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Abstract— We revisit the problem of computing controlled
invariant sets for controllable discrete-time linear systems.
Inspired by previous work by the authors, our main idea works
in two moves: the problem is lifted to a higher dimensional
space, where we provide a closed-form expression for a set
whose projection back onto the original space is proven to be
controlled invariant. We propose two methods, in which the key
insight is computing controlled invariant sets by considering
periodic control policies. The first method considers hyper-
boxes that are rendered recurrent and essentially improves
computational performance of the authors’ previous work,
while computing the same sets. The second method relaxes the
assumption of recurrent hyper-boxes and yields substantially
larger controlled invariant sets as shown in case studies.
These methods do not rely on iterative computations and their
scalability is illustrated in several examples, which show that
none of the methods is strictly better than the other.

I. INTRODUCTION

The problem of computing Controlled Invariant Sets (CIS)
is the technical problem to be solved when synthesizing
a controller enforcing safety properties. By definition, any
trajectory starting in a CIS can be forced to remain therein
by a choice of admissible control inputs. If a trajectory
is to remain indefinitely in a set of safe states, then the
initial condition must be contained in a CIS within the set
of safe states. Consequently, CISs possess a central role
in several control design problems, e.g., they act as safe
sets in constrained control [7], [12], guarantee feasibility of
optimization problems in Model Predictive Control (MPC)
[11], [14], and more recently used in controller synthesis for
safety properties expressed in temporal logic [19], [21], [23].

As a result, a substantial effort has been devoted to
computing CISs. Beginning with the pioneering work of [5]
on the computation of the Maximal Controlled Invariant Set
(MCIS), many contributions followed and are documented
in [6]. However, the method in [5] is not guaranteed to
terminate in general and it does not scale well with the
system’s dimension. To alleviate the computational burden,
alternative approaches have been investigated. Some of the
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state-of-the-art methods propose inner and outer approxima-
tions of the MCIS by solving optimization problems [13],
[20], [24]. Naturally, outer approximations are not invariant,
but even inner approximations are not guaranteed to be.
A different approach [18] computes enlarged controlled
λ-contractive sets, but requires knowledge of an existing
λ-contractive set. Other works study cases where termination
of the classical algorithm is guaranteed, such as controllable
discrete-time linear systems, with states and inputs in finite
unions of hyper-boxes [23], [26], and the case of bounded
perturbations, with states and inputs in polytopes [22].

In the same spirit, [1], [2], [16] compute exact, as opposed
to approximate, CISs and guarantee finite termination. In
[16], an efficient method for computing ellipsoidal CISs for
a class of hybrid systems is presented, and [1] discusses a
novel method for the class of controllable discrete-time linear
systems. The approach in [1] lifts the problem to a higher
dimensional space, where the set of safe states is represented
by a union of hyper-boxes. In this space, the MCIS is
computed as a union of invariant hyper-boxes. Under the
lens of automata theory, where a set of states is invariant if
and only if it contains a loop [17], the more general problem
of constructing recurrent hyper-boxes is solved in [2] and a
hierarchy is established based on the loop length. Both [1],
[2] compute a CIS in a higher dimensional space in closed-
form and then project it back to the original space, where
it is still invariant. Hence, their bottleneck is the projection
from the higher dimensional space to the original space.

Inspired by the results in [1], [2], we propose two novel
parameterizations for the CIS computed in the higher dimen-
sional space. The contribution of this work is three-fold:
1) a parameterization of the CIS as a sequence of recurrent

hyper-boxes using periodic control policies. This result is
equivalent to [2], but offers significantly reduced computa-
tion time, as it lifts to smaller spaces than before;
2) a novel parameterization for the CIS by constraints on

both states and inputs, under fixed periodic control policies,
which provides considerably less conservative CISs;
3) a generalization of the results to systems with bounded

disturbances, leading to Robust Controlled Invariant Sets.
A similar idea using recurrent sets is explored in [15] in the

context of MPC. The goal there is to find positively invariant
terminal sets for the closed-loop system, whereas we study
existence and computation of controlled invariant sets.

Our simulations suggest that the second method is overall
better in terms of computation time, but there exist cases
where the first one is faster. Thus, if the goal is efficiency
the faster method is prefered. However, if the criterion is the
size of the CIS, then the second approach is always preferred.



The paper is organized as follows, in Section II the
problem is mathematically set up, along with the essential
definitions. Next, Section III briefly recalls the ideas of [1],
[2], and provides the main technical results. Section IV pro-
vides a thorough computational evaluation of the proposed
methods, prior to concluding our remarks in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

We begin with the necessary definitions. This work focuses
on controllable linear systems, and therefore we work with
the Brunovsky normal form [8] of a linear system. Any
controllable linear system can be transformed in this form
by a suitable change of coordinates and state feedback [3].

Definition 1 (Discrete-time linear system): A Discrete-
Time Linear System (DTLS) Σ, in the Brunovsky normal
form, is a linear difference equation:

x+=


0 1 · · · 0
...

. . .
...

0 · · · · · · 1
0 · · · · · · 0

x+


0
...
0
1

u+ w=Ax+Bu+ w, (1)

where x ∈ Rn is the state of the system, u ∈ R is the
input, w ∈ W ⊂ Rn is a disturbance term, A ∈ Rn×n, and
B ∈ Rn. By defining u ∈ R, we implicitly consider single-
input systems (see Remark 2 for multi-input systems).

Definition 2 (Polytope): A polytope S in Rn is a bounded
set of the form:

S = {x ∈ Rn | Gx ≤ f} , (2)

where G ∈ RK×n, and f ∈ RK .
Assumption 1: The following assumptions are part of the

problem setup:
1) The pair (A,B) in system Σ is controllable1.
2) The set S ⊂ Rn is a polytope. We call S the safe set.
3) The disturbance set W is a polytope.
Definition 3 (Controlled invariant set): Given a polytope

S and a DTLS Σ, a set C ⊆ S is a Robust Controlled
Invariant Set (RCIS) of S for Σ if:

x ∈ C ⇒ ∃u ∈ R such that ∀w ∈W : Ax+Bu+ w ∈ C.
Given two sets P,Q ⊆ Rn, denote their Minkowski sum

by P + Q = {p + q | p ∈ P, q ∈ Q}, and their Minkowsky
difference by Q − P = {x ∈ Rn|x + P ⊆ Q}. By
slightly abusing the notation, denote the Minkowsky sum
of a singleton {x} and a set P by x+ P .

Define the controlled predecessor of a set X ⊂ Rn for
the DTLS Σ as:

PreΣ(X) = {x ∈ Rn | ∃u ∈ R, Ax+Bu+W ⊆ X} .
Intuitively, PreΣ(X) maps a set X to the set of all states
x ∈ Rn, for which there exists a control input v forcing
them into X in one time-step, robustly to any disturbance in
W . Next, define the reachable set from a set X ⊆ Rn under
input sequence {ui}t−1

i=0 for a DTLS Σ as:

RΣ

(
X, {ui}t−1

i=0

)
= AtX +

t∑
i=1

Ai−1But−i +

t∑
i=1

Ai−1W.

1This assumption is only used to obtain the Brunovsky normal form in
(1). For details refer to [3, Ch. 3]

Intuitively, RΣ

(
X, {ui}t−1

i=0

)
maps a set X and an input

sequence {ui}t−1
i=0 to the set of all states reachable from

X in t steps, by applying the input sequence {ui}t−1
i=0 . By

definition, if RΣ(X,u) ⊆ Y for some u, then X ⊆ PreΣ(Y ).
Conventionally, RΣ(X, ∅) = X .

Remark 1 (Input constraints): To ease notation, we as-
sume unconstrained inputs, i.e., u ∈ R. To impose input con-
straints, u ∈ U ⊂ R, one extends the state as y = (x, u), and
introduces a new unconstrained input ν ∈ R governing the
evolution of the state u as u+ = ν. The input constraints are
now part of the extended system’s safe set S × U ⊂ Rn ×R.

Remark 2 (The multi-input case): In this paper, we only
discuss single-input systems to simplify the presentation.
Using similar arguments, the same results can be generalized
to controllable multi-input DTLSs.

III. CONTROLLED INVARIANCE IN
HIGHER DIMENSIONAL SPACES

The classical algorithm [5] that computes the MCIS uses
an iterative procedure based on the Pre operator, and does
not scale well with the system dimension. As a remedy, two
promising techniques were developed in [1], [2] based on an
idea working in two moves: 1) lift the safe set S and the
DTLS Σ to a higher dimensional space, where the MCIS
of the lifted set and system is computed in closed-form; 2)
project the computed MCIS back to the original space to
obtain a CIS for the original problem.

Step 1 is computationally efficient as a closed-form ex-
pression is provided. In contrast, step 2 requires a projection,
which is a costly operation [10] as the dimensionality gap
between the lifted and the original space can be large.
Consequently, the bottleneck of the above idea lies in step 2.
Naturally, the question of how to rectify this issue arises.

The main objective of this paper is to provide more
efficient alternatives that compute at least the same CIS as
in [1], [2], but with lower complexity.

A. Controlled invariance in two moves
In [1], the safe set S in (2) is represented as a union of

hyper-boxes by introducing a variable λ ∈ RKn, where K
is the number of facets in S. Then, S ⊂ Rn is lifted to
S` ⊂ Rn+Kn as follows:{

gjixi ≤ λji , i = 1, · · · , n∑n
i=1 λ

j
i ≤ fj

, j = 1, . . . ,K, (3)

where xi is the i-th coordinate of x ∈ Rn, gji is the entry
corresponding to the j-th row and i-th column of G, and
λ =

(
λ1, . . . , λk

)
∈ RKn, λj ∈ Rn, j = 1, . . . ,K. Hence,

the problem is lifted from Rn to Rn+Kn, where the MCIS
is computed exactly in closed-form [1, Th. 3.1]. This MCIS
can be interpreted as a union of invariant hyper-boxes.

Based on the lift in (3), a hierarchy of CISs is proposed
in [2]. The key idea is to relax invariant hyper-boxes to
recurrent hyper-boxes with period L, which is the decision
parameter. By increasing L, one potentially obtains larger
CISs (see [2, Sec. 4.6]). The problem is lifted from Rn to
Rn+LKn, where the MCIS is computed exactly in closed-
form [2, Sec. 7].



B. A more efficient hierarchy (Method 1)

To provide more efficient methods, we provide an alter-
native definition of recurrent hyper-boxes.

Definition 4 (L-invariant set): Given L ∈ N+, we call a
hyper-box B0 ⊆ S L-invariant with respect to Σ, if there
exist L− 1 hyper-boxes B1 . . . , BL−1 ⊆ S, satisfying:

Bmod(t,L) ⊆ PreΣ

(
Bmod(t+1,L)

)
, t = 0, . . . , L− 1. (4)

It follows that any Bt in the sequence is L-invariant, and
∪L−1
t=0 Bt ⊆ S is an RCIS. Define now the following problem.
Problem 1: Given a safe set S ⊂ Rn, and a system Σ in

Brunovsky normal form with disturbance set W ⊂ Rn, find
all L-invariant hyper-boxes in S with respect to Σ.

Denote by B(L), the set of all L-invariant hyper-boxes. It
follows then, that:

CB,L =
⋃

B∈B(L)

B, (5)

is an RCIS by construction. While [2] provides the exact
solution to Problem 1, [1] offers the solution for L = 1.
Here we provide a more efficient solution to Problem 1.

Proposition 3.1: The set CB,L in (5) is unchanged if the
disturbance set W of system Σ is replaced by the smallest
hyper-box WB = Πn

i=1[wi, wi] = [w,w] that contains W .
Proof: Denote the system with disturbance set WB by

Σ′. For any hyper-boxes B1 and B2, it can be shown that
B1 ⊆ PreΣ(B2) if and only if B1 ⊆ PreΣ′(B2). Thus, by
definition, any L-invariant hyper-box with respect to Σ is
also L-invariant with respect to Σ′.

Remark 3: According to Proposition 3.1, we use WB in-
stead of W to simplify technical results, for the remainder of
this subsection, without introducing extra conservativeness.

We propose an equivalent, but more efficient, lift to (3).
Define a hyper-box B = Πn

i=1

[
bi, bi

]
. An equivalent set of

conditions to (3) describing any hyper-box B ⊆ S, is:
n∑
i=1

gji

(
1− sgn(gji)

2
bi +

1 + sgn(gji)

2
bi

)
≤ fj ,

j = 1, . . . ,K.

(6)

Construction (6) lifts Rn to Rn+2n, which is of lower dimen-
sion compared to Rn+Kn from (3), immediately improving
the implementations in [1], [2].

Given any two hyper-boxes, the next Proposition describes
conditions under which PreΣ(·) of one contains the other.

Proposition 3.2: Given any B1 = Πn
i=1

[
b1,i, b1,i

]
and

B2 = Πn
i=1

[
b2,i, b2,i

]
, we have B1 ⊆ PreΣ(B2) if and only

if: (1) u ∈
[
b2,n, b2,n

]
− [wn, wn] 6= ∅; and (2) for any

u ∈
[
b2,n, b2,n

]
− [wn, wn] 6= ∅, RΣ(B1, u) ⊆ B2.

Proof: For any x = (x1, x2, . . . , xn) ∈ B1, we have
xi ∈

[
b1,i, b1,i

]
, i = 1, . . . , n, and the next state can be

written as x+ = (x2 +w1, . . . , xn +wn−1, u+wn). Simple
calculations show that B1 ⊆ PreΣ(B2)⇔ ∃u ∈ R, such that
RΣ(x, u) = Ax+Bu+W ⊆ B2 ⇔ the following holds:[
b1,i+1, b1,i+1

]
+ [wi, wi] ⊆

[
b2,i, b2,i

]
, i = 1, . . . , n− 1,[

b2,n, b2,n
]
− [wn, wn] 6= ∅,

and u ∈
[
b2,n, b2,n

]
− [wn, wn]⇒ RΣ(B1, u) ⊆ B2.

We now provide the main theorem of this subsection.
Theorem 3.3: Consider a safe set S ⊂ Rn and a DTLS

Σ, for which Assumption 1 holds. The robust controlled
invariant set CB,L defined in (5), is given by:

CB,L = πRn(SB,L), (7)

where SB,L is the set of points (x, l, u, u0, . . . , uL−1) satis-
fying:

x ∈ B0 ≡ Πn
i=1

[
bi, bi

]
⊆ S, (8)

RΣ(B0, {ui}t−1
i=0) ⊆ S, t = 1, . . . , L− 1, (9)

RΣ(B0, {ui}L−1
i=0 ) ⊆ B0. (10)

See Appendix A for the closed-form expression of SB,L as
a polytope in R3n+L.

Proof: We first show that B0 ⊆ S is L-invariant ⇔
∃u0, u1, . . . , uL−1 ∈ R satisfying:

RΣ

(
B0, {ui}t−1

i=0

)
⊆ S, t = 0, . . . , L− 1 (11)

RΣ

(
B0, {ui}L−1

i=0

)
⊆ B. (12)

B0 ⊆ S is L-invariant Def. 4⇐=⇒ ∃Bt ⊆ S, t = 1, . . . , L− 1,
s.t. Bmod(t,L) ⊆ PreΣ

(
Bmod(t+1,L)

) Prop. 3.2⇐===⇒ ∃ut ∈ R s.t.
RΣ

(
Bmod(t,L), ut

)
⊆ Bmod(t+1,L), t = 0, . . . , L− 1.

Define Bt = RΣ(Bt−1, ut−1) = ABt−1 +But−1 +WB ,
t = 1, . . . , L− 1, which are hyper-boxes since WB is a box,
then (11), (12) follow.

Consequently, the union of all L-invariant hyper-boxes
B0 ⊆ S for system Σ is the set of states x satisfying the
constraints in (8), (9), (10), computed by projecting SB,L
onto the first n coordinates.

We can conclude from Theorem 3.3 and its proof, that
if CB,L is non-empty, then there must exist a sequence of
periodic inputs forcing any state in B, to loop back to B
in L steps, while remaining in CB,L and consequently in
the safe set. This is shown in Figure 1. Notice here that
the L-invariant hyper-boxes computed as part of the solution
by Method 1 keep their “box” shape despite the presence
of disturbances. This can be especially helpful in high
dimensional problems, where even polyhedral constraints
give little intuition about the shapes of the sets and thus
hyper-boxes are preferred.

u0

u1u2uL−2

uL−1
· · ·

B0

B1

B2

BL−1

Fig. 1: Illustration of a sequence of L-invariant hyper-boxes,
in blue, and the corresponding input sequence.



C. A less conservative hierarchy (Method 2)

So far, we essentially computed hyper-boxes rendered L-
invariant by periodic inputs. This suggests that we may
parameterize an RCIS by constraints on the states and on a
sequence of periodic inputs. Any such state x ∈ S satisfies:

∃ {ui}t−1
i=0 : RΣ

(
x, {umod(i,L)}t−1

i=0

)
⊆ S, t ≥ 0, (13)

i.e., the reachable set from x, under the periodic control
policy ut = umod(t,L), remains in the safe set S. Notice
that (13) defines an infinite number of constraints in general.
However, under the above periodic policy they are reduced
to a set of finite constraints as we show below. The system
Σ is in Brunovsky normal form and, hence, we have that:

RΣ

(
x, {ui}t−1

i=0

)
=Aτx+

τ∑
i=1

Ai−1But−i+
τ∑
i=1

Ai−1W, (14)

where τ = min (t, n), since At = 0, for t ≥ n. In light of
(14), the constraints in (13) are separated as:

RΣ

(
x, {umod(i,L)}t−1

i=0

)
⊆ S, t = 0, . . . , n− 1, (15)

RΣ

(
{umod(i,L)}t−1

i=0

)
⊆ S, t ≥ n, (16)

where in (16) we omit x as it is independent of x given (14).
Due to the cyclic nature of u, we observe from (14) that the
constraints in (16) repeat as t increases:
umod(i,L) = umod(i+kL,L), k ∈ N

⇒RΣ

(
{umod(i,L)}t−1

i=0

)
= RΣ

(
{umod(i,L)}t+kL−1

i=0

)
, t ≥ n.

Thus, (16) is equivalent to:

RΣ

(
{umod(i,L)}t−1

i=0

)
⊆ S, t = n, . . . , n+ L− 1. (17)

Consequently, we have shown that under the periodic policy
ut = umod(t,L), the infinite number of constraints in (13) is
reduced to a finite number of constraints in (15) and (17).
These constraints define a set in the space of states x and
input sequences uL = (u0, . . . , uL−1) ∈ RL as:

SU,L =
{

(x, uL) ∈ Rn+L
∣∣(x, uL) satisfy (15), (17)

}
, (18)

which is a polytope given in closed-form in Appendix B.
By projecting SU,L onto the first n coordinates, we obtain
CU,L = πRn(SU,L), which is an RCIS by construction. This
can be understood as any state in a trajectory starting in
CU,L, can always be forced to stay in the safe set by a
periodic input sequence and, therefore, is itself contained
in CU,L. The above is summarized in the following result.

Theorem 3.4: Consider a safe set S ⊂ Rn and a DTLS
Σ, for which Assumption 1 holds. The set:

CU,L = πRn(SU,L). (19)

is controlled invariant, where SU,L is a polytope in Rn+L,
provided in closed-form in Appendix B.

Notice here that, similarly to [1] and [2], we can construct
auxiliary higher dimensional systems for which SB,L and
SU,L are controlled invariant.

Remark 4 (Complexity analysis): Method 1 amounts to
projecting a polytope with LK + 4n constraints from
Rn+2n+L to Rn, and Method 2 to projecting a polytope

TABLE I: Example 1: Execution time and CIS volume as
the length of the loop L increases. System dimension n = 5.

L = 1 L = 2 L = 3 L = 4 L = 5

Mth. 1 Time (sec.) 0.99 0.71 2.08 5.82 318.9
% of MCIS

volume 0.75 1.26 1.80 3.59 5.78

Mth. 2 Time (sec.) 0.10 0.24 1.52 4.72 22.6
% of MCIS

volume 82.18 91.08 93.96 95.93 96.90

Alg. [2] Time (sec.) 13.4 32.1 551.1 ∼ 3000 ≥ 3600
% of MCIS

volume 0.75 1.26 1.80 3.59 5.78

from Rn+L onto Rn. The above is readily verified by the
respective closed-form expressions in Appendices A and B.
The improvement over [2], which requires projecting a poly-
tope with an upper bound of 1

2n(n+ 1)K + LK + L (Kn)2

4
on its constraints from Rn+LKn to Rn, is substantial. That
is, the proposed methods scale better with L and K, i.e.,
larger loops and more complex safe sets.

Remark 5 (Conservativeness): Notice that CU,L ⊇ CB,L
in general. Moreover, Method 2 exploits the shape of W
to compute an RCIS that is less conservative in terms of the
disturbance effect, in contrast to Method 1, for which using
WB instead of W bears no difference, see Remark 3.

Corollary 3.5 (Correctness and completeness): If the sets
computed by CB,L and CU,L are non-empty, then they
are controlled invariant by construction. In the absence of
disturbance, i.e., W = ∅, if the MCIS of S is non-empty,
then CB,L is the same as the set in [2], and completeness of
[2, Th. 4.3] implies completeness of Method 1. Moreover,
CU,L ⊇ CB,L, which implies completeness of Method 2.
When W 6= ∅, Methods 1 and 2 are not complete, see
Section IV for a counter-example.

IV. COMPUTATIONAL EVALUATION

In this section, we perform a computational evaluation2,3

of the proposed methods.
Example 1: Consider a continuous-time model for a

truck with N trailers [23] in Fig. 2. The state is
x = (d1, . . . , dN , u0, . . . , uN ) and, hence, N trailers corre-
spond to dimension n = 2N + 1. The input is the velocity
of the truck. We discretize the model with a sampling time
of Ts seconds assuming piecewise constant inputs.

We illustrate how the proposed methods scale with the
system dimension n and the loop length L on the above ex-
ample. We compare to their predecessor [2], the method [16]
that computes ellipsoidal CISs, and the invariantSet()

2The relevant code is available at: https://github.com/janis10/cis2m.
3Instructions and exact parameters of the examples are found at:

https://github.com/janis10/cis2m/tree/master/paper-archive/ACC21.

v0 v1 vN

d1 dNd2

. . .

Fig. 2: Illustration of a truck with N trailers.



TABLE II: Example 1: CIS volume as the system dimension,
n = 2N + 1, increases with the number of trailers N .

n = 3 n = 5 n = 7 n = 9

Mth. 1
L = 2

Time (sec.) 0.33 0.75 2.78 33.19
% of MCIS

volume 91.81 1.26 NA NA

Mth. 2
L = 2

Time (sec.) 0.07 0.25 1.12 145.02
% of MCIS

volume 96.38 91.07 NA NA

Alg. [2]
L = 2

Time (sec.) 3.01 33.41 259.1 ∼ 3200
% of MCIS

volume 91.81 1.26 NA NA

Alg. [16] Time (sec.) 0.07 0.11 0.13 0.17
% of MCIS

volume 4.64 0.32 NA NA

MPT3
100 iterations

Time (sec.) 1.06 4.52 ∼ 1400 ≥ 3600
MCIS

volume 21.68 20.75 NA NA

function of the Multi-Parametric Toolbox (MPT3) [9], which
computes the MCIS using the iterative procedure [5]. MPT3
is more costly computationally for higher dimensions, and
therefore we set an upper bound of 100 iterations.

In Table I, we fix n = 5 and compare the runtimes of
Methods 1, 2, and [2], as we increase L to obtain larger CISs.
Both Methods 1 and 2 scale much better with L compared to
[2]. Moreover, Method 2 computes less conservative CISs.

In Table II, we fix L = 2 and compare Methods 1, 2,
[2], [16], and MPT3, as we increase n. The algorithm in
[16] is the fastest, with Method 2 following close. Be that
as it may, comparing the volumes of the computed CISs,
reveals that the proposed methods return considerably larger
sets, especially Method 2, and now much faster than before.
Computing the MCIS using MPT3, although fairly quick for
n = 3, 5, fails to converge in 100 iterations for larger values
of n, and simulations were aborted, thus the computed set at
that time is not a CIS. Notice, that we do not report volumes
for n = 7, 9, since (1) MPT3 did not terminate and the MCIS
is not obtained; and (2) we noticed that MPT3 function that
computes the volume of a polytope was unstable in high
dimensions.

It is worth noticing that virtually the entire runtime for
our methods is consumed in projecting from the lifted space
to the original space. By increasing L, the lifted space
is larger, and in turn projection requires more effort [10].
Consequently, there is a trade-off between size of the CIS
and execution time. Furthermore, in most cases Method 2
is faster than Method 1 as the lifted space of Method 2 is
smaller than that of Method 1. However, in Table II, Method
2 is slower for the case n = 9. That is due to projection time
being largely affected by the number of constraints of the
projected polytope. For said case, SU,L has more constraints,
K (n+ L), than the (KL+ 4n) of SB,L. Thus, though our
results support that Method 2 is typically faster, we cannot
conclude that it is superior to Method 1 in terms of runtime.

Example 2: Consider the continuous-time lateral dynam-
ics of a vehicle [25], with 4 states and constrained input,
resulting in a system of n = 5 states and unconstrained

input. We discretize the model with a sampling time of Ts
seconds assuming piecewise constant inputs.

Table III shows how the size of the computed RCIS
shrinks with increasing disturbance. As the disturbance
bounds increase, our computed RCISs become empty, while
the MRCIS is still non-empty. This serves as a counter-
example disproving completeness of our methods in presence
of disturbance. Finally, Table IV compares the proposed
methods in absence of disturbances. The results resemble
Table I, however in this case Method 1 performs considerably
better as L increases. Moreover, even in the presence of input
constraints, Method 2 quickly computes a sufficiently large
part of the MCIS. As a comparison, MPT3 computes the
MCIS in 9 seconds, whereas our method computes 95% of
it, in just 0.41 seconds, i.e., almost 22 times faster.

For reference, the simulations were conducted on an iMac
(Late 2012), 4-core Intel Core i7 Processor@3.4GHz and
32GB 1600MHz DDR3 RAM using MPT3 and MOSEK [4].

V. DISCUSSION & CONCLUSION

In this paper, we presented two methods for computing
RCISs that significantly improve performance over [1], [2].
Both methods offer substantially smaller computational over-
head with respect to their predecessors. The first method
reformulates the same ideas, but results in lifts to smaller
spaces than before, which alleviates to some extent the
bottleneck of projection. The second method generalizes the
first and, thus, is able to compute even larger RCISs. Both
methods still embody the idea of a hierarchy of RCISs.
Increasing the loop length potentially yields larger RCISs,
which introduces a trade-off between quality, i.e., size of
the RCIS, and performance, i.e., runtime. Consequently, they
render the proposed hierarchy even more useful for the
practitioner.

TABLE III: Example 2: Performance of Method 2 when
computing an RCIS as the disturbance, rd, bounds grow.

|rd| ≤ 0.005 0.010 0.015 0.020

Mth. 1
L = 4

% of MRCIS
volume 2.59 0 0 0

Mth. 2
L = 4

% of MRCIS
volume 95.41 88.83 64.31 0

MPT3 MRCIS
volume 0.1935 0.1915 0.1895 0.1874

TABLE IV: Example 2: Execution time and CIS volume as
the loop length L increases. No disturbance.

L = 2 L = 3 L = 4 L = 5 L = 6

Mth. 1 Time (sec.) 0.72 0.87 1.65 19.94 241.9
% of MCIS

volume 3.15 5.69 11.6 20.1 30.6

Mth. 2 Time (sec.) 0.41 0.96 2.47 9.40 18.25
% of MCIS

volume 95.7 96.2 96.9 97.7 98.6



APPENDIX

A. Closed-form expression of SB,L
Consider boxes B0 =

[
b, b
]
,WB = [w,w] ⊂ Rn. We

show that (8), (9), (10) define a polytope given in closed-
form.

1) Constraints (8), i.e., x ∈ B0 and B0 ⊆ S, described in
(6), are immediately linear on (x, b, b).

2) Constraints (9), i.e., RΣ

(
B0, {ui}t−1

i=0

)
⊆ S can be

written as:

AtB0 +

t∑
i=1

Ai−1Bumod(t−i,L) +

t∑
i=1

AtWB ⊆ S.

The set on the lefthand side above is still a box, as both B0

and WB are boxes. Therefore, in the same manner as in (6),
the above constraints are linear on (b, b, u0, . . . , uL−1).

3) Constraints (10), i.e., RΣ

(
B0, {ui}L−1

i=0

)
⊆ B0 can be

written as:

AL−1B0 +

L=1∑
i=1

Ai−1Bumod(t−i,L) +

L−1∑
i=1

AtWB ⊆ B.

Similarly, the set on the lefthand side above is a box and the
above constraints are linear on (b, b, u0, . . . , uL−1).

Finally, SB,L is the polytope defined by
constraints 1), 2), and 3) above, which are linear in(
x, b, b, u0, . . . , uL−1

)
∈ Rn+2n+L.

B. Closed-form expression of SU,L
The set SU,L is the set of points (x, u0, . . . , uL−1) ∈

Rn+L that satisfy constraints (15) and (17). These con-
straints, given (14), are respectively written as:

Atx+

t∑
i=1

Ai−1Bumod(t−i,L) ⊆ S −
t∑
i=1

Ai−1W,

t = 0, . . . , n− 1,n∑
i=1

Ai−1Bumod(t−i,L) ⊆ S −
n∑
i=1

Ai−1W,

t = n, . . . , n+ L− 1.

Since S and W are polytopes, then S −∑t
i=1A

i−1W ,
for t = 1, . . . , n, are polytopes defined as a Minkowski
difference. Therefore, the above constraints can be written as
linear inequalities in (x, u0, . . . , uL−1) ∈ Rn+L and define
the polytope SU,L.
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