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Abstract—This paper investigates the problem of
overtaking a lead car by an autonomous ego car on a
two-lane road in the presence of an oncoming car. We
propose an intention-aware overtaking controller for
the ego car. The intention of the lead car is estimated
via a combination of active model discrimination and
model selection algorithms. Then, a safe overtaking
controller is designed based on vector fields that
take into account the estimated intent, and ensure
safety of the overtaking maneuver. Simulation results
demonstrate the efficacy of the proposed approach.

I. Introduction
Autonomous cars have been a very active topic of

research recently due to numerous potential benefits
such as driver comfort, reduced road fatalities, improved
mobility, etc. Various aspects of them such as perception,
real-time decision making and motion planning have
been extensively studied (see, e.g., the review papers [1]–
[4] for more details). In particular, safely overtaking a
slower car moving on a two-lane road is of great interest
since this could be crucial in emergency situations. Thus,
in this paper, we investigate intent-aware safe overtaking
of a lead car by an autonomous vehicle (the ego car) in
the presence of an oncoming car on the left lane.

Autonomous overtaking has been studied using vari-
ous strategies in the literature. The authors in [5] use
MPC for generating overtaking trajectories in the pres-
ence of an oncoming car, while a hierarchical planning
approach including strategic-level and low-level trajec-
tory optimization for lane changing is presented in [6].
Receding horizon control has also been used to deal
with lane changing problems, where the surrounding
vehicles are modeled as Markov Gaussian Processes in
[7], and stochastic MPC is employed to account for
the uncertainty in other vehicles’ motion. Similarly, the
approach in [8] samples independent and identically
distributed (iid) prediction trajectories of other vehicles
from a generic model and build multi-level optimization
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problems based on these iid scenario samples. Other
approaches use multi-policy decision making for high-
level lane-changing behavior, where buffered Voronoi
cells were used to compute a geometric partition and
then, reducing the safety control design to ensuring that
the vehicles avoid the partition boundaries [9]. However,
these works do not consider the reaction of the other cars
to the ego car’s overtaking maneuver.

Another set of relevant literature pertains to ap-
proaches for active model discrimination, which injects a
small input signal that causes the behaviors of all models
to be distinct, thus can be discriminated from each
other [10], [11]. These approaches have been successfully
adopted for intention estimation in [12], [13]. In [12],
an active model discrimination approach was proposed
by solving an mixed-integer linear program (MILP) and
applied to the problem of intention identification of other
autonomous vehicle or human drivers in scenarios of
intersection crossing and lane changing, while in [13], an
affine abstraction-based separating input design problem
was studied for a set of uncertain nonlinear models and
used in an intention estimation example of a highway
lane changing scenario with Dubins vehicle models.

In this paper, we propose a safe, autonomous over-
taking algorithm for an ego car that accounts for the
intention of a lead car. The intention estimation algo-
rithm consists of two phases: 1) an offline phase where
an optimal control input sequence for the ego car over
a finite time horizon is found to distinguish the inten-
tions of the lead car, and 2) an online phase where the
computed sequence is applied to actively distinguish and
find out the intention of the lead car. This intention
is then used to generate an overtaking trajectory for
the ego car, based on vector field guidance. The major
contributions of this paper are: (1) the generalization
of the active model discrimination formulation to allow
piece-wise state-dependent constraints on the controlled
inputs, making it applicable to a more general class of
affine models when compared to those in [12], [13], and
(2) an intent-aware, finite-time tracking controller for
overtaking the lead car, based on a novel vector field
guidance approach that uses super-elliptic contours and
safely guides the ego car around the lead car.

The rest of the paper is organized as follows: Section
II provides the mathematical modeling. The intent esti-
mation, and trajectory generation and control algorithms
are discussed in Sections III and IV, respectively. Simula-
tion results are provided in Section VI. Conclusions and



our thoughts on future work are provided in Section VII.

II. Modeling and Problem Statement
Notations: The set of positive integers up to n is denoted
by Z+

n , and the set of non-negative integers up to n is
denoted by Z0

n. Vectors are denoted in bold letters (e.g.,
r). ‖·‖ is the 2-norm and ‖·‖∞ is the infinity vector norm.

A. Vehicle dynamics
We consider a two-lane road R ⊆ R2 of lane width

ylane, and 3 cars: an ego car, E , a lead car, L, and an
oncoming car, O. All cars are identical in shape and are
rectangular with length lc and width wc(< ylane). The
cars are assumed to have the following dynamics:

ṙj =
[
ẋj
ẏj

]
=
[
vxj
vyj

]
= vj , v̇xj = uxj − Cdvxj , (1)

for j ∈ {e, l, o}. rj = [xj yj ]ᵀ, for j ∈ {e, l, o}, are the
position vectors of E , L and O, respectively, in the X-
Y plane with respect to (w.r.t.) a global inertial frame
Fg (̂i, ĵ, k̂) fixed on the outer edge of the rightmost lane
as shown in Fig. 1; vxj are longitudinal velocities; uxj
and vyj are longitudinal acceleration inputs and lateral
velocity inputs, respectively, which are bounded as:

|uxj | ≤ umaxj , |vyj | ≤ vmaxj , (2)
for j = {e, l, o}, and Cd is the coefficient of drag. Since
overtaking requires more control authority for E , we
assume a larger control bound on E while overtaking:

|uxe| ≤ umax,overe . (3)
This can be interpreted as that E will not fully utilize its
control authority in normal driving, but in overtaking, it
will leverage that to accomplish the task.
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Fig. 1: Coordinate frame

The cars are modeled as rectangles with their edges
aligned with the axes of Fg, defined as:

E = {r ∈ R2| |x− xe| ≤ lc
2 , |y − ye| ≤

wc
2 },

L = {r ∈ R2| |x− xl| ≤ lc
2 , |y − yl| ≤

wc
2 },

O = {r ∈ R2| |x− xo| ≤ lc
2 , |y − yo| ≤

wc
2 }.

(4)

For simplicity, we assume that O is moving with a con-
stant speed vxo on the left lane in the opposite direction.

B. Intention models of the lead car L
During the intention estimation phase, we assume that

E is behind L in the same lane and the headway h(k) =
xl(k)−xe(k) between L and E satisfies h(k) > hmin > 0
to avoid collision and ensure safety. We also limit our
intention estimation problem to the case where L has
a constant lateral position and its longitudinal velocity
under different driving behaviors does not saturate in the

process of intention estimation. Specifically, we consider
two driver intentions i ∈ {A,C} for L, corresponding to
Annoying and Cautious drivers, which are modeled as:

uxl,i=
{
uxl,0 +Ki,1∆y +Ki,2∆hi+δi, hmin<h<hmax,
uxl,0, otherwise, (5)

where ∆y = ye − yl, ∆hA = hmax − h, ∆hC = h, Ki,1
and Ki,2 are constants and δi is an input uncertainty
accounting for nonlinear non-deterministic driving be-
havior. uxl,0 = −K0(vxl − vdes

xl ) + Cdv
des
xl is a baseline

controller that represents the default lead car L behavior
to maintain a desired speed vdes

xl . We choose KA,1 > 0
and KA,2 > 0 in (5) such that the annoying driver drives
aggressively and speeds up when E tries to overtake L,
while KC,1 < 0 and KC,2 < 0 for the cautious driver who
slows down and makes it easier for E to overtake L.
C. Problem formulation

The problem of autonomously overtaking a lead car L
in the presence of an oncoming car O on the left lane
is hard task when there is no knowledge on how L is
going to behave. Since the knowledge of L’s intention
would be beneficial in motion planning, we propose to
split the overall overtaking problem into two sequential
sub-problems: 1) Intent estimation of L based on the
intent models (5), and 2) Overtaking control for E given
the intention of L. Formally, the sub-problems are:
Problem 1: Estimate the intention of L over a fixed

time horizon T . This includes the following two parts:
• Active model discrimination: Find an optimal E ’s

input sequence u∗T = {u∗e(0), . . . ,u∗e(T − 1)} (ue =
[uxe vye]ᵀ, with zero-order hold) over a finite horizon
T offline such that the observed trajectory of L is
only consistent with one intention model regardless
of any realization of uncertainties.

• Model selection: Implement the obtained optimal
input sequence u∗T alongside a model selection al-
gorithm in real-time to identify the intention of L
based on its observed output trajectories.

Problem 2: Find a control input ue = [uxe vye]ᵀ for
the ego car E to overtake the lead car L safely in the
presence of the oncoming car O based on the estimated
intention from Problem 1.

III. Intention Estimation of the Lead Car
In this section, we design an optimal E ’s input se-

quence and an intention estimation algorithm to dis-
tinguish the two intentions of L. The following time-
discretized model for L and E is used in this section:

vxe(k + 1) =(1− Cd∆T )vxe(k) + uxe(k)∆T , (6a)
ye(k + 1) =ye(k) + vye(k)∆T , (6b)
h(k + 1) =h(k)− vxe(k)∆T + vxl(k)∆T , (6c)

vxl(k + 1) =(1− Cd∆T )vxl(k) + uxl(k)∆T , (6d)
where ∆T is the sampling time. The output of the
discrete-time model is L’s velocity, i.e., zm(k) = vxl(k).
Note that the separating input ue = [uxe vye]ᵀ is equal
for both intention models.



A. Vehicle dynamics with different intentions

The discrete-time state-space models Gi, i ∈ {A,C},
for both the annoying car and cautious car, are given by

~xi(k + 1) = Ai~xi(k)+Biue(k)+Bδ,iδi(k)+fi, (7)
zi(k) = Ci~xi(k), (8)

where ~xi(k) = [vxe,i(k) ye,i(k) hi(k) vxl,i(k)]ᵀ, zi(k) =
vxl,i(k), and the system matrices are

Ai =

1 − Cd∆T 0 0 0
0 1 0 0

−∆T 0 1 ∆T

0 Ki,1∆T aiKi,2∆T 1 − (K0 + Cd)∆T

,
Bi =

∆T 0
0 ∆T

0 0
0 0

, Bδ,i=
 0

0
0

∆T

, fi=
 0

0
0

(K0 + Cd)vdes
xl ∆T + f i

,
Ci =

[
0 0 0 1

]
,

where ai and f i are defined as

ai =
{
−1, i = A

1, i = C
, and f i =

{
KA,2hmax∆T , i = A

0, i = C
.

For both vehicle models Gi, i ∈ {A,C}, we assume that
the initial condition for model i, denoted by ~x0

i = ~xi(0),
is constrained to a polyhedral set defined as:

~x0
i ∈ X0 = {~x ∈ R4 : P0~x ≤ p0}, ∀i ∈ {A,C}. (9)

Further, the constraints on controlled input ue in (2)
are written using the following polyhedral set represen-
tation (for k ∈ Z0

T−1):
ue(k) ∈ U = {ue ∈ R2 : Quue ≤ qu}. (10)

In addition, E ’s lateral velocity input has to satisfy a
piece-wise state-dependent constraint defined as

vye∈

{
{0}, vxe,i ∈ [vmine , vdzxe],
{vye :β1 ≤ vye

(vxe,i−vdzxe) ≤ β2}, vxe,i ∈ [vdzxe, vmaxe ],
(11)

where vdzxe can be considered as a dead-zone, within which
E does not have lateral motion, while β1 and β2 are
slopes that mimic curvature constraints of real cars. The
constraint in (11) implies that E is allowed to overtake
L only when its longitudinal velocity is greater than vdzxe.
An example of the piece-wise state-dependent constraint
with vdbxe = 10, β1 = −1 and β1 = 1 is shown in Fig. 2.
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Fig. 2: Piece-wise state-dependent constraint in (11)

Moreover, the uncertainty δi is also constrained to a
polyhedral set (for k ∈ Z0

T−1) defined as
δi(k) ∈ Di = {δ ∈ R : Qδ,iδ ≤ qδ,i}. (12)

The states ~xi(k) are divided into controlled state

xi(k) = [vxe,i(k) ye,i(k) hi(k)]ᵀ ∈ R3 and uncontrolled
state yi(k) = vxl,i(k) ∈ R. The controlled state xi are
constrained to the following polyhedral set (for k ∈ Z+

T ):
xi(k) ∈ Xx,i = {x ∈ R3 : Px,ix ≤ px,i}. (13)

Specifically, we require L and E to keep a minimum
distance to avoid collision during the intention estimation
process, and this safety constraint is given by

hi(k) ∈ Hi = {h ∈ R : h ≥ hmin},
where hmin > 0 is a constant. We also constrain E ’s longi-
tudinal velocity to an interval with vxe,i ∈ [vmine , vmaxe ].
Remark 1: We assume that the intention models are

well-posed, whose definition can be found in [12, Remark
1]. Vehicle dynamic models are impractical if they are not
well-posed, since the responsibilities of the inputs will be
impossible to be satisfied.

Now, the Problem 1 can be formally redefined as:
Problem 3: Given two intention models Gi, i ∈

{A,C}, and state, input and uncertainty constraints, (9)-
(11), find an optimal input u∗T = {u∗e(0), . . . ,u∗e(T − 1)}
over a finite horizon T to minimize a given cost ‖uT ‖∞
ensuring comfort with small maximum input amplitudes,
so that for all initial states ~xi(0) and uncertainty δi(k),
∀k ∈ Z0

T , only one model is valid, i.e., the output
trajectories of models Gi over a finite horizon T have
to differ by a separation threshold ε in at least one time
instance. The optimization problem can be stated as:

min
uT ,xi,T

‖uT ‖∞

s.t. ∀k ∈ Z0
T−1 : (10) holds, (14a)

∀i ∈ {A,C},
∀k ∈ Z0

T ,∀~x0
i , yi(k), δi(k) :

(7),(9),(12) hold

 : ∀k ∈ Z+
T :

(11), (13) hold, (14b)

∀i, j ∈ {A,C}, i 6= j,
∀k ∈ Z0

T ,∀~x0
i , yi(k), δi(k) :

(7)-(8), (12)-(13) hold

 : ∃k ∈ Z0
T :

|zi(k)− zj(k)| ≥ ε, (14c)

where xi,T = {xi(0), . . . ,xi(T )} with i ∈ {A,C}.

B. Intention estimation approach
To solve Problem 1, an optimization-based approach

is proposed, consisting of an offline active model dis-
crimination step and an online model selection step. For
brevity, we only give the main results of the approach.
Its proofs are omitted as they follow similar steps to [12].
Proposition 1 (Active Model Discrimination): Given

any separation threshold ε, the active model discrimi-
nation problem in Problem 3 is equivalent to a bilevel
optimization problem with the following outer problem:

min
uT

‖uT ‖∞ (POuter)

s.t. ∀k ∈ Z0
T−1 : (10) holds, (15a)

∀i ∈ {A,C},
∀k ∈ Z0

T ,∀~x0
i , yi(k), δi(k) :

(7),(9),(12) hold

 : ∀k ∈ Z+
T :

(11), (13) hold, (15b)

∆∗(uT ) ≥ ε, (15c)



where ∆∗(uT ) is the solution to the inner problem:
∆∗(uT ) = min

∆,~x0
i
,δi,T

∆ (PInner)

s.t. ∀i ∈ {A,C},∀k ∈ Z0
T−1 : (7), (12) hold, (16a)

∀i ∈ {A,C},∀k ∈ Z0
T : (8) holds, (16b)

∀i ∈ {A,C} : (9) holds, (16c)
∀i, j ∈ {A,C}, i 6= j,

∀k ∈ Z0
T

}
: |zi(k)− zj(k)| ≤ ∆, (16d)

where δi,T = {δi(0), . . . , δi(T )} with i ∈ {A,C}.
Based on the bilevel problem proposed in Proposition

1, we can further leverage Karush-Kuhn-Tucker (KKT)
conditions to convert the bi-level problem into a single
level MILP problem, which can be solved by off-the-shelf
optimization software, such as Gurobi [14] and CPLEX
[15]. These details can be found in our previous paper [12,
Theorem 1]. Comparing with [12], we consider additional
piece-wise state-dependent constraints and responsibil-
ities on the the controlled input in the outer problem
of this paper, in order to make the intention estimation
problem more realistic and practical.

In addition, to estimate the intention of L, the optimal
separating input is applied in real-time and the following
model selection problem is considered:
Proposition 2 (Model Selection): Given two vehicle

models Gi, i ∈ {A,C}, and an input-output sequence
{ue(k), zm(k)}Tk=0, where ue(k) is obtained in Propo-
sition 1, the model selection problem in Problem 1 is
equivalent to the following feasibility problem:
Find ~x(k), δ(k), i,∀k ∈ Z0

T−1 (PMI)
s.t. i ∈ {A,C}, ∀k ∈ Z0

T : zm(k)− zi(k) = 0,
∀k ∈ Z0

T−1 : ~x(k + 1) = Ai~x(k)+Biue(k)+Bδ,iδ(k)+fi,
(9) holds,∀k ∈ Z0

T−1 :(10)-(12) hold,∀k ∈ Z+
T :(13) holds.

We can solve the above feasibility check problem by
leveraging the model invalidation algorithm in [16] and
identify the true intention, which is guaranteed since the
separating input in Proposition 1 is applied.

IV. Trajectory generation and control for
the ego car

In this section, we provide a solution to Problem 2,
i.e., we design the control actions uxe(t) and vye(t) of E
so that it safely overtakes L at some finite time T <∞.
To assess the safety of the cars, we define a weighted
∞-norm distance between two rectangular cars i, j as:

‖ri − rj‖∞̄ = max
(∣∣∣∣xi − xjlc

∣∣∣∣ , ∣∣∣∣yi − yjwc

∣∣∣∣), (18)

where lc and wc are the dimensions of the rectangles. The
distance is referred to as ∞-distance hereafter.
Definition 1 (Safety): Two cars i and j are safe with

regards to each other if ‖ri(t)− rj(t)‖∞̄ > 1, ∀t ≥ t0.
To ensure the safety of the ego car E from the lead car

L, we inflate L as L̄ = {r ∈ R2 | |x− xl| ≤ l̄c
2 , |y − yl| ≤

w̄c
2 }, where l̄c = lc + 2(xsafe), w̄c = wc + 2(ysafe), and
xsafe ≥ lc

2 , ysafe ≥
wc
2 are safety parameters. Further,

let Rl = {y ∈ R | wc2 ≤ y ≤ ylane −
wc
2 }.

Definition 2 (Safe overtake): A maneuver and the
resulting trajectory re(t; t0, re(t0)) for E , where the initial
position of E is behind L on the same lane (i.e., xe(t0) <
xl(t0) and ye(t0), yl(t0) ∈ Rl) and its final position is
ahead of L on the same lane (i.e., xe(tf ) > xl(tf ) and
ye(tf ), yl(tf ) ∈ Rl), is a safe overtake if E remains safe
with regards to L and O (i.e., ‖re(t)− rl(t)‖∞̄ > 1 and
‖re(t)− ro(t)‖∞̄ > 1, ∀t ∈ [to, tf ]).
To enable safe overtake, we design a finite-time track-

ing controller based on a safe vector field. First, we choose
a desired point rd ahead of L that is subject to vehicle
dynamics corresponding to the estimated intent from the
previous section. Next, we define a vector field F that
safely guides E around L to rd, and a tracking controller
such that E tracks the vector field in finite-time.
The vector field F is a combination of two vector

fields: (1) Guide-away vector field (Fl), and (2) Guide-
to vector field (Fd). The Guide-away vector field Fl is
defined to closely follow the rectangular shape of the
cars using superquadric isopotential contours [17], called
E-contours in this paper for brevity. The super-elliptic
distance from L is defined as:

El(r) =
∣∣∣∣x− xla

∣∣∣∣2n +
∣∣∣∣y − ylb

∣∣∣∣2n − 1, (19)

where a = l̄c
2 (2) 1

2n , b = w̄c
2 (2) 1

2n , n > 1, and is referred
to as E-distance hereafter. For larger values of n, the
contours corresponding to a constant value of E-distance
El tend to be of rectangular shape. Figure 3 shows three
contours for El = 0, El = Ēl = 1.94 and El = Eul =
19.43, with n = 1.5 and L situated at [30, 1.85]ᵀ.
The inflated lead car L̄ can be approximated by a

bounding smallest super-ellipse that contains L̄: L̄m ={
r ∈ R2 | El(r) ≤ 0

}
. Then, the slope of the tangent to

E-contours at a point with position vector r ∈ R2 is:

tan(β̄l(r)) = −b
2n(x− xl) |(x− xl)|2n−2

a2n(y − yl) |(y − yl)|2n−2 . (20)

Let the unit tangent vector at r be t̂l(r) =
[
cos(β̄l(r))
sin(β̄l(r))

]
.

A. Vector fields for trajectory generation
1) Guide-away vector field: The Guide-away vector

field Fl around the obstacle L̄ is defined as:
Fl(r) =

[
cos(β̄′l(r)) sin(β̄′l(r))

]ᵀ
, (21)

where β′l(r) =
{
β̄l(r)− π,

(
(r− rd)× t̂l(r)

)
· k̂ > 0,

βd − π, otherwise,
with βd = atan2

(
y−yd
x−xd

)
. This way, Fl takes the form

shown in regions Al = {r ∈ R2 | 0 < El(r) < Ēl, ((r −
rd) × t̂l(r)) · k̂ > 0} (see violet vectors in Fig. 3) and
Bl = {r ∈ R2 | 0 < El(r) < Eul , ((r− rd)× t̂l(r)) · k̂ ≤ 0}
(see green vectors in Fig. 3).
2) Guide-to vector field: The Guide-to vector field Fd

is defined as a radially converging vector field to the
desired location rd:

Fd(r) = rd−r
‖rd−r‖ . (22)
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We set Fd(rd) = 0, so that Fd is defined everywhere.
3) Combining vector fields: For the resulting vector

field to be continuously differentiable near L̄, the Guide-
to and Guide-away vector fields are combined using a
blending function defined as:

σ(El)=


1, 0 ≤ El ≤ Ēl,
AE3

l +BE2
l +CEl+D, Ēl ≤ El ≤ Eul ,

0, Eul ≤ El,
(23)

where Ēl, Eul are the super-elliptic distances defining
the inner and outer boundaries of the blending region
Dl = {r ∈ R2 | Ēl < El(r) < Eul }, and the coefficients
A,B,C,D are chosen as: A = 2

(Eu
l
−Ēl)3 , B = −3(Eul +Ēl)

(Eu
l
−Ēl)3 ,

C = 6Eul Ēl
(Eu
l
−Ēl)3 , D = (Eul )2(Eul −3Ēl)

(Eu
l
−Ēl)3 , so that (23) is a C1

function. We choose Eul =
(

2ylane−wc2 −yl
b

)2n
− 1 such

that Fl is active for wc
2 ≤ ye ≤ 2ylane− wc

2 . The value of
Ēl is chosen such that Ēl < Eul . The maximum distance
xmaxrep from E along î at which the Guide-away vector field
Fl is active is given as xmaxrep = a (Eul + 1)

1
2n . Then the

Guide-to and Guide-away vector fields are blended as:
F = (1− σ(El))Fd + σ(El)Fl = [Fx Fy]ᵀ. (24)

A vector field similar to Fl is considered around O when
E attempts to overtake. However, the decision making
and analysis is just based on the vector field around L.

B. Control Design for the Ego Car
The desired position rd of E is chosen ahead of L (i.e.,

xd(t) > xl(t)), and is assumed to follow dynamics:

ṙd =
[
ẋd
ẏd

]
=
[
vxd
vyd

]
= vd, v̇xd = uxd − Cdvxd, (25)

where vyd = 0, uxd = uxl,i0 + δmini and uxl,i0 = uxl,i− δi,
i = {A, C, N}; i = N stands for the case when E
is not estimating the intention of L, which we consider
for comparison. In the latter case, L is assumed to
be moving with constant average traffic speed (vavgtr ),
with some uncertainty in its acceleration such that the
corresponding input is uxl,N = Cdv

avg
tr + δN , where

δN ∈ [δminN , δmaxN ].
We obtain the dynamics of the motion of E and L

relative to a coordinate frame attached on rd. Define r̄e =
re − rd, v̄e = ve − vd and F̂ = F

‖F‖ . Then the dynamics

of E and L expressed in the new frame are:

˙̄rj =
[
ẋj − ẋd
ẏj − ẏd

]
=
[
vxj − vxd
vyj − vyd

]
= v̄j ,

˙̄vxj = ūxj − Cdv̄xj ,
(26)

for j ∈ {e, l}, where ūxe = uxe−uxd and ūxl = uxl−uxd =
δi − δmini . With this choice, we have that L is either
stationary or moving towards the desired position rd. In
the worst case, the maximum value of ūxl is ūmaxxl =
δmaxi − δmini . This results in a maximum velocity of L
relative to rd of v̄maxxl = ūmaxxl

Cd
.

We design a desired velocity profile for E that is safe
and convergent to the desired position rd along F as:

v̄dese =
[
v̄desxe

v̄desye

]
=
{

F̂kr ‖r̄e‖αr , ‖r̄e‖ ≤ Rfe ,
F̂v̄overe , otherwise,

˙̄vdese =
{ ˙̂Fkr ‖r̄e‖αr +krαrF̂ ‖r̄e‖αr−2 (r̄ᵀe v̄e), ‖r̄e‖<Rfe ,

˙̂Fv̄overe , otherwise,
(27)

where v̄overe > 0 is a constant overtake speed, while kr >
0 and αr ∈ (0, 1) are chosen such that v̄overe is continuous
during the overtake, v̄overe = kr(Rfe )αr , and Rfe is the
radius around the desired position where the finite-time
convergent controller takes over.

We now propose the form of the tracking controllers
for the control inputs uxe and vye of E . For the lateral
velocity vye of E , we define the control input as:

vye = v̄desye + vyd, (28)
where v̄desye is the desired relative velocity along the y-
axis. The acceleration input ūxe to track the desired
longitudinal velocity v̄desxe is designed as:

ūxe = Cdv̄
des
xe + ˙̄vdesxe − kv ēvxe |ēvxe |

αv−1
, (29)

where ēvxe = v̄xe − v̄desxe and αv ∈ (0, 1) is a gain. In the
global coordinate frame, the input uxe of E is:

uxe = ūxe + uxd. (30)
Theorem 1: The relative velocity v̄xe converges to the

desired relative velocity profile v̄desxe in finite time under
the control action ūxe given by (29).

Proof: With ūxe(Eq. (29)), the error dynamics is:
˙̄evxe = −kv ēvxe |ēvxe |

αv−1
. (31)

From [18, Lemma 1], we obtain that the equilibrium
ēvxe = v̄xe − v̄desxe = 0 of (31) is finite-time stable.
The safe initial distance |x̄l(t0)| between L and rd at

the start of the overtake (t = t0) should be such that L
does not come xmaxrep +Rfe close to rd when E converges to
rd. Since the time of convergence Tf depends on |x̄l(t0)|,
we use an iterative approach to find |x̄l(t0)| as follows:
Initialize |x̄l(t0)|0 = xmaxrep +Rfe , then |x̄l(t0)| is iteratively
updated using:

|x̄l(t0)|m+1 = |x̄l(t0)|m + ‖r̄e(t0 + ∆t)‖ v̄
max
xl

v̄overe

, (32)

where v̄maxxl is the worst-case relative velocity, and ∆t =
|x̄l(t0)|j−x

max
rep −R

f
e

v̄max
xl

. The iterative approach is terminated
when ‖r̄e(t0 + ∆t)‖ < ylane− wc

2 −yd(t0), where yd(t0) =



ye(t0). This iterative approach is guaranteed to converge
if v̄maxxl < v̄overe because after exiting Dl, ‖r̄e(t0 + ∆t)‖
is convergent to 0, which is discussed later. After E has
successfully overtaken L, E keeps tracking the desired
position rd that moves with a constant cruise speed vcre .

C. Control Constraints

We want to design v̄overe such that the constraint
in (3) is satisfied. Since |uxd| =

∣∣uxl,i0 + δmini

∣∣ ≤ umaxl

from (2), ∀i = {A,C,N}, we require ūxe to satisfy
max(|ūxe|) ≤ umax,overe − umaxl , from (30). The overtak-
ing maneuver constitutes of: (i) initially moving under
the Guide-to vector field Fd until converging to the
desired relative velocity (27), discussed later, (ii) entering
the blending region Dl, where Ēl ≤ El ≤ Eul , and (iii)
entering the circular region {re ∈ R2| ‖re − rd‖ ≤ Rfe}.
The ego car has a constant relative speed v̄overe in the
blending region, and the velocity vector v̄xe is aligned
with the vector field F before it enters the blending
region. Then the acceleration ūxe is bounded as:

ūxe ≤


|Cdv̄overe |+ kr v̄

over
e

Rfe
, ‖r̄e‖ < Rfe ,

|Cdv̄overe |+
∣∣ ˙̄vdesxe

∣∣ , ‖r̄e‖ ≥ Rfe , re ∈ Dl,
|Cdv̄overe |+

∣∣kv ēαvvxe0

∣∣ , otherwise,
(33)

where ēvxe0 ≤ v̄overe , since E starts approaching L so it is
moving at least as fast as L.

Now, since ˙̄vdesxe = ψ̇ev̄
over
e sinψe ≤ v̄overe

∣∣ψ̇e∣∣, where
ψe = tan−1

(
Fy
Fx

)
, the problem reduces to finding a

bound on
∣∣ψ̇e∣∣, and designing the velocity v̄overe such that

it satisfies the overall control bound max(|ūxe|)+umaxl ≤
umax,overe .

Denote F̄v1 = [Fy −Fx]
F 2
x+F 2

y

[
∂Fx
∂x̄e

∂Fx
∂ȳe

∂Fy
∂x̄e

∂Fy
∂ȳe

]
[Fx Fy]T√
F 2
x+F 2

y

and

F̄v2 = [Fy −Fx]
F 2
x+F 2

y

[
∂Fx
∂x̄l

∂Fx
∂ȳl

∂Fy
∂x̄l

∂Fy
∂ȳl

]
. The turning rate is then

given as: ψ̇e = F̄v1v̄
over
e + F̄v2 ˙̄rl ≤

∣∣F̄v1
∣∣ v̄overe +∥∥F̄v2

∥∥ ∥∥ ˙̄rl
∥∥. We consider the following problems:

max
r̄l∈Ds,r̄e

∣∣F̄v1
∣∣ s.t. Ēl ≤ El(r̄l, r̄e) ≤ Eul ,

max
r̄l∈Ds,r̄e

∥∥F̄v2
∥∥ s.t. Ēl ≤ El(r̄l, r̄e) ≤ Eul , (34)

where Ds = {(x̄l, ȳl)| |x̄l| ≤ ylane−wc2 , ȳl ∈ [bmin, bmax]}
is a 2-D square region capturing that L stays in lane
and maintains a bounded distance away from rd, and
bmin, bmax are the search limits along the x-axis. Due to
the non-convexity and non-linearity of these problems,
we first search in the discretized 4-D space to obtain a
point (r̄∗l , r̄∗e) corresponding to a sub-optimal solution.
We then optimize around the neighborhood N (r̄∗l , r̄∗e) of
the sub-optimal solution:

max
(r̄l,r̄e)∈N (r̄∗

l
,r̄∗e)

∣∣F̄v1
∣∣ s.t. Ēl ≤ El(r̄l, r̄e) ≤ Eul , r̄l ∈ Ds,

max
(r̄l,r̄e)∈N (r̄∗

l
,r̄∗e)

∥∥F̄v2
∥∥ s.t. Ēl ≤ El(r̄l, r̄e) ≤ Eul , r̄l ∈ Ds.

(35)

Given the solutions F̄ ∗v1 and F̄∗v2 to (35), we design
v̄overe such that the maximum of the ūxe upper bounds in
three phases described above satisfies the requirements:
umaxl +max{(Cd+ kr

Rfe
), (Cd+

∥∥∥F̄∗v2

∥∥∥∥∥ ˙̄rl
∥∥)+

∣∣F̄ ∗v1
∣∣ (v̄overe ),

(Cd + kv)}v̄overe ≤ umax,overe .

D. Safety and Convergence Analysis
To ensure that the relative velocity v̄e is aligned with

v̄dese when E enters the blending region Dl, the overtaking
starts with E at xe(t0) such that xe(t0) < xl(t0)−xmaxrep −
xc, where xc is the maximum bound on the distance
that E would have traveled along î relative to rd before
it converges to v̄dese . Integrating (31) yields: ēvxe(t) =

ēv0

(
1− kv(1−αv)t
|ēv0 |1−αv

) 1
1−αv

, where ēv0 = ēvxe(0). The error

ēvxe(t) becomes 0 at t = tc = |ēv0 |1−αv
kv(1−αv) and remains zero

∀t ≥ tc. Since v̄xe ≤ v̄overe , we have xc = tcv̄
over
e .

Theorem 2: The position re(t) under the relative dy-
namics ˙̄re = v̄dese , where v̄dese as in Eq. (27) is safe and
convergent to rd in some finite time Tf , if ∀t < Tf ,
rd(t) /∈ Dl, and minr∈Sl ‖r(t)− rd(t)‖ > Rfe , where
Sl = {r ∈ R2 | El(r) = Eul } is the boundary of Dl.

Proof: By definition, v̄dese is always aligned with F,
then showing F is safe implies v̄dese is also safe. To show
F is safe, we follow a similar analysis to [19, Lemma 1].

Consider S−l = {r ∈ R2 | El(r) = Eul + εE} and S+
l =

{r ∈ R2 | El(r) = Eul − εE}, with εE > 0 arbitrarily
small. Then:

∇Sl(r) =
[

2n
x−xl

∣∣x−xl
a

∣∣2n , 2n
y−yl

∣∣y−yl
b

∣∣2n] ,
= ∇S+

l (r) = ∇S−l (r).
(36)

From the definition of F, we have: ∇S−l F = ∇SlFd,
∇SlF = ∇SlFd. For ∇S+

l F, consider following cases:
1) Let r ∈ S+ s.t.

(
(r− rd)× t̂l(r)

)
· k̂ > 0, then

by definition ∇S+
l Fl=0. This implies that ∇S+

l F =
(1− σ(El))∇S+

l Fd. This gives us (∇S−l F)(∇S+
l F) > 0,

meaning that the integral curves cross the surface Sl.
Let ∇S+

l F > 0, this implies ∇SlF > 0. This contradicts
the fact that the integral curves cross Sl. Then ∇S+

l F <
0, which means that the integral curves approach the
boundary Tl = {r ∈ R2|El(r) = Ēl} of Dl. Let T−l =
{r ∈ R2|El(r) = Ēl + εE}. We have ∇T−l F = ∇S+

l F < 0
and ∇TlF = 0 because on Tl we have σ(Ēl) = 1. This
implies that the integral curves do not cross Tl and keep
sliding over Tl until reaching Bl. Since, by definition, the
vector field F in Bl points toward rd that is situated
outside Bl, one can show using a similar analysis that
the integral curves exit Bl.

2)
(

(r− rd)× t̂l(r)
)
· k̂ ≤ 0. By definition, the vector

fields Fl and Fd both point towards the desired location,
which implies F = Fd. Then, using a similar analysis as
in the previous case, it can be shown that the integral
curves exit the switching surface Sl in this region.

This proves that F is safe and so is v̄dese . Now, since the
blending region Dl is finite, the integral curves of F inside



Dl are of finite length. Then, an object moving with non-
zero speed along the vector field F exits the blending
region Dl in finite time. Further, we have that outside Dl,
the vector field F is convergent to rd /∈ Dl by definition.
Thus, given a non-zero speed and by moving along F,
there exists a finite time T1 such that ‖r̄e‖ = Rfe . At this
instance, F̂ = −r̄e

‖r̄e‖ because σ(El(re)) = 0. This renders
the relative position dynamics as: ˙̄re = −kr r̄e ‖r̄e‖αr−1.
The equilibrium re = rd of this system is finite-time
stable as shown in [18, Lemma 1]. Let T2 be time for r̄e(t)
to converge to 0 with r̄e(0) = Rfe . Then, re converges to
rd in finite time Tf = T1 + T2 with v̄e = v̄dese .

V. Overtake Decision Making
The ego car E is safe with respect to the lead car

L as established in the previous section. The overtake
is performed only when it is deemed safe with re-
spect to the oncoming car O. For the chosen rd(t0) =[
xl(t0) + |x̄l(t0)| ye(t0)

]ᵀ, we calculate the worst-case
time and x-distance traveled by E before it overtakes
L, assuming maximum relative velocity of L relative to
rd, i.e., v̄xl = v̄maxxl . Denote the worst-case time and x-
distance by ∆tW and ∆xe,W , respectively, see Fig. 4, and
the corresponding actual values as ∆t and ∆xe.

For E to be safe with respect to O, we require
‖re(t)− ro(t)‖E∞ > 1 for all t ∈ [t0, t0 + ∆tW ]. Then, if
ro(t) /∈ Z1 = {ro ∈ R | xe(t0) < xo(t) < xe(t0)+∆xe,W },
we have ‖re − ro‖E∞ > 1, for all t ∈ [t0, t0 + ∆W ].
For this to hold, O should start outside the region
Z1 ∪ Z2, shown in Fig. 4, so that O does not enter Z1
during the worst-case overtake maneuver of E , whose
trajectory is denoted with the blue curve. This im-
plies that ((xo(t0)− xe(t0)) > ∆xe,W + ∆tW |vxo(t0)|)
OR (xo(t0) < xe(t0)), i.e., O requires at least ∆tW sec-
onds to enter the unsafe zone Z1 if it starts with xe(t0) <
xo(t0) OR it has already crossed Z1 and thereby renders
the overtake by E safe.
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Fig. 4: Initial conditions of O for unsafe overtake

VI. Case Study and Simulation Results
We apply our proposed intention estimation based

approach to the overtaking scenario when E is behind
L in the same lane, where the underlying goal is to
detect the intention of L. Table I shows parameters of L’s
intention, while Table II depicts the initial conditions and
state and input bounds used in this intention estimation
step. The computed optimal input from Proposition 1 is
ue =

[
0 0 0 0

0.7919 0.7919 0 0

]
. Then, this optimal sepa-

rating input is implemented in real-time while running

the model selection algorithm in Proposition 2 to identify
the intention of L.

TABLE I: Parameters in intentions (5)
Parameter Value Parameter Value Parameter Value
KA,1 0.1 KC,1 -0.5 δA [-0.1,0.1]
KA,2 0.002 KC,2 -0.04 δC [-0.1,0.1]
K0 0.1 hmin [m] 4 hmax [m] 32

TABLE II: Initial conditions and parameters in intention
estimation example

Parameter Value Parameter Value
vxe(0) [m

s
] [22,26] vxe [m

s
] [0,34]

ye(0) [m] [1.85,2.15] ye [m] [0.9,2.8]
h(0) [m] [10,20] vxl [m

s
] [10,28]

vxl(0) [m
s

] [21,23] uxe[ms2 ] [-4.2,4.2]
∆T [s] 0.25 vye [m

s
] [-2.5,2.5]

uxl [m
s2 ] [-4.2,4.2] vdes

xl [m
s

] 22

Next, we provide simulation results for 3 case studies
that demonstrate the efficacy of the proposed intention-
aware overtaking algorithm for E in the presence of O:

Case 1: The intention of L is not known (i.e., i = N).
The control law for E is uxd = uxl,N0 + δminN =
Cdv

avg
tr + δminN .

Case 2: The intention of L is known and the driver is
cautious (i.e., i = C), then uxd = uxl,C0 + δminC .

Case 3: The intention of L is known and the driver is
annoying (i.e., i = A), then uxd = uxl,A0 + δminA .

Table IV shows ∆t, ∆x, ∆tW , ∆xW and the cumula-
tive control effort during the overtake, U =

∫ t0+∆t
t0

uxedt
for the 3 cases with the initial conditions for E , L, O as
given in Table III. It can be observed that, when there
is no estimation of the intention of L, then it is deemed
unsafe for E to overtake for the given initial conditions.
However, if E estimates the intention as in Cases 2 and 3,
then overtaking is deemed safe. Additionally, when the
L’s driver is cautious, the x-distance that E traveled to
overtake L and the control effort during the overtake
U is smaller than the corresponding values when the
L’s driver is annoying. This is expected because the
cautious driver slows down to ease out the overtaking
maneuver of E . Intention estimation helps in effectively
deciding whether to overtake or not, and also in guiding
E smoothly to overtake L in the presence of O.

Fig. 5(a)–(b) show the ∞-distances between E and L,
and between E and O, respectively, for the Case 3 when
L’s driver is annoying. As observed in Fig. 5(a)–(b), the
∞-distances are always greater than 1, demonstrating
that there is no collision between E and the other two
cars. Figure 6(a) shows the 2-norm distance between E
and rd, which goes to zero in finite time, and hence E
converges to the desired dynamics (25) in finite time.
Moreover, Fig. 6(b) shows that control input uxe applied
by E is within the control bounds for all times. The dis-
continuities in uxe at some places are because the desired
velocity profile is only continuous and not differentiable
at those points. The corresponding simulation video can
be found at https://youtu.be/fVyW3anBvC4.
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Fig. 6: Performance of the tracking controller

VII. Conclusions and Future Work
We developed an intention-aware overtaking algorithm

using model discrimination and safe guidance techniques.
The intention estimate enables the ego car to decide on
whether it is safe to overtake a lead car. The guidance
vector fields enable the safe overtake in the presence of
an oncoming car. In the future, we would like to also
include intention estimation for the oncoming car to
further improve the overall proposed architecture.
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