
Abstract

In this paper we propose a new hardware mechanism,
called Register Queues (RQs), which effectively decouples
the architected register space from the physical registers.
Using RQs, the compiler can allocate physical registers to
store live values in the software pipelined loop while mini-
mizing the pressure placed on architected registers. We
show that decoupling the architected register space from
the physical register space can greatly increase the appli-
cability of software pipelining, even as memory latencies
increase. RQs combine the major aspects of existing rotat-
ing register file and register connection techniques to gen-
erate efficient software pipeline schedules. Through the use
of RQs, we can minimize the register pressure and code
expansion caused by software pipelining. We demonstrate
the effect of incorporating register queues and software
pipelining with 983 loops taken from the Perfect Club, the
SPEC suites, and the Livermore Kernels.

1. Introduction
 Many code transformations performed in optimizing

compilers trade off an increase in register pressure for
some desirable effect (lower instruction count, larger basic
block size, etc.). Perhaps this is most clearly shown in soft-
ware pipelining [14], which interleaves instructions from
multiple iterations of the original loop into a restructured
loop kernel. This restructuring improves pipeline through-
put by enabling more instructions to be scheduled between
a value being defined by a high latency operation (e.g.,
multiplication, memory load) and its subsequent use. How-
ever, spreading the definition and use increases the variable
lifetime as well as the number of simultaneously live (over-
lapped) instances of that variable from different iterations
of the loop body. To accommodate these variables, each of
the simultaneously live instances needs its own register.
Furthermore, each instance must be uniquely identified to
match the use of a variable to the correct definition; there
must be some mechanism to differentiate among instances
of a variable defined in previous iterations and the defini-
tion in the current iteration.

Two common schemes that support this form of regis-
ter naming are modulo variable expansion (MVE) [14],
and the rotating register file (RRF) [20][21]. MVE is a
software-only approach which gives each simultaneously
live variable instance its own name, unrolling the loop
body as necessary to insure that any later uses can directly
specify the correct instance (more on this later). MVE both
increases the architected register requirements and expands
the loop body to accommodate the register naming con-

straints of the software pipelined loops. In contrast, the
RRF is a hardware-managed register renaming scheme that
eliminates the code size problem by dynamically renaming
the register specifier for each instance of a loop variable.
This renaming is achieved by adding an additional level of
indirection to the register specification to incorporate the
loop iteration count; this makes it possible to access a regis-
ter that was defined n iterations ago. However, since the
register file contains references to architected registers,
RRF still requires a large number of architected registers to
generate efficient schedules.

Each of these techniques satisfy the register require-
ments for a variable by assigning the instances defined in
successive loop iterations to distinct architected registers in
some round-robin fashion. The number of architected reg-
isters required for software pipelined (SP) loops therefore
grows linearly with increased functional unit latencies [16],
i.e., a longer latency operation within the loop leads to a
greater number of interleaved instances of the loop and
therefore more live instances of each variable. Therefore, a
shortage of architected registers limits the number of inter-
leaved loop iterations (to avoid register spill code), which
can degrade performance by lowering the loop throughput.
Thus, efficient software pipeline schedules that account for
realistic memory latencies are difficult, and often impossi-
ble, to achieve for architectures with small or moderate
sized register files. One solution is to dramatically increase
the number of architected registers available. This may be
achieved when a new instruction set architecture is pro-
posed (e.g., the IA-64 or EPIC instruction set [10] which
supports 128 integer and 128 floating point registers). In
this paper, we propose an alternative register addressing
mechanism which can be integrated into existing instruc-
tion set architectures with minimal modification while alle-
viating the register pressure and register naming issues
inherent in SP.

In this work we demonstrate that by using Register
Queues (RQs) the architected register space is no longer a
limiting factor in achieving efficient software pipelined
loop schedules. The design of these register queues is
derived from the interprocessor queues that support asyn-
chronous communication in decoupled architec-
tures[22][25]. Software pipelining using queues has also
been studied in VLIW architectures [15][7][6] and decou-
pled processors[24], but not in general purpose superscalar
designs. In particular, [6] proposes the use of a queue regis-
ter file (QRF) to support the execution of software pipe-
lined loops in VLIW machines. This extends prior work on
VLIW processors [11] by making the queues architectur-
ally visible; earlier work scheduled values in pipeline regis-

Register Queues: A New Hardware/Software Approach to Efficient Software Pipelining

Mikhail Smelyanskiy, Gary S. Tyson and Edward S. Davidson

Advanced Computer Architecture Lab

The University of Michigan

{msmelyan, tyson, davidson}@eecs.umich.edu

ters, also organized as queues, for a specific VLIW
implementation. By making the queues architecturally visi-
ble, portability between VLIW implementations is pro-
vided. Our work proposes the register queue mechanism
for conventional superscalar processors, as well as soft-
ware/hardware techniques to easily integrate RQs into an
existing instruction set architecture and out-of-order pipe-
lines.

In the context of this research, register queues can
most clearly be viewed as a combination of the rotating
register file ([1], [21]) and register connection [13] con-
cepts. This enables a decoupling of the total register space
for SP into a small set of architected registers and a large
set of physical registers organized as circular buffers which
can be accessed indirectly. By using register queues, the
architected register requirements of a software pipelined
loop are independent of the latencies of the scheduled
instructions. Integrating RQs into an existing architecture is
also straightforward. We will show that the inclusion of a
single new instruction is all that is necessary to add RQs to
any instruction set architecture while maintaining full
backward compatibility. Experimental results show that the
RQ method significantly reduces the architected register
and code size requirements of software pipelined loops.

The remainder of this paper is organized as follows;
Section 2 provides a brief introduction to software pipelin-
ing and describes previous work in both software pipelin-
ing and register file organization. Section 3 describes the
concept of register queues as well as architectural modifi-
cations required to support this approach. Section 4 pro-
vides the results of our experiments on the performance
advantage of register queues over existing schemes. We
offer conclusions in Section 5.

2. Prior Work
As a simple example of SP, consider Fig. 1 which

shows the intermediate level code of one iteration of a loop
that accumulates the elements of a floating point array into

a scalar (loop control instructions have been eliminated for
clarity). For this example, we assume a two-wide issue
machine with a latency of 3 for the load operation, 2 for
floating-point addition, and 1 for integer addition. The
scheduling process is governed by two constraints:
resource constraints determined by the resource usage
requirements of the computation, and precedence con-
straints derived from the latency calculations around ele-
mentary circuits when they exist in the dependence graph
for the loop body due to a loop carried dependence. With
an issue width of 2 and a loop body consisting of 3 instruc-
tions, we do not have the resources (issue width in this
case) to start a new loop iteration more often than once
every 2 cycles. The interval between starting new instances
of a loop is termed the initiation interval or II of the loop
(in this case we must make). This loop also con-
tains a loop-carried dependence between instances of the
floating point add with a latency of 2, (again, we must
make).

Fig. 1 shows a software pipelined code sequence, for
II = 2. Instructions at time steps 0-3 form the prologue of
the software pipelined loop, time steps 4-5 are the steady-
state segment (or kernel of the loop), and 6-9 form the loop
epilogue. The prologue and epilogue are executed once and
the steady-state portion (shaded) is executed repeatedly (n-
2 times for this loop executing n iterations).

The example in Fig. 1 demonstrates a problem with
register names in software pipelined schedules. The fload
instruction from iteration i + 1 starts executing before the
fadd instruction from iteration i uses the value created by
the fload of iteration i. This creates two simultaneously live
instances of the register f2. One way to overcome the regis-
ter overwrite (WAR hazard) problem is to increase the ini-
tiation interval to 4 to allow the fadd operation from the ith
iteration to complete before load of iteration i+1 is issued.
However, this would halve the loop throughput to one iter-
ation every four cycles. We now describe several alterna-
tive solutions that have been proposed to address this
register naming problem.

Modulo variable expansion [14] (MVE) is a compiler
transformation (requiring no hardware support) which
schedules a software pipelined loop. The purpose of MVE
is to manage the naming problem by making sure that
instances of a variable whose lifetimes overlap are allo-
cated to distinct architected registers. So, if the lifetime of a
value spans three iterations of the pipelined loop and its
lifetime overlaps the instances of that variable in the next
two iterations, three registers will be allocated in the loop

kernel for that variable. In general, at least registers

are required for each variable in the loop, where l is the
variable’s lifetime in cycles. Since successive definitions of
a variable must be assigned to different registers (since
they are simultaneously live), the kernel has to be unrolled,
thus lengthening the steady state loop body. The kernel of

the loop must then be expanded by a factor of at least

Figure 1: A software pipeline example. Sample
program that adds elements of a floating-point
array and stores the sum in a scalar. Shown are
multiple iterations with II=2.

Time iteration i iteration i+1 iteration i+2

0 iadd r1, r1, #4

1 fload f2, 0(r1)

2 iadd r1, r1, #4

3 fload f2, 0(r1)

4 fadd f6, f6, f2 iadd r1, r1, #4

5 fload f2, 0(r1)

6 fadd f6, f6, f2

7

8 fadd f6, f6, f2

9

II 2≥

II 2≥

l
II

l
II

to account for the different register specifiers required for
successive definitions of the variable. The degree of unroll-
ing is determined by the requirements for all variables,
knowing the number of registers required for each variable.

When expanding the loop kernel, two techniques are
examined. One technique (which we will call MVE1) min-
imizes register pressure at the expense of increasing the
degree of loop unrolling necessary. Each variable vi is allo-
cated its minimum number of registers, qi, and the degree
of unrolling is given by the lowest common multiple of
the set of registers required for all variables in {q}. The
other schedule (which we will call MVE2) favors minimiz-
ing the number of times that the loop is unrolled, at the
expense of more register pressure. This minimum degree
of unrolling is the max qi which is never more than lcm{qi}
required by MVE1. However, rather than always requiring
qi registers as in MVE1, MVE2 requires qi if u mod qi=0,
but u> qi otherwise.

Several additional techniques have been proposed to
minimize register requirements in SP loops. In [9], Huff
proposes a heuristic based on a bidirectional slack-schedul-
ing method that schedules operations early or late depend-
ing on their number of stretchable input and output flow
dependences. Integer programming has been used to lower
register requirements in [8][5] by optimizing according to
several potentially conflicting constraints, such as fulfilling
the resource constraints, scheduling operations along criti-
cal dependence cycles, maximizing the throughput of the
schedule, and minimizing of the schedule length of the crit-
ical path. Stage scheduling [4] breaks the schedule into two
steps. In the first step, a modulo scheduler generates a
schedule with high throughput and short schedule length.
In the second step, a stage scheduler reduces the register
requirements of a modulo schedule by reassigning some
operations to different stages. All of these schemes aim at
reducing the number of architected registers in the software
pipelined loops. The best of these schemes can reduce reg-
ister pressure by as much as 25% in the configurations
studied. However, since all live values must be allocated to
architected registers, they are unable to decouple the archi-
tected register requirements from the physical require-
ments. In this paper, we concentrate on modulo scheduling,
while recognizing that our results will apply to other sched-
uling algorithms as well — they simply reduce the physical
register requirements of register queues.

Rau, et. al [21] addressed the naming problem in soft-
ware pipelined loops by employing a new method of
addressing a processor register file in the Cydra-5 minisu-
percomputer [1]. The Rotating Register File (RRF) is a reg-
ister file that supports compiler managed hardware
renaming by adding the register address (specified in the
instruction) to the contents of an Iteration Control Pointer
(ICP) (modulo the number of registers in the RRF). This
register specifier is then used to index into the architected
register space. A special loop control operation decrements
the ICP each time a new iteration starts, giving each loop
iteration a distinct set of physical registers from those used
by the previous iteration (thus a value referenced as r5 in

iteration i will be addressed as r6 in i+1). Since register
access includes an additional indirection (i.e. adding the
ICP to the specifier), unrolling is unnecessary and the loop
kernel is not expanded from its original form. RRF can
therefore eliminate the code expansion problem from SP,
but it still requires a large number of architected registers
because all of the physically addressable registers are part
of the architected register file [20].

The problem of increasing a limited architected regis-
ter space without dramatically changing an existing
instruction set has also been explored. The Register Con-
nection (RC) [13] method tolerates high demand for the
architected registers by adding a set of extended registers
and incorporating a set of instructions to remap architected
register specifiers into the extended set of physical regis-
ters. RC architectures use these instructions to dynamically
connect an architected register to an extended register.
Once connected, all accesses using the architected register
are automatically directed to the appropriate physical regis-
ter of the extended register file. A register mapping table
with one entry per architected register is used to map each
architected register to its own core physical register (by
default) or to any register in the extended register file (as
setup by a connect instruction). The indirection of RC is
similar to that found in register renaming tables[12] used in
many superscalar architectures, except that the mapping is
performed under compiler control which enables more live
values to reside in the extended register file than can be
addressed at any point in time by the operand specifiers of
the instruction. While the RC work did not target software
pipelined loops, by decoupling the architected register set
from a much larger physical register file, the RC method
can greatly reduce the architected register requirements of
these loops.

Using RC to perform SP in the context of modulo
variable expansion significantly reduces architected regis-
ter requirements. But like MVE, RC still requires loop
unrolling to address the register naming problem. Further-
more, RC adds extra connect instructions to the loop ker-
nel, prologue and epilogue. However, by combining the
naming solution proposed in RRF with the register decou-
pling proposed in RC, we now develop a new register nam-
ing extension that targets software pipelined loops.

3. Register Queues
We now propose an alternative scheme called Register

Queues (RQs). RQs incorporate a hardware-managed reg-
ister renaming feature similar to RRF and the register
decoupling of RC to eliminate both the code size and the
architected register problems from SP. When scheduling
for an SP loop, variables with multiple live instances will
be placed in a queue; all other variables in the loop will be
assigned to conventional registers. The register file in an
RQ design consists of three parts as shown in Fig. 2:

• a set of register queues: Each queue has a Qtail
pointer, analogous to the ICP in the RRF, and a set of
contiguous registers which share a common name-
space with the physical register file, but are logically

(and probably physically) separate. In Figure 2 the
registers that constitute register queue 1 are physical
registers pr0 through pr3; physical registers pr4
through pr7 make up register queue 2, etc. These
registers are analogous to the registers in the RRF,
using the same modulo arithmetic to index into the
queue. They differ in that registers in the queue are
not directly indexed by architected registers, but
must be explicitly mapped to an architected regis-
ter. Like the RRF register, the registers in the
queues become part of the state of the processor
and must be saved during context switch.

• a physical register file: The physical register file
contains the remaining set of physical registers not
allocated to a register queue. This set of registers is
equivalent to the physical register file found on
most superscalar processors. In Figure 2 the physi-
cal register file contains registers pr4n through
pr255.

• an architected register map table: This table
maps each architected register either to a physical
register (using standard register renaming logic) or a
register queue (using an rq-connect instruction). Each
entry in the map table entry contains a physical regis-
ter index (pri) and a read offset (ro). The index identi-
fies either the physical register or the register queue
mapped to the architected register. The read offset,
used only for register queue mappings, contains an
offset into the queue specifying which register (in the
queue) is mapped to the architected register.

A single instruction is added to the ISA to manage the
RQ: rq-connect maps, remaps or unmaps an architected
register to one of the register queues. The semantics of the
rq-connect instructions are:

• rq-connect $rq, $ar, imm: maps an architected
register $ar to register queue $rq by writing the
queue number into the pri field of the map table.
Furthermore, the read offset (ro) in the queue is
specified by the immediate field imm. Any reads of
architected register $ar will now map to the immth
entry from the Qtail of register queue $rq. Note
that the semantics for a read are different than for
real queues; instead of destructively reading from
the head of the queue, an architected register is
mapped to some location in the queue and reads
occur in a nondestructive manner. This greatly
increases the flexibility of using register queues
(though the term queue is somewhat of a misno-
mer).

• rq-connect $0,$ar, 0: remap architected register
$ar to a free register from the physical register file.
By numbering the register queues from 1 to n, we
leave the $rq = 0 operand in the rq-connect
instruction free to indicate that the architected reg-
ister $ar should be disconnected from the register
queue.

Once an architected register is mapped to a register
queue, when a read access occurs the following events take
place:

1. Translate the register specifier in the operand field of
the machine instruction to the register queue identi-
fier (the pri field of the register map table entry) and
an offset into the queue (the ro field).

2. Index into the queue specified by pri using the read
offset. To do this the Qtail is added to ro, modulo the
number of registers in the queue. Note that in this
example, the circuit used to perform the mapping is a
2-bit adder — not a 7-bit adder as used in the Cydra-
5 RRF.

3. Read the contents of the physical register specified
(or pass the physical register identifier to later pipe-
line stages if the results must be forwarded from an
earlier instruction that has yet to retire).

A write into the register queue involves the following
sequence of steps:

1. Translate the register specifier in the operand field of
the machine instruction to a register queue identifier
(the pri field) using the register map table. This
selects the register queue; the read offset is not
needed since a write value is always appended to the
tail of the queue.

2. Decrement the Qtail pointer for the queue. This is
analogous to decrementing the ICP in the RRF. Note
that in RQs the update of Qtail occurs on a write,

Figure 2: Microarchitectural extensions to support
RQ for a machine with 32 architected registers, n
queues of length 4 and 256 physical registers.

...

pri ro

pri

R0

R15

R31

...

pr4n

pr255

...

Queue 1
Qtail1

Queue n

Map Table

Register Queues

Physical Register File

pr0 pr3

whereas in the RRF the ICP is updated using a spe-
cial branch instruction. Both solutions effectively
manage the register naming problem.

3. Pass the physical register identifier at the Qtail posi-
tion in the queue with the instruction to the appropri-
ate reservation station. Note that at this point all
register identifiers found in the reservation station
are standard physical register specifiers, leaving the
reservation station and operand forwarding logic
unchanged. Furthermore, it should now be apparent
that the offset (ro) field of the map table entry should
be 0 to reference the most recently defined variable
instance.

3.1. SP Scheduling using register queues
Managing the dynamic mapping as a queue enables

efficient software pipeline schedules with little change in
code size or architected register requirements. Like the
RRF, each register queue provides a set of registers to con-
tain instances of a variable for several successive iterations.
While the RRF uses a contiguous set of RRF architected
registers enabling unconstrained access to any of the regis-
ter, RQs use a single register queue to hold all instances of
a particular variable. Architected registers are then con-
nected to particular locations in the queue which contain
live instances that are read. If a value is read three iterations
after its definition, an architected register is mapped to the
third most recent definition. The two more recent defini-
tions are stored with queue offsets of 0 and 1; these queue
locations need not be mapped to architected registers if
they will not be referenced until a later iteration. This prop-
erty eliminates the need for unrolling the loop kernel since
architected registers are only mapped to offsets in the
queue that reading variable instance values; writes to those
variables are always to the decremented Qtail. The archi-
tectural register requirements for a variable are calculated
by counting the total number of locations in which a vari-
able is referenced, not by counting all simultaneously
instances, which can be much greater. RQs therefore
reduce architected register pressure for software pipeline
loops.

The functionality of RQs can be demonstrated by re-
examining the loop fragment from Fig. 1. Fig. 3 (a) illus-
trates the RQ scheduling, including the prologue, kernel
and epilogue of the loop.

The prologue code includes instructions 1 through 5.
Instruction 1 creates a mapping between architected regis-
ter f2 and register queue q1 at read position 1. Writes to f2
will now decrement q1’s Qtail and overwrite the register
pointed to by the new value of Qtail. With a read offset of
1, any reads of f2 will retrieve the contents of q1 register
(Qtail+1) mod queue size. The remaining instructions in
the prologue load the first two memory values and incre-
ment the pointer (r1) twice.

Instructions 6-8 in the table represent the loop kernel.
The read from register f2 in instruction 6 returns the second
most recent write to q1 (i.e. (Qtail + 1) mod queue size).

Instruction 7 increments the pointer (r1). Instruction 8
writes the next load value into register f2, decrements Qtail
for register queue q1, and puts the loaded value into the
register pointed to by the new Qtail. This loop kernel iter-
ates until the last load operation is performed, leaving uses
of the final two memory data for the epilogue.

Instructions 9-12 complete the SP loop schedule.
Instruction 9 uses the second to last memory value in the
same manner as the loop kernel access. However, the last
value will not be moved in the queue since no further
writes to the queue are performed. In this case, we need to
remap f2 to reference the offset 0 position in q1. This is
performed with another rq-connect instruction (instruction
10). Instruction 11 can then read from f2 accessing the final
load value from the Qtail position. Finally, architected reg-
ister f2 is remapped to a free register in the physical register
file completing the SP schedule.

In this example, we have only a single variable with
two live instances. In general, there may be many variables
with multiple instances. A simple scheduling strategy
would employ a single register queue for each variable,
holding all live instances of the variable. This works well in
reducing the architected register pressure, but may require
a large number of register queues (one for each variable
containing multiple instances). Furthermore, with fixed
length queues, many of the registers in the queue may not
be required (if there are fewer live instances of a variable
than registers in a particular queue).

Fortunately, since multiple read offsets may be speci-
fied, the RQ access capabilities for a single queue are flexi-
ble enough to hold instances of more than one variable.
Thus, we can assign all instances of several variables to the
same queue, connecting read offsets accordingly. It is only
necessary to determine the read offset for each use, given
the number of writes for all variable instances mapped to
the queue. This is simple when writes for each variable are
unconditionally performed; it is simply a matter of count-
ing the definitions that occur between the definition and
use of a particular instance. It becomes more challenging
when writes to a variable are conditionally executed (e.g.,
instructions in an if-then-else statement). In this case, we

Figure 3: SP schedule for example w/ RQs

1 rq-connect q1, f2, 1

2 iadd r1, r1, #4

3 fload f2, 0(r1)

4 iadd r1, r1, #4

5 fload f2, 0(r1)

6 fadd f6, f6, f2
7 iadd r1,r1, #4
8 fload f2, 0(r1)
9 fadd f6,f6,f2

10 rq-connect q1,f2,0

11 fadd f6, f6, f2

12 rq-disconnect f2

must carefully determine the possible read offsets or assign
the conditionally defined variable to a new queue that is not
shared. Alternately, a dummy write on the alternate path
can be inserted to insure that a value will be written to the
queue regardless of the execution path. In the loops stud-
ied, predication was performed on all loops prior to SP,
thereby eliminating this issue.

A second queue register allocation issue arises when
the variables assigned to a particular queue contain more
live instances than the number of registers in the queue. In
this case, we can either increase the initiation interval (as
appropriate for this resource dependency), or we can con-
catenate two or more queues by copying the head of the
first queue to the tail of the second queue. This costs an
extra instruction in the loop body to perform the copy and
one additional architected register to read the oldest value
in the first queue (offset 3) as the source field of the copy
instruction (any register mapped to the following queue
can be used as the destination of the copy since all writes
append to the queue tail regardless of read offset).

Finally, it is possible to run out of architected registers,
even using RQs. In this case, we can avoid spilling values
to memory by reconnecting architected registers inside the
loop body. Indeed, it is possible to use a single architected
register throughout the SP schedule by reconnecting prior
to each definition or use of a variable allocated to a register
queue. This would lead to a large number of connect
instructions in the loop body (one for each read and write),
but it would correctly implement the register requirements
of a software pipelined loop.

4. Experimental Results
To demonstrate the capability of the RQ approach, we

compare the register space and kernel code requirements
for various load latencies in the RRF and both MVE
methods (labeled MVE1 and MVE2) and compare the
results to the RQ scheme. We then vary the load latency
from 1 cycle to 45 cycles to assess how the resource

requirements might vary are across a wide variety of
machine models.

We use an iterative modulo scheduler (IMS) [18]
which produces a near optimal steady-state throughput for
machines with realistic machine models. IMS constructs a
schedule that minimizes the number of architected registers
required for given a loop L, a machine architecture M, and
initiation interval II.

The benchmark loops studies were obtained from the
Perfect Club Suite, SPEC and the Livermore Kernels.
These loop kernels were provided by B.R. Rau from HP
Labs. Loops were compiled by the Cydra 5 Fortran77 com-
piler performing load-store elimination, recurrence back-
substitution and IF-conversion. The input to our scheduler
consists of the intermediate representation; SP is then per-
formed generating a new intermediate representation with
support for RQs. Of the 1327 loops extracted from the
applications, 983 were selected for this study; the remain-
ing 344 loops did not perform memory references.

In our experiments we used two target machine mod-
els. One machine model has limited resources, while the
other has no resource constraints. The code sizes of the 983
loops studied (before SP was performed) are shown in
Fig. 4(a). A majority of the loops ranged from 5 to 20
instructions, with the largest loops exceeding 100 instruc-
tions. Figure 4(b) shows the initiation intervals for the
loops assuming no resource dependencies and with a load
latency of 13 cycles. A majority of the loops have II
between 2 and 15 cycles, with a few loops requiring 200
cycles.

4.1. Software pipelining using MVE, RR and RQs

The results of our experiments show the effects on
architected and physical register requirements as well as
the code expansion of the loop due to software pipelining.
Software pipelining was performed using both methods of
MVE (minimizing register requirements (MVE1) and min-

−20 0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

Original Loop Code Size

N
u

m
b

e
r

o
f

L
o

o
p

s

Figure 4: Loop statistics.

(a) code size of initial loops (b) initiation interval of loops

−50 0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500

II

N
u

m
b

e
r

o
f

L
o

o
p

s

imizing unrolling (MVE2)) with no hardware support. SP
was also performed targeting each of the two machine con-
figurations with hardware support: RRF, and RQ. These
results are presented in Fig. 5 and Fig. 6 for the two
machine models (with unlimited and limited resources,
respectively). Fig. 5 (a) and Fig. 6 (a) show the architected
register requirements after performing software pipelining
on each loop (averaged over all loops). The graphs show
the increase in register requirements and code expansion of
the loop kernel as memory latency is increased from 1 to
45 cycles. The two models differ significantly in the regis-
ters required to achieve the best software pipelining. The
unlimited resource model (which has no resource con-
straints and therefore a small II) requires 2-3 times as many
registers as the more realistic machine model. However,
the trends seen in both models are similar. In the RRF and
MVE1 schemes, the number of architected registers are
identical, growing at a linear rate. The architected register
requirements for MVE2 increase more rapidly, since extra
registers are added to reduce the code expansion; this
growth rate is also fairly linear. Architected register
requirements for the RQ scheme remain constant as long as
all live instances of each variable can fit in one register
queue. The increased latency only affects the RQ schedule

by increasing the offset specified in the rq-connect instruc-
tions in the loop prologue; as more instances of a variable
are needed to support higher latencies the offset is
increased to account for the change in the location of the
instance that is read. The number of architected registers in
the RQ scheme is bounded by the number of consumers
(instructions in the loop body which read from the queue)
and is not affected by the latency of the instructions.

Fig. 5(b) and Fig. 6(b) show the code expansion
caused by SP as memory latency increases. Code size
remains unaffected by memory latency for both RRF and
RQ due to the hardware support for renaming the instances
of a variable. The code size drastically increases in the
MVE schemes because of the additional unrolling required
to handle the explicit, distinct naming of the additional live
instances of the variables defined by load instructions as
latency increases. MVE1 is not shown in this graph
because of its tremendous code expansion; for a load
latency of 13, the kernel code size in MVE1 averages
149,256 instructions!

Fig. 5(c) and Fig. 6(c) show the code expansion of the
prologue code as latency increases. Each bar shows the
number of instructions moved from early iterations of the
original loop to initialize the software pipeline, as well as

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

Load Latency

R
e
g

is
te

r
R

e
q

u
ir

e
m

e
n

ts

RR
MVE1
MVE2
RQ

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

Load Latency

N
u

m
b

e
r

o
f

In
s
tr

u
c
ti

o
n

s

RR
MVE2
RQ

1 5 9 13 17 21 25 29 33 37 41 45
0

50

100

150

200

250

300

350

Load Latency

N
u

m
b

e
r

o
f

In
s
tr

u
c
ti

o
n

s

Prologue Instructions
Queue Set−up Instructions

1 5 9 13 17 21 25 29 33 37 41 45
0

50

100

150

200

250

300

350

400

450

500

Load Latency

N
u

m
b

e
r

o
f

In
s
tr

u
c
ti

o
n

s

Epilogue Instructions
rq−connects Instructions

(a) Architected Register Requirements (b) Code Size Requirements

(c) Prologue Code Size (d) Epilogue Code Size

Figure 5: Study of RRF, MVE and RQ schemes for Machine Model 2 (with unlimited resources).

extra instructions required in the RQ model to connect
architected registers to register queues (the darker shaded-
portion at the top of each bar). The additional overhead in
the prologue to initialize the register mappings required in
the RQ scheme is seen to be minimal. Fig. 5(d) and
Fig. 6(d) show similar code requirements for the loop epi-
logue. Here the overhead for the RQ scheme is higher;
caused by the necessity to remap architected registers to
read the final instances in the queue, since no more writes
to the queue are performed to align the queue read offset
automatically.

Fig. 7 shows the number of variables with multiple
instances over all loops. The vertical axis shows how many
loops have a specified number of variables with multiple
live instances. For instance, the leftmost column (at 2 on
the horizontal axis) shows that 130 loops have exactly 2
variables with multiple live instances. Almost all of the
loops have fewer than 16 variables with multiple live
instances. Since the register queues are allocated only to
those variables with multiple live instances, the register
queue allocation problem need only address those (few)
variables.

0 5 10 15 20 25 30 35 40 45
10

20

30

40

50

60

70

Load Latency

R
e

g
is

te
r

R
e

q
u

ir
e

m
e

n
ts

RR
MVE1
MVE2
RQ

0 5 10 15 20 25 30 35 40 45
20

30

40

50

60

70

80

90

Load Latency

N
u

m
b

e
r

o
f

In
s

tr
u

c
ti

o
n

s

RR
MVE2
RQ

1 5 9 13 17 21 25 29 33 37 41 45
0

10

20

30

40

50

60

70

80

90

100

Load Latency

N
u

m
b

e
r

o
f

In
s
tr

u
c
ti

o
n

s

Prologue Instructions
Queue Set−up Instructions

1 5 9 13 17 21 25 29 33 37 41 45
0

10

20

30

40

50

60

70

80

90

100

Load Latency

N
u

m
b

e
r

o
f

In
s
tr

u
c
ti

o
n

s

Epilogue Instructions
rq−connects Instructions

(a) Architected Register Requirements (b) Code Size Requirements

(c) Prologue Code Size (d) Epilogue Code Size

Figure 6: Study of RRF, MVE and RQ schemes for Machine Model 1 (with limited resources).

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

Number of Variables with Multiple Instances

N
u

m
b

e
r

o
f

L
o

o
p

s

Figure 7: Histogram of the number of
multi-instance variables in a loop.

Fig. 8 shows the number of simultaneously live
instances for each of the variables identified in Fig. 7. Over
half of the variables require only 2 instances, resulting in
little physical register pressure in the queue. This result also
makes finding a very close to optimal bin-packing solution
to register queue mapping quite easy. The largest number
of live instances found was 13. Unlike the number of vari-
ables with multiple instances (Fig. 7), the number of
instances for each of those variables will increase in pro-
portion to the memory latency.

Fig. 9 shows the rate of increase in the number of
instances (averaged over all variables in all loops) as load
latency increases. The growth is linear, ranging from 2.5
with low latency (since we only count variables with multi-
ple instances, 2 is an absolute minimum) to 6.5 (for the
machine model with limited resources) or 17 (for the
machine with unlimited resources) when memory latency
is 45. This number is very large when allocating the small

number of physical registers found on most machines,
making SP intractable. However, since these are only phys-
ical register requirements in the RQ model it becomes
much more feasible to perform SP.

5. Conclusions
Existing SP implementations have limited effective-

ness due to their high architected register requirements,
particularly as operational latencies grow. In this paper, we
have introduced the RQ technique which limits architected
register pressure and code size increases from software
pipeline schedules by combining a modification to the
architecture and microarchitecture of a processor with a
modified register allocation algorithm in the compiler.

RQ achieves this goal by combining the features of
RRF (to enable instances of a variable defined in earlier
iterations to be accessed efficiently) with the features of
RC (to decouple architected registers from the physical
registers holding live variable instances). By including the
dynamic register name mechanisms found in RRF, we can
achieve a software pipelined loop without unrolling the
kernel, and by adding the register decoupling capabilities
of RC we can allocate multiple instances of a loop variable
without increasing architected register pressure. This
enables RQ to schedule loops for expected memory laten-
cies when a cache miss occurs; the alternative is to assume
that all memory accesses will hit in the L1 cache and stall
the processor when a miss occurs which leads to non-opti-
mal schedules, particularly when cache miss rates are high.

Our experiments on the loops from a large benchmark
suite showed that RQ provides a significant reduction in
the number of architected registers and code size require-
ments (compared to RRF and MVE). Furthermore, mem-
ory latency increases have little effect on either code size or
architectural register requirements. RQ thus enables more
aggressive implementation of software pipelining.

RQ can also be incorporated into existing instruction
set architectures with the addition of a single new instruc-
tion and a modification of the register renaming microar-
chitecture. Furthermore, the complexity of the
implementation approximates that of RRF, requiring a sin-
gle level of indirection and modulo arithmetic of small (4
or 5 bit) offsets to address the physical registers in the
queue (for queues of length 16 or 32). The physical register
requirements of RQ can also be scaled by reducing the
number of architected registers in a queue and/or by
restricting the number of queues. The results show that a
small number of modest size queues is sufficient to support
software pipelining, even as instruction latencies increase.

6. Acknowledgments
This work has been funded by NSF Career award

MIP9734023 and gifts from IBM and Intel. We would also
like to thank the anonymous referees for their helpful com-
ments and suggestions for improvement of this paper.

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

Number of Instances of the Variable

N
u

m
b

e
r

o
f

V
a
ri

a
b

le
s

Figure 8: Histogram of number of instances of
variables (containing multiple instances) over all
loops (Machine Model 1, memory latency 13).

0 5 10 15 20 25 30 35 40 45
2

4

6

8

10

12

14

16

18

Load Latency

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

In
s
ta

n
c
e
s
 p

e
r

V
a
ri

a
b

le

Machine Model 1
Machine Model 2

Figure 9: Average queue size as latency increases
for machine models with limited (Machine Model 1)
and unlimited (Machine Model 2) resources.

7. References
[1] G.R. Beck, D.W.L. Yen, and T.L. Anderson, “The Cydra-5

minisupercomputer: Architecture and implementation” ,
The Journal of Supercomputing, Vol. 7, pages 143-180,
May 1993.

[2] D. Callahan, S. Carr, K. Kennedy, “ Imrpoving register
allocation for subscripted variables” , SIGPLAN ‘88 Con-
ference on Programming Language Design and Implemen-
tation, pages 20-22, June 1990.

[3] A.E. Charlesworth, “An approach to scientific array pro-
cessing: the architectural design of the AP-120B/FPS-164
family” , IEEE Computer, Vol. 14, No. 9, pages 18-27,
1981.

[4] A. E. Eichenberger, E. S. Davidson, “Stage scheduling: A
technique to reduce the register requirements of a modulo
schedule” , In Proceedings of the 28th International Sym-
posium on Computer Architecture, pages 85-94, 1994.

[5] A. E. Eichenberger, E.S. Davidson, and S. G. Abraham,
“Minimum register requirements for a modulo schedule” ,
In Proceedings of 27th International Symposium on
Microarchitecture, pages 75-84, Nov. 1994.

[6] M. A. Fernandes, “Clustered VLIW Architecture Based on
Queue Register File” , Ph. D. Thesis, Department of Com-
puter Science, University of Edinburgh.

[7] M. Fernandes, J. Llosa. and N. Topham, “Partitioned
Schedules for Clustered VLIW Architectures” , In Pro-
ceedings of 12th International Parallel Processing Sympo-
sium, April 1998.

[8] R. Govindarajan, E. R. Altman, G. R. Gao, “Minimizing
Register Requirements under Resource-Constrained Rate-
Optimal Software Pipelining” , In Proceedings of 27th
International Symposium on Microarchitecture, pages 85-
94, Nov. 1994.

[9] R. A. Huff, “Lifetime-sensitive modulo scheduling” , In
Proceedings of the ACM SIGPLAN’93 Conference on Pro-
gramming Language Design and Implementation, pages
258-267, June 1993.

[10] IA-64 Application Developer’s Architecture Guide, Rev
1.0, Intel Document #245188. Available at: http://devel-
oper.intel.com/design/ia64/.

[11] V. Kathail, M. Schlansker, B. R. Rau, “HPL PlayDoh
Architecture Specifications: Version 1.0” , HP Laboratories
Technical Report # HPL-93-80, February 1994.

[12] R. Keller, “Lookahead processors” , ACM Computing Sur-
veys, pages. 177-195, Dec. 1975.

[13] K. Kiyohara, S. A. Mahlke, W. Y. Chen, R. A. Bring-
mann, R. E. Hank, S. Anik, W. W. Hwu, “Register Con-
nection: A New Approach to Adding Registers into
Instruction Set Architectures” , In Proceedings of the 20th
Annual International Symposium on Computer Architec-
ture, pages 247-256, May 1993.

[14] M. Lam, “Software pipelining: an effective scheduling
technique for VLIW machines” , In Proceedings of the

ACM SIGPLAN ‘88 Conference on programming lan-
guage Design and Implementation, pages 318-327, 1988.

[15] J. Llosa, M. Valero, J. Fortes, and E. Ayguade, “Using
Sacks to Organize Registers in VLIW Machines” , In Pro-
ceedings of International Conference on Parallel and Vec-
tor Processing, Sep. 1994.

[16] W. Mangione-Smith, S. G. Abraham, and E. S. Davidson,
“Register Requirements of Pipelined Processors” , In Pro-
ceedings of the International Conference on Supercomput-
ing, pages 260-271, July 1992.

[17] J. H. Patel and E. S. Davidson, “ Improving the Through-
put of a Pipeline by Insertion of Delays” , In Proceedings of
the 3d International Conference on Computer Architec-
ture, pages 159-164, Jan. 1976.

[18] B. R. Rau, “ Iterative Modulo Scheduling: An Algorithm
For Software Pipelining Loops: An algorithm for software
pipelining loops” , In Proceedings of the 27th Annual Inter-
national Symposium on Microarchitecture, pages 63-74,
Nov. 1994.

[19] B. R. Rau and J. A. Fisher, “ Instruction-level parallel pro-
cessing: History, overview, and perspective” , The Journal
of Supercomputing, Kluwer Academic Publishers, Vol. 7,
pages 9-50, July 1993.

[20] B. R. Rau, M. Lee, P. P. Tirumalai, M. S. Schlansker,
“Register Allocation for Software Pipelined Loops” , In
Proceedings of the ACM SIGPLAN’92 Conference on Pro-
gramming Language Design and Implementation, pages
283-299, June 1992.

[21] B. R. Rau, D. W. L. Yen, R. A. Towle, “The Cydra 5
departmental supercomputer” , IEEE Comp. 22, Vol. 1,
pages 12-34, Jan. 1989.

[22] J. E. Smith, “Decoupled Access/Execute Computer
Architectures” , In Proceedings of the 9th Annual Interna-
tional Symposium on Computer Architecture, pages 112-
119, June 1982.

[23] G. Sohi‘ , “ Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined Comput-
ers” , IEEE Transactions on Computer, Vol. 39, pages 349-
359, March 1990.

[24] G. S. Tyson, “Evaluation of a Scalable Decoupled Micro-
processor Design” , Ph. D. Dissertation, The University of
California - Davis, 1997.

[25] W. A. Wulf, “Evaluation of the WM Architecture” , In
Proceedings of the 19th Annual International Symposium
on Computer Architecture, pages 382-390, May 1992.

	1 . Introduction
	Figure 1 : A software pipeline example. Sample program that adds elements of a floating-point arr...

	2 . Prior Work
	3 . Register Queues
	Figure 2 : Microarchitectural extensions to support RQ for a machine with 32 architected register...
	1. Translate the register specifier in the operand field of the machine instruction to the regist...
	2. Index into the queue specified by pri using the read offset. To do this the Qtail is added to ...
	3. Read the contents of the physical register specified (or pass the physical register identifier...
	1. Translate the register specifier in the operand field of the machine instruction to a register...
	2. Decrement the Qtail pointer for the queue. This is analogous to decrementing the ICP in the RR...
	3. Pass the physical register identifier at the Qtail position in the queue with the instruction ...
	3.1. SP Scheduling using register queues
	Figure 3 : SP schedule for example w/ RQs

	4 . Experimental Results
	Figure 4 : Loop statistics.
	4.1. Software pipelining using MVE, RR and RQs
	Figure 5 : Study of RRF, MVE and RQ schemes for Machine Model 2 (with unlimited resources).
	Figure 6 : Study of RRF, MVE and RQ schemes for Machine Model 1 (with limited resources).
	Figure 7 : Histogram of the number of multi-instance variables in a loop.
	Figure 8 : Histogram of number of instances of variables (containing multiple instances) over all...
	Figure 9 : Average queue size as latency increases for machine models with limited (Machine Model...

	5 . Conclusions
	6 . Acknowledgments
	7 . References
	[1] G.R. Beck, D.W.L. Yen, and T.L. Anderson, “The Cydra-5 minisupercomputer: Architecture and im...
	[2] D. Callahan, S. Carr, K. Kennedy, “Imrpoving register allocation for subscripted variables”, ...
	[3] A.E. Charlesworth, “An approach to scientific array processing: the architectural design of t...
	[4] A. E. Eichenberger, E. S. Davidson, “Stage scheduling: A technique to reduce the register req...
	[5] A. E. Eichenberger, E.S. Davidson, and S. G. Abraham, “Minimum register requirements for a mo...
	[6] M. A. Fernandes, “Clustered VLIW Architecture Based on Queue Register File”, Ph. D. Thesis, D...
	[7] M. Fernandes, J. Llosa. and N. Topham, “Partitioned Schedules for Clustered VLIW Architecture...
	[8] R. Govindarajan, E. R. Altman, G. R. Gao, “Minimizing Register Requirements under Resource-Co...
	[9] R. A. Huff, “Lifetime-sensitive modulo scheduling”, In Proceedings of the ACM SIGPLAN’93 Conf...
	[10] IA-64 Application Developer’s Architecture Guide, Rev 1.0, Intel Document #245188. Available...
	[11] V. Kathail, M. Schlansker, B. R. Rau, “HPL PlayDoh Architecture Specifications: Version 1.0”...
	[12] R. Keller, “Lookahead processors”, ACM Computing Surveys, pages. 177-195, Dec. 1975.
	[13] K. Kiyohara, S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, S. Anik, W. W. Hwu, “Reg...
	[14] M. Lam, “Software pipelining: an effective scheduling technique for VLIW machines”, In Proce...
	[15] J. Llosa, M. Valero, J. Fortes, and E. Ayguade, “Using Sacks to Organize Registers in VLIW M...
	[16] W. Mangione-Smith, S. G. Abraham, and E. S. Davidson, “Register Requirements of Pipelined Pr...
	[17] J. H. Patel and E. S. Davidson, “Improving the Throughput of a Pipeline by Insertion of Dela...
	[18] B. R. Rau, “Iterative Modulo Scheduling: An Algorithm For Software Pipelining Loops: An algo...
	[19] B. R. Rau and J. A. Fisher, “Instruction-level parallel processing: History, overview, and p...
	[20] B. R. Rau, M. Lee, P. P. Tirumalai, M. S. Schlansker, “Register Allocation for Software Pipe...
	[21] B. R. Rau, D. W. L. Yen, R. A. Towle, “The Cydra 5 departmental supercomputer”, IEEE Comp. 2...
	[22] J. E. Smith, “Decoupled Access/Execute Computer Architectures”, In Proceedings of the 9th An...
	[23] G. Sohi‘, “Instruction Issue Logic for High-Performance, Interruptible, Multiple Functional ...
	[24] G. S. Tyson, “Evaluation of a Scalable Decoupled Microprocessor Design”, Ph. D. Dissertation...
	[25] W. A. Wulf, “Evaluation of the WM Architecture”, In Proceedings of the 19th Annual Internati...

