
Incremental Segmentation of ARX Models ?

Glen Chou, Necmiye Ozay, Dmitry Berenson

Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48105 USA (e-mail:

gchou,necmiye,dmitryb@umich.edu).

Abstract: We consider the problem of incrementally segmenting auto-regressive models
with exogenous inputs (ARX models) when the data is received sequentially at run-time.
In particular, we extend a recently proposed dynamic programming based polynomial-time
algorithm for offline (batch) ARX model segmentation to the incremental setting. The new
algorithm enables sequential updating of the models, eliminating repeated computation, while
remaining optimal. We also show how certain noise bounds can be used to detect switches
automatically at run-time. The efficiency of the approach compared to the batch method is
illustrated on synthetic and real data.

Keywords: Switching autoregressive models, change detection, dynamic programming

1. INTRODUCTION AND RELATED WORK

Time series segmentation is a fundamental problem due to
its relevance in a plethora of domains as broad as econo-
metrics (Yin et al. (2011)), biological systems (Omranian
et al. (2015); Gersch (1970), Bodenstein and Praetorius
(1977)), and land cover monitoring (Mithal et al. (2012)).
In particular, segmentation of ARX models - a model for
representing time series data with input - has received a
great amount of attention from the dynamical systems
(Ozay et al. (2008b); Ohlsson et al. (2010); Ozay et al.
(2012)) and computer vision (Ozay et al. (2008a)) com-
munities, largely due to its application to anomaly and
change detection problems.

Many ARX segmentation algorithms exist for the “batch”
setting, in which all data is observed at once. With `∞
norm bounded noise, a greedy algorithm (Ozay et al.
(2008b, 2012)) finds an exact solution. Convex relaxation-
based methods have been proposed for `1 and `2 norm
bounded noise (Ozay et al. (2008b, 2012); Ohlsson et al.
(2010); Piga and Tóth (2013)), but the solution of the re-
laxed problems may be far from the solution of the original
problem for some cases. These methods also require the
tuning of a regularization parameter to trade off between
the number of switches and the quality of the fit. For
arbitrary, unbounded noise descriptions, there exist proba-
bilistic approaches (Li et al. (2003)) but these tend to have
weaker (if any) optimality guarantees. Contrary to pre-
vious approaches, Ozay (2016) proposes a Dynamic Pro-
gramming (DP) method for solving the batch ARX seg-
mentation problem for broader noise descriptions than `∞
bounded noise. The algorithm is more computationally-
efficient than the relaxation-based methods - it runs in
polynomial time - and solves the problem exactly: given
a fixed number of switches, it returns the parameters and
switches minimizing the fit error.

? This work was supported by DARPA grant N66001-14-1-4045 and
ONR grant N000141712050.

The “incremental” setting, in which the time series data is
received in a streaming manner, is another area rich with
applications like analysis of mobile sensor data (Guo et al.
(2012)) and fuel monitoring (Gustafsson (2000)). In these
cases, we want to perform the segmentation incrementally
and update the model as we receive more data.

While several segmentation algorithms exist for generic
time series (Keogh et al. (2001), Qi et al. (2015)) due
to the reduced structure compared to ARX models, the
approaches tend to fit the data based on a heuristically
chosen set of basis functions and do not consider the
case when input data is also provided. Less work has
been done in the incremental ARX segmentation setting.
Vidal (2008) tackles the problem by viewing the individual
simple ARX models for each segment together as part of
a single more complex ARX model in a lifted space, but
the convergence of this method is sensitive to noise. The
greedy algorithm in Ozay et al. (2008b, 2012) works for
the incremental case, but is limited to `∞ bounded noise.

In this paper, we generalize the dynamic programming
batch ARX model segmentation method to the streaming
data setting, maintaining exactness of the solution while
eliminating repeated computation. Our contributions are
twofold: 1) to extend the DP method in Ozay (2016) to
the incremental case, 2) for various noise descriptions, to
provide a lower bound on the number of switches to detect
switches automatically at run-time. We then demonstrate
the speed and accuracy of our incremental algorithm and
switch detection on both synthetic and real datasets.

2. PRELIMINARIES AND PROBLEM SETUP

2.1 Preliminaries and Notation

In this paper, we consider time-varying affine autoregres-
sive exogenous models of the form:

yt =

na∑
i=1

aityt−i +

nc∑
i=1

citut−i + kt + ηt (1)

where ut, yt and ηt denote the input, output and noise
at time step t, respectively, and where t ∈ {t0, . . . , tF },
with t0 = max(na, nc). The parameters at time step t
pt

.
= [a1

t , . . . , a
na
t , c1t , . . . , c

nc
t , kt]

> are unknown. When
the parameter vector is constant (i.e., pt = p∗ for
all t), we recover the time-invariant ARX models in
Ljung (1999). We define the regressor vectors as rt

.
=

[yt−1, . . . , yt−na , ut−1, . . . , ut−nc , 1]> for t ∈ {t0, . . . , tF }.
Then, the model (1) can be written as

yt = p>t rt + ηt. (2)

Instead of model parameters varying at each time, we focus
on models where pt is piecewise constant in t. A switch
point (or switch for short) is a time t such that pt 6= pt+1.
The ith switch point τi is then given by τi = mint∈{t0,...,tc}
subject to

∥∥[||pt0+1 − pt0 ||, . . . , ||ptc − ptc−1||]>
∥∥

0
= i+1.

The ith segment si is the time interval {τi, . . . , τ ′i}, where
τ ′i := τi+1−1. We also overload τ by defining the function
τ(t) := τi if t ∈ {τi, . . . , τ ′i} that maps the time step t to
the the start of the segment that t lies within. The mapping
τ ′ is defined similarly, i.e., τ ′(t) := τ ′i if t ∈ {τi, . . . , τ ′i}.
The following notation is used through out the paper:

(U,Y) := (ut0:tF , yt0:tF)
a stream of input-output
data received incrementally
over time horizon t0 . . . tF .
Yi,j denotes [yi, . . . , yj]

>; Ys

denotes vector indexing .
η := ηt0:tF a process noise sequence, also

indexed similarly.
p̄i,j ; p̄s least squares fit on Yi,j ; Ys

p̄ti:tj {pti , . . . ,ptj}
tc current time step
H := tF − t0 + 1 the total time horizon
Hc := tc − t0 + 1 the current time horizon
d the dimension of the regres-

sor rt ⇔ na + nc + 1
R := [rt0 . . . rtF]> the vertically stacked matrix

of regressors; similar index-
ing.

I identity matrix of suitable di-
mension

‖ · ‖0 the `0-quasinorm, equal to
the number of non-zero en-
tries in the vector

‖ · ‖ `2 norm
Y∗ = Y − η “cleaned” output;
p∗t true parameter at time t

2.2 Problem Statement

We focus on the incremental segmentation of ARX models.
That is, we are given a data stream of input-output pairs
(U,Y) generated by a time-varying ARX system. We
assume the underlying process is corrupted by noise. The
data appears in streaming fashion, i.e., one at a time,
and is of finite duration. We want to incrementally fit
a “simple” time-varying ARX model to the data as it is
received. Formally, we want to solve the following problem:

Problem 1. (Incremental segmentation). At each time tc,
given data (utc , ytc), and a possibly time-varying upper
bound mtc on the number of segments, for each 0 ≤ m ≤
mtc , find a set of parameters p̄t0:tc such that

p̄t0:tc(m) = arg min
pt0:tc

tc∑
t=t0

(yt − p>t rt)
2

s.t.
∥∥[||pt0+1 − pt0 ||, . . . , ||ptc − ptc−1||]>

∥∥
0
≤ m.

(3)

Note that this problem amounts to finding an ARX model
at each time with minimum squared fitting error with at
most m + 1 segments. We denote this minimum error,
which is the optimal objective value of Problem 1, as
E(m, tc).

The problem can näıvely be solved by repeatedly applying
the DP batch approach proposed in Ozay (2016), at each
time step. However this requires the bulk of the computa-
tions to be repeated redundantly. In this paper, we develop
an algorithm that leverages the computation of p̄t0:tc(m)
in computing p̄t0:tc+1(m) to eliminate redundancy. Next,
we briefly summarize the DP solution to the batch prob-
lem.

We start by noting that batch problem is equivalent
to waiting until tc = tF and solving for E(mtF , tF).
As shown in Ozay (2016), E(mtF , tF) can be efficiently
computed using a dynamic programming recursion (see
Bellman and Roth (1969) for an overview of dynamic
programming). The algorithm exploits the fact that the
number of segments is quadratic in the time horizon, and
hence by exhaustively computing and storing the fit error
and parameters of a time-invariant ARX model for each
segment, the problem can be solved by stitching together
the mtF + 1 segments that result in the minimum error.

Let ei,j := minp

∑j
t=i(yt − r>t p)2 be the error obtained

by fitting a single time-invariant ARX model to data
(ui:j , yi:j). The dynamic programming recursion is as fol-
lows:

E(0, t) = et0,t for all t ∈ [t0, tF], (4)

and for m = 1, . . . ,mtF and for t = max(m+1, t0), . . . , N ,

E(m, t) = min
m≤j≤t−1

[E(m− 1, j) + ej+1,t] . (5)

Intuitively, this recursion says that if we have the “best”
segmentations with m − 1 switch points over {t0, . . . , tj},
where j ∈ {m, . . . , t− 1}, and if we can also compute the
fit errors ej+1,t for all t = max(m + 1, t0), . . . , N , we can
compute the optimal error and switch point for m switch
points by minimizing the objective in Equation (5) with
respect to j. This is due to the principle of optimality (see
Ozay (2016)).

We also note that E(m, t) for different values of m can be
interpreted as a time-varying Pareto frontier describing the
trade-off in error and number of switches.

Complexity analysis: To compute E(m, tF), we need

to compute H(H−1)
2 time invariant errors ei,j , each of

which involves an O(Hd2) linear regression operation (i.e.
solving Ri,jp̄ = Yi,j for the parameter p̄). The dynamic
programming recursion requires O(mH) additions and an
O(mH) pairwise comparison to compute (5), which must
be dominated by the regressions (since m < H), yielding
an overall complexity of O(H3d2).

Input: utc+1; ytc+1;mtc+1;E(0 : mtc , t0 : tc); ei,j
Output: E(0 : mtc+1, tc + 1), p̄t0:tc+1

1: update ei,tc+1 for all i < tc + 1 using (6) and (7)
2: using E(0 : mtc , t0 : tc), run recursion in (4) and (5)

to compute E(0 : mtc+1, tc + 1)

Algorithm 1. Incremental update from tc to tc + 1

3. INCREMENTAL ALGORITHM

3.1 Incremental Algorithm

We want to extend the batch algorithm to the incremental
setting in a scalable fashion. Näıvely, one could repeatedly
solve the batch problem from scratch upon receiving each
new (utc+1, ytc+1), but such a method would have a
O(H4d2) complexity. We would like to do better by reusing
information used in solving E(m, tc) to solve E(m, tc+ 1).
The recursion in the batch algorithm is in m; we next
observe a similar recursion in the update rules in terms of
t.

Theorem 1. To exactly compute E(m, tc+1) using E(m, tc),
it is sufficient to compute ei,tc+1, for all i ∈ {t0, . . . , tc} and
E(j, tc + 1), for all j ∈ {1, . . . ,mtc+1}.

Proof. This follows by noting that E(mtc , tc + 1) =
minmtc≤j≤tc [E(mtc − 1, j) + ej,tc+1]. 2

Additionally, we note that we can avoid computing ei,tc+1,
for all i < tc from scratch by updating the parameters
associated with ei,tc , for all i < tc using Recursive Least

Squares (RLS) (Åstrom and Wittenmark (1994)):

p̄i,tc+1 = p̄i,tc +
π(tc)rtc+1

1 + r>tc+1π(tc)rtc+1
(ytc+1 − r>tc+1p̄i,tc)

π(tc + 1) = π(tc)−
π(tc)rtc+1r

>
tc+1π(tc)

1 + r>tc+1π(tc)rtc+1
(6)

and recovering the errors

ei,tc+1 = ‖Yi,tc+1 −Ri,tc+1p̄i,tc+1‖2, (7)

where π(tc) := (Ri,tcR
>
i,tc

)−1 is an intermediate quantity
updated through time.

The pseudocode of the incremental algorithm can be found
in Algorithm 1 and a visualization of the computation can
be found in Figure 1. A minor implementation detail is
that in order to initialize RLS, one needs to accumulate
enough data such that π(tc) is nonsingular; it usually
suffices to get d samples. It is possible to modify Algorithm
1 to consider only a recent window of n data points:
an approximation for the full-length Pareto frontier. An
additional benefit of this extension is that we can avoid
having to store the data (U,Y) for long data streams.
The analysis of such an extension is the subject of future
work.

Complexity analysis: For each time step, the online al-

gorithm needs to compute Hc(Hc−1)
2 time-invariant errors,

each of which requires O(d2) to update using RLS. The
dynamic programming update still requires O(mHc) com-
putation, which is dominated by the regressions. Hence,
we have an overall complexity of O(H2

c d
2) per time step.

et0,t0+1 et0,t0+2 et0,tc. . .

et0+1,t0+2 . . . et0+1,tc

...

etc−1,tc

etc−2,tcetc−2,tc−1

. . .
...

et0+1,tc+1

etc−2,tc+1

etc−1,tc+1

etc,tc+1

...

E(1, t0 + 1) E(1, t0 + 2) . . . E(1, tc)
E(2, t0 + 2) E(2, tc). . .

E(mtc , tc)

. . .

E(1, tc + 1)
E(2, tc + 1)

E(mtc , tc + 1)

E(1, t0 + 2)
E(2, t0 + 2)
E(3, t0 + 2) E(3, tc) E(3, tc + 1)

et0,tc+1

DP

...
...

E(mtc+1, tc + 1)

Fig. 1. Visualization of the incremental algorithm at time
step tc + 1. Green indicates no new computation; or-
ange indicates computation via update; red indicates
computation from scratch.

3.2 Switch detection heuristics

The incremental algorithm assumes that an upper bound
mtc on the number of segments is given at each time. In
this section, we discuss how some side information on the
noise characteristics can be used to determine if a switch
has occurred in the data at run time.

First, we show that if we are given the noise vector η, we
can compute E(m∗, tc). We also provide upper bounds on
E(m∗, tc) for when we lack η but have bounds on the noise
in the `∞ and `2 sense, which can be used as necessary
conditions to introduce a switch, therefore leading to a
lower bound on the true number m∗tc of switches.

Lemma 2. Given noisy data and assuming all switches are
correctly identified, the total squared error E(m∗, tc) using
the true number of switches m∗ is given by

E(m∗, tc) = η>(I− diag(Ps1 , . . . ,Psm∗+1
))η (8)

where Psi = R>si(RsiR
>
si)
−1Rsi .

1

Proof. Note that the parameter estimation error for least
squares (with correct switches) is given by p̄t − p∗t =
(Rτ(t),τ ′(t)R

>
τ(t),τ ′(t))

−1Rτ(t),τ ′(t)ητ(t),τ ′(t), where we take

τ ′(t) = tc for t > τ(t). Now, using this fact and summing
the error over segments gives:

E(m∗, tc) =

sm∗+1∑
i=s1

‖Y∗i + ηi −R>i p̄i‖2

=

sm∗+1∑
i=s1

‖Y∗i + ηi + R>i p∗i −R>i p∗i −R>i p̄i‖2

=

sm∗+1∑
i=s1

‖ηi‖2 − 2η>i Piηi + ‖Piηi‖2

= ‖η‖2 −
sm∗+1∑
i=s1

‖Piηi‖2

= η>(I− diag(Ps1 , . . . ,Psm∗+1
))η,

1 In case (RsiR
>
si
) is not invertible due to the true segment being

short or not persistently exciting, an error bound can still be
computed using pseudo-inverses.

where we also use the fact that given the correct switches
on the noiseless data, regression will return zero error. 2

Using this result and some algebra, we can derive bounds
for different types of side information in terms of `2 noise
bounds:

(i) [Root mean square (RMS) noise bound]: If for a given

tc,
√

1
tc−t0+1

∑tc
t=t0

η2
t ≤ ηmax, then E(m∗tc , tc) ≤ B

run
`2

(tc),

where
Brun
`2 (tc) := (tc − t0 + 1)η2

max. (9)

This follows from noting that the noise specification is
equivalent to

∑tc
t=t0

η2
t < (tc − t0 + 1)η2

max. If the switches
are detected correctly and thus have no systematic fit
error, we expect E(m∗, tc) =

∑tc
t=t0

e2
t ≤

∑tc
t=t0

η2
t .

(ii) [Square noise bound]: If only a bound on the total
`2 norm of the noise is known, i.e., ||η|| ≤ ηmax, then
E(m∗tc , tc) ≤ B

tot
`2

(tc), where

Btot
`2 (tc) := η2

max. (10)

The derivation follows the same logic as for the RMS noise
bound, except

∑tc
t=t0

η2
t < η2

max.

A few remarks on these bounds are in order. For all upper
bounds (9), (10), we never add a segment when one does
not occur. This is due to the fact that the error computed
by the algorithm is a lower bound on the true error. If
this lower bound exceeds the computed upper bounds
(E(m, tc) > B), the true noise necessarily exceeds it.
Therefore, E(m, tc) being monotonically non-increasing in
m suggests that m should be incremented if it is known
that the true noise satisfies the side information. Similar
bounds can be obtained for `∞ type noise descriptions as
well.

It is also worth noting that the side information is only
used for deriving the bounds on error, and is considered as
a soft/heuristic constraint. That is, the problem solved still
aims to minimize the least squares error and the resulting
segmentation at tc might violate the noise bounds for t <
tc: the bound is only enforced at tc. The side information
is not fully integrated by enforcing the noise bounds at
each time (e.g., as in a set membership identification
framework), which is possible but not pursued in this
paper.

4. RESULTS

First, we demonstrate our incremental method returns
the same solution as the batch method by comparing our
results with Ozay (2016).

Example 1: Accuracy of incremental method In this ex-
ample, we fit MATLAB earthquake data from quake.mat
and compare with the segmentation results on the same
data in Ozay (2016). As in Ozay (2016), we use a second
order auto-regressive model yt = a1

tyt−1 + a2
tyt−2 + ηt

and allocate one switch. As shown in Figure 2, we find
that the switch point and parameter are identical. We also
perform a fit using these parameters, which is calculated
as yfit

t = a1
tyt−1 + a2

tyt−2, where the fit for each time step
is computed using the true data from the prior two time
steps. A comparison of this fit compared to the true data
is provided in Figure 3. As we can see, the fit retains

0 10 20 30 40 50 60 70 80 90 100
Timestep tc

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

a
1

Parameter comparison

Incremental
Batch

Fig. 2. Comparison for a1 on quake.mat using m = 1.

0 10 20 30 40 50 60 70 80 90

Timestep tc

-300

-200

-100

0

100

200

300

y

Original data
Fit

Fig. 3. Comparison for data fit on quake.mat using m = 1.

the characteristics of the underlying data and chooses a
reasonable switch point.

Example 2: Computation time We demonstrate that
running our incremental method on a data stream received
over horizon {t0, . . . , tF } has computation time similar to
running the batch method in one shot on the complete
data set. We also demonstrate that running the batch
algorithm näıvely (i.e. running it repeatedly from scratch
upon receiving new data in the incremental setting) results
in massive computation cost.

The computation times for segmenting data generated by
the time-varying ARX system

yt =

[
−0.4, −0.1, 0, 0.1, 0.2

]
rt + ηt t0 ≤ t <

tF − t0
2

−
[
0.1, 0.3, 0.1, −0.2, 0.2

]
rt + ηt

tF − t0
2

≤ t ≤ tF

where rt = [yt−1, yt−2, yt−3, ut−1, ut−2]>, are shown in
Figure 4. Results were collected on a 2.3 GHz 2012
Macbook Pro.

As we can see, the näıve algorithm is intractable, and
the incremental algorithm performs similarly to the single-
shot batch algorithm at smaller horizons but scales slightly
better with longer horizons. This is likely due to recursive
least squares being a more attractive alternative to matrix
inversion at very long horizons.

Example 3: Demonstration on synthetic data We demon-
strate the switch detection bounds on synthetic input-
output pairs generated by the time-varying ARX system

0 500 1000 1500 2000 2500 3000

Data length tf ! t0

0

50

100

150

200

250

300

C
o
m

p
u
ta

ti
o
n

ti
m

e
(s

ec
) Computation comparison

Incremental
Batch
NaB1ve incremental

Fig. 4. Comparison of computation times for our incremen-
tal algorithm, the batch algorithm in Ozay (2016),
and näıve incremental algorithm.

10 20 30 40 50 60 70 80 90

Timestep tc

0

2

4

6

8

10

12

14

16

18

20

p
E

(m
;t

c)

Error vs time (Synthetic)

E(0; tc)
E(1; tc)
E(2; tc)

Btot
`2 (tc)

Brun
`2 (tc)

Fig. 5. Error for Example 3; switch detection bounds. True
switches are displayed as vertical lines.

yt =

[
0.8, 0.9, −0.9, 0.8, 0.2

]
rt + ηt t < 43

−
[
0.7, 0.1, 0.5, −0.5, 0.8

]
rt + ηt 43 ≤ t < 68

−
[
0.3, 0.3, 0.2, 0.5, 0.3

]
rt + ηt 68 ≤ t ≤ 100

where rt = [yt−1, yt−2, yt−3, ut−1, ut−2]>. Both the input
and noise are randomly selected according to a uniform
distribution ut ∼ U [−1, 1] and ηt ∼ U [−1, 1], respectively.

We show in Figure 5 the E(mtc , tc) generated by the in-
cremental algorithm. If our algorithm is using a particular
bound, it detects switches at the time step where that
bound intersects with E(mtc , tc). In this example, we see
that Brun

`2
(tc) is tighter than Btot

`2
(tc). This is expected,

since the more information each bound leverages, the
tighter it should be. In particular, we note that for this
data stream, Brun

`2
(tc) can detect each of the switches

within 1−2 time steps of them occurring, and additionally,
a switch will go undetected only if it increases the error
by less than ≈ 2 to 3. Btot

`2
(tc) takes longer to detect

switches and a switch can incur a higher error without
being detected, but we note that even with this bound,
both switches are eventually detected.

Example 4: Demonstration on real data We demonstrate
the performance of Btot

`2
(tc) and Brun

`2
(tc) on a real dataset:

noisy 4-dimensional friction sensor measurements of a car
tire rolling on various materials from Erdogan et al. (2010).
As we were given no information on the sensor’s noise
profile, we estimated εtc as the average variance of the
signal in the first 25 time steps.

20 40 60 80 100 120 140

Timestep tc

0

2

4

6

8

10

p
E

(m
;t

c)

Error vs time (Tire)

E(0; tc)
E(1; tc)
E(2; tc)
Brun

`2 (tc)

Btot
`2 (tc)

Fig. 6. Error for Example 4; switch detection bounds. True
switches are displayed as vertical lines.

We show in Figure 6 the result of switch detection on
the tire data; the two true switches are both detected
by the bounds. Using Brun

`2
(tc) enables the algorithm to

detect switches within 1 time step of their occurrence, and
a switch will go undetected only if it increases the error
by less than ≈ 0.5. Again, Btot

`2
(tc) takes longer to detect

switches, but both switches are still detected.

5. CONCLUSION

In this paper, we considered the problem of incremen-
tally identifying time-varying ARX systems from an in-
put/output data stream that is received sequentially in
real time. We generalize a dynamic programming approach
previously proposed in Ozay (2016) to the incremental
setting, analyze its computational complexity, and provide
several error bounds that enable the algorithm to detect
switch-points in the data at run-time and we show that
these error bounds can work well in practice. These error
bounds provide necessary conditions on the existence of
switches and provide a lower bound on the number of
switches. Moreover, our simulation results demonstrate
computational gains obtained by the incremental algo-
rithm. We leave to future work a full probabilistic analysis
of our incremental algorithm when some statistics on the
noise are known, which will facilitate an interpretation
based on sequential hypothesis testing. Research currently
under way seeks to apply the algorithm for robotics ap-
plications and to adapt the incremental algorithm to the
setting in which the model order is also unknown.

Acknowledgments: We thank Dr. Gürkan Erdoğan and
Prof. Francesco Borrelli for providing the tire data.

REFERENCES

Åstrom, K.J. and Wittenmark, B. (1994). Adaptive Con-
trol. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2nd edition.

Bellman, R. and Roth, R. (1969). Curve fitting by
segmented straight lines. Journal of the American
Statistical Association, 64(327), 1079–1084.

Bodenstein, G. and Praetorius, H.M. (1977). Feature
extraction from the electroencephalogram by adaptive
segmentation. Proceedings of the IEEE, 65(5), 642–652.

Erdogan, G., Borrelli, F., Tebano, R., Audisio, G., Lori, G.,
and Sannazzaro, J. (2010). Development of a new lateral

stability control system enhanced with accelerometer
based tire sensors. In DSCC 2010, 44182, 841–848.

Gersch, W. (1970). Spectral analysis of eeg’s by autore-
gressive decomposition of time series. Mathematical
Biosciences, 7(1), 205 – 222.

Guo, T., Yan, Z., and Aberer, K. (2012). An adaptive
approach for online segmentation of multi-dimensional
mobile data. MobiDE ’12, 7–14.

Gustafsson, F. (2000). Adaptive filtering and change
detection.

Keogh, E., Chu, S., Hart, D., and Pazzani, M. (2001).
An online algorithm for segmenting time series. In
Proceedings 2001 IEEE ICDM, 289–296.

Li, A., He, S., and Zheng, Q. (2003). Real-time segmenting
time series data. In APWeb 2003, 178–186.

Ljung, L. (ed.) (1999). System Identification: Theory for
the User. Prentice Hall, Upper Saddle River, NJ, USA.

Mithal, V., O’Connor, Z., Steinhaeuser, K., Boriah, S.,
Kumar, V., Potter, C.S., and Klooster, S.A. (2012).
Time series change detection using segmentation: A case
study for land cover monitoring. In 2012 CIDU, 63–70.

Ohlsson, H., Ljung, L., and Boyd, S.P. (2010). Segmen-
tation of arx-models using sum-of-norms regularization.
Automatica, 46(6), 1107–1111.

Omranian, N., Mueller-Roeber, B., and Nikoloski, Z.
(2015). Segmentation of biological multivariate time-
series data. Scientific Reports, 5, 8937 EP –. Article.

Ozay, N. (2016). An exact and efficient algorithm for
segmentation of ARX models. In ACC 2016, 38–41.

Ozay, N., Sznaier, M., and Camps, O.I. (2008a). Sequential
sparsification for change detection. In CVPR 2008.

Ozay, N., Sznaier, M., Lagoa, C.M., and Camps, O.I.
(2008b). A sparsification approach to set membership
identification of a class of affine hybrid systems. In CDC
2008, 123–130.

Ozay, N., Sznaier, M., Lagoa, C.M., and Camps, O.I.
(2012). A sparsification approach to set membership
identification of switched affine systems. IEEE Trans.
Automat. Contr., 57(3), 634–648.

Piga, D. and Tóth, R. (2013). An SDP approach for l0-
minimization: Application to ARX model segmentation.
Automatica, 49(12), 3646–3653.

Qi, J., Zhang, R., Ramamohanarao, K., Wang, H., Wen,
Z., and Wu, D. (2015). Indexable online time series
segmentation with error bound guarantee. World Wide
Web, 18(2), 359–401.

Vidal, R. (2008). Recursive identification of switched ARX
systems. Automatica, 44(9), 2274–2287.

Yin, J., Si, Y.W., and Gong, Z. (2011). Financial time
series segmentation based on turning points. In Pro-
ceedings 2011 ICSSE, 394–399.

