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ABSTRACT 
Physical simulation applications model and simulate 
complex natural phenomena. The computational 
complexity of real-time physical simulations far exceeds 
the capabilities of modern unicore microprocessors, 
which are limited to only tens of billions floating-point 
operations per second (FLOPS). However, the advent of 
multi-core architectures promises to soon make 
processors with trillions of FLOPS available. Such 
processors are also known as tera-scale processors. 
Physical simulations can exploit this huge increase in 
computational capability to increase realism, enable 
interactivity, and enrich a user’s visual experience.  

In this work, we study physical simulation applications in 
two broad categories: production physics and game 
physics. After parallelization, the benchmark applications 
achieve parallel scalabilities of 30×–60× on a simulated 
chip-multiprocessor with 64 cores. 

We examine the memory requirements of physical 
simulation applications and find that they require cache 
sizes in excess of 128MB and main memory bandwidths 
in excess of hundreds of GB/s for real-time performance. 
A radical re-design of the memory hierarchy may be 
necessary for the multi-core tera-scale era to provide good 
scaling for this type of application. 

 
INTRODUCTION 
The booming computer games and visual effects 
industries continue to drive the graphics community’s 
seemingly insatiable desire for increased realism, 
believability, and speed. In the past decade, physical 
simulation has become a key to achieving the realism 
expected by audiences of games and movies. Physical 
simulation models the laws of physics to simulate life-like 
movement and interaction among objects, such as rigid 
and deformable bodies, human faces, cloth, and water.  

Physical simulation can be used in a variety of settings 
such as weather prediction, movie special effects, and 
computer games. Complex natural phenomena such as 
ocean waves crashing on a shore, a flag waving in the 
wind, or bricks falling from a collapsing tower are 
modeled by means of numerical simulation of physical 
laws. Modeling different natural phenomena requires a 
diverse set of techniques, algorithms, and data structures, 
making physical simulation both complex and general. 
Computation and memory requirements are extremely 
demanding. This makes the workloads a challenging 
target for current as well as future architectures.  

In this paper, we examine applications involving physical 
simulation for production environments and for gaming. 
For production physical simulation, we study the 
PhysBAM package from Stanford University [5, 11], 
which is used by several special-effects and film 
production companies, including Pixar and Industrial 
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Light and Magic. The goal is to recreate the visual 
experience of a human observing a natural phenomenon. 
For gaming physical simulation, we study the open source 
ODE package [13]. This package provides similar 
functionality to the widely used commercial Havok Effect 
package from Havok. The goal of physical simulation in 
gaming is to make real-time interactions between objects 
as accurate as possible. The difference in goals for the 
two physical simulation domains leads to different 
choices for algorithms and data structures. However, 
these two domains do have many similar characteristics.  

One common characteristic of production and gaming 
physical simulation is a need for significant acceleration. 
On a 4-way Intel® Xeon® processor 3.0GHz system, with 
16GB of DDR2-3200 and three levels of cache on each 
processor (16KB L1, 1MB L2, and 8MB L3), the 
production physics workloads take 5 to 188 seconds to 
process a single frame. These workloads have hundreds 
of thousands to a few million entities (tetrahedra/grid 
cells) interacting with each other. In contrast, for game 
physics workloads, only a thousand objects can currently 
interact in real time. Acceleration by an order of 
magnitude or more will allow improved accuracy, 
modeling of new effects, and even interactive or real-time 
production applications. Multi-core processors are now 
common, and we expect the number of cores to increase 
steadily for the foreseeable future, so that multi-core 
processors capable of executing applications tens of times 
faster than today’s processors are on the horizon. Such 
processors would improve the speed and realism of 
production-quality or real-time game physical simulation 
applications. However, for an application to harness the 
computational power of such a multi-core processor, it 
must effectively utilize multiple threads. Parallelization of 
a large code base as used by production or game physics 
applications is not trivial, especially when the target 
parallel scalability is tens of threads.  

Another similarity in requirements for the two categories 
of physical simulation applications is high-bandwidth 
requirements. The size of the data scales with increasing 
resolution or number of objects in the simulation. Input 
sizes are often millions of volume elements or tens of 
thousands of objects. This leads to memory footprints that 
are tens of megabytes (i.e., larger than typical caches). 
These applications therefore require either much larger 
caches or a large main memory bandwidth. 

Our contributions are as follows: 

• We have parallelized six state-of-the-art physical 
simulation applications (fluid dynamics [4], human 
face simulation [12], and cloth simulation [2] for 
production physics and convex body collision [1, 3], 
game cloth [7], and game fluids [9] for game 
physics). In parallelizing these workloads, we 

employed various techniques which include 
parallelizing loops/graph operations and using 
alternative algorithms for better scalability. 

• We simulated and analyzed the scalability of these 
applications using cycle-accurate simulation of a 
chip-multiprocessor with 64 cores. The workloads 
studied achieved a parallel scaling of 30× to 60× for 
64 cores. 

• We perform a detailed analysis of the memory 
requirements of these applications. Our study finds 
that future physical simulation workloads demand 
cache sizes close to 100 megabytes or physical main 
memory bandwidths in the hundreds of GB/s. 

PHYSICS SIMULATION PIPELINE 

Compute forces, torques,
pressures, etc

Time Stepping

Collision &
constraint
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State (time=tn)

State (time=tn+1)

External 
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Figure 1: Overview of physical simulation 

Figure 1 shows a typical time step in a physical 
simulation application. For each time step of a simulation, 
a physical simulation application takes as input the state 
of the simulated scene (e.g., positions, orientations, and 
velocities of all objects), as well as external control 
information (e.g., what the player is doing in a game). 
The application then computes the physical processes that 
potentially lead to an updated state (e.g., force, torque, or 
pressure generation). Depending on the scheme used, this 
information will be used to advance the state forward in 
time (e.g., time integration of the laws of motion), 
yielding a new candidate state. Should phenomena such 
as collisions or other constraints be triggered, the state 
may be updated in response to this collision or constraint, 
and the force computation/time stepping phases will be 
repeated, possibly with a smaller time step. 
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While game and production physics share the same 
iterative process, they exhibit important differences. 
These differences stem from the execution time 
requirements of their domains. Production physics is 
primarily used for special effects in movies and other  
off-line simulations. The execution time limit for these 
environments is typically a few minutes per frame in 
order to simulate the complete effect in a reasonable 
amount of time (e.g., less than a day). Game physics, on 
the other hand, is concerned with real-time simulation 
used in computer games. Thus, the execution time limit  
is at most tens of milliseconds per frame. Both areas  
of physical simulation have the goal of providing 
maximum visual plausibility within their execution  
time requirements. 

We now describe how we model some specific phenomena. 

Fluid Simulation 
Production physics: Simulated water volumes are key 
elements in an increasing number of feature films, making 
fluid simulation (a.k.a., Computational Fluid Dynamics, 
or CFD) very common in the special effects industry 
today. Our production-quality fluid simulation application 
models a body of water with a free surface (as opposed to 
water flowing in a pipe or other airtight container). The 
application uses a combination of a three-dimensional 
grid and a set of particles [4]. The simulation tracks the 
velocity and pressure of the water in each grid cell. It 
computes how velocity and pressure change at each time 
step using incompressible Navier-Stokes equations. This 
is very computationally expensive, and it becomes much 
more so as the number of grid cells goes up. 
Unfortunately, unless prohibitively large grid resolutions 
are to be used, the grid cannot accurately represent 
intricate geometrical features of the water surface (such as 
thin sheets and droplets). Therefore, particles are 
sprinkled around the surface and advected along with  
the fluid. The updated positions and velocities of  
these particles are used to enhance the resolution of the 
water surface. 

Game Physics: While CFD is the method of choice for 
high-fidelity simulation of fluids, its high computational 
requirements necessitate off-line rendering. Game physics 
therefore uses much faster, although less accurate, 
techniques. Smoothed Particle Hydrodynamics (SPH) has 
recently emerged as a popular technique for interactive 
simulation of fluids [9]. The SPH method represents a 
fluid as a set of discrete particles and models a resistance 
to density changes: when particles get too close to one 
another, a repulsive force separates them; when they get 
too far from each other, an attractive force brings them 
together. If a pair of particles is far enough apart, no 
forces act between them. SPH discretizes the Navier-
Stokes equations and samples its solution at a finite 

number of such particles in space and time. While in the 
grid-based method the position of these sample points is 
fixed, in the SPH the particles are free to move around. 
This difference fundamentally changes the way the 
Navier-Stokes equations are solved and generally leads to 
much smaller complexity and ease of implementation, 
making SPH more suitable for interactive environments.  

Cloth Simulation 
Production physics: Cloth simulation models a cloth 
surface that can deform under the influence of external 
forces such as gravity or forced stretching, and internal 
forces such as the elastic response to tensile stress, 
shearing, and bending [2]. This application also models 
collisions of the piece of cloth with itself and other 
elements in the environment. The deformable cloth is 
modeled as a set of mass particles connected to form a 
triangle mesh. The mesh is endowed with a network of 
spring elements aligned with all triangle edges and 
altitudes, as well as between adjacent triangles. These 
springs model the cloth’s resistance to various forms of 
deformation. Collision detection and resolution is a key 
part of this application. After the velocities and positions 
of the cloth particles are updated, collisions are detected. 
If the collisions cannot be resolved, the application 
undoes the updates from this iteration and re-executes it 
with a smaller time step. 

Game Physics: Similar to production physics, game 
physics models a cloth object as a set of particles [7]. 
Each particle is subject to external forces, such as gravity, 
wind and drag, as well as various constraints. These 
constraints are used to maintain the overall shape of the 
object (spring constraints), and to prevent interpenetration 
with the environment (collision constraints). The 
particle’s equation of motion resulting from applying the 
external forces is integrated using explicit Verlet 
integration. The above-mentioned constraints create a 
system of equations linking the particles’ positions 
together. This system is solved at each simulation time 
step by relaxation, that is, by enforcing the constraints 
one after another for a fixed number of iterations. This 
method is less accurate but faster than the Conjugate 
Gradient solver [7] used in production physics, which 
enables the game cloth to simulate in real time. In 
addition, self-collisions are typically ignored. 

Face Simulation 
Production physics: Face simulation animates a model of 
a human face to provide an anatomically correct 
visualization of a person speaking or making facial 
expressions [12]. The application we examine assumes 
that inertia has a negligible effect on human faces in 
typical situations, and it therefore models facial motion as 
a sequence of steady states. Each state is defined by facial 
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muscle activation and the position of the cranium and 
jawbone. The face is modeled as a tetrahedral mesh, 
which is driven by the facial musculature and the motion 
of the jawbone. The application takes as input a time 
sequence of muscle activation values and kinematics 
parameters for the jaw motion. The finite element method 
is used to define the forces (elastic deformation resistance 
and active muscle contraction) that act on the face and 
determine its shape.  

Rigid Body Simulation 
Game Physics: Rigid body dynamics [3] simulates 
motion and interaction of non-deformable objects when 
forces and torques are present in the system. Rigid body 
dynamics is the most commonly used physical simulation 
in video games today. Examples of rigid bodies in games 
are vehicles, rag dolls, cranes, barrels, crates, and even 
whole buildings. The traditional approach solves a system 
of ordinary differential equations, which represent 
Newton’s second law of motion, F=ma, where m is the 
mass of an object, a is its acceleration, and F is the 
applied force. The applied force determines the 
acceleration of the object, so velocity and position are 
obtained by integration of the above equation. The main 
computational challenge comes from the fact that rigid 
bodies’ motion is constrained due to their interaction with 
the environment. For example, consider a destructive 
environment in a video game where 1000s of rigid objects 
explode, collapse, and collide, resulting in 100,000s of 
interactive contacts. To realistically simulate such a scene 
requires determination of collisions, calculation of 
collision contact points, and physically correct 
computation of the contact forces that result from these 
contacts. To accelerate collision detection relies on spatial 
partitioning data structures, such as grids or bounding 
volume hierarchies. To determine contact forces that 
result from collision contact, we model the contact as a 
linear complementary problem [1].  

Rigid body simulation in games today assumes that rigid 
bodies cannot break. In general, this assumption is not 
true in production physics. Today’s films use animation 
of elasticity and fracture. However, these techniques are 
too slow for interactive use.  

PARALLELIZATION METHODOLOGY 
The applications we study are all computationally 
demanding—on a 4-way Intel Xeon processor 3.0GHz 
system, with 16GB of DDR2-3200 and three levels of 
cache on each processor (16KB L1, 1MB L2, and 8MB 
L3), they take on average 188, 14, and 5 seconds  
to process a single frame for production fluid, face,  
and cloth simulations, respectively. Similarly,  
high-complexity scenes in game rigid body dynamics, 
fluid and cloth take on average 1, 0.4, and 0.1 seconds to 

process a single frame. While game physics performance 
may seem much better than production physics, one needs 
to perform at least 30 frames per second for real-time 
interactive experiences. Since they will all benefit from a 
large performance boost, we parallelize the applications, 
targeting a multi-core processor with tens of cores. 

We took the conventional approach to parallelizing large 
code bases. We first profiled each application to 
determine the most expensive modules in a serial 
execution. After that, we prioritize the modules of  
each application and parallelize them in decreasing order 
of importance.  

The applications were parallelized using the fork-join 
model in which the program consists of alternating serial 
and parallel sections. This model is attractive because it 
allows one to start with a serial program and selectively 
parallelize the most profitable portions of the program 
until satisfactory performance is achieved. We use a 
standard task queue technique [8], similar to Intel Thread 
Building Blocks (TBB) [6] and OpenMP [10], to 
parallelize all modules.  

In the rest of this section, we discuss how the various 
modules were parallelized to scale to a large number  
of cores. 

Parallelizing Loops 
The majority of modules were parallelized via loop 
parallelization. These modules typically involve 
operations on arrays of elements, such as grid cells of a 
3D grid (production fluid), an array of particles (game 
fluid), vertices of a triangle mesh (production cloth), and 
contact constraints (game rigid bodies). 

In most of the cases, the iterations of the loops are 
independent of each other. For instance, computing the 
aggregate force on a vertex of the triangular mesh 
(production cloth) requires simply adding all the forces on 
that vertex. These loops are parallelized by partitioning 
the iterations of the loop among the cores. In a few 
instances, multiple iterations update the same piece of 
data. However, even in these instances, the final result is 
independent of the ordering of the iterations. These loops 
are also parallelized by splitting iterations among cores 
while using fine-grained locking to guard updates on the 
shared data. 

Parallelizing Graph Operations 
A few modules have more complex forms of parallelism 
and typically incur more parallelization overheads.  



Intel Technology Journal, Volume 11, Issue 3, 2007 

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 255 

b3

b2 b4
C2 C3

b1
C1 C4

 
Figure 2: Scene configuration 
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Figure 5: Relative speedups for the constraint solver 

with and without reordering of the constraints 

An example of this is the broad-phase in collision 
detection. Collision detection requires checking every pair 
of objects for collisions. Since only a small fraction of the 
objects actually collide at any given instant, collision 
detection is performed in two phases: a broad-phase that 

performs quick checks to rule out a large fraction of the 
object pairs, and a narrow-phase that performs the exact 
(and more computationally expensive) check on the 
remaining pairs. A standard technique to accelerate  
the broad-phase is to build a bounding volume hierarchy 
(a tree) containing the objects. A leaf node of this tree 
consists of a single object. The computation starts at the 
root and traverses down. At each step, it checks pairs of 
nodes of the tree. If the bounding volumes at the two 
nodes do not overlap, then none of the objects in the first 
subtree can possibly collide with any object in the second 
subtree. Otherwise, more checks have to be performed 
using the children of the two subtrees. Each of these pairs 
of subtrees represents independent computation and  
can be performed in parallel. Consequently, in the  
broad-phase, each unit of parallel work can spawn off 
more parallel work. 

Using Alternative Algorithms 
Sometimes, the best serial algorithm has poor parallel 
scalability. In such cases, we often use an alternative 
algorithm whose serial version is not as efficient as the 
original, but whose parallel version scales much better. 
Sometimes, we use an additional phase to reorder data 
and expose more parallelism. In this section, we describe 
two specific examples in detail. 

The first example is from rigid-body dynamics from game 
physics. During the execution of the physical simulation 
pipeline, the collision detection phase computes the pairs 
of colliding bodies, which are used as inputs to the 
constraint solving phase. The physics solver operates on 
these pairs and computes the separating contact forces, 
which keep the bodies from inter-penetrating each other. 
In Figure 2, we show one such case involving four bodies 
(three boxes and one ground plane), where the 
corresponding pairs of colliding bodies are listed in 
Figure 3. The resulting constraints C1, C2, C3, and C4 
need to be resolved to update the body positions. 

To parallelize this phase, we would ideally like to 
distribute the constraints amongst the available threads 
and resolve them in parallel. However, there is often an 
inherent dependency between consecutive constraints. In 
our example, constraints C1 and C2 both involve body b2 
and thus cannot be resolved in parallel. These 
dependencies can force a significant serialization of the 
computation. However, we can reorder the constraints 
into different batches such that there are no conflicting 
constraints in each batch. That is, each batch will contain 
at most one constraint that refers to any given body.  

Reordering algorithms traverse the constraints, 
maintaining an ordered list of partially filled batches. 
Each constraint is assigned to the earliest batch with no 
conflicting constraints. As a result, all constraints within a 
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batch can be processed in parallel, while the different 
batches have to be processed sequentially. 

For example, we reorder the constraints in Figure 3 and 
obtain two batches, (C1, C3) and (C4, C2), as shown in 
Figure 4. Note that C1 and C3 from the first batch do not 
refer to any body more than once and can be resolved in 
parallel. A similar observation holds for C4 and C2. As a 
result C1 and C3 in the first batch are solved in parallel 
and the results are fed as part of the input to the second 
batch. The bottom curve in Figure 5 shows the speedup of 
the physics solver using the original order of the 
constraints relative to the serial version for up to 64 cores. 
The top curve shows the speedup using reordered 
constraints. We see that without reordering, the speedup 
is limited to 4× on 64 cores. However, reordering  
the constraints enables a speedup of 35×, including the 
overhead for reordering. This example highlights the case 
where some extra computation needs to be performed to 
expose the parallelism. 

The second example of the need for alternative algorithms 
is from fluid simulation for production physics. Our fluid 
simulation application implicitly tracks the interface 
(boundary) between the air and the fluid. For each grid 
cell in the modeled space, it computes the distance to the 
interface. The most common technique to do this is  
the Fast Marching Method (FMM), which iteratively 
advances the wave front. For each iteration, it finds and 
updates the closest grid cell to the front that is not already 
on or behind the front (Figure 6). This is inherently serial. 
However, these distance values are required only for a 
narrow band around the interface. Thus, we parallelize 
FMM by dividing the grid into overlapping blocks, 
padded by the width of the narrow band, and working on 
each block independently (Figure 7). This works well for 
a small number of threads. However, the total overlap 
region becomes large quickly as the number of blocks 
increases. As a result, the application scales relatively 
poorly, achieving a scaling of around 21× on 64 threads.  

We instead use an alternative scheme known as the Fast 
Sweeping Method (FSM) [5] (Figure 8). FSM traverses 
the grid cells in all eight possible combinations of the X, 
Y, and Z directions. Each “sweep” updates the distance of 
a cell from the distances computed for its neighbors in the 
previous sweeps. We obtain the correct distance for each 
cell after completing all eight sweeps. We parallelize 
FSM in a similar manner to FMM (i.e., with overlapping 
blocks). The serial version of FSM is around 30% slower 
than the serial version of FMM. However, FSM has more 
parallelism since the sweeps are independent. Thus, we 
achieve scaling of around 55× on 64 threads. In Figure 9, 
we compare the speedup of FSM relative to FMM. Up to 
16 cores, FMM provides higher performance, but beyond 

16 cores, FSM is better, giving about 2× the performance 
of FMM on 64 cores. 

Advancing the front

Initial Fluid-air 
interface

 
Figure 6: Fast Marching Method (FMM) advances the 
front to incrementally compute the signed distance of 

nodes from the interface 
Regions shared by two or more cells where extra 
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Figure 7: Parallelizing the algorithm by dividing the 

region into overlapping cells 
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Figure 8: Fast Sweeping Method (FSM) traverses the 
grid nodes and incrementally updates the minimum 

distance to the interface 

PARALLEL SCALABILITY RESULTS  
Figure 10 shows the parallel scalability for our 
applications for up to 64 cores. Since no large-scale CMP 
is available for us to experiment with, we use  
cycle-accurate simulation to measure performance and 
characterize the parallelized workloads. Details of our 
simulator can be found in [5]. We assume a very high 
main memory bandwidth so that we do not artificially 
limit scalability. The speedups are obtained against the 
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one thread version of the parallelized code. On 64 cores, 
we achieve 30× to 56× speedup for production physics 
and 36× to 61× speedup for game physics.  
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Figure 9: Speedup of FSM relative to FMM 
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Figure 10: Parallel scalability of production physics 

and game physics 

Next, we discuss important issues regarding scalability. 
Amdahl’s law determines the theoretical maximum 
scalability. Load balancing and synchronization overheads 
impact how close we can be to the theoretical limit. 

Serial Sections: Amdahl’s law dictates that the parallel 
scalability is limited by the size of the serial sections. In 
most of the production and game physics modules, the 
serial section accounts for much less than 1% of 
execution time for one core. As a result, it does not 
significantly impact the parallel scalability in our study of 
up to 64 cores. However, as the number of cores 
increases, more aggressive parallelization will be needed 
to keep serial code from limiting parallel scalability. 

Load Imbalance: The load imbalance is a function of the 
variability of task size as well as the number of tasks. The 
lower the variability, the fewer tasks are needed to obtain 
good load balance. Unfortunately, some modules exhibit 
high variability, which requires many tasks for good load 
balance, resulting in high parallelization overhead. 

Therefore, we should make a tradeoff between good load 
balance and low parallelization overhead. Under certain 
instances (e.g., Figure 7), we are forced to minimize the 
number of tasks to keep the amount of replication and 
redundant computation at an acceptable level. However, 
this comes at a cost of significant load imbalance that may 
limit parallel scaling. 

Task Queuing: We implement a task queue to distribute 
parallel tasks across the cores. For some modules, the task 
queue overhead becomes a bottleneck for the scalability. 
In our implementation of task queues, all tasks are 
enqueued before we enter the parallel section. Therefore, 
if the number of tasks is large and/or the parallel section 
is small, the enqueue overhead becomes significant. Note 
that an alternative implementation of task queues might 
solve the problem, one of which is discussed in [8]. 

Locking: Grabbing and releasing locks incurs 
synchronization overhead. However, we observe that the 
locking overhead does not increase with the number of 
threads. Since there is little contention on the locks, 
locking does not significantly limit scalability. 
Nevertheless, accessing an uncontended lock still incurs 
parallelization overhead as it is extra work that is not 
required in a serial code. 

In addition to the reasons listed above, parallel scaling is 
also affected by the memory behavior, which is covered 
in detail in the next section. 

IMPLICATIONS FOR THE MEMORY 
SUBSYSTEM  
Memory bandwidth requirements grow proportionally to 
the number of cores on a multi-core chip. Furthermore, as 
applications and workloads evolve, memory bandwidth 
requirements are expected to grow. Current server 
memory bandwidth projections are mostly based on 
traditional benchmarks such as TPC-C, SPECjAppServer 
(SJAS), and SPECjbb (SJBB). Unfortunately, these 
benchmarks do not accurately reflect future important 
workloads such as our physical simulation applications. 

Figure 11 shows the projected external memory 
bandwidth requirements for five different sizes of  
last-level cache (the other caches are assumed to be small 
and inclusive). The projection is based on running the 
workloads at 64 giga-instructions-per-second (GIPS). We 
analyze the bandwidth requirements for all important 
modules and compare them to TPC-C, SJAS, and SJBB. 
For each cache size, the modules are sorted according to 
their bandwidth requirements. The bandwidth 
requirements for the traditional benchmarks are 
highlighted for comparison.  
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Figure 11: Projection of external memory bandwidth requirements (GB/s) for a given last-level on-die cache size 

 

The results show the following behaviors: 

(1) If we have less than 128MB of last-level cache, 
modules in physical simulation have a wide range of 
bandwidth requirements, ranging from a few 
gigabytes per second to over 200GB/s. The 
bandwidth usage of traditional benchmarks, on the 
other hand, is much lower than that (maximum of 
40GB/s, even if we have only 8MB of cache). 

(2) To put the results into context, we compare the 
requirements to projected available bandwidth in 
2010. Memory bandwidth typically grows at 30%  
per year, so we expect the available bandwidth to be 
about 48GB/s in 2010. Workloads with bandwidth 
requirements greater than this will suffer 
performance-wise. Some of our modules have 
bandwidth requirements that greatly exceed 48GB/s 
unless the last-level cache is at least 64MB. 

(3) The average bandwidth usage for each of the 
applications is significantly lower than the peak 
bandwidth usage. This is because each application is 
made up of modules with different bandwidth 

requirements. The scalability of the module with  
the highest bandwidth requirement often limits the 
scalability of the entire application.  

(4) Our physical simulation modules benefit significantly 
more than traditional benchmarks do from a large 
last-level cache. When an application’s entire 
working set fits into cache, the external memory 
bandwidth usage becomes minimal. For our 
applications, this happens when the cache is 128MB. 

(5) One of our most memory-intensive modules is the 
incomplete Cholesky Preconditioned Conjugate 
Gradient (PCG) method from production fluid 
simulation. PCG is used to solve a system of 
equations arising from the discretization of the 
Poisson Equation.1 It consists of a number of 

                                                           
1 PCG is one of the most popular approaches for solving 
large symmetric positive-definite systems of equations 
because it is more robust than direct solvers and 
converges fast. As such, PCG is of great importance 
beyond the study of this application. 
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operations performed sequentially on a set of two 
matrices and a number of vectors. The solver iterates 
tens of times until the solution converges. During each 
iteration, both matrices (which occupy about 40MB 
each) are streamed over. Thus, we see a huge 
bandwidth requirement when the last-level cache 
cannot hold the matrices. When the last-level cache is 
big enough to hold both matrices (and all the vectors), 
the bandwidth requirement is greatly reduced. 

CONCLUSION 
We consider two broad categories of physical simulation 
applications: production physics and game physics. 
Production physics is used by movie studios for creating 
special effects that may take many minutes to process a 
single frame. In contrast, game physics is used by the 
gaming industry and has a more stringent real-time 
requirement of about 30-60 frames per second. The 
difference in execution time requirements affects the 
choice and design of algorithms for the two categories of 
physical simulation. 

We have parallelized applications in both categories and 
achieve parallel scalability of 30-60× on a cycle-accurate 
simulator of a multi-core chip with 64 cores. Many 
modules of these applications require extensive effort to 
achieve good performance scaling. In some cases, the best 
serial algorithms have poor parallel scalability. For these, 
we use alternative algorithms which are slower on one 
core, but have more parallelism. In other cases, we 
modify the algorithm to expose more parallelism. The 
overhead of exposing the parallelism is often small 
compared to the benefits of improved scaling. 

While our applications scale well, some modules are far 
from the theoretical maximum scaling. This is primarily 
due to overheads in the task queues and to imperfect  
load balancing. 

Some modules also have significant overheads from 
locking, but these overheads do not grow with the number 
of cores (i.e., the locks have low contention), and 
therefore do not impact scalability. However, the cost of 
locking still has a significant impact on the overall 
performance of the parallelized application. 

We find that future physics workloads will require large 
last-level caches (i.e., 128MB) or main memory 
bandwidths in excess of 100GB/s. This is due to the 
applications’ use of streaming access patterns combined 
with large data sets (e.g., tens of thousands of objects for 
game physics and hundreds of thousands to a few million 
objects for production physics).  

We also find that physical simulation applications have 
very different memory characteristics than traditional 
benchmarks such as TPC-C, SPECjAppServer, and 

SPECjbb. These traditional benchmarks do not get a big 
boost from a large last-level cache since their working 
sets are extremely large. However, physical simulation 
applications benefit greatly from a 128MB cache since it 
can fit the whole working set of all application modules. 
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