Winter 2017 Updated November 30 2016

AERO 575 Flight and Trajectory Optimization. [Kolmanovsky] AERO 550 (EECS 560) (ME 564) [Scruggs] AERO 551 (EECS 562) [Meerkov] AERO 580 (EECS 565) Section 1 [Freudenberg] Section 2 [Bernstein, Girard] AERO 584 Navigation and Guidance of Aerospace Vehicles. [Panagou]

EECS 419 Electric Machines and Drives[Hofmann]

EECS 460 [Ozay]

EECS 461 [Cook, Freudenberg]

EECS 463 [Hiskens]

EECS 467 [Jenkins] Autonomous Robotics

EECS 498-001 [Revzen] Hands on Robotics

EECS 560 (AERO 550) (ME 564) [Scruggs]

EECS 561 (ME 561) [Gillespie]

EE 562 (AERO 551) [Meerkov]

EECS 565 (AERO 550)

Section 1 [Freudenberg]

Section 2 [Bernstein, Girard]

EECS 567 (ME 567) [Gillespie] Robot Kinematics and Dynamics EECS 598-002 [Avestruz] Advanced Topics in Design of Power Electronics

EECS 598-003 [Berenson] Motion Planning

EECS 598-005 [Hiskens] Grid Integration of Renewable Energy

ME 461 [Tilbury] Automatic Control

ME 542 [Orosz] Vehicle Dynamics

ME 543 [Remy] Analytical and Computational Dynamics 1

ME 548 [Orosz] Applied Nonlinear Dynamics

ME 561 (EECS 561) [Gillespie]

ME 564 560 (AERO 550) (EECS 560) [Scruggs]

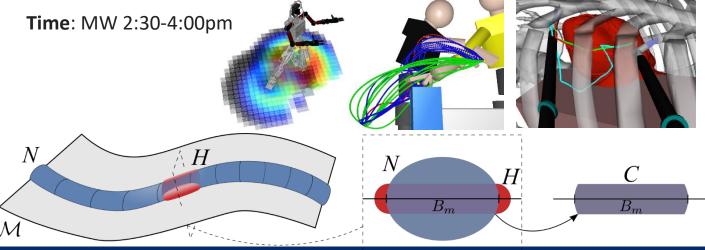
ME 565 [Siegel] Battery Systems and Control

ME 566 (Peng) Hybrid Electric Vehicles

ME 567 (EECS 567) [Gillespie] Robot Kinematics and Dynamics

ROB 550 [Atkins] Robotics Systems Laboratory

Interesting IOE courses IOE 510 - Linear Programming I IOE 511- Continuous Optimization Methods IOE 614- Integer Programming


EECS 598 Motion Planning – Winter 2017

Course Description: Motion planning is the study of algorithms that reason about the movement of physical or virtual entities. These algorithms can be used to generate sequences of motions for many kinds of robots, robot teams, animated characters, and even molecules. This course will cover the major topics of motion planning including (but not limited to) planning for manipulation with robot arms and hands, mobile robot path planning with non-holonomic constraints, multi-robot path planning, high-dimensional sampling-based planning, and planning on constraint manifolds. Students will implement motion planning algorithms in open-source frameworks, read recent literature in the field, and complete a project that draws on the course material.

Pre-requisites: Undergraduate Linear Algebra, experience with 3D geometry, and significant programming experience.

Instructor: Prof. Dmitry Berenson

VEHICLE DYNAMICS (AND CONTROL)

WINTER 2017

Instructors:	Prof Gábor Orosz Dept. of Mechanical Engineering Autolab G034 <u>orosz@umich.edu</u>	Mr Chaozhe He Dept. of Mechanical Engineering Autolab G041 <u>hchaozhe@umich.edu</u>
Lectures:	Tu 1:30pm - 3:00pm, CHRYS 151 Th 1:30pm - 3:00pm, CHRYS 151	
Recitation:	Fr 2:00pm - 3:30pm, CHRYS 151	
Office hours:	M TBA Tu TBA We 11:00am - 12:00pm, Autolab G034	
Distance learni	ing students are required to attend the office hours in at le	east every second week.
Prerequisites :	You are expected to have knowledge of vector can and rigid body dynamics (for example, ME 440 or ME	
Reading:	 K. Popp and W. Schiehlen, <i>Ground Vehicle Dynamics</i>, <u>http://link.springer.com/book/10.1007/</u> D. Schramm, M. Hiller, R. Bardini, <i>Vehicle Dynamics:</i> <u>http://link.springer.com/book/10.1007/</u> R. Rajamani, <i>Vehicle Dynamics and Control</i>, 2nd edition <u>http://link.springer.com/book/10.1007/</u> A. G. Ulsoy, H. Peng, M. Çakmakci, Automotive Control <u>http://www.cambridge.org/us/academicand-optimization/automotive-control-ss</u> J. Y. Wong, <i>Theory of Ground Vehicles</i>, 4th edition, W <u>http://www.wiley.com/WileyCDA/Wil</u> H. Baruh, <i>Applied Dynamics</i>, CRC Press, 2014 <u>http://www.crcpress.com/product/isbn/</u> 	<u>978-3-540-68553-1</u> <u>Modeling and Simulation</u> , Springer, 2014 <u>978-3-540-36045-2</u> on, Springer, 2012 <u>978-1-4614-1433-9</u> rol Systems, Cambridge Univ. Press 2012 <u>c/subjects/engineering/control-systems-</u> <u>ystems</u> <u>yiley, 2008</u> <u>leyTitle/productCd-0470170387.html</u>

Course description: Dynamics of the motor vehicle. Static and dynamic properties of the pneumatic tire. Mechanical models of single and double-track vehicles enabling prediction of their response to control forces/moments and external disturbances. Directional response and stability in small disturbance maneuvers. The closed-loop driving process. Behavior of the motor vehicle in large perturbation maneuvers. Ride phenomena treated as a random process.

Website: We will maintain a course website on which we will post material (assignments, solutions, handouts, etc.) as well as announcements. You can access our course website at canvas <u>https://umich.instructure.com</u>

The Engineering Honor Code: <u>http://www.engin.umich.edu/students/honorcode/</u> No member of the community shall take unfair advantage of any other member of the community. Assignments: Twelve homework assignments will be set during the term that will be posted on the course's website. Homework sets are **due no later than the start of class on Thursdays in paper format**. For distance learning students the deadlines are extended until **Sunday midnight EST** and they shall upload the scanned homeworks named **HW##_firstname_lastname.pdf** into their Drop Box on canvas. Late homeworks are accepted up to 72 hours after the deadline but 50% of the grade will be taken off. The lowest homework score for the term will be dropped. Homework solutions will be available through the course web site. Put on each homework sheet how much time you spent solving it for extra 2 points.

You are encouraged to discuss and work on homework together but the final document must represent your own understanding of the material.

If you find errors in your graded homework (e.g. scores do not add up, the grader missed a page etc.) you may ask for regrade. You need to attach a sheet where you write up the issue and resubmit the homework to the professor within one week after receiving the graded homework.

Examinations: Midterm Exam:	Mar 8 (Wed), 6:00 - 8:00pm, CHRYS 151
Final Exam:	Apr 27 (Wed), 1:30 - 3:30pm, CHRYS 151
The exams will be closed book. On	ne sheet of notes (8.5" by 11") will be permitted for the exams (one-sided for the
midterm and double-sided for the fin	al).

Grading:	Homework	30%
-	Midterm Exam	30%
	Final Exam	40%

Additional rules: no laptops, cell phones, ipods, ipads, etc. during the class

Course Outline:

- 1. Longitudinal vehicle dynamics
- 1.1 Review of the Newton-Euler approach of modelling rigid body dynamics
- 1.2 Modeling longitudinal vehicle dynamics
- 1.3 Adaptive cruise control design

2. Ride dynamics

- 2.1 Lagrange equations and their application to multi-body systems
- 2.2 Random processes
- 2.3 Quarter car model and suspension design
- 2.4 Half car model (bounce, pitch)
- 2.5 Passive and active suspension design
- 3. Vehicle handing
- 3.1 Nonholonomic systems and Appell equations
- 3.2 Bicycle model of vehicle steering
- 3.3 Lane keeping control
- 3.4 Lateral + roll dynamics
- 4. Tire models
- 4.1 Longitudinal and lateral and brush model
- 4.2 Stretched-string model
- 4.3 Magic formula
- 5. Vehicle handing with tires
- 5.1 Bicycle model with elastic tires
- 5.2 Steady state handling (oversteer, understeer)
- 5.3 Transient handling and lane keeping control
- 5.4 Lateral + roll dynamics

LECTURE	DATE	TOPICS	READING	HW DUE DATES
1	Th 1/5	Introduction, Review of particle dynamics	Handouts	
2	Tu 1/10	Review of rigid body dynamics	PS 2.2-2.3, SHB	
			2	
3	Th 1/12	3D Dynamics of the Vehicle	PS 8.2-8.5	HW#01
4	Tu 1/17	Longitudinal Dynamics	PS 8.2-8.5	
			R 5.3-5.4	
5	Th 1/19	Cruise Control, Adaptive Cruise Control	Shah-Orosz 2012	HW#02
6	Tu 1/24	Constraints and Lagrange Equations	SHB 4.1-4.5	
			PS 2.3	
7	Th 1/26	Lagrange Equations	SHB 4.1-4.5	HW#03
			PS 2.3	
8	Tu 1/28	Quarter car models (1DOF, 2DOF)	R 10	
			PS 7.1-7.2.2	
9	Th 2/2	Quarter car model (2DOF), Half car model	R 10	HW#04
			PS 7.1-7.2.2	
10	Tu 2/7	Stochastic road excitation	UPC 4.4	
			PS 7.2.3.1-7.3	
			Scruggs 125-132	
11	Th 2/9	Stochastic road excitation	UPC 4.4	HW#05
			PS 7.2.3.1-7.3	
			Scruggs 125-132	
12	Tu 2/14	Suspension design and active suspension	UPC 16	
			Ulsoy-Hrovat-	
			Tseng 1994	
13	Th 2/16	Nonholonomic systems and Lagrange equations	Wang-Pao 2003	HW#06
			Flannery 2004	
14	Tu 2/21	Bicycle model(s) of automotive steering	Astrom-Murray pp 51-53	
15	Th 2/22	Nonhalanamia gustama and Annall agustiana		1111/1/107
15	Th 2/23	Nonholonomic systems and Appell equations	Wang-Pao 2003 Flannery 2004	HW#07
	2/27-3/3	WINTER RECESS		
16	Tu 3/7	Appell equations and bicycle model(s) of automotive steering		
	W 3/8	MIDTERM EXAM at 6-8pm		
17	Th 3/9	Bicycle model(s) of automotive steering and steering control		

	We 4/27	FINAL EXAM at 1:30-3:30pm		
28	Th 4/18	Review and Project Presentation		HW#12
		steering		
27	Th 4/13	Roll dynamics, Rear wheel steering and four wheel		
26	Tu 4/11	Steering compliance, banking, differential braking		
			SHB 10.1	
25	Th 4/6	Transient handling and steering control	PS 9.1,	HW#1
21	101/1		SHB 10.1	
24	Tu 4/4	Steady state handling, Neutralsteer, Understeer, Oversteer	PS 9.1,	
23	1 n 3/30	Bicycle model(s) of automotive steering with brush tire	PS 9.1, SHB 10.1	HW#I0
23	Th 3/30	Disurs and allo) of outomotive standing with here he time	2012 PS 0.1	HW#10
			Takacs-Stepan	
		deformation	Stepan 2009	
22	Tu 3/28	Stretched string model, Combined lateral and longitudinal	Takacs-Orosz-	
			SHB 7.3.1-7.3.4	
			3.4.4.1-3.4.4.3	
21	Th 3/23	Lateral brush model,	PS 3.4.1,	HW#09
			SHB 7.3.1-7.3.4	
20	14 5/21	The models, Roning resistance, Dongradmar orasin model	3.4.4.1-3.4.4.3	
20	Tu 3/21	Tire models, Rolling resistance, Longitudinal brush model	PS 3.4.1,	
19	Th 3/16	Roll dynamics		HW#08
10	T1 2/1 (Roll dynamics		
18	Tu 3/14	Ackermann steering, Off tracking, Articulated vehicles,		

- HW#01 Linear algebra and differential equations
- HW#02 Rigid body dynamics
- HW#03 Longitudinal dynamics
- HW#04 Lagrangian dynamics
- HW#05 Ride dynamics Modeling and frequency response
- HW#06 Ride dynamics Stochastic road excitation
- HW#07 Active Suspension Design
- HW#08 Steering and handling Lagrangian and Appellian models
- HW#09 Steering and handling Stability, control, sliding and rolling
- HW#10 Tire models Longitudinal and lateral brush models
- HW#11 Tire models Stretched string model and combined slip
- HW#12 Handling with tires

ME548 APPLIED NONLINEAR DYNAMICS

Instructor:	Dept. Autola	Gábor Orosz of Mechanical Engineering ab G034 @umich.edu	GSI:	Mr Sergei Avedisov Dept. of Mechanical Engineering Autolab G041 <u>avediska@umich.edu</u>
Lectures:		Tu 10:30am - 12:00pm, CHRYS 15 Th 10:30am - 12:00pm, CHRYS 15		
Recitation:		Fr 3:30pm - 5:00pm, CHRYS 151		
Office hours	:	M TBA Tu TBA W 11:00am - 12:00pm, Autolab G03	34	
Prerequisite	s:	8		vibrations/control, for example, ME360. ear algebra and differential equations.
Course book	(8:	D. W. Jordan and P Smith, <i>Nonlinea</i> Oxford University Press, 2007, <u>http:</u>		nary Differential Equations, 4 th edition, j.edu.pl/~biernat/ksiazki/
		P. Glendinning, Stability, Instability Nonlinear Differential Equations, C		aos: An Introduction to the Theory of ge University Press, 1994
Additional r	eading:	J. Guckenheimer and P. Holmes, No Bifurcations of Vector Fields, Spring		Oscillations, Dynamical Systems, and 7
		Y. A. Kuznetsov, Elements of Applic	ed Bifur	cation Theory, 2nd edition, Springer, 1998
		S. Wiggins, <i>Introduction to Applied</i> Springer, 2003	Nonlin	ear DynamicalSystems and Chaos, 2 nd edition,
		Karl J. Astrom & Richard M. Murra <i>Engineers</i> , Princeton University Pre <u>http://www.cds.caltech.edu/~murray</u>	ss, 2008	
			and Ch	aos: With Applications to Physics, Biology,
		M. Gruiz and T. Tel, <i>Chaotic Dynam</i> Cambridge University Press, 2006	nics: Ar	n Introduction Based on Classical Mechanics,
		B. D. Hassard, N. D. Kazarinoff, and <i>bifurcation</i> , Cambridge University F		H. Wan, <i>Theory and Applications of Hopf</i> 981
Course desci	rintion•	Geometrical representation of the dy	namice	of nonlinear systems. Stability and hifurcation

Course description: Geometrical representation of the dynamics of nonlinear systems. Stability and bifurcation theory for autonomous and periodically forced systems. Chaos and strange attractors. Introduction to pattern formation. Applications to various problems in rigid-body dynamics, flexible structural dynamics, fluid-structure interactions, fluid dynamics, and control of electromechanical systems.

Website: We will maintain a course website on which we will post material (assignments, solutions, handouts, etc.) as well as announcements. You can access our course website at https://ctools.umich.edu/portal

The Engineering Honor Code: http://www.engin.umich.edu/students/honorcode/

No member of the community shall take unfair advantage of any other member of the community.

Assignments: Eleven homework assignments will be set during the term that will be posted on the course's website. Homework sets are **due no later than the start of class on Thursdays**, and late homework will NOT be accepted. The lowest homework score for the term will be dropped. Homework solutions will be available through the course web site. You are encouraged to discuss and work on homework together but the final document must represent your own understanding of the material.

Examinations:	Midterm Exam:	Mar 8 (Wed), 6:00pm - 8:00pm
	Final Exam:	Apr 26 (Wed), 4:00pm - 6:00pm

The exams will be closed book. One sheet of notes (8.5" by 11") will be permitted for the exams (one-sided for the midterm and double-sided for the final).

Grading:	Homework	30%
	Midterm Exam	30%
	Final Exam	40%

Additional rules: no laptops, cell phones, ipods, ipads, etc. during the class

Course Schedule (tentative 11/23/16):

LECTURE	DATE	TOPICS	READING	HW DUE DATES
1	Th 1/5	Introduction to course, Constraints in mechanical systems		
2	Tu 1/10	Virtual power, Lagrange equations of the second kind		
3	Th 1/12	Lagrange equations of the second kind		
4	Tu 1/17	Lagrange equations of the second kind, Nonlinearities in mechanical systems	JS 1	HW#01
5	Th 1/19	Invariant objects in state space Planar dynamical systems, Phase plane plots	JS 1,2,3, GL 1,5	
6	Tu 1/24	Linear dynamics in n dimension	GL 3, AM 5	
7	Th 1/26	Nonlinear dynamics in n dimension, Poincare linearization	GL 4	HW #02
8	Tu 1/31	Manifolds, Lyapunov stability	AM 4, GL 2,4	
9	Th 2/2	Lyapunov function	AM 4, GL2	HW #03
10	Tu 2/7	Lyapunov stability for conservative mechanical systems	AM 4, GL2	
11	Th 2/9	Metronom. steady-state bifurcations (pitchfork, fold)	JS 12	HW #04
12	Tu 2/14	Steady-state bifurcations – Normal Forms	GL 8	
13	Th 2/16	Nonlinear dynamics in n dimension with parameters, Center manifold reduction	JS 12, GL 8	HW#05
14	Tu 2/21	Lienard and Bendixson criteria and stick-slip oscillations	JS 11, GL 5	
15	Th 2/23	Hopf bifurcation theorem, Hopf normal form calculation	HKW	HW#06
	2/27-3/3	WINTER RECESS		
16	Tu 3/7	Bautin formula, Hopf normal form calculation for stick-slip oscillations	HKW	
	We 3/8	MIDTERM EXAM at 6-8pm		
17	Th 3/9	<i>Videos</i> , Nonlinear oscillations in conservative systems, Poincare-Linstedt method	JS 5,7	

	W 4/26	FINAL EXAM, 4:00-6:00pm		
28	Tu 4/18	Micro-chaos in digital control, Review		HW#1
		chaos (period doubling, homoclinic tangency)		
27	Th 4/13	Chaos in dissipative and conservative system Routes to	GT	
		Collocation Methods		
26	Tu 4/11	Continuation of periodic orbits, Boundary-value problems,	Handout	
		Predictors and correctors, Pseodu-arclenght parameterization		
25	Th 4/6	Numerical continuation of equilbria, Newton method,	Handout	HW#1
		Sacker), Resonances and Arnold Tongues		
24	Tu 4/4	Bifurcations and normal forms of maps (fold, flip, Neimark-	GL9	
		Poincare maps, Application to Hopf normal form		
23	Th 3/30	Stability of oscillations in autonomous systems,	GL 6	HW#0
		Stability of oscillations in periodically forced systems		
22	Tu 3/28	Mathieu Equation with damping,	JS 9	
			3.5, 6.3, 6.4	
21	Th 3/23	Floquet theory, Ince-Strutt stability chart	JS 9, GL	HW#0
			3.5, 6.3, 6.4	
20	Tu 3/21	Floquet theory	JS 9, GL	
			3.5, 6.3, 6.4	
19	Th 3/16	Parametric excitation, Mathieu Equation	JS 9, GL	HW#0
18	Tu 3/14	Nonlinear oscillations in periodically forced systems	JS 5,7	

- HW #01 Solving ordinary differential equations analytically and numerically
- HW #02 Deriving Lagrange equations of the second kind
- HW #03 Phase portraits of two-dimensional systems
- HW #04 Linearization and Jordan normal forms for n-dimensional systems, calculating stable and unstable manifolds
- HW #05 Lyapunov stability and Dirichlet theorem
- HW #06 Steady-state bifurcations (fold, pitchfork, transcritical) and center manifold reduction
- HW #07 Lineard and Bendixson criteria, Hopf bifurcation calculation and center manifold reduction
- HW #08 Poincare-Lindstedt method for conservative and dissipative systems, Subharmonic and ultraharmonic resonance
- HW #09 Floquet theory and Mathieu equations
- HW #10 Fold, flip and Neimark -Sacker bifurcations for maps and center manifold reduction
- HW #11 Numerical continuation and applications of DDE-biftool

Each HW will be preceded by a recitation on the topic