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Abstract— Learning how to effectively control unknown dy-
namical systems from data is crucial for intelligent autonomous
systems. This task becomes a significant challenge when the
underlying dynamics are changing with time. Motivated by
this challenge, this paper considers the problem of controlling
an unknown Markov jump linear system (MJS) to optimize a
quadratic objective in a data-driven way. By taking a model-
based perspective, we consider identification-based adaptive
control for MJS. We first provide a system identification
algorithm for MJS to learn the dynamics in each mode as
well as the Markov transition matrix, underlying the evolution
of the mode switches, from a single trajectory of the system
states, inputs, and modes. Through mixing-time arguments,
sample complexity of this algorithm is shown to be O(1/

√
T ).

We then propose an adaptive control scheme that performs
system identification together with certainty equivalent control
to adapt the controllers in an episodic fashion. Combining our
sample complexity results with recent perturbation results for
certainty equivalent control, we prove that when the episode
lengths are appropriately chosen, the proposed adaptive control
scheme achieves O(

√
T ) regret. Our proof strategy introduces

innovations to handle Markovian jumps and a weaker notion
of stability common in MJSs. Our analysis provides insights
into system theoretic quantities that affect learning accuracy
and control performance. Numerical simulations are presented
to further reinforce these insights.

I. INTRODUCTION

A canonical problem at the intersection of control and
machine learning is that of adaptive control of an unknown
dynamical system. An intelligent autonomous system is
likely to encounter such a task; from an observation of the
inputs and outputs, it needs to both learn and effectively
control the dynamics. A commonly used control paradigm
is the Linear Quadratic Regulator (LQR), which is theoreti-
cally well understood when system dynamics are linear and
known. LQR also provides an interesting benchmark, when
system dynamics are unknown, for reinforcement learning
(RL) with continuous state and action spaces and for adaptive
control [3], [4], [5], [6], [7], [8], [9].

LQR is also generalized to Markov jump linear systems
(MJSs) and well understood when system dynamics are
known [10], [11]. However, in practice, it is not always
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possible to have a perfect knowledge of the system dy-
namics and the Markov transition matrix. For instance, a
Mars rover optimally exploring an unknown heterogeneous
terrain, optimal solar power generation on a cloudy day, or
controlling investments in financial markets may be modeled
as MJS-LQR problems with unknown system dynamics [12],
[13], [14], [15], [16]. Earlier works have aimed at analyzing
the asymptotic properties (i.e., stability) of adaptive con-
trollers for unknown MJSs both in continuous-time [17] and
discrete-time [18] settings. For MJSs with independent mode
switching, a.k.a. stochastic jump systems, when only the
mode transition distribution is unknown, recent work studied
data-driven stability verification [19] and stabilization [20]
with non-asymptotic guarantees. However, it is difficult to
generalize their work to more general MJSs or cases when
the mode dynamics is also unknown. There is also recent
work on understanding the optimization landscape of MJS-
LQR problem [21], which is crucial for model-free learning
algorithms. However, despite the practical importance of
MJSs, non-asymptotic sample complexity results and regret
analysis for MJSs are lacking. The high-level challenge here
is the hybrid nature of the problem that requires consideration
of both the system dynamics and the underlying Markov
transition matrix. A related challenge is that, typically, the
stability of MJS is understood only in the mean-square sense.
This more relaxed notion of mean-square stability presents
major challenges in learning, controlling, and statistical anal-
ysis, which makes statistical tools developed in recent works
for linear time-invariant (LTI) systems (e.g., [6], [7], [8], [9])
insufficient due to potentially heavy tailed state distributions.
Contributions: In this paper, we provide the first statisti-
cal system identification and regret guarantees for jointly
learning and controlling Markov jump linear systems using
finitely many samples from a single trajectory while assum-
ing only mean-square stability. Importantly, our guarantees
are optimal in the trajectory length T . Specifically, our
contributions are as follows1:

• System identification: For an MJS with s modes, the
system dynamics involve a Markov transition matrix
T ∈ Rs×s and s state-input matrix pairs (Ai,Bi)

s
i=1.

We provide an algorithm (Alg. 1) to estimate these
dynamics with the error rate O((n+ p) log(T )

√
s/T ),

where n and p are the state and input dimensions
respectively, and the O(1/

√
T ) dependence on the

trajectory length T is optimal. This constitutes a non-

1orders of magnitude here are up to polylogarithmic factors
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TABLE I
COMPARISON WITH PRIOR WORKS IN THE LQR SETTING.

Model Reference Regret Comp. Complexity. Cost Sys. Requirement.

LTI

[3]
√
T Exponential Strongly Convex Controllable

[22]
√
T Exponential Convex Controllable

[23] (one dim. systems)
√
T Polynomial Strongly Convex Stabilizable

[24] T 2/3 Polynomial Convex Stabilizable
[9]

√
T Polynomial Strongly Convex Controllable

[25]
√
T Polynomial Strongly Convex Strongly Stabilizable

[7], [26]
√
T Polynomial Strongly Convex Stabilizable

MJS Ours s2
√
T Polynomial Strongly Convex MSS

trivial extension of the recent sample complexity results
for identification of LTI systems (see, e.g., [6], [27],
[28]) to the MJS setting by introducing a subsampling
and truncation procedure to control the independence
and tail distribution of the states, required due to the
weaker notion of stability and the interaction between
the mixing time of the Markov chain and that of the
underlying state dynamics.

• O(
√
T )-regret bound: We employ our system identifi-

cation guarantees for the MJS-LQR. When the system
dynamics are unknown, we show that the certainty-
equivalent adaptive MJS-LQR Algorithm (Alg. 2)
achieves a regret bound of O(

√
T ). Importantly, this

coincides with the optimal regret bounds for the LTI
LQR problem (see Table I).

II. PRELIMINARIES AND PROBLEM SETUP

Notations: We use boldface uppercase (lowercase) let-
ters to denote matrices (vectors). For a matrix V,
ρ(V), σ(V), λmin(V) denote its spectral radius, smallest
singular value and smallest eigenvalue respectively. We use
∥ · ∥ to denote the Euclidean norm of vectors as well as the
spectral norm of matrices. Similarly, we use ∥ · ∥1 to denote
the ℓ1-norm of a matrix/vector. The Kronecker product of
two matrices M and N is denoted as M⊗N. V1:s denotes
a set of s matrices {Vi}si=1 of same dimensions. We define
[s] := {1, 2, . . . , s} and ∥V1:s∥ := maxi∈[s] ∥Vi∥. The i-th
row or column of a matrix M is denoted by [M]i,: or [M]:,i
respectively. Orders of magnitude notation Õ(·) hides log( 1δ )
or log2( 1δ ) terms.

A. Markov Jump Linear Systems

In this paper we consider the data-driven control of MJSs
which are governed by the following state equation,

xt+1 = Aω(t)xt +Bω(t)ut +wt s.t.
ω(t) ∼ Markov Chain(T),

(1)

where xt ∈ Rn, ut ∈ Rp and wt ∈ Rn are the state, input,
and process noise of the MJS at time t with {wt}∞t=0

i.i.d.∼
N (0, σ2

wIn). There are s modes in total, and the dynamics
of mode i is given by the state matrix Ai and input matrix
Bi. The active mode at time t is indexed by ω(t) ∈ [s].
Throughout, we assume the states xt and the modes ω(t)
can be observed at time t. The mode switching sequence

{ω(t)}∞t=0 follows a Markov chain with transition matrix
T ∈ Rs×s

+ such that for all t ≥ 0, the ij-th element of
T denotes the conditional probability [T]ij := P

(
ω(t +

1) = j | ω(t) = i
)
, ∀ i, j ∈ [s]. Throughout, we

assume the initial state x0, the mode switching sequence
{ω(t)}∞t=0, and the noise {wt}∞t=0 are mutually independent.
We use MJS(A1:s,B1:s,T) to refer to an MJS with state
equation (1), parameterized by (A1:s,B1:s,T).

For mode-dependent state-feedback controller K1:s that
yields the input ut=Kω(t)xt, we use Li:=Ai + BiKi to
denote the closed-loop state matrix for mode i. We use
xt+1=Lω(t)xt to denote the noise-free autonomous MJS,
either open-loop (Li=Ai) or closed-loop (Li=Ai +BiKi).
Due to the randomness in {ω(t)}∞t=0, it is common to
consider the stability of MJS in the mean-square sense which
is defined as follows.

Definition 1 (Mean-square stability [11]). We say MJS in
(1) with ut = 0 is mean-square stable (MSS) if there exists
x∞,Σ∞ such that for any initial state x0 and mode ω(0),
as t→∞, we have

∥E[xt]− x∞∥ → 0, ∥E[xtx
⊺
t ]−Σ∞∥ → 0, (2)

where the expectation is over the Markovian mode switching
sequence {ω(t)}∞t=0, the noise {wt}∞t=0 and the initial state
x0. In the noise-free case (wt = 0), we have x∞ = 0,
Σ∞ = 0. We say MJS in (1) with wt=0 is (mean-square) sta-
bilizable if there exists mode-dependent controller K1:s such
that the closed-loop MJS xt+1 = (Aω(t)+Bω(t)Kω(t))xt is
MSS. We call such K1:s a stabilizing controller.

The MSS of a noise-free autonomous MJS is related to the
spectral radius of an augmented state matrix L̃ ∈ Rsn2xsn2

with ij-th n2×n2 block given by [L̃]ij := [T]jiLj ⊗ Lj .
As discussed in [11, Theorem 3.9], L̃ can be viewed as
the mapping from E[xtx

⊺
t ] to E[xt+1x

⊺
t+1], thus a noise-free

autonomous MJS is MSS if and only if ρ(L̃) < 1.
The analysis of this work highly depends on certain “mix-

ing” of the MJS – the distributions of both state xt and mode
ω(t) can converge close to some stationary distributions
within finite time, which is guaranteed by the following
assumption.

Assumption A1. The MJS in (1) has an ergodic Markov
chain and is mean-square stabilizable.



Ergodicity guarantees that the distribution of ω(t) con-
verges to a unique strictly positive stationary distribu-
tion [29, Theorem 4.3.5]. Throughout, we let π∞ denote
the stationary distribution of T and πmin:=mini π∞(i).
We further define the mixing time [30] of T as
tMC:= inf

{
t ∈ N : maxi∈[s] ∥([Tt]i,:)

⊺ − π∞∥1 ≤ 0.5
}

, to
quantify its convergence rate. In our analysis, ergodicity and
tMC ensures that the MJS trajectory has enough “visits” to
every mode i, thus providing us enough data to learn Ai,
Bi and [T]i,:. On the other hand, stability (or stabilizability)
characterized by the spectral radius of L̃ guarantees the
convergence/mixing of xt, which allows us to obtain weakly
dependent samples by properly sub-sampling the MJS tra-
jectory, upon which the sample complexity of learning the
matrices A1:s and B1:s can be established.

B. Problem Formulation
In this work we consider two major problems under the

MJS setting: Data-driven system identification and adaptive
control, with the former being the core part of the latter.

(A) System Identification. This problem seeks to estimate
unknown system dynamics from data, i.e. from input-state
trajectory, when one has the flexibility to design the inputs
so that the collected data has nice statistical properties. In
the MJS setting, one needs to estimate both the state/input
matrices A1:s,B1:s for every mode as well as the Markov
transition matrix T. In this work, we seek to estimate the
MJS dynamics using a single trajectory of states, inputs and
mode observations {xt,ut, ω(t)}Tt=0 and provide finite sam-
ple guarantees. As mentioned earlier, MJS presents unique
statistical analysis challenges due to Markovian jumps and
weaker notion of stability. Section III presents our system
identification guarantees overcoming these challenges. These
guarantees are further integrated into model-based control for
MJS-LQR in Section IV.

(B) Online Linear Quadratic Regulator. In this paper,
we consider the following finite-horizon Markov jump sys-
tem linear quadratic regulator (MJS-LQR) problem:

inf
u0:T

J(u0:T ) :=

T∑
t=0

E
[
x
⊺
tQω(t)xt+u

⊺
tRω(t)ut

]
,

s.t. xt, ω(t) ∼ MJS(A1:s,B1:s,T).

(3)

Here, the goal is to design control inputs for the MJS dy-
namics (1) to minimize the expected quadratic cost function
composed of cost matrices Q1:s and R1:s that satisfy the
following assumption.

Assumption A2. For all i ∈ [s], Ri ≻ 0,Qi ≻ 0.

Assumptions A1 and A2 together guarantee the solvability
of MJS-LQR when the dynamics are known [11, Corol-
lary A.21]. In the remaining of the paper, we use MJS-
LQR(A1:s,B1:s,T,Q1:s,R1:s) to denote MJS-LQR prob-
lem (3) composed of MJS(A1:s,B1:s,T) and cost matrices
Q1:s,R1:s.

Recall that, we assume the states xt and the modes
ω(t) can be observed for all t ≥ 0. With these obser-
vations, instead of a fixed and open-loop input sequence,

Algorithm 1: MJS-SYSID
Input: Stabilizing controller K1:s; process and

exploration noise variances σ2
w and σ2

z; trajectory
{xt, zt, ω(t)}Tt=0; control input ut=Kω(t)xt+zt with
zt ∼ N (0, σ2

zIp); data clipping thresholds cx, cz;
sub-sampling factor Csub.

Set sub-sampling period and indices
L = Csub log(T ), τk = kL, ∀k = 1, 2, . . . , ⌊T/L⌋

Estimate A1:s,B1:s: for all modes i ∈ [s] do:
Si = {τk

∣∣ ω(τk) = i,

∥xτk∥ ≤ cxσw

√
log(T ), ∥zτk∥ ≤ czσz}

Θ̂1,i, Θ̂2,i =
argmin
Θ1,Θ2

∑
k∈Si

∥xk+1 −Θ1xk/σw −Θ2zk/σz∥2

B̂i = Θ̂2,i/σz, Âi = Θ̂1,i/σw − B̂iKi

Estimate T:

[T̂]ji =
∑⌊T/L⌋

k=1 1{ω(τk)=i,ω(τk−1)=j}∑⌊T/L⌋
k=1 1{ω(τk−1)=j}

Output: Â1:s, B̂1:s, T̂

one can design closed-loop policies that generate real-time
control inputs based on the current observations, e.g. mode-
dependent state-feedback controllers. When the dynamics
A1:s,B1:s,T of the MJS are known, one can solve for
the optimal controllers recursively via coupled discrete-time
algebraic Riccati equations [11]. In this work, we assume
the dynamics are unknown, and only the design parameters
Q1:s and R1:s are known. Control schemes in this scenario
are typically referred to as adaptive control, which usually
involves procedures of learning, either the dynamics or
directly the controllers. Adaptive control suffers additional
costs as (i) the lack of the exact knowledge of the system
and (ii) the exploration-exploitation trade-off – the necessity
to sacrifice short-term input optimality to boost learning, so
that overall long-term optimality can be improved.

Because of this, to evaluate the performance of an adaptive
scheme, one is interested in the notion of regret – how much
more cost it will incur if one could have applied the optimal
controllers? In our setting, we compare the resulting cost
against the optimal cost T · J⋆, where J⋆ is the optimal
infinite-horizon average cost

J⋆ := lim sup
T→∞

1

T
inf
u0:T

J(u0:T ), (4)

i.e., if one applies the optimal controller for infinitely long,
how much cost one would get on average for each single time
step. Compared to the regret analysis of standard adaptive
LQR problem [24], in MJS-LQR setting, the cost analysis
requires additional consideration of Markov chain mixing,
which is addressed in this paper.

III. SYSTEM IDENTIFICATION FOR MJS

Our MJS identification procedure is given in Algorithm 1.
We assume one has access to a stabilizing controller K1:s,



which is a standard assumption in data-driven control [22],
[23], [24], [25], [26] for LTI systems. Note that, if the open-
loop MJS is already MSS, then one can simply set K1:s = 0
and carry out MJS identification. Given an MJS trajectory
{xt, zt, ω(t)}Tt=0 obtained using the input ut = Kω(t)xt+zt,
where zt ∼ N (0, σ2

zIp) is the excitation for exploration,
we first subsample (index τk) it with a sampling period
L = O(log(T )). This will make sure the samples are only
weakly dependent, conditioned on the mode observation.
We then further subsample the acquired sub-trajectory for
bounded states and inputs. This is required because of MSS,
which can at most guarantee that the states are bounded
in expectation. Two rounds of sampling provides samples
with manageable distributional properties and weak temporal
dependence. After appropriate scaling, we regress over these
samples to obtain the estimates Â1:s, B̂1:s. Lastly, using the
empirical frequency of observed modes, we estimate T̂.

The following theorem gives our main results on learning
the dynamics of an unknown MJS from finite samples
obtained from a single trajectory. The complete proof is
provided in [1].

Theorem 1 (Identification of MJS). Suppose we run Algo-
rithm 1 with cx = O(

√
n) and cz = O(√p). Let ρ = ρ(L̃),

where L̃ is the augmented state matrix of the closed-loop
MJS defined in Sec. II-A. Suppose the sub-sampling factor
Csub ≥ O(tMC/(1 − ρ)) and the trajectory length T ≥
Õ(Csub

√
s(n+ p)/πmin). Then, under Assumption A1, with

probability at least 1− δ, for all i ∈ [s], we have

∥Âi −Ai∥,
∥B̂i −Bi∥

≤ Õ
( (σz + σw)

σz

√
s(n+ p) log(T )

πmin

√
T

)
,

∥T̂−T∥∞ ≤ Õ

(
1

πmin

√
log(T )

T

)
.

(5)

The log(T )/
√
T dependency on trajectory length T in our

system identification result achieves near-optimal statistical
error rate compared with, for example, the 1/

√
N rate for

LTI identifications using N i.i.d. trajectories [6]. The linear
dependency on n of the error bound can potentially be
improved to

√
n. Note that, πmin dictates the trajectory

fraction of the least-frequent mode, thus, in the result π−1
min

multiplier is unavoidable.

Proof outline for Theorem 1. We omit the discussion on T̂
as its analysis is mainly based on [31]. For Âi and B̂i,
in Algorithm 1, we know Θ̂1,i = σw(Âi + B̂iKi) and
Θ̂2,i = σzB̂i. Let Θ̂i := [Θ̂1,i Θ̂2,i] and Θi := [σw(Ai +
BiKi) σzBi]. Thus, to bound ∥Âi −Ai∥ and ∥B̂i −Bi∥,
it suffices to bound ∥Θ̂i −Θi∥, which is outlined below.

For mode i ∈ [s] and all k ∈ Si. Let hk :=
[ 1
σw

x⊺
k

1
σz
z⊺k]

⊺ denote the the regressor used for computing
Âi and B̂i. Then, Alg. 1 solves the following least-squares
problem: Θ̂

⊺

i = argminΘi

1
2|Si|∥Yi −HiΘ

⊺
i ∥2F , where Yi

has {x⊺
k+1}k∈Si

in its rows and Hi has {h⊺
k}k∈Si

in its
rows. Similarly, define Wi with {w⊺

k}k∈Si in its rows.
Then the estimation error of the least-squares estimator

Θ̂
⊺

i = (H⊺
i Hi)

−1H⊺
i Yi is given by: ∥Θ̂i −Θi∥ ≤=

∥H⊺
i Wi∥/λmin(H

⊺
i Hi). Since Hi has non-i.i.d. rows, it is

therefore not straightforward to upper/lower bound the terms
∥H⊺

i Wi∥ and λmin(H
⊺
i Hi) respectively. To resolve this

issue, we rely on MSS and use perturbation-based techniques
to indirectly bound these terms. To proceed, for each state
xt (t ≥ L), we define its fictional proxy x̄t, by resetting
xt−L = 0 but preserving the mode switching sequence ω(τ),
the excitation zτ and the noise wτ from t− L to t− 1. We
refer to this as unrolling xt until time t − L, and we call
the obtained x̄t as the L-truncated state at time t. Note that
one can view x̄t as the zero-state response starting from time
t−L, and xt− x̄t as the zero-input response. For the latter,
we can show that ∥xt − x̄t∥ ≤ O(σw

√
ns log(T )). Our

analysis involves truncating the bounded states {xk}k∈Si

to obtain the truncated states {x̄k}k∈Si
. Let h̄k :=

[ 1
σw

x̄⊺
k

1
σz
z⊺k]

⊺ and H̄i has {h̄k}k∈Si
in its rows. Then,

we have ∥H⊺
i Wi∥ ≤ ∥H̄⊺

i Wi∥ + ∥H⊺
i Wi − H̄⊺

i Wi∥
and λmin(H

⊺
i Hi) ≥ λmin(H̄

⊺
i H̄i) − ∥H⊺

i Hi − H̄⊺
i H̄i∥. In

order to bound ∥H⊺
i Wi∥ and λmin(H

⊺
i Hi), it thus suf-

fices to upper bound ∥H̄⊺
i Wi∥, ∥H⊺

i Wi − H̄⊺
i Wi∥ and

∥H⊺
i Hi − H̄⊺

i H̄i∥ and lower bound λmin(H̄
⊺
i H̄i).

Upper bounding ∥H̄T
i Wi∥: By definition of Si, for all

k ∈ Si, we have ∥xk∥ ≤ O(σw

√
ns log(T )), which further

implies ∥x̄k∥ ≤ ∥xk∥ + ∥xk − x̄k∥ ≤ O(σw

√
ns log(T )).

Combining this with ∥zk∥ ≤ O(σz
√
p), we have that

∥h̄k∥ ≤ O(
√

s(n+ p) log(T )). This implies ∥H̄i∥ ≤
∥H̄i∥F ≤ O(

√
|Si|s(n+ p) log(T )) ≤ O(

√
Ts(n+ p)). To

proceed, let H̄i has singular value decomposition UΣVT

with ∥Σ∥ ≤ O(
√
Ts(n+ p)). Since Wi has i.i.d. Gaus-

sian entries, UTWi ∈ R(n+p)×n has i.i.d. subGaussian
columns. As a result, applying [32, Theorem 5.39], we
have ∥UTWi∥ ≤ Õ(σw

√
n+ p). Therefore, ∥H̄T

i Wi∥ ≤
∥Σ∥∥UTWi∥ ≤ Õ(σw(n+ p)

√
sT ).

Lower bounding λmin(H̄
⊺
i H̄i): Recall H̄i is composed of

all regressor h̄k indexed by k ∈ Si. To proceed, we first
construct the set S′

i := {τk
∣∣ ω(τk) = i, ∥zτk∥ ≤ czσz,

∥xτk∥ ≤ cxσw

√
log(T ), ∥x̄τk∥ ≤ cxσw

√
log(T )/2}. Then,

picking L = Csub · log(T ) ≥ Õ(tMC log(T )/(1 − ρ)), we
can show (a) with high probability S′

i ⊆ Si and (b) condi-
tioning on the modes, {x̄k}k∈S′

i
, {zk}k∈S′

i
, and {wk}k∈S′

i

are all independent of each other. This independence allows
us to establish the following covariance bound: for h̄k:
1
4In+p ⪯ Σ[h̄k | k ∈ S′

i] ⪯ O(s(n + p) log(T ))In+p. Let
H̄′

i has {h̄k}k∈S′
i

in its rows. Then, using [32, Theorem
5.41] (by specializing it to non-isotropic rows), we have
σ(H̄′

i) ≥
√
|S′

i|/2 − Õ(
√
s(n+ p) log(T )). Then, the fact

S′
i ⊆ Si gives λmin(H̄

⊺
i H̄i) ≥ λmin(H̄

′⊺
i H̄′

i) ≥
(√
|S′

i|/2−
Õ(
√
s(n+ p) log(T ))

)2
.

Upper bounding ∥H⊺
i Wi − H̄⊺

i Wi∥: Using simple
algebra and MSS, we have ∥H⊺

i Wi − H̄⊺
i Wi∥ =

∥
∑

k∈Si
(hkw

⊺
k − h̄kw

⊺
k)∥≤|Si|maxk∈Si

∥hk − h̄k∥∥wk∥≤
Õ(σw(n+p)

√
sT ).

Upper bounding ∥H⊺
i Hi − H̄⊺

i H̄i∥: Similarly, we
have ∥H⊺

i Hi − H̄⊺
i H̄i∥ = ∥

∑
k∈Si

(hkh
⊺
k − h̄kh̄

⊺
k)∥ ≤

|Si|maxk∈Si ∥hk − h̄k∥(∥hk∥+ ∥h̄k∥) ≤ O(|S′
i|).



Lower bounding |S′
i|: To complete the proof, we need to

show that the set S′
i has enough samples so that σ(H̄′

i) ≥√
|S′

i|/2 − Õ(
√
s(n+ p) log(T )) ≥

√
|S′

i|/4. For this
purpose, we use martingale-based techniques to show the
following result: when T ≥ T0 := Õ(Csub

√
s(n+p)/πmin),

we have |S′
i| ≥ O(πminT/(Csub log(T ))).

Finalizing the proof: Finally, putting all the above results
together, we have ∥HT

i Wi∥ ≤ Õ(σw(n + p)
√
sT ) and

λmin(H
⊺
i Hi) ≥ O(πminT/(Csub log(T ))). Combining these

results, we upper bound the estimation error as follows:
∥Θ̂i −Θi∥ ≤ Õ

(
(σwCsub(n + p) log(T )/πmin)

√
s/T

)
.

Specializing this result to the state/input matrices gives us
the statement of the theorem.

IV. ADAPTIVE CONTROL FOR MJS-LQR

Our adaptive MJS-LQR control scheme is given in Al-
gorithm 2. It is performed on an epoch-by-epoch basis; a
fixed controller is used for each epoch, and from epoch
to epoch, the controller is updated using the trajectory
generated in the most recent epoch. Note that a new
epoch is just a continuation of previous epochs instead of
restarting the MJS. Similar to the discussion in Section
III, we assume, at the beginning of epoch 0, that one has
access to a stabilizing controller K

(0)
1:s. During epoch i, the

controller K
(i)
1:s is used together with additive exploration

noise z
(i)
t

i.i.d.∼ N (0, σ2
z,iIp) to boost learning. At the end

of epoch i, the trajectory during that epoch is used to
obtain a new MJS dynamics estimate A

(i)
1:s,B

(i)
1:s,T

(i) us-
ing Algorithm 1. Then, we set the controller K

(i+1)
1:s for

epoch i + 1 to be the optimal controller for the infinite-
horizon MJS-LQR(A(i)

1:s,B
(i)
1:s,T

(i),Q1:s,R1:s), which can
be computed as follows: For a generic infinite-horizon
MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s), its optimal controller
is given by K1:s such that for all j ∈ [s],

Kj := −
(
Rj +B

⊺
jφj(P1:s)Bj

)−1
B

⊺
jφj(P1:s)Aj , (6)

where φj(P1:s) :=
∑s

k=1[T]jkPk and P1:s is the solution
to the following coupled discrete-time algebraic Riccati
equations (cDARE):

Pj=A
⊺
jφj(P1:s)Aj +Qj −A

⊺
jφj(P1:s)Bj

·
(
Rj +B

⊺
jφj(P1:s)Bj

)−1
B

⊺
jφj(P1:s)Aj (7)

for all j ∈ [s]. In practice, cDARE can be solved efficiently
via value iteration or LMIs [11]. Note that cDARE may
not be solvable for arbitrary parameters, but our theory
guarantees that when epoch lengths are appropriately cho-
sen, cDARE parameterized by A

(i)
1:s,B

(i)
1:s,T

(i),Q1:s,R1:s is
solvable for every epoch i. This control design based on the
estimated dynamics is also referred to as certainty equivalent
control.

To achieve theoretical performance guarantees, i.e., sub-
linear regret, the key is to have a subtle scheduling of
epoch lengths Ti and exploration noise variance σ2

z,i. We
choose Ti to increase exponentially with rate γ > 1, and set
σ2
z,i = σ2

w/
√
Ti, which collectively guarantee Õ(

√
T ) regret

Algorithm 2: Adaptive MJS-LQR
Input: Initial epoch length T0; initial stabilizing
controller K(0)

1:s; epoch incremental ratio γ > 1; data
clipping thresholds cx, cz; sub-sampling factor Csub.
for epoch i = 0, 1, 2, . . . do

Set epoch length Ti = ⌊T0γ
i⌋.

Set exploration noise variance σ2
z,i =

σ2
w√
Ti

.

Evolve MJS Ti steps with u
(i)
t =K

(i)

ω(t)(i)
x
(i)
t +z

(i)
t

and z
(i)
t ∼ N (0, σ2

z,iIp).
Record trajectory ξ(i)={x(i)

t , z
(i)
t , ω(i)(t)}Ti

t=0.
A

(i)
1:s,B

(i)
1:s,T

(i) ←
MJS-SYSID(K

(i)
1:s, σ

2
w, σ2

z,i, ξ
(i), cx, cz, Csub).

K
(i+1)
1:s ← optimal controller of infinite-horizon
MJS-LQR(A(i)

1:s,B
(i)
1:s,T

(i),Q1:s,R1:s).
end

when combined with the system identification result from
Theorem 1. Intuitively, this scheduling can be interpreted
as follows: (i) the increase of epoch lengths guarantees
we have more accurate MJS estimates thus more optimal
controllers; (ii) as the controller becomes more optimal we
can gradually decrease the exploration noise and deploy
(exploit) the controller for a longer time. Note that the
scheduling rate γ has a similar role to the discount factor
in reinforcement learning: smaller γ aims to reduce short-
term cost while larger γ aims to reduce long-term cost.

A. Regret Analysis

We define filtration F−1,F0,F1, . . . such that F−1 :=
σ(x0, ω(0)) is the sigma-algebra generated by the initial state
and initial mode, and Fi := σ(x0, ω(0), {{ω(j)(t)}Tj

t=1}ij=0,

w0, {{w(j)
t }

Tj

t=1}ij=0, z0, {{z
(j)
t }

Tj

t=1}ij=0) is the sigma-
algebra generated by the randomness up to epoch i. Note
that the initial state x

(i)
0 of epoch i is also the final state

x
(i−1)
Ti−1

of epoch i − 1, therefore, x(i)
0 is Fi−1-measurable,

and so is ω(i)(0). Suppose time t belongs to epoch i, then
we define the conditional expected cost at time t as:

ct = E[x⊺
tQω(t)xt + u

⊺
tRω(t)ut | Fi−1], (8)

and cumulative cost as JT =
∑T

t=1 ct. We define the total
regret and epoch-i regret as

Regret(T ) = JT − TJ⋆,

Regreti = (

Ti∑
t=1

cT0+···+Ti−1+t)− TiJ
⋆.

(9)

Then we can see Regret(T ) = O(
∑O(logγ(T/T0))

i=1 Regreti)
where the regret of epoch 0 is ignored as it does not
scale with time T . Let K⋆

1:s denote the optimal controller
for the infinite-horizon MJS-LQR(A1:s,B1:s,T,Q1:s,R1:s)
problem. L̃(0) and L̃⋆ denote the closed-loop augmented
state matrices under the initial controller K

(0)
1:s and the

optimal controller K⋆
1:s respectively, and we let ρ̄ :=



max{ρ(L̃(0)), ρ(L̃⋆)}. With these definitions, we have the
following sub-linear regret guarantee.

Theorem 2 (Sub-linear regret). Assume that the initial state
x0 = 0, and Assumptions A1 and A2 hold. In Algorithm
2, suppose hyper-parameters cx = O(

√
n), cz = O(√p),

Csub ≥ O(tMC/(1−ρ̄)), and T0 ≥ Õ(Csub
√
s(n+p)/πmin).

Then, with probability at least 1− δ, Algorithm 2 achieves

Regret(T ) ≤ Õ
(s2p(n2 + p2)σ2

w

π2
min

log2(T )
√
T
)
+

O
(√ns log3(T )

δ

)
. (10)

Proof outline for Theorem 2. For simplicity, we only
show the dominant Õ(·) term here and leave the complete
proof in [1]. Define the estimation error after epoch i

as ϵ
(i)
A,B:=maxj∈[s] max{∥A(i)

j −Aj∥, ∥B(i)
j −Bj∥},

ϵ
(i)
T :=∥T(i) −T∥∞. Analyzing the finite-horizon

cost and combining the infinite-horizon perturbation
results in [33], we can bound epoch-i regret
as Regreti≤O

(
Tiσ

2
z,i + Tiσ

2
w

(
ϵ
(i−1)
A,B + ϵ

(i−1)
T

)2)
.

Plugging in σ2
z,i=

σ2
w√
Ti

and the upper bounds on the

estimation errors ϵ
(i)
A,B≤Õ

(σz,i+σw

σz,iπmin

√
s(n+p) log(Ti)√

Ti

)
,

ϵ
(i)
T ≤Õ

(√ log(Ti)
Ti

)
from Theorem 1, we have

Regreti≤Õ
( s2p(n2+p2)σ2

w

π2
min

γ
√
Ti log

2(Ti)
)
. Finally, since

Ti=O(T0γ
i), we have Regret(T )=

∑O(logγ(
T
T0

))

i=1 Regreti≤
Õ
( s2p(n2+p2)σ2

w

π2
min

√
T log( T

T0
)(

√
γ√

γ−1 )
3
(
γ log( T

T0
)−√γ log(γ)

))
= Õ

( s2p(n2+p2)σ2
w

π2
min

polylog(T )
√
T
)
.

One can see the interplay between T and γ from

the term
( √

γ√
γ−1

)3 (
γ log( T

T0
)−√γ log(γ)

)
in the proof

sketch. Specifically, when horizon T is smaller, a smaller
γ minimizes the upper bound, and vice versa. This further
provides a mathematical justification for γ being similar
to the discount factor in reinforcement learning in early
discussions.

One may note that the regret bound in Theorem 2 has 1
δ

dependency on the failure probability δ, in addition to the
log2( 1δ ) dependency hidden in Õ(·) term. This results from
the attempt to upper bound the state xt in the analysis. Since
MSS only describes the stability of ∥xt∥2 in the expectation
sense, one can thus use the Markov inequality only to bound
∥xt∥2, which produces 1

δ . It is straightforward to construct
an example showing that under the MSS assumption only,
no dependency better than 1

δ can be established. For similar
reasons, we choose the expected regret to analyze rather
than the random regret used in [24], [34] for standard LQR
problems. However, we believe both the random regret result
and dependency tighter than 1

δ can be established under
slightly stronger notions of stability, e.g. uniform stability.
We leave these potential improvements as future work, and
for a more detailed discussion, please refer to the extended
version [1].

V. NUMERICAL EXPERIMENTS

We provide numerical experiments to investigate the ef-
ficiency of the proposed algorithms and to verify the un-
derlying theory. Throughout, we show results from a syn-
thetic experiment where entries of the true system matrices
(A1:s,B1:s) are generated randomly from a standard normal
distribution. We further scale each Ai to have ∥Ai∥ ≤ 0.5.
Since this guarantees the MJS itself is MSS, as we discussed
in Sec III, we set controller K1:s = 0 in system identification
Algorithm 1 and initial stabilizing controller K

(0)
1:s = 0

in adaptive MJS-LQR Algorithm 2. For the cost matrices
(Q1:s,R1:s), we set Qj = Q

j
Q

⊺

j
, and Rj = RjR

⊺
j where

Q
j
∈ Rnxn and Rj ∈ Rpxp are generated from a standard

normal distribution. The Markov transition matrix T ∈ Rs×s
+

is sampled from a Dirichlet distribution Dir((s−1) ·Is+1),
where Is denotes the identity matrix. We assume that we
have equal probability of starting in any initial mode and the
initial state x0 = 0.

Since for system identification, our main contribution is
estimating A1:s and B1:s of the MJS, we omit the plots
for estimating T. Let Ψ̂j = [Âj , B̂j ] and Ψj = [Aj ,Bj ].
We use ∥Ψ̂ − Ψ∥/∥Ψ∥ := maxj∈[s] ∥Ψ̂j − Ψj∥/∥Ψj∥ to
investigate the convergence behavior of MJS-SYSID Algo-
rithm 1. The clipping constants in this algorithm, i.e., Csub,
cx, and cz are chosen based on their lower bounds provided
in Theorem 2. The depicted results are averaged over 10
independent Monte Carlo runs.

A. Performance of MJS-SYSID
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Fig. 1. Performance profiles of MJS-SYSID with varying: (a) process noise
σw , (b) exploration noise σz, (c) state dimension n, (d) number of modes
s.

In this section, we investigate the performance of our MJS-
SYSID method, i.e., Algorithm 1. We first empirically evalu-
ate the effect of the noise/excitation variances σw and σz. In
particular, we study how the estimation errors vary with (i)
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Fig. 2. Performance profiles of Adaptive MJS-LQR with varying: (a) process noise σw , (b) number of modes s, (c) state dimension n.

σw = 0.01, σz ∈ {0.01, 0.02, 0.1} and (ii) σz = 0.01, σw ∈
{0.01, 0.02, 0.1}. The dimension of states, inputs, and modes
are set to n = 5, p = 3, and s = 5, respectively. Fig. 1
(a) and (b) demonstrate how the relative estimation error
∥Ψ̂ − Ψ∥/∥Ψ∥ changes as T increases. Each curve on the
plot represents a fixed σw and σz. These empirical results
are all consistent with the theoretical bounds of MJS-SYSID
given in (5). In particular, the estimation errors degrade with
increasing σw and decreasing σz, respectively.

Next, we fix σw = σz = 0.01 and investigate the
performance of the MJS-SYSID with varying dimension of
states, inputs, and modes. Fig. 1 (c) and (d) show how the
estimation error ∥Ψ̂ − Ψ∥/∥Ψ∥ changes with (left) s = 5,
n ∈ {5, 10, 20}, p = n − 2 and (right) n = 5, p = n − 2,
s ∈ {5, 10, 20}. As we can see, the MJS-SYSID has better
performance with small n, p and s which is consistent with
(5).

B. Performance of Adaptive MJS-LQR

In our next series of experiments, we explore the sensitiv-
ity of the regret bounds to the system parameters. In these
experiments, we set the initial epoch length T0 = 2000 and
incremental ratio γ = 2. We select five epochs to run Al-
gorithm 2. As an intermediate step for computing controller
K

(i+1)
1:s in Algorithm 2, the coupled Riccati equations (7) are

solved via value iteration, and the iteration stops when the
parameter variation between two iterations falls below 10−6,
or iteration number reaches 104.

Fig. 2 demonstrates how regret bounds vary with (a) σw ∈
{0.001, 0.002, 0.01, 0.02}, n = 10, p = s = 5; (b) σw =
0.01, n = 10, p = 5, s ∈ {4, 6, 8, 10}, and (c) σw = 0.01,
s = 10, p = 5, n ∈ {4, 6, 8, 10}. We see that the regret
degrades as σw, n, and s increase. We also see that when
σw is large (T is small), the regret becomes worse quickly
as n and s grow larger. These results are consistent with the
theoretical bounds in Theorem 2.

VI. CONCLUSIONS AND DISCUSSION

Markov jump systems are fundamental to a rich class
of control problems where the underlying dynamics are
changing with time. Despite its importance, statistical un-
derstanding (system identification and regret bounds) of MJS
have been lacking due to the technicalities such as Markovian

transitions and weaker notion of mean-square stability. At a
high-level, this work overcomes (much of) these challenges
to provide finite sample system identification and model-
based adaptive control guarantees for MJS. Notably, result-
ing estimation error and regret bounds are optimal in the
trajectory length and coincide with the standard LQR up to
polylogarithmic factors.

While this work leads to some nontrivial progress in
statistical understanding of MJS, there is still room for
improvement. In identification algorithm only one out of
Csub log(T ) data is used, and we seek to devise approaches
and corresponding analysis tools that can make use of all the
data. Also, as we discussed earlier below Theorem 2, under
stronger stability, the 1

δ dependency on failure probability
may be improved to log( 1δ ).

As future work, it would be interesting and of practical
importance to investigate the case when mode is not ob-
served, which makes both system identification and adaptive
quadratic control problems even more non-trivial.
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