controllers,
yields a feedback controller for the original hybrid system. The
toolbox frontend is written in Python, with backends in C,
Python, and Cython.

The tutorial starts with an overview of the theory behind
TuLiP, and of its software architecture, organized into specifi-
cation frontends and backends that implement algorithms for
abstraction, solving games, and interfaces to other tools. Then,
the main elements for writing a specification for input to TuLiP
are introduced. These include logic formulae, discrete transition
systems annotated with predicates, and hybrid dynamical sys-
tems, with linear or piecewise affine continuous dynamics. The
working principles of the algorithms for predicate abstraction
and discrete game solving using nested fixpoints are explained,
by following the input specification through the various trans-
formations that compile it to a symbolic representation that
scales well to solving large games. The tutorial concludes
with several design examples that demonstrate the toolbox’s
capabilities.

I. INTRODUCTION

Before we build a system, we write a description in a suit-
able language [1]. The language can range from mechanical
drawings to matrices. It can be difficult, or even impossible,

1California Institute of Technology, Pasadena, CA, 91125, USA. E-mails:
{ifilippi, sdathath, murray}@caltech.edu.

2E-mail: slivingston@cds.caltech.edu.
3University of Michigan, Ann Arbor, MI, 48109, USA. E-mail:

necmiye@umich.edu.

to start by writing a description of the final implemented
system. Many times, we can still write a description of
what we want the implementation to do, but with fewer
details. Both this coarser description and the implementation
can usually be written in the same language, for example
formulae in some suitable logic. If it is so difficult to
describe an implementation, how did we think about it at
a coarser level? What is the difference between the coarse
level (formula) that we have in our minds at an early stage
of development, and the implementation level formula?

The difference between thinking and implementation
arises because we tend to think declaratively, in that we
quantify things in our statements. We use quantifiers as a
convenient means to express lazily what we want, without
putting the effort to articulate it in fine detail. Given a coarse
description, finding an implementation requires eliminating
the quantifiers. Control problems are typically expressed in
this way, by asking whether there exists (and if so, to pick)
a controller that constrains the system of interest (plant)
enough to ensure their joint behavior is as we desire [2].
Quantifiers can make it easier for us to express our thoughts,
but they are computationally expensive to remove [3], [4].
Depending on the type of problem, different methods can
eliminate quantifiers with varying computational complexity
[5, Ch.1], or it might be impossible to eliminate quantifiers.

Recognizing that control synthesis problems are equivalent
to quantifier elimination problems, classical aims of control
like set invariance and reachability can be generalized using
specification languages that originate in software engineering
research, such as temporal logic [6]. The capability of ex-
pressing sophisticated properties and dependencies is crucial
for hybrid systems, which themselves can have rich and
subtle behaviors [7], [8]. As research on verification and
synthesis for hybrid dynamical systems progresses, there is
a practical need for tools that provide both reference imple-
mentations of algorithms and idioms for common problems.

TuLiP was introduced in [9], and has since evolved
into a collection of tools described in Section III. In this
tutorial, we present the approach for hybrid system control
design taken in TuLiP, which relies on separating a problem
into solving two specialized feedback control problems: a
discrete one at a coarse level, and a continuous problem at
a finer level. This allows applying different algorithms to
the discrete and continuous subproblems. Real-world hybrid
systems are typically nonlinear, and quantifier elimination
(controller design) for nonlinear continuous dynamics is
hard. Even in the case of linear dynamical systems, the logic
specifications are usually nonlinear. This motivates choosing

to solve only simple trajectory planning at the continuous
level, and delegate the nonlinear, combinatorial part of the
problem to discrete synthesis algorithms.

Abstraction is the connecting link between continuous
and discrete planning [10]. An abstraction of a continuous
system is a system with discrete-valued state. We require two
characteristics from an abstraction: that it faithfully represent
some of the behavior that the continuous system is capable
of, and that it refines some given continuous geometry, which
we mention in the logic specification to specify motion
between sets that are polytopes. Faithful abstraction ensures
that later we can concretize the discrete controllers we
design into continuous feedback controllers that implement
the same behavioral objective. It also ensures that the imple-
mented controllers indeed satisfy the specification we wrote
by mentioning polytopic sets of continuous states. In the
presented framework, these take the form of partition refining
algorithms that discretize the continuous flow of a piecewise
affine dynamical system to a finite directed graph of possible
transitions. In addition, the discretization takes into account
external disturbances (noise).

We want to specify also desired behavior. A defining
quality of a dynamical system is that its state changes in
time. Thus, we can write a description using a time variable
t , as is customary in physics and control, and quantify over t .
This is a simple and explicit approach. Unfortunately, it leads
to unreadable descriptions [11]. If few or nobody can read a
design, there is little purpose in writing it, because it won’t
serve its purpose [12]. Temporal logic has proven useful
for reasoning about dynamical systems [6], [13]. It trades
off explicitness of temporal reference and quantification for
readability. Here, we use linear temporal logic based on
syntax and principles from the temporal logic of actions,
TLA+ [13], an untyped logic that enables precise descriptions
founded on axiomatic set theory. TLA+ differs in some
aspects from earlier related literature [14], [15], [16].

The paper is organized as follows. Section II introduces
the ingredients used to describe problems that we want to
solve. These include temporal logic in Section II-A, two
ways of writing state machines in Sections II-A.2 and II-B,
assume-guarantee specifications in in Section II-A.3, systems
with hybrid dynamics in Section II-C, and the two flavors
of problem instances that we consider in Section II-D, one
discrete, the other continuous. Section III describes how the
toolbox code is organized and why. Section IV-A describes
how games are formulated and solved, and Section IV-B
the symbolic data structures that enable game solving for
problem sizes that are practically useful. The abstraction of
time and continuous state to obtain discrete representations
that allow for discrete synthesis is described in Section IV-
C. The approach is demonstrated with two examples in
Section V, and concluding remarks are noted in Section VI.
Throughout the paper, more details and some side topics are
discussed in boxed figure environments.

Notation: We use some notation and terminology from
TLA+ [13], with some details omitted. In TLA+, a function
f with domain S is written as f ≜ [x ∈ S 7→ e] where

s0 s1 s2

⟨s0, s1⟩ s2JxK = 5

Fig. 1: A behavior σ is an infinite sequence of states, each
state assigns values to all variables, e.g., state s2 maps x to
5. A step is a pair of consecutive states ⟨si , si+1⟩.

e some expression. The notation f [x] denotes the value of
function f at x . For example, for f ≜ [x ∈ S 7→ x 2] it
is f [3] = 9. The set of all functions with domain S that
take values in T is written [S → T] [13, p.48]. Let N (R)
denote the set of natural (real) numbers, and B the Boolean
values TRUE, FALSE. Negation, con/disjunction are denoted
with ¬,∧,∨. The operator a ≡ b denotes equality of Boolean
values, and is FALSE if any of a, b takes a non-Boolean value.
A set of consecutive natural numbers is denoted i ..j ≜ {k ∈
N : i ≤ k ≤ j}. A function f with DOMAIN f = 1..j , for
some j ∈ N, is a tuple, also written as ⟨a, . . . ,w⟩.

II. PROBLEM INSTANCES

As mentioned in Section I, in TuLiP, design problems
are described using temporal logic, difference equations, and
linear inequalities that describe constraints and geometry. All
these elements are simply mathematical formulae. In TuLiP,
each of these is expressed separately, corresponding to the
subsections that follow.

A. Temporal logic

1) As a shorthand: When thinking about a system that
changes in discrete time steps, its evolution in time can be
modeled as a sequence, of infinite length. A sequence is a
function σ ∈ [N → D], from the natural numbers N to some
set D . Suppose that in the design specification we want to
refer to all sequences σ such that x ∈ R all the time, for
some desired set R. We can quantify over time t to express
this collection of sequences as

∀t ∈ N : x [t] ∈ R. (1)
A slightly more interesting property we may want to specify
is repeated visits to the set R (perhaps to reset our system
for using it the next day). Again, by quantifying time, we
can write

∀t ∈ N : ∃τ ∈ N : (τ ≥ t) ∧ (x [τ] ∈ R). (2)
Imagine writing similar formulae for hundreds of properties
that we specify, and reasoning mathematically about them.
This approach quickly becomes unreadable, thus unmanage-
able by humans. For this reason [17], Amir Pnueli introduced
temporal logic [6], as a convenient shorthand that allows
for simpler formulae, and more readable proofs of theorems
about system properties.

A (linear) temporal logic (LTL) formula describes se-
quences of states, called behaviors. Each state is an as-
signment of values to all variables1. A pair ⟨si , si+1⟩ of

1A state assigns to all variables mentioned in a specification, as well
as unmentioned variables. This definition simplifies composition of compo-
nents that were developed starting with separate specification formulae.

Fig. 2: Assume-guarantee properties:

A precise definition is2

φ ≜ Init ⇒ ∧ 2
(
(Nexte) ⇒ Nexts

)
∧ (2Nexte) ⇒ ∨

∨m
j=0 32Pj

∨
∧n

i=0 23Ri

(3)

where Pj ≜ ¬Recure,j ,Ri ≜ Recurs,i , and Init ≜
Inite . The formula (Nexte) ⇒ Nexts requires that
the system take a Nexts -step, unless the environment
has taken earlier some ¬Nexte -step. This expresses a
requirement on system changes, under the assumption
that the environment hasn’t deviated from Nexte . It also
prevents the controller from deviating from Nexts with
the aim to force a later deviation from Nexte , a notion
called strict realizability [19], [20], [21]. So, Nexte can
contain constraints that arise from physical modeling
and conventions about interface protocols. More details
on the “weak previous” and “historically” operators
, and this definition can be found in [22]. Fig. 3
discusses complexity considerations.

consecutive states within a behavior is called a step, Fig. 1.
A Boolean-valued formula that contains primed variables (for
example x ′) is called an action. Given some step, ⟨s0, s1⟩ and
an action, (x = 1)∧ (x ′ = 2), the unprimed letter x denotes
the value s0JxK of variable x in state s0, and the primed letter
x ′ denotes the value s1JxK. So, priming a variable denotes
its value in the “next” state.

An LTL formula can contain Boolean and temporal op-
erators. In LTL, Eq. (1) can be written as 2(x ∈ R) (2 is
the “always” operator), and Eq. (2) as 23(x ∈ R) (3 is the
“eventually” operator). Using a variety of temporal operators
and nesting them leads to unreadable formulae that defy why
we want to use LTL in the first place. So, we will use only
a few operators, and in very specific ways. There is another
important reason for restricting how temporal operators are
to be used to write an LTL formula. Later, we will synthesize
controllers for some of the variables, in order to satisfy
a given LTL formula. Synthesis from LTL formulae with
arbitrarily nested operators can be computationally very hard
(exponential time or worse [3], [18]).

2) Expressing state evolution in temporal logic: In engi-
neering and physics, systems are usually described by writing
some equations that mention time, and an initial condition,
as in Section II-C. What these equations and the initial
condition define is a state machine. A state machine can also
be expressed in temporal logic, by describing how the state of
a system evolves [13]. We define the initial condition Init
(a state predicate that mentions only unprimed variables),
and an action Next (that can mention primed variables) that
describes what steps the state machine can take.

Perhaps the simplest example is a digital clock c that starts
at Init ≜ (c = 0) and alternates between 1 and 0, Next ≜
(c′ = 1−c). Assembling these into an LTL formula, we have

2Vertical arrangement of con/disjunction (∧,∨) aids readability [23].

Fig. 3: A tractable fragment:

The formula
∨m

j=0 32Pj ∨
∧n

i=0 23Ri in Eq. (3)
describes a liveness goal, namely to either eventually
satisfy some Pj forever (32), or satisfy repeatedly
(23) all the Ri . A Streett pair is a formula of the
form 32∨23 [24], [25]. The above is a “generalized”
pair, due to the

∨
j ,
∧

i [26]. Generalized Reactivity(1)
[25], [26], [21] is the name given to games (Section IV-
A) with one generalized Streett pair (Streett(1)) as
control objective. GR(1) games can be solved in time
polynomial in the number of relevant states, whereas
GR(k) games (k Streett pairs) have complexity factorial
in k [18], [27]. “Solving” refers to finding a controller
for some variables that ensures satisfaction of a GR(k)
formula, for any behavior of the uncontrolled variables.

Streett (Rabin) formulae have the form
∧
(32 ∨

23) (
∨
(32 ∧ 23)). Thus, they are the conjunctive

(disjunctive) normal form (CNF) for temporal formulae
expressing liveness [28], in analogy to the propositional
CNF and DNF [4, p.10].

Init ∧2Next . Notice that this formula talks about how only
variable c changes in a behavior. It leaves other variables
free to change, which is useful for composition (see Fig. 7).

3) Assume-guarantee properties: Going one step further,
we can apply assume-guarantee thinking to our state ma-
chines. Motivation for doing so is that our state machine
doesn’t live in its own world. It usually depends on other
state machines, and unless they behave as assumed, our state
machine cannot behave as we want. This is formalized by
defining two state machines, one for the rest of the world (the
“environment”), and another for the system we are designing,
by writing the formulae Inite ,Nexte and Nexts .

In addition, we usually want our state machines to exhibit
some behavior over the future, which we cannot express
using a step-by-step constraint Next . Usually, this is some
liveness property, expressed with formulae of the form
23Recur . So, we need to define the predicates Recure
and Recurs , one for each state machine. To summarize
informally, we require that the guaranteed property

Guarantee ≜ 2Nexts ∧
∧
i

23Recurs,i (4)

is not violated before the assumed property

Assumption ≜ Inite ∧2Nexte ∧
∧
j

23Recure,j (5)

is. Thus, if the assumption holds throughout time, so should
the commitment. We formalize this notion in Fig. 2.

B. State machines enumerated a little

We have been discussing about writing state machines as
temporal formulae. A state machine can have many states,
leading to a long formula that is error-prone for humans
to write correctly. Fortunately, these formulae usually have
the same intuitive graph-like structure with respect to some

q = 0

q = 1

q = 2

La [0],Lb [0] La [1],Lb [1]

La [2],Lb [2]

Fig. 4: A state machine defined using a graph.

Fig. 5: Linguistic relativity:

It should be noted that state machines go under many
names and formalisms [29], so “transition system” is
just a name for a particular data structure used here.
It is helpful to think of state machines as predicate-
action diagrams [30] that describe what some part of the
world is doing, and leave unconstrained all unmentioned
variables. This allows us to safely deduce properties that
will continue to hold when we add components to the
system. It is reflected by the conversion to temporal
logic described below.

variable. The data structure used in TuLiP to help with such
definitions is a graph annotated with nodes and edges, and
we call it a “transition system” (see also Fig. 5).

A transition system can be defined as a tuple
⟨Q ,E ,La , . . . ,Lw ⟩ where Q is a set of “states”, E ⊆ Q×Q
a set of edges, and La , . . . ,Lw ∈ [Q → B] are functions
that label states. In order to use symbolic algorithms as those
described in Section IV-B, it is convenient to write a temporal
logic formula that describes the entire discrete problem. So,
we need to convert the transition systems to formulae.

Let us use Fig. 4 as an example to describe the conversion
to an LTL formula. In this example Q ≜ {0, 1, 2}. A variable
is selected to be used for signifying the current node. Here
we chose variable q for that purpose. The possible transitions
between nodes are defined by the edges E between them, so
we can prime q to express E with the action
Next(q , q ′) ≜ ∧ (q = 0) ⇒

(
(q ′ = 1) ∨ (q ′ = 2) ∨ (q ′ = 0)

)
∧ (q = 1) ⇒ (q ′ = 2)
∧ (q = 2) ⇒ (q ′ = 1).

This means that when q = 1 is the current node, then the next
node should be q = 2. If some nodes have been designated
as initial, then Init includes a corresponding constraint.

The state labeling functions are used to constrain the
values of variables of interest, here variables a and b, as

StateLabels(q , a, b) ≜ (a = La [q]) ∧ (b = Lb [q]).

These result in the temporal formula
TS ≜ 2

(
Next(q , q ′) ∧ StateLabels(q , a, b)

)
.

So, the transition from node q = 0 to q = 1 can occur in a
step ⟨q , q ′⟩ = ⟨i , j ⟩ that satisfies also (a = La [i]) ∧ (a ′ =
La [j]) ∧ (b = Lb [i]) ∧ (b′ = Lb [j]).

C. Hybrid dynamical systems

As for descriptions of continuous state systems, TuLiP
accepts various types of discrete-time dynamical system
models. The simplest model that TuLiP accepts is an affine
time-invariant system of the form:

x [t + 1] = Ax [t] + Bu[t] + Ed [t] +K , (6)
or, in temporal logic

AffineTimeInv ≜ 2(x ′ = Ax + Bu + Ed +K)

where we require that, at any time t > 0, the continuous
state x [t] ∈ X ⊂ Rn , and at any time t ≥ 0 the control input
u[t] ∈ U ⊂ Rm , and assume that the disturbance d [t] ∈ D ⊂
Rp , and the initial state x [0] ∈ XInit . The set X is called
the domain of the system. The sets X , U , D are represented
as polytopes or unions of polytopes. A polytope P is a set
defined by linear predicates, that is,

P = {x ∈ Rn : Hx ≤ h} ⊂ Rn (7)
We can also define state-dependent input bounds, by choos-
ing U to be a polytopic subset of Rn+m . A more general
class of models are piecewise affine dynamical systems:

x [t + 1] = Aix [t] + Biu[t] + Eid [t] +Ki , (8)
if x [t] ∈ Xi , where, for t > 0, we require that the state x [t] ∈
Xi ⊂ Rn , and at any time t ≥ 0, the control input u[t] ∈
Ui ⊂ Rm , and assume that the disturbance d [t] ∈ Di ⊂
Rp , and the initial state x [0] ∈ XInit . The polytopic sets Xi

for i ∈ 1..k form a partition of the domain X . In order to
represent piecewise affine systems, we use a collection of
affine systems of the form Eq. (6) with disjoint domains.

It is also possible to describe switched system models with
controllable and uncontrollable switches:
x [t + 1] = A[s[t]]x [t] +B [s[t]]u[t] + E [s[t]]d [t] +K [s[t]],

where the mode s[t] = ⟨r [t], e[t]⟩ with r [t] ∈ 1..nr , e[t] ∈
1..ne , being the discrete controllable and uncontrollable
inputs that determine the system matrices A,B ,E ,K . We
can also define switched piecewise affine systems where, for
each mode s , the corresponding system is piecewise affine.

In order to specify properties of continuous-state systems,
we introduce continuous propositions that are identified with
subsets of the domain X . Let {Xi}ki=1, Xi ⊂ X be a col-
lection of subsets of interest. For computational tractability,
we assume that each Xi is a polytope. Moreover, we assign
“names”, ai ≜ (x ∈ Xi), for each of these sets to be used
in the LTL formulae. The finite sets of controllable and
uncontrollable discrete inputs of switched systems can also
be used as atomic propositions in an LTL formula if one
wishes to impose assumptions or requirements about how
these discrete inputs evolve.

D. Synthesis problems

Two problems can be solved with TuLiP:
1) discrete synthesis that constructs a controller that real-

izes an LTL specification in the GR(1) fragment, and
2) computing controllers for hybrid systems from spec-

ifications of piecewise affine dynamics, continuous
propositions, and GR(1) formulae.

Fig. 6: Moore or Mealy strategies?

A Moore strategy f picks the next value y ′ without
knowing x ′, the environment’s evolution in that same
step [33]. In contrast, x ′ is known to a Mealy strategy
before it picks y ′ [34]. Designing Moore machines as
the components of a system is less error-prone, and
leads to simpler composition and simulation. Mealy
machines can lead to harder composition, due to the
possibility of cyclic dependencies of function values
and arguments [35].

These two problems are defined as follows.

Problem 1: [Discrete synthesis] Let z (y) be variables that
the environment (system) controls and take discrete values.
Let φ be a specification defined by an assumption of the
form of Eq. (5), and a guarantee of the form of Eq. (4), as
detailed in Fig. 2. Let m be a memory variable, to be used
by the controller. Assume that m does not appear in φ.

The discrete synthesis problem with finite memory is that
of finding: a controller function f for the next value y ′ of
the controlled variables, a memory update function g , and an
initial memory value m0, such that f and g realize φ, i.e.,
Realization ⇒ φ, where

Realization ≜ ∧ m = m0

∧ 2∧ y ′ = f [⟨m, y , z ⟩]
∧ m ′ = g [⟨m, y , z ⟩],

(9)

and variables m, y , z take finitely many values [13, p.341]
IsFiniteSet(DOMAIN f) ∧ IsFiniteSet(DOMAIN g). (10)

This definition is simplified for introductory purposes. A
formal definition can be found in [31], which is based on
[32]. Formalization avoids unintended controllers as solu-
tions, for example a function with empty domain. For com-
patibility with existing literature on synthesis [21], the above
definition is stutter sensitive (see Fig. 7), thus not in TLA+.
Problem 1 can be defined in TuLiP with a combination of
temporal logic formulae Section II-A.3 and transition system
data structures Section II-B, which are internally converted to
formulae too, in order to assemble φ. TuLiP can synthesize
both Moore and Mealy strategies (see Fig. 6).

Problem 2: [Synthesis for hybrid systems] Given contin-
uous dynamics x [t + 1] = Ax [t] + Bu[t] + Ed [t] + K and
sets X ,D,U , polytopes {Xi}ki=1 as continuous propositions,
and a temporal logic formula φ over z , y and {Xi}ki=1,
the continuous synthesis problem is to find a continuous
controller for u as a function of the continuous state x and
discrete environment variables z , and a discrete controller
for y ′ as a function of z , y , {Xi}ki=1.

The continuous problem can be solved by constructing
and solving a suitable discrete problem first, and then using
its solution to control the hybrid system. One can pose a
similar hybrid systems synthesis problem for other classes
mentioned in Section II-C.

Fig. 7: Stutter-invariant properties:

A temporal logic property φ is invariant under stut-
tering if, however we repeat or remove repetitions
of states from a behavior σ that satisfies φ, the
resulting behavior τ , too, satisfies φ [13, p.17].

sA sA sCσ

τ sA sB sC

sB

sB

In this paper, we did not insist on stutter-invariance,
mostly for compatibility with existing literature on
games and hybrid systems. Nonetheless, stutter-
invariance is the cornerstone for writing hierarchical
specifications [12], and their composition [19], because
it allows for simple time refinement [36]. Proving
system refinement becomes simply proving logical im-
plication (⇒) between formulae at different levels [37].

III. SOFTWARE ARCHITECTURE

We discuss the software architecture from the user and
developer viewpoints. For the user, we give an overview of
entry and exit points, and how different modules correspond
to sections in this paper. For the developer, we describe how
and why the toolbox has evolved to its current structure.
The architecture reported here should be understood as a
recommendation, not as a frozen programming interface.

TuLiP can be thought of as a compiler that takes as input
a problem description, and returns a controller, or raises an
error if a controller cannot be found by the methods imple-
mented. As discussed in Section II, there are several different
ways to describe a problem, which can be combined. These
include temporal logic formulae, graph-like data structures to
represent discrete behaviors (transition systems), and linear
difference equations over polytopic domains. Formulae are
more naturally represented as strings, graphs as dictionar-
ies of dictionaries (using the Python package networkx
[38]), linear continuous dynamical systems with matrices,
and polytopes in H-representation, as the matrices H , h of
Eq. (7), together with methods for operating on them. These
can be thought of as a frontend.

This affinity to data structures is reflected in how the
TuLiP package is organized. In Python, there are scripts,
modules, and packages. Scripts and modules are single files,
whereas packages comprise of modules and subpackages.
The subpackages and modules of the tulip package [39],
shown in Fig. 8, correspond to the aforementioned ways of
describing a problem instance. Four organizational entities
comprise the frontend:

• tulip.spec: a module for parsing, representing, ma-
nipulating, and translating formulae (Section II-A),

• tulip.transys: a subpackage for representing,
translating to logic, and plotting graphs that serve as
transition systems (Section II-B),

• tulip.hybrid: a module to represent piecewise

hybrid

continuous dynamics
abstract

polytope
polytopic partition

transys

polytopic sets

first-order temporal logic specifications

annotated graphs

spec synthesis, ...
interfaces to

gr1c

flatten to logic

discrete

system
transition

omega ltl2ba

temporal
logic

formula

discrete
controller

hybrid
controller

Fig. 8: Architecture of the temporal logic planning toolbox.

affine continuous dynamical systems with control inputs
and disturbances (Section II-C),

• polytope: a package for representing and operating
on polytopes [40], both convex and non-convex, using
linear programming in the background. Initially based
on v2 of the multi-parametric toolbox (MPT) [41].

The above pieces provide the means for representing and
processing input to TuLiP. They do not include algorithms
that solve the control design problem. These algorithms form
the core of problem solving. Some of these algorithms have
been implemented within TuLiP, and others separately:

• tulip.abstract: discretization of continuous dy-
namics (Section IV-C),

• tulip.interfaces and tulip.synth: interfaces
to solvers of discrete games (specs in GR(1) or LTL),

• gr1c: solver for GR(1) games [42] (Section IV-A),
implemented in C using the BDD library CUDD [43],

• omega: Python package that implements solving GR(1)
games, compiling first-order logic over bounded inte-
gers [44], [45] (Section IV-A), and interfaces to BDDs
using CUDD via dd [46] (Section IV-B). Structured on
principles and experience from tulip.

Organizationally, we have found that as algorithms are
used more and their APIs solidify, they grow into separate,
reusable packages. TuLiP went through many phases during
its development, and it is still changing. We have found
that making installation as easy as possible is crucial to
encourage people to try new software. TuLiP can run entirely
in Python. Packages in pure Python are easy to install, with
no need to compile hardware-specific code and the associated
complications. However, they can be slower for solving
demanding problems, so an implementation in C or another
performance-oriented language can be well motivated.

We have approached this problem with a dual implemen-
tation: a simpler, more readable, and typically slower pure
Python solving layer (both BDD operations to solve games,
as well as linear programming), and a faster implementation
in C, using glpk [47] for linear programming, and CUDD
for BDDs [43]. For educational, algorithm prototyping, and
software evaluation purposes, the Python implementation

1

2

Goal∀

∃

3

∀

4

Fig. 9: The meaning of controllable predecessors.

suffices. For large, industrial-size problems, the C imple-
mentation can be used. In many cases, the same code
is running, just with a different library underneath. Other
helpful observations were Alan Perlis’ advice to structure
data late and prefer functions [48], and to follow the design
philosophy of PEP20 [49]. Simple is better than complex.

IV. WORKING PRINCIPLES

A. Solving games

Any design problem can be summarized as “We want to
construct a system f , such that for every reasonable behavior
of the world. . . ”. More formally, this can be expressed as
PICK f : ∀x : φ(f , x), which can be solved only if the
formula ∃f : ∀x : φ(f , x) is true [50]. This is the Skolemized
form of the synthesis problem [3] [5, p.18], and is similar
with how control problems are usually phrased by engineers.

The nesting of different quantifiers ∃∀ constitutes al-
ternation, imagined as a game [51], [52]. Alternation can
equivalently be written in a step-by-step form, where f
actuates on the system, then the dynamics x evolves, and this
repeats forever. This iterative description is more amenable
to computation, and leads to algorithms that solve games and
construct winning strategies, as we discuss below.

The example shown in Fig. 9 is a game where we want to
find how to move, in order to successfully reach the Goal .
Let Nodes be the set of nodes in this game. At each disk, we
(∃) pick the next node, and the environment (∀) picks from
boxes. Let us first find from where we can win. Precisely,
from which nodes can we end in Goal , after taking 0 or more
steps? Clearly, any nodes inside Goal are winning. Also, all
nodes from where we can reach Goal within one step are
winning too. But, when can we take a step to reach Goal
from a node?

Suppose we are at node 1. We can step across the edge
⟨1, 4⟩ to reach Goal , so 1 is such a node. At node 2, the
environment moves, but any edge it chooses to traverse leads
to Goal . So, there is a way to ensure that, from nodes 1 and
2, any possible behavior will reach Goal . Unlike nodes 1
and 2, from node 3 the environment moves, and it can avoid
Goal , by remaining at node 3 (self-loop). The reasoning we
just described can be written as
CPrei(u,Goal) ≜
∨ ∧ IsADisk(u)
∧ ∃v ∈ Nodes : v ∈ Goal ∧ IsAnEdge(u, v)

∨ ∧ IsABox (u)
∧ ∀v ∈ Nodes : v ∈ Goal ∨ ¬IsAnEdge(u, v).

(11)

Goal

Attractori(u,Goal , 3) = Attractori(u,Goal , 4) = . . .

{u ∈ Nodes :

{u ∈ Nodes :

{u ∈ Nodes :

{u ∈ Nodes : Attractori(u,Goal , 3)}

Attractori(u,Goal , 0)}

Attractori(u,Goal , 1)}

Attractori(u,Goal , 2)}

Fig. 10: An attractor is the answer to a reachability game.

This is called the controllable predecessor operation, and the
game just described a reachability game [24]. The subscript
i signifies our player. By iterating Eq. (11), we can compute
whether Goal can be reached from some node u in at most
k steps (where k ≥ 0) [53]
Attractori(u,Goal , k) ≜ IF k = 0

THEN u ∈ Goal

ELSE ∨ Attractori(u,Goal , k − 1)
∨ CPrei(u, {w ∈ Nodes :

Attractori(w ,Goal , k − 1)}).

(12)

For k = 0, the Attractori(u,Goal , 0) is u ∈ Goal ,
meaning that u is already in the Goal . For k > 0, the
Attractori(u,Goal , k) is defined recursively: from u , either
we can reach Goal in at most k − 1 steps (the disjunct
Attractori(u,Goal , k−1)), or we can reach some node that
can reach Goal in at most k−1 steps (disjunct CPrei(u, ...)).

When writing a game solver, Eq. (12) is used iteratively
to compute sets of nodes, starting with X0 ≜ {u ∈ Nodes :
Attractori(u,Goal , 0)}. Then, we compute Xk ≜ {u ∈
Nodes : Attractori(u,Goal , k)} for k = 1, 2, Under
certain conditions that are typically satisfied by the games
under study [5], it can be proved that this iteration reaches a
fixpoint Xk+1 = Xk for some finite k ∈ N. In this particular
iteration, the result is a least fixpoint, shown in Fig. 10, and
is the attractor of the Goal nodes.

Dually, we might want to solve a safety game, finding
the states from where we can remain forever within a set of
nodes G , which is computed similarly by slightly differently.
The solution of a GR(1) game is obtained by finding the
solution to a triply nested fixpoint, where the innermost
and outermost iterations compute greatest fixpoints, and the
middle iteration a least fixpoint (see also Fig. 11).

B. Symbolic algorithms using binary decision diagrams

a) Symbolic vs enumerative methods: From Section IV-
A, we see that solving games involves reasoning about
states. This requires a representation of states. A simple

3Writing primed values as arguments to a predicate is incorrect. We do
it only here, to emphasize what variables appear in each predicate.

Fig. 11: Assume-guarantee Controllable predecessors:

When we program a game solver, we need to write
the controllable predecessor CPrei of Eq. (11) for
the specification that we are given in the form of an
assumption, Eq. (5), and a guarantee, Eq. (4) (that
describes an “open system” [20]). For the way that
Fig. 2 combines an assumption with a guarantee, CPres
(s stands for “system”) becomes3

CPres(⟨x , y⟩,Target) ≜ ∃y ′ : ∀x ′ :

∧ Nexts(x , y , y
′)

∧
(
Nexte(x , y , x

′) ⇒ ⟨x ′, y ′⟩ ∈ Target
)
,

(13)

where the system controls variable y and the en-
vironment x . The order that quantifiers are nested
means that the system picks y ′ without know-
ing the exact value of x ′. Also, it can vio-
late Nexts only in some step after Nexte is vi-
olated. This corresponds to [22] from Fig. 2.

⟨x , y⟩ ⟨x , y ′⟩
⟨x ′, y ′⟩

⟨x ′, y ′⟩
¬Nexte(x

, y, x
′)

Nexte(x , y, x ′)

Nexte (x , y, x ′) Target∀x ′

∃y ′ : Nexts(x , y, y ′)

this env step violates Nexte

First, our system picks y ′, and then all x ′ should either
violate Nexte , or lead to the desired Target .

Notice that the Nexte above mentions the values x , y
and x ′. It does not mention the next system values
y ′. This means that we make no assumption as to
whether the environment can react or not to y ′, when
it picks x ′. In other words, we do not rely in the
assumption Nexte on whether the environment will
comprise Moore or Mealy strategies (Fig. 6). From
the perspective of CPres , the environment could have
been a Moore strategy, it just doesn’t matter, because
Nexte is independent of y ′. If, instead, we mentioned y ′

within Nexte , then we would have to ensure that such
a specification faithfully models the physical problem
that we are solving.

and “tangible” representation is to enumerate each state
within computer memory. For example, store 2 floating-point
numbers for the coordinates of a two-dimensional dynamical
system, while integrating its trajectory. In general, the num-
ber of states is exponential in the number of variables. So,
enumerated representations become impractical.

In model checking [54], enumeration can be viable, be-
cause there is only one kind of quantification, typically uni-
versal quantification for proving validity. For problems with
only universal quantification, we can always negate them to
solve a problem with existential quantification. In contrast,
game solving involves alternating quantification (Section IV-
A), so negation doesn’t eliminate universal quantification any
more. Enumeration in the presence of universal quantification
can lead to problems, because of its exhaustive character.

b) Binary decision diagrams: A symbolic data struc-
ture represents in memory sets of states, not individual states.
This enables symbolic methods to scale well, though the
worst-case complexity remains exponential.

The algorithms that we describe here use reduced or-
dered binary decision diagrams (ROBDDs) [55] as symbolic
representation of state sets. For brevity, we will introduce
ROBDDs with a small example, shown in Fig. 12.

0

1

x-4

y-3

True-12

-1

Fig. 12: x ∨ y .

Suppose that we want to represent some
subset of the set D ≜ {0, 1} × {0, 1}
with an ROBDD. We will use the variables
x , y to name elements in this set, so that
⟨x , y⟩ ∈ D . An ROBDD is a directed
acyclic graph, with nodes arranged in lay-
ers called levels. The levels are indexed
and ordered, with level 0 at the top and
level n at the bottom. Each level above

n is associated to a variabe. In this example, n = 2 and
level 0 corresponds to variable x , level 1 to y . The bottom
node represents the values TRUE and FALSE. Each other node
u has exactly two successors: v (low, dashed edge) and w
(high, solid edge). The node named “x-4” is node u = 4, at
level 0. Level 0 is associated to variable x , so to node 4 too.

A node at level j describes a set of assignments to the
variables of levels j ..(n−1). For example, node 4 describes
the assignments ⟨x , y⟩ ∈ {⟨0, 1⟩, ⟨1, 0⟩, ⟨1, 1⟩} = {p ∈
D : p[0] ∨ p[1]}. Given the assignment ⟨x , y⟩ = ⟨0, 1⟩, we
decide whether it belongs to the set represented by node 4 as
follows. Start at the mentioned node, 4. If x is true, follow
the “low” successor (dashed edge to 3), otherwise the “high”
successor (solid edge to 1). If the edge is marked with “-
1” (“complemented”), then negate the final answer. Edges
point only from higher to lower levels. In the assignment
⟨0, 1⟩, x is 0, so we follow the dashed edge to node 3.
Variable y is 1, so we follow the solid edge from node 3
to node 1, obtaining the answer TRUE. So, the assignment
⟨x , y⟩ = ⟨0, 1⟩ is in the ROBDD with node 4 as root. In
contrast, ⟨x , y⟩ = ⟨0, 0⟩ is not, because it leads to node 1
via the complemented edge (dashed) from node 3 to 1, with
answer FALSE (negated TRUE).

BDDs are not a panacea. They, too, suffer from ex-
ponential worst-case complexity. Nevertheless, BDDs do
enable solving very large problems that would otherwise be
unmanageable. The size (number of nodes) of BDDs is what
dominates the efficiency of a symbolic approach. Given m
nodes, there are m(m−1) directed edges possible, so at most
2m(m−1) different directed graphs we can construct. Given n
variables assigned values from {0, 1}, there are 22

n

possible
sets of assignments. Thus, some set of assignments can be
represented only with a BDD of size m = O(

√
2n). This

means that there are sets that have exponential BDD size,
whatever variable order we choose. In fact, this is the case
for almost all sets [56, Thm.7]. Even worse, multiplication
(thus division and modulo too) is an operation that cannot
be represented efficiently with BDDs [57].

In addition, the same set can be represented with different
variable (level) orders. By reordering the levels, we can

0

1

k_0-24

k_1-22

k_1-23

2 a0-5

a2-9

a1-7

a3-11

3

True-1

-1

4

-1

5

-1

6

-1

(a) Good order.

0

1

a0-24

a1-9

a1-11

2 a2-19

a2-22a2-16 a2-26

3 a3-13 a3-17a3-23

a3-27 a3-28

a3-29 a3-30 a3-31

4 k_0-10

-1

True-1

k_0-8

k_1-3

-1-1 -1

k_0-2k_0-6

-1

k_0-4k_0-14

-1 -1 -1

5

-1 -1-1 -1

6

-1

(b) Bad variable order.
Fig. 13: A good variable order places selectors above data.

represent some sets with exponentially smaller BDDs. To
understand what effect the variable order has, it helps to think
of selector and data variables [58, 1, Sec.7.2.3, 7.4.1, 7.5.3].
A simple example is a bit-valued array a[k] with 8 elements.
To represent any bit array of this size, we need 3 bits
k0, k1, k2 to encode k and 8 bits a0..a7 for the element values.
In this example, the index bits ki are control variables, and
the element values are data variables. If ki appear above ai in
the variable order, then the BDD has a small size, as shown
in Fig. 13a. Reversing this order causes a blowup in size, as
in Fig. 13b. The reason is that, as we go from top to bottom,
if we first encounter k , then it “tells” us which ai bit to read
next. In this sense, index k “selects” the data ai to read. In
contrast, if we encounter ai first, then we have to read all
the array, so that when we finally reach k , we can recall the
appropriate value of bit ak .

Operations on BDDs rely on memoization to avoid re-
computing a result that is encountered multiple times during
traversal [59]. A BDD manager takes care of keeping refer-
ence counts for each BDD node, collecting garbage that is
not referenced any more, and invoking reordering of levels
based on some suitable heuristic. A reordering heuristic that
works well is Rudell’s sifting [60]. In practice, a BDD
package operates on BDDs with thousands to millions of
nodes within seconds to minutes.

TuLiP interfaces to both a Python and a C implementation
of BDDs. The package dd [44], [46] contains a pure Python
BDD implementation, as well as Cython [61] bindings to
the C library CUDD [43], with the same API for both. This
allows developing an algorithm in Python, where debugging
is simpler and modifications faster, and choosing whether
to compile CUDD only at deployment, without changing the
implemented algorithm.

To write a game solver that uses BDDs, we need to
initialize a BDD manager, define the variables of interest,
and then call Boolean operators to create bottom-up the
BDDs that represent the actions Nexte and Nexts , and the
other predicates in Eqs. (4) and (5), from the parsed Boolean
formulae. After this preprocessing is done, we can again call
Boolean operators with BDDs as arguments, to iteratively
compute Eq. (11) and thus solve a reachability game, as
described in Section IV-A.

C. Abstraction and low-level controllers

The main synthesis routine in TuLiP solves Problem 1
or its variants with finite transition systems as inputs. In
order to synthesize controllers for a hybrid system using
TuLiP, we construct a finite transition system representation
of the hybrid system. We call this process abstraction.
There are several abstraction techniques developed in the
past decade [62], [63], [64], [65] and some of them are
being integrated in TuLiP. Next, we briefly explain the main
abstraction algorithm implemented in TuLiP, proposed in
[14] and how the transitions in the abstract transition system
can be implemented by a low-level controller that picks the
inputs of the hybrid system.

For the abstraction to be useful, it needs to preserve certain
properties. Recall that we have identified a collection of
continuous propositions associated with the subsets {Xi}ki=1

of interest in the domain X of the hybrid system. The
properties we want the abstraction to preserve are those
related to these propositions.

Let us introduce labeling functions LX ,i ∈ [X → B] for
the hybrid system such that LX ,i ≜ [x ∈ X 7→ (x ∈ Xi)].
Let ai be variable names (propositions) that will be set equal
to (x ∈ Xi) below. The abstraction algorithm aims to find
an abstraction function α ∈ [X → Q] and a set E ⊂ Q ×Q
of transitions such that

(i) α is proposition preserving, that is, for any q ∈ Q
and for any x ∈ α−1[q], the labels match, i.e., for all
variables ai , it is Lai [q] = LX ,i [x],

(ii) ⟨q , q ′⟩ ∈ E only if, for all x1 ∈ α−1[q], there exists
an input sequence ⟨u1, . . . , uN ⟩ ∈ UN such that for all
⟨d1, . . . , dN ⟩ ∈ DN , xN+1 ∈ α−1[q ′], and xi ∈ α−1[q]
for i ∈ 1..N .

Here, the horizon length N is a user-defined parameter that
synchronizes the steps the abstract transition system takes
with N discrete-time steps the hybrid system takes. If there
is an external environment the system interacts with, it is
assumed to remain constant in this horizon.

Roughly speaking, the abstraction function partitions the
state space, where each part is associated with a discrete
state of the transition system. And, the transitions of the
transition system are constructed in a way that for each
transition, there is a continuous control input sequence that
can mimic that transition on the hybrid system. The con-
tinuous control input sequences can be computed as needed
at run-time by solving finite time constrained reachability
problems [14], [15]. A TuLiP controller for a hybrid system
has a two-layered hierarchical structure. We call the software
module computing continuous control inputs by solving the
reachability problem the continuous controller or the low-
level controller. Whereas, the software module resulting from
the game solving is called the discrete controller or the
high-level controller. Fig. 14 demonstrates the partitioning,
abstraction, and evolution of the state of the hybrid system
with the hierarchical controller.

Some variants of condition (ii) are also implemented in
TuLiP. The version defined above is called open-loop as the

control inputs ui are computed once xt is observed. There
is also a closed-loop variant, where, we require:
(ii)* ⟨q , q ′⟩ ∈ E only if for all x1 ∈ α−1[q], there exists

u1 ∈ U , for all d1 ∈ D, . . ., there exists uN ∈ U , for all
dN ∈ D such that xN+1 ∈ α−1[q ′], and xi ∈ α−1[q]
for i ∈ 1..N .

Here, the continuous controller is allowed to measure the
state x at each discrete time step as opposed to the open-
loop case where the state is measured only every other
N discrete time steps [66]. Other variants of condition
(ii) include relaxing the synchronization assumption and
allowing transitions from one part to the other to take up
to N steps instead of exactly N steps.

Finally, let us allude to the computation of the abstraction
function (or equivalently, the partition it induces) and the
transitions. The main idea behind the computation of the par-
tition is the bisimulation algorithm [54], [62]. This algorithm
starts with the coarsest possible partition that satisfies (i), and
incrementally creates new parts by splitting the existing parts
based on reachability relations. A part Pi in the partition is
said to be reachable from another part Pj if for all x1 ∈ Pj ,
there is a control input sequence as in condition (ii) (or its
variants) such that xN ∈ Pi . Let Pi be reachable from a
subset P ′

j of Pj . Then, the part Pj is split into two parts:
P ′
j and Pj \P ′

j . The algorithm stops if no more parts can be
split or the parts in the partition become sufficiently small
[14]. The transitions in the end are also inferred from the
reachability relations. Whether a part Pi is reachable from
another part Pj can be verified using polytopic operations
such as lifting and projection [15].

V. EXAMPLES

A. Simple autonomous vehicle

This section describes a simple example where a controller
is synthesized using TuLiP for a representative hybrid sys-
tem with piecewise affine dynamics. This demonstration is
loosely inspired by the problem of planning based on faults
in the sensor system for “Alice”, the autonomous vehicle
developed by Caltech for the 2004–2007 DARPA Grand
Challenge [67]. The vehicle velocity has an operating range
of X = [0, 20] miles/hr. The vehicle is assumed to have
three driving modes: “Slow/Stop”, “Moderate”, and “Fast”.
Slow/Stop corresponds to the speed range 0–10 miles/hr,
Moderate to 10–15 miles/hr, and Fast to 15–20 miles/hr.

The vehicle is modeled as having the simple piecewise-
affine discrete dynamics of the form

x [t + 1] = aix [t] + biu[t] + cid [t],

where i denotes the driving mode. The constants ⟨ai , bi , ci⟩
have values ⟨1, 1, 1⟩ for the mode “Slow/stop”, ⟨1.3, 2, 1⟩
for “Moderate”, and ⟨1.6, 2.8, 1⟩ for “Fast”. For each time
t > 0 : x [t] ∈ X . Similarly, the control input u[t] ∈ U
and disturbance d [t] ∈ D. Both U and D are bounded
real intervals. The vehicle has multiple sensors (Lidar and
Stereo). It is assumed that a healthy Stereo camera can make
accurate short-range measurements, while a functional Lidar
accurate long-range measurements. Based on sensor health,

X 0

X 1

q = 1

q = 2

q = 0

q = 3 q = 4

q = 5

q = 6

q = 2

q = 0
q = 5

q = 3

q = 4

q = 6

q = 1

Resulting

transition

X

x1

xN+1

x2

x3
F

F
F

F

start at t = 0

destination

t

0 1 2 N

Computation of discrete strategy f , g step and

abstraction α

x1 x2 x3 xN+1

0 = q1 =q2 = q3 =

N − 1

xN

= qN qN+1 = 2

discrete
assumption:

env vars z

reachability that computes u1, ..., uN .

F ≜ Ax + Bu + Ed +K

unchanged

at t = N

abstract

system

Fig. 14: Abstraction of continuous state x to discrete state
q , refinement of partition X0,X1, and concretization of
synthesized discrete controller using finite-horizon control.

the vehicle is required to determine the control action for the
vehicle to transition to a drive-mode (appropriate speed) that
is safe with respect to the current sensor health status. The
vehicle has a sensor that measures the ambient lighting and
provides feedback on whether the vehicle lights should be
turned on or off. The synthesized controller also has to ensure
this requirement. The system specification is the following:

1) Continuously-valued control inputss in U ≜ [−2, 2]
2) Disturbance assumed in D ≜ [−0.01, 0.01]
3) The vehicle is initially at the Stop/Reboot state
4) Initially all sensors are off (or are not functional)
5) The vehicle does not change driving modes, unless

necessary
6) If both long-range and short-range sensing are healthy,

the vehicle must drive fast, unless it loses sensing
7) If short-range sensing is not healthy, the vehicle must

eventually stop until the sensor comes back on
8) The vehicle must always eventually drive in moder-

ate/fast modes
9) Both sensors are always eventually functional

10) If and only if it is dark, the lights must go on.

Index LTL formula of specification

3 init
4 ¬lidon,¬steron
5 (fast ∧ (steron ∧ lidon)) ⇒ fast ′

(slow ∧ (¬steron ∧ ¬lidon)) ⇒ slow ′

(moderate ∧ (steron ∧ ¬lidon)) ⇒ moderate′

6 2((lidon ∧ steron) ⇒ 3(fast U¬(lidon ∧ steron)))
7 2((¬steron) ⇒ 3(init Usteron))
8 23(fast ∨moderate)
9 23lidon , 23steron
10 dark ≡ lights

TABLE I: Specification expressed in LTL.

The inputs that are supplied to TuLiP for solving the
synthesis problem are the system dynamics, the above spec-
ifications expressed as an LTL formula and the bounds on
control inputs and disturbances. The synthesized controller
controls the speed of the vehicle and whether the lights for
the vehicle are on or off. It is worth observing that, if the
assumption no.9 is not satisfied by the environment, then the
system cannot satisfy the requirement no. 8, because it is
unsafe to drive when both sensors are faulty (requirement
no. 7). The set of specifications can be divided into environ-
mental assumptions and system requirements. For writing the
LTL formula, the statements no. 4, 9 form the environmental
assumption part of the formula, and the statements no. 5, 6,
7 and 8 describe the required system behavior.

1) LTL Specification: Let init be a Boolean-valued vari-
able that holds TRUE if the velocity is in the Slow/Stop
mode. Similarly define moderate and fast for the Moderate
and Fast driving modes. steron and lidon are variables
that evaluate to TRUE if the Stereo and Lidar, respectively,
are functional, and FALSE otherwise. Table I translates the
specifications in listed above into LTL.

2) Translation to GR(1): TuLiP accepts these specifica-
tions as liveness and transition (safety) rules for the envi-
ronment and the system, as described in Sections II-A.3
and II-D. Specifications no. 6 and no. 7 as written above
are not in the GR(1) fragment, but can be manipulated by
the introduction of an auxillary variable. Consider specifi-
cation no. 6. An equivalent specification in GR(1) can be
obtained by introducing an auxiliary variable aux [25]. The
variable aux is initialized to TRUE, and the transition rule
governing it is (aux ′ ≡ (fast ∨ (¬(lidon ∧ steron)))) ∨
(aux ∧ ¬(lidon ∧ steron)), in conjunction with 23aux .
The first time that lidon ∧ steron evaluates to TRUE, if
fast evaluates to FALSE, then aux ′ becomes FALSE. aux ′

can become TRUE only if either fast becomes TRUE, or
lidon ∧ steron becomes FALSE. The specification that was
not directly in GR(1) was thus transformed to be expressed
in GR(1) syntax, as a combination of a liveness specification
and a transition rule. The translated specifications however
are not directly equivalent because the specifications above
only ensure 2((lidon ∧ steron) ⇒ 3fast) but specification
no. 5 ensures that (fast U¬(lidon ∧ steron))) is satisfied.
Similarly, no. 7 can also be translated to GR(1) with the
introduction of an auxillary variable. These specifications
are then input to TuLiP as initial, action, and recurrence
conditions for the system and the environment.

Fig. 15: Example of a gridworld.

3) Synthesis with TuLiP: The system dynamics, bounds
on the control input, and the disturbance are specified as
inputs to TuLiP. The polytopes are labelled, and then the
continous part of the state-space is abstracted into a finite-
state transition system Section IV-C, which is then flattened
to temporal logic formulae Section II-B. Discrete synthesis
is then performed with the specification formulae above,
conjoined with the flat formula for the abstracted dynamics.

B. Gridworld with moving obstacle

In this section, we consider the planar motion planning in
an environment of the form shown in Fig. 15, known as a
gridworld. The robot begins at cell I and has to visit the two
goal cells G infinitely often, and avoid collision with walls.
In each time step, the robot can transition to any of its non-
diagonally adjacent cells. The black cells signify walls, The
obstacle moves according to similar rules, but begins at a
different initial location, and has two different goals to visit
infinitely often. The robot should visit its goals and ensure
that it never collides with the moving obstacle. We synthesize
a strategy (controller) for the robot that takes into account all
possible moves of the obstacle, expressed as an assumption
on its behavior.

The dynamics for this system are specified through LTL
specifications. We consider a 5 × 5 grid. We begin by
specifying the integer values the variables can take. Let Xr

be the value the current row of the obstacle and Xc the
current column. Similarly, Yr and Yc for the robot for which
the motion plan is being synthesized. Xr ,Xc ,Yr ,Yc can
take integer values in the range 0− 4.

We begin by specifying the initial pose for the robot and
the obstacle. Let ⟨rsys , csys⟩ be the initial pose of the robot
and ⟨robs , cobs⟩ be that for the obstacle. So, the assumed
initial condition is Init ≜ Yr = rsys ∧ Yc = csys ∧ Xr =
robs ∧ Xc = cobs . Subsequently, the possible transitions are
specified, for the obstacle:
i=4∧
i=0

j=4∧
j=0

(
∧ Xr = i
∧ Xc = j

⇒
k=r i

max∨
k=r i

min

l=cj
max∨

l=cj
min,|k−i|+|l−j |≤1

∧ Xr = k
∧ Xc = l

)
where cjmax = min(4, j + 1), cjmin = max(0, j − 1), r imin =
max(0, i − 1) and r imax = min(4, i + 1). This ensures that
the obstacle transitions from a cell to itself, or to any of the

non-diagonal adjacent cells. A similar formula is defined for
the system as well. Let Q be the set of cells, denoted by an
ordered pair of the form ⟨row , column⟩. that form the walls
in the grid. Transition rules with regard to non-collision for
the obstacle with the wall are specified as∧

⟨i,j ⟩∈Q

2¬(Xr = i ∧Xc = j)

and form part of the assumption on the environment. Sim-
ilarly, rules prohibiting collision of the robot with the wall
are also specified. Let G be the set of goal cells for the
environment that it must visit infinited often. The recurrence
goals for the environment’s behavior are encoded as∧

⟨i,j ⟩∈G

23(Xr = i ∧Xc = j).

In a similar manner, the recurrence goals corresponding
to the system are also specified in temporal logic. As an
additional set of requirements for the system, we add non-
collision with respect to the moving obstacle, i.e., the system
at any ime must not occupy the same cell as the obstacle.
This is expressed in temporal logic with the formula
i=4∧
i=0

j=4∧
j=0

2
(
(Xr = i ∧Xc = j) ⇒ ¬((Yr = i) ∧ (Yc = j))

)
This specification is in the GR(1) fragment, and thus syn-
thesis can be performed with a solver from those available
in TuLiP e.g., gr1c which accepts as input the GR(1)
specification assembled from the above formulae.

VI. CONCLUSIONS

This tutorial presented the control design approaches that
are possible by using the tools in the tulip toolbox [9],
[15]. Several tools have been developed for the verification
and synthesis of systems [68]. Work more relevant to that
presented here is [69], [70]. In the future, we plan to integrate
into the toolbox algorithms for decomposing properties to
create contracts [22], and more expressive logics.

Acknowledgments: This work was supported by STAR-
net, a Semiconductor Research Corporation program, spon-
sored by MARCO and DARPA. NO was supported in part by
NSF grants CNS-1446298 and ECCS-1553873, and DARPA
grant N66001-14-1-4045.

REFERENCES

[1] L. Lamport, “Who builds a house without drawing blueprints?” CACM,
vol. 58, no. 4, pp. 38–41, 2015.

[2] J. C. Willems, “The behavioral approach to open and interconnected
systems,” IEEE CSM, pp. 46–99, Dec 2007.

[3] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
POPL, 1989, pp. 179–190.

[4] D. Kroening and O. Strichman, Decision procedures. Springer, 2008.
[5] K. Schneider, Verification of reactive systems: formal methods and

algorithms. Springer, 2004.
[6] A. Pnueli, “The temporal logic of programs,” in FOCS, 1977, pp.

46–57.
[7] M. S. Branicky, “Studies in hybrid systems: Modeling, analysis, and

control,” Ph.D. dissertation, Massachusetts Institute of Technology,
June 1995.

[8] T. A. Henzinger, “The theory of hybrid automata,” in Proc. of the
11th Annual Symposium on Logic in Computer Science (LICS). IEEE
Computer Society Press, 1996, pp. 278–292.

[9] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“TuLiP: A software toolbox for receding horizon temporal logic
planning,” in HSCC, 2011, pp. 313–314.

[10] S. M. LaValle, Planning Algorithms. Cambridge Univ. Press, 2006.
[11] N. Francez and A. Pnueli, “A proof method for cyclic programs,” Acta

Informatica, vol. 9, pp. 133–157, 1978.
[12] L. Lamport, “What good is temporal logic?” in Information Process-

ing, vol. 83, 1983, pp. 657–668.
[13] ——, Specifying Systems. Addison-Wesley, 2002.
[14] T. Wongpiromsarn, “Formal methods for design and verification

of embedded control systems: Application to an autonomous
vehicle,” Ph.D. dissertation, California Institute of Technology,
2010. [Online]. Available: http://resolver.caltech.edu/CaltechTHESIS:
05272010-153304667

[15] P. Nilsson, N. Ozay, U. Topcu, and R. M. Murray, “Temporal logic
control of switched affine systems with an application in fuel balanc-
ing,” in ACC, June 2012, pp. 5302–5309.

[16] S. C. Livingston, R. M. Murray, and J. W. Burdick, “Backtracking
temporal logic synthesis for uncertain environments,” in ICRA, 2012,
pp. 5163–5170.

[17] L. Lamport, “Temporal logic: The lesser of three evils,” Amir
Pnueli Memorial Symposium, NYU, May 2010. [Online]. Available:
http://www.cs.nyu.edu/acsys/pnueli/

[18] N. Piterman and A. Pnueli, “Faster solutions of Rabin and Streett
games,” in LICS, 2006, pp. 275–284.

[19] M. Abadi and L. Lamport, “Conjoining specifications,” TOPLAS,
vol. 17, no. 3, pp. 507–535, 1995.

[20] ——, “Open systems in TLA,” in PODC, 1994, pp. 81–90.
[21] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar,

“Synthesis of reacive(1) designs,” JCSS, vol. 78, no. 3, pp. 911–938,
2012.

[22] I. Filippidis and R. M. Murray, “Symbolic construction of GR(1)
contracts for systems with full information,” in ACC, 2016, pp. 782–
789.

[23] L. Lamport, “How to write a long formula,” Formal aspects of
computing, vol. 6, pp. 580–584, 1994.

[24] W. Thomas, “On the synthesis of strategies in infinite games,” in
STACS, 1995, pp. 1–13.

[25] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) de-
signs,” in VMCAI, 2006, pp. 364–380.

[26] Y. Kesten, N. Piterman, and A. Pnueli, “Bridging the gap between
fair simulation and trace inclusion,” Information and Computation,
vol. 200, no. 1, pp. 35–61, 2005.

[27] A. Pnueli and U. Klein, “Synthesis of programs from temporal
property specifications,” in MEMOCODE, 2009, pp. 1–7.

[28] W. Thomas and H. Lescow, “Logical specifications of infinite com-
putations,” in A decade of concurrency reflections and perspectives,
1993, pp. 583–621.

[29] L. Lamport, “Concurrency, compositionality, and correctness,” 2010,
ch. Computer Science and State Machines, pp. 60–65.

[30] ——, “TLA in pictures,” TSE, vol. 21, no. 9, pp. 768–775, 1995.
[31] I. Filippidis and R. M. Murray, “Formalizing synthesis in TLA+,”

Caltech, Tech. Rep. CaltechCDSTR:2016.004, 2016. [Online].
Available: http://resolver.caltech.edu/CaltechCDSTR:2016.004

[32] L. Lamport, “Miscellany,” 21 April 1991, note sent to TLA mailing
list. [Online]. Available: http://lamport.org/tla/notes/91-04-21.txt

[33] E. F. Moore, “Gedanken-experiments on sequential machines,” Au-
tomata studies, vol. 34, pp. 129–153, 1956.

[34] G. H. Mealy, “A method for synthesizing sequential circuits,” Bell
System Technical Journal, vol. 34, no. 5, pp. 1045–1079, 1955.

[35] L. de Alfaro, T. Henzinger, and F. Y. Mang, “The control of syn-
chronous systems,” in CONCUR, 2000, pp. 458–473.

[36] M. Abadi and L. Lamport, “The existence of refinement mappings,”
TCS, vol. 82, no. 2, pp. 253–284, 1991.

[37] L. Lamport, “Composition: A way to make proofs harder,” in Int.
Symp. on Compositionality, ser. COMPOS, 1998, pp. 402–423.

[38] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring net-
work structure, dynamics, and function using NetworkX,” in SciPy,
Pasadena, CA USA, 2008, pp. 11–15.

[39] “tulip: The temporal logic planning toolbox (Python package),”
2010–2016, v1.3.0. [Online]. Available: http://tulip-control.org

[40] “polytope: Geometric operations on polytopes of any dimension
(Python package),” 2010–2016. [Online]. Available: https://github.
com/tulip-control/polytope

[41] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in ECC, 2013, pp. 502–510. [Online]. Available:
http://people.ee.ethz.ch/∼mpt/3/

[42] S. C. Livingston, “Incremental control synthesis for robotics in
the presence of temporal logic specifications,” Ph.D. dissertation,
California Institute of Technology, 2016. [Online]. Available:
http://resolver.caltech.edu/CaltechTHESIS:12312015-131513787

[43] F. Somenzi, “CUDD: CU Decision Diagram package - v2.5.1,” Col-
orado University at Boulder, 2015.

[44] I. Filippidis, R. M. Murray, and G. J. Holzmann, “A multi-paradigm
language for reactive synthesis,” in SYNT’15, ser. EPTCS, vol. 202,
2016, pp. 73–97.

[45] “omega: Symbolic algorithms for solving games of infinite duration
(Python package).” [Online]. Available: https://github.com/johnyf/
omega

[46] “dd: Decision diagrams (Python package).” [Online]. Available:
https://github.com/johnyf/dd

[47] “GNU Linear programming kit, version 4.60.” [Online]. Available:
http://www.gnu.org/software/glpk/glpk.html

[48] A. J. Perlis, “Special feature: Epigrams on programming,” ACM
SIGPLAN Notices, vol. 17, no. 9, pp. 7–13, 1982.

[49] T. Peters, “PEP20: The Zen of Python,” Python Enhancement Proposal,
2004. [Online]. Available: https://www.python.org/dev/peps/pep-0020/

[50] L. Lamport, “How to write a 21st century proof,” Journal of fixed
point theory and applications, vol. 11, no. 1, pp. 43–63, 2012.

[51] G. L. Peterson and J. H. Reif, “Multiple-person alternation,” in FOCS,
1979, pp. 348–363.

[52] I. Walukiewicz, “A landscape with games in the background,” LICS,
pp. 356–366, 2004.

[53] W. Thomas, “Solution of Church’s problem: A tutorial,” New Perspec-
tives on Games and interaction, vol. 5, 2008.

[54] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT, 2008.
[55] R. E. Bryant, “Graph-based algorithms for boolean function manipu-

lation,” TC, vol. 35, no. 8, pp. 677–691, 1986.
[56] C. E. Shannon, “The synthesis of two-terminal switching circuits,”

Bell System Technical Journal, vol. 28, no. 1, pp. 59–98, 1949.
[57] R. E. Bryant, “On the complexity of vlsi implementations and graph

representations of boolean functions with application to integer mul-
tiplication,” TOC, vol. 40, no. 2, pp. 205–213, 1991.

[58] D. L. Beatty, “A methodology for formal hardware verification, with
application to microprocessors,” Ph.D. dissertation, CMU, 1993.

[59] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of a bdd package,” in DAC, 1990, pp. 40–45.

[60] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” in ICCAD, 1993, pp. 42–47.

[61] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Seljebotn, and
K. Smith, “Cython: The best of both worlds,” Computing in Science
and Engineering, vol. 13, no. 2, pp. 31–39, 2011.

[62] P. Tabuada and G. J. Pappas, “Linear time logic control of discrete-
time linear systems,” TAC, vol. 51, no. 12, pp. 1862–1877, 2006.

[63] P. Tabuada, Verification and control of hybrid systems: a symbolic
approach. Springer, 2009.

[64] M. Kloetzer and C. Belta, “A fully automated framework for control
of linear systems from temporal logic specifications,” TAC, vol. 53,
no. 1, pp. 287–297, 2008.

[65] N. Ozay, J. Liu, P. Prabhakar, and R. M. Murray, “Computing
augmented finite transition systems to synthesize switching protocols
for polynomial switched systems,” in ACC, 2013, pp. 6237–6244.

[66] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for linear
and hybrid systems, 19 Oct 2015.

[67] J. W. Burdick, N. duToit, A. Howard, C. Looman, J. Ma, R. M. Murray,
and T. Wongpiromsarn, “Sensing, navigation and reasoning technolo-
gies for the DARPA Urban Challenge,” DARPA Urban Challenge Final
Report, 2007.

[68] I. Filippidis and contributors. (2013) List of verification and synthesis
tools. [Online]. Available: https://github.com/johnyf/tool lists/blob/
master/verification synthesis.md

[69] C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting
with language, temporal logic and robot control,” in IROS, 2010, pp.
1988–1993. [Online]. Available: https://github.com/VerifiableRobotics/
LTLMoP

[70] M. Mazo Jr., A. Davitian, and P. Tabuada, “PESSOA: A tool for
embedded controller synthesis,” in CAV, 2010, pp. 566–569. [Online].

Available: http://www.cyphylab.ee.ucla.edu/pessoa/

