
Tera-scale Computing

Volume 11 Issue 03 Published, August 22, 2007 ISSN 1535-864X DOI:10.1535/itj.1103.08

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm

Intel®
Technology
Journal

High-Performance Physical Simulations on
Next-Generation Architecture with Many Cores

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 251

High-Performance Physical Simulations on Next-Generation
Architecture with Many Cores

Yen-Kuang Chen, Corporate Technology Group, Intel Corporation
Jatin Chhugani, Corporate Technology Group, Intel Corporation

Christopher J. Hughes, Corporate Technology Group, Intel Corporation
Daehyun Kim, Corporate Technology Group, Intel Corporation

Sanjeev Kumar, Corporate Technology Group, Intel Corporation
Victor Lee, Corporate Technology Group, Intel Corporation
Albert Lin, Corporate Technology Group, Intel Corporation

Anthony D. Nguyen, Corporate Technology Group, Intel Corporation
Eftychios Sifakis, Corporate Technology Group, Intel Corporation

Mikhail Smelyanskiy, Corporate Technology Group, Intel Corporation

Index words: Physical simulations, chip multiprocessor, many cores, parallel scalability,
memory bandwidth

ABSTRACT
Physical simulation applications model and simulate
complex natural phenomena. The computational
complexity of real-time physical simulations far exceeds
the capabilities of modern unicore microprocessors,
which are limited to only tens of billions floating-point
operations per second (FLOPS). However, the advent of
multi-core architectures promises to soon make
processors with trillions of FLOPS available. Such
processors are also known as tera-scale processors.
Physical simulations can exploit this huge increase in
computational capability to increase realism, enable
interactivity, and enrich a user’s visual experience.

In this work, we study physical simulation applications in
two broad categories: production physics and game
physics. After parallelization, the benchmark applications
achieve parallel scalabilities of 30×–60× on a simulated
chip-multiprocessor with 64 cores.

We examine the memory requirements of physical
simulation applications and find that they require cache
sizes in excess of 128MB and main memory bandwidths
in excess of hundreds of GB/s for real-time performance.
A radical re-design of the memory hierarchy may be
necessary for the multi-core tera-scale era to provide good
scaling for this type of application.

INTRODUCTION
The booming computer games and visual effects
industries continue to drive the graphics community’s
seemingly insatiable desire for increased realism,
believability, and speed. In the past decade, physical
simulation has become a key to achieving the realism
expected by audiences of games and movies. Physical
simulation models the laws of physics to simulate life-like
movement and interaction among objects, such as rigid
and deformable bodies, human faces, cloth, and water.

Physical simulation can be used in a variety of settings
such as weather prediction, movie special effects, and
computer games. Complex natural phenomena such as
ocean waves crashing on a shore, a flag waving in the
wind, or bricks falling from a collapsing tower are
modeled by means of numerical simulation of physical
laws. Modeling different natural phenomena requires a
diverse set of techniques, algorithms, and data structures,
making physical simulation both complex and general.
Computation and memory requirements are extremely
demanding. This makes the workloads a challenging
target for current as well as future architectures.

In this paper, we examine applications involving physical
simulation for production environments and for gaming.
For production physical simulation, we study the
PhysBAM package from Stanford University [5, 11],
which is used by several special-effects and film
production companies, including Pixar and Industrial

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 252

Light and Magic. The goal is to recreate the visual
experience of a human observing a natural phenomenon.
For gaming physical simulation, we study the open source
ODE package [13]. This package provides similar
functionality to the widely used commercial Havok Effect
package from Havok. The goal of physical simulation in
gaming is to make real-time interactions between objects
as accurate as possible. The difference in goals for the
two physical simulation domains leads to different
choices for algorithms and data structures. However,
these two domains do have many similar characteristics.

One common characteristic of production and gaming
physical simulation is a need for significant acceleration.
On a 4-way Intel® Xeon® processor 3.0GHz system, with
16GB of DDR2-3200 and three levels of cache on each
processor (16KB L1, 1MB L2, and 8MB L3), the
production physics workloads take 5 to 188 seconds to
process a single frame. These workloads have hundreds
of thousands to a few million entities (tetrahedra/grid
cells) interacting with each other. In contrast, for game
physics workloads, only a thousand objects can currently
interact in real time. Acceleration by an order of
magnitude or more will allow improved accuracy,
modeling of new effects, and even interactive or real-time
production applications. Multi-core processors are now
common, and we expect the number of cores to increase
steadily for the foreseeable future, so that multi-core
processors capable of executing applications tens of times
faster than today’s processors are on the horizon. Such
processors would improve the speed and realism of
production-quality or real-time game physical simulation
applications. However, for an application to harness the
computational power of such a multi-core processor, it
must effectively utilize multiple threads. Parallelization of
a large code base as used by production or game physics
applications is not trivial, especially when the target
parallel scalability is tens of threads.

Another similarity in requirements for the two categories
of physical simulation applications is high-bandwidth
requirements. The size of the data scales with increasing
resolution or number of objects in the simulation. Input
sizes are often millions of volume elements or tens of
thousands of objects. This leads to memory footprints that
are tens of megabytes (i.e., larger than typical caches).
These applications therefore require either much larger
caches or a large main memory bandwidth.

Our contributions are as follows:

• We have parallelized six state-of-the-art physical
simulation applications (fluid dynamics [4], human
face simulation [12], and cloth simulation [2] for
production physics and convex body collision [1, 3],
game cloth [7], and game fluids [9] for game
physics). In parallelizing these workloads, we

employed various techniques which include
parallelizing loops/graph operations and using
alternative algorithms for better scalability.

• We simulated and analyzed the scalability of these
applications using cycle-accurate simulation of a
chip-multiprocessor with 64 cores. The workloads
studied achieved a parallel scaling of 30× to 60× for
64 cores.

• We perform a detailed analysis of the memory
requirements of these applications. Our study finds
that future physical simulation workloads demand
cache sizes close to 100 megabytes or physical main
memory bandwidths in the hundreds of GB/s.

PHYSICS SIMULATION PIPELINE

Compute forces, torques,
pressures, etc

Time Stepping

Collision &
constraint
processing

State (time=tn)

State (time=tn+1)

External
control

Figure 1: Overview of physical simulation

Figure 1 shows a typical time step in a physical
simulation application. For each time step of a simulation,
a physical simulation application takes as input the state
of the simulated scene (e.g., positions, orientations, and
velocities of all objects), as well as external control
information (e.g., what the player is doing in a game).
The application then computes the physical processes that
potentially lead to an updated state (e.g., force, torque, or
pressure generation). Depending on the scheme used, this
information will be used to advance the state forward in
time (e.g., time integration of the laws of motion),
yielding a new candidate state. Should phenomena such
as collisions or other constraints be triggered, the state
may be updated in response to this collision or constraint,
and the force computation/time stepping phases will be
repeated, possibly with a smaller time step.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 253

While game and production physics share the same
iterative process, they exhibit important differences.
These differences stem from the execution time
requirements of their domains. Production physics is
primarily used for special effects in movies and other
off-line simulations. The execution time limit for these
environments is typically a few minutes per frame in
order to simulate the complete effect in a reasonable
amount of time (e.g., less than a day). Game physics, on
the other hand, is concerned with real-time simulation
used in computer games. Thus, the execution time limit
is at most tens of milliseconds per frame. Both areas
of physical simulation have the goal of providing
maximum visual plausibility within their execution
time requirements.

We now describe how we model some specific phenomena.

Fluid Simulation
Production physics: Simulated water volumes are key
elements in an increasing number of feature films, making
fluid simulation (a.k.a., Computational Fluid Dynamics,
or CFD) very common in the special effects industry
today. Our production-quality fluid simulation application
models a body of water with a free surface (as opposed to
water flowing in a pipe or other airtight container). The
application uses a combination of a three-dimensional
grid and a set of particles [4]. The simulation tracks the
velocity and pressure of the water in each grid cell. It
computes how velocity and pressure change at each time
step using incompressible Navier-Stokes equations. This
is very computationally expensive, and it becomes much
more so as the number of grid cells goes up.
Unfortunately, unless prohibitively large grid resolutions
are to be used, the grid cannot accurately represent
intricate geometrical features of the water surface (such as
thin sheets and droplets). Therefore, particles are
sprinkled around the surface and advected along with
the fluid. The updated positions and velocities of
these particles are used to enhance the resolution of the
water surface.

Game Physics: While CFD is the method of choice for
high-fidelity simulation of fluids, its high computational
requirements necessitate off-line rendering. Game physics
therefore uses much faster, although less accurate,
techniques. Smoothed Particle Hydrodynamics (SPH) has
recently emerged as a popular technique for interactive
simulation of fluids [9]. The SPH method represents a
fluid as a set of discrete particles and models a resistance
to density changes: when particles get too close to one
another, a repulsive force separates them; when they get
too far from each other, an attractive force brings them
together. If a pair of particles is far enough apart, no
forces act between them. SPH discretizes the Navier-
Stokes equations and samples its solution at a finite

number of such particles in space and time. While in the
grid-based method the position of these sample points is
fixed, in the SPH the particles are free to move around.
This difference fundamentally changes the way the
Navier-Stokes equations are solved and generally leads to
much smaller complexity and ease of implementation,
making SPH more suitable for interactive environments.

Cloth Simulation
Production physics: Cloth simulation models a cloth
surface that can deform under the influence of external
forces such as gravity or forced stretching, and internal
forces such as the elastic response to tensile stress,
shearing, and bending [2]. This application also models
collisions of the piece of cloth with itself and other
elements in the environment. The deformable cloth is
modeled as a set of mass particles connected to form a
triangle mesh. The mesh is endowed with a network of
spring elements aligned with all triangle edges and
altitudes, as well as between adjacent triangles. These
springs model the cloth’s resistance to various forms of
deformation. Collision detection and resolution is a key
part of this application. After the velocities and positions
of the cloth particles are updated, collisions are detected.
If the collisions cannot be resolved, the application
undoes the updates from this iteration and re-executes it
with a smaller time step.

Game Physics: Similar to production physics, game
physics models a cloth object as a set of particles [7].
Each particle is subject to external forces, such as gravity,
wind and drag, as well as various constraints. These
constraints are used to maintain the overall shape of the
object (spring constraints), and to prevent interpenetration
with the environment (collision constraints). The
particle’s equation of motion resulting from applying the
external forces is integrated using explicit Verlet
integration. The above-mentioned constraints create a
system of equations linking the particles’ positions
together. This system is solved at each simulation time
step by relaxation, that is, by enforcing the constraints
one after another for a fixed number of iterations. This
method is less accurate but faster than the Conjugate
Gradient solver [7] used in production physics, which
enables the game cloth to simulate in real time. In
addition, self-collisions are typically ignored.

Face Simulation
Production physics: Face simulation animates a model of
a human face to provide an anatomically correct
visualization of a person speaking or making facial
expressions [12]. The application we examine assumes
that inertia has a negligible effect on human faces in
typical situations, and it therefore models facial motion as
a sequence of steady states. Each state is defined by facial

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 254

muscle activation and the position of the cranium and
jawbone. The face is modeled as a tetrahedral mesh,
which is driven by the facial musculature and the motion
of the jawbone. The application takes as input a time
sequence of muscle activation values and kinematics
parameters for the jaw motion. The finite element method
is used to define the forces (elastic deformation resistance
and active muscle contraction) that act on the face and
determine its shape.

Rigid Body Simulation
Game Physics: Rigid body dynamics [3] simulates
motion and interaction of non-deformable objects when
forces and torques are present in the system. Rigid body
dynamics is the most commonly used physical simulation
in video games today. Examples of rigid bodies in games
are vehicles, rag dolls, cranes, barrels, crates, and even
whole buildings. The traditional approach solves a system
of ordinary differential equations, which represent
Newton’s second law of motion, F=ma, where m is the
mass of an object, a is its acceleration, and F is the
applied force. The applied force determines the
acceleration of the object, so velocity and position are
obtained by integration of the above equation. The main
computational challenge comes from the fact that rigid
bodies’ motion is constrained due to their interaction with
the environment. For example, consider a destructive
environment in a video game where 1000s of rigid objects
explode, collapse, and collide, resulting in 100,000s of
interactive contacts. To realistically simulate such a scene
requires determination of collisions, calculation of
collision contact points, and physically correct
computation of the contact forces that result from these
contacts. To accelerate collision detection relies on spatial
partitioning data structures, such as grids or bounding
volume hierarchies. To determine contact forces that
result from collision contact, we model the contact as a
linear complementary problem [1].

Rigid body simulation in games today assumes that rigid
bodies cannot break. In general, this assumption is not
true in production physics. Today’s films use animation
of elasticity and fracture. However, these techniques are
too slow for interactive use.

PARALLELIZATION METHODOLOGY
The applications we study are all computationally
demanding—on a 4-way Intel Xeon processor 3.0GHz
system, with 16GB of DDR2-3200 and three levels of
cache on each processor (16KB L1, 1MB L2, and 8MB
L3), they take on average 188, 14, and 5 seconds
to process a single frame for production fluid, face,
and cloth simulations, respectively. Similarly,
high-complexity scenes in game rigid body dynamics,
fluid and cloth take on average 1, 0.4, and 0.1 seconds to

process a single frame. While game physics performance
may seem much better than production physics, one needs
to perform at least 30 frames per second for real-time
interactive experiences. Since they will all benefit from a
large performance boost, we parallelize the applications,
targeting a multi-core processor with tens of cores.

We took the conventional approach to parallelizing large
code bases. We first profiled each application to
determine the most expensive modules in a serial
execution. After that, we prioritize the modules of
each application and parallelize them in decreasing order
of importance.

The applications were parallelized using the fork-join
model in which the program consists of alternating serial
and parallel sections. This model is attractive because it
allows one to start with a serial program and selectively
parallelize the most profitable portions of the program
until satisfactory performance is achieved. We use a
standard task queue technique [8], similar to Intel Thread
Building Blocks (TBB) [6] and OpenMP [10], to
parallelize all modules.

In the rest of this section, we discuss how the various
modules were parallelized to scale to a large number
of cores.

Parallelizing Loops
The majority of modules were parallelized via loop
parallelization. These modules typically involve
operations on arrays of elements, such as grid cells of a
3D grid (production fluid), an array of particles (game
fluid), vertices of a triangle mesh (production cloth), and
contact constraints (game rigid bodies).

In most of the cases, the iterations of the loops are
independent of each other. For instance, computing the
aggregate force on a vertex of the triangular mesh
(production cloth) requires simply adding all the forces on
that vertex. These loops are parallelized by partitioning
the iterations of the loop among the cores. In a few
instances, multiple iterations update the same piece of
data. However, even in these instances, the final result is
independent of the ordering of the iterations. These loops
are also parallelized by splitting iterations among cores
while using fine-grained locking to guard updates on the
shared data.

Parallelizing Graph Operations
A few modules have more complex forms of parallelism
and typically incur more parallelization overheads.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 255

b3

b2 b4
C2 C3

b1
C1 C4

Figure 2: Scene configuration

Bodies

C4C4

C3C3

C2C2

C1C1

b4b3b2b1

C4C4

C3C3

C2C2

C1C1

b4b3b2b1

C
on

st
ra

in
ts

Figure 3: Constraints between various objects

Time 1

Time 2 C4C4

C3C3

C2C2

C1C1

b4b3b2b1

Figure 4: Reordered constraints into two batches to

expose parallel computation

0

16

32

48

64

0 16 32 48 64
of cores

Sp
ee

d-
up

No Reorder Reorder

Figure 5: Relative speedups for the constraint solver

with and without reordering of the constraints

An example of this is the broad-phase in collision
detection. Collision detection requires checking every pair
of objects for collisions. Since only a small fraction of the
objects actually collide at any given instant, collision
detection is performed in two phases: a broad-phase that

performs quick checks to rule out a large fraction of the
object pairs, and a narrow-phase that performs the exact
(and more computationally expensive) check on the
remaining pairs. A standard technique to accelerate
the broad-phase is to build a bounding volume hierarchy
(a tree) containing the objects. A leaf node of this tree
consists of a single object. The computation starts at the
root and traverses down. At each step, it checks pairs of
nodes of the tree. If the bounding volumes at the two
nodes do not overlap, then none of the objects in the first
subtree can possibly collide with any object in the second
subtree. Otherwise, more checks have to be performed
using the children of the two subtrees. Each of these pairs
of subtrees represents independent computation and
can be performed in parallel. Consequently, in the
broad-phase, each unit of parallel work can spawn off
more parallel work.

Using Alternative Algorithms
Sometimes, the best serial algorithm has poor parallel
scalability. In such cases, we often use an alternative
algorithm whose serial version is not as efficient as the
original, but whose parallel version scales much better.
Sometimes, we use an additional phase to reorder data
and expose more parallelism. In this section, we describe
two specific examples in detail.

The first example is from rigid-body dynamics from game
physics. During the execution of the physical simulation
pipeline, the collision detection phase computes the pairs
of colliding bodies, which are used as inputs to the
constraint solving phase. The physics solver operates on
these pairs and computes the separating contact forces,
which keep the bodies from inter-penetrating each other.
In Figure 2, we show one such case involving four bodies
(three boxes and one ground plane), where the
corresponding pairs of colliding bodies are listed in
Figure 3. The resulting constraints C1, C2, C3, and C4
need to be resolved to update the body positions.

To parallelize this phase, we would ideally like to
distribute the constraints amongst the available threads
and resolve them in parallel. However, there is often an
inherent dependency between consecutive constraints. In
our example, constraints C1 and C2 both involve body b2
and thus cannot be resolved in parallel. These
dependencies can force a significant serialization of the
computation. However, we can reorder the constraints
into different batches such that there are no conflicting
constraints in each batch. That is, each batch will contain
at most one constraint that refers to any given body.

Reordering algorithms traverse the constraints,
maintaining an ordered list of partially filled batches.
Each constraint is assigned to the earliest batch with no
conflicting constraints. As a result, all constraints within a

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 256

batch can be processed in parallel, while the different
batches have to be processed sequentially.

For example, we reorder the constraints in Figure 3 and
obtain two batches, (C1, C3) and (C4, C2), as shown in
Figure 4. Note that C1 and C3 from the first batch do not
refer to any body more than once and can be resolved in
parallel. A similar observation holds for C4 and C2. As a
result C1 and C3 in the first batch are solved in parallel
and the results are fed as part of the input to the second
batch. The bottom curve in Figure 5 shows the speedup of
the physics solver using the original order of the
constraints relative to the serial version for up to 64 cores.
The top curve shows the speedup using reordered
constraints. We see that without reordering, the speedup
is limited to 4× on 64 cores. However, reordering
the constraints enables a speedup of 35×, including the
overhead for reordering. This example highlights the case
where some extra computation needs to be performed to
expose the parallelism.

The second example of the need for alternative algorithms
is from fluid simulation for production physics. Our fluid
simulation application implicitly tracks the interface
(boundary) between the air and the fluid. For each grid
cell in the modeled space, it computes the distance to the
interface. The most common technique to do this is
the Fast Marching Method (FMM), which iteratively
advances the wave front. For each iteration, it finds and
updates the closest grid cell to the front that is not already
on or behind the front (Figure 6). This is inherently serial.
However, these distance values are required only for a
narrow band around the interface. Thus, we parallelize
FMM by dividing the grid into overlapping blocks,
padded by the width of the narrow band, and working on
each block independently (Figure 7). This works well for
a small number of threads. However, the total overlap
region becomes large quickly as the number of blocks
increases. As a result, the application scales relatively
poorly, achieving a scaling of around 21× on 64 threads.

We instead use an alternative scheme known as the Fast
Sweeping Method (FSM) [5] (Figure 8). FSM traverses
the grid cells in all eight possible combinations of the X,
Y, and Z directions. Each “sweep” updates the distance of
a cell from the distances computed for its neighbors in the
previous sweeps. We obtain the correct distance for each
cell after completing all eight sweeps. We parallelize
FSM in a similar manner to FMM (i.e., with overlapping
blocks). The serial version of FSM is around 30% slower
than the serial version of FMM. However, FSM has more
parallelism since the sweeps are independent. Thus, we
achieve scaling of around 55× on 64 threads. In Figure 9,
we compare the speedup of FSM relative to FMM. Up to
16 cores, FMM provides higher performance, but beyond

16 cores, FSM is better, giving about 2× the performance
of FMM on 64 cores.

Advancing the front

Initial Fluid-air
interface

Figure 6: Fast Marching Method (FMM) advances the
front to incrementally compute the signed distance of

nodes from the interface
Regions shared by two or more cells where extra

computation is done

Figure 7: Parallelizing the algorithm by dividing the

region into overlapping cells

Sweep along the grid nodes and
update the distance

Figure 8: Fast Sweeping Method (FSM) traverses the
grid nodes and incrementally updates the minimum

distance to the interface

PARALLEL SCALABILITY RESULTS
Figure 10 shows the parallel scalability for our
applications for up to 64 cores. Since no large-scale CMP
is available for us to experiment with, we use
cycle-accurate simulation to measure performance and
characterize the parallelized workloads. Details of our
simulator can be found in [5]. We assume a very high
main memory bandwidth so that we do not artificially
limit scalability. The speedups are obtained against the

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 257

one thread version of the parallelized code. On 64 cores,
we achieve 30× to 56× speedup for production physics
and 36× to 61× speedup for game physics.

0

16

32

48

64

0 16 32 48 64
of cores

S
pe

ed
-u

p

Fast marching method Fast sweeping method

Figure 9: Speedup of FSM relative to FMM

0

16

32

48

64

0 16 32 48 64
Number of Cores

Pa
ra

lle
l S

pe
ed

up Production Physics Fluid
Production Physics Face
Production Physics Cloth
Game Physics SPH Fluid
Game Physics Cloth
Game Physics Rigid Body

Figure 10: Parallel scalability of production physics

and game physics

Next, we discuss important issues regarding scalability.
Amdahl’s law determines the theoretical maximum
scalability. Load balancing and synchronization overheads
impact how close we can be to the theoretical limit.

Serial Sections: Amdahl’s law dictates that the parallel
scalability is limited by the size of the serial sections. In
most of the production and game physics modules, the
serial section accounts for much less than 1% of
execution time for one core. As a result, it does not
significantly impact the parallel scalability in our study of
up to 64 cores. However, as the number of cores
increases, more aggressive parallelization will be needed
to keep serial code from limiting parallel scalability.

Load Imbalance: The load imbalance is a function of the
variability of task size as well as the number of tasks. The
lower the variability, the fewer tasks are needed to obtain
good load balance. Unfortunately, some modules exhibit
high variability, which requires many tasks for good load
balance, resulting in high parallelization overhead.

Therefore, we should make a tradeoff between good load
balance and low parallelization overhead. Under certain
instances (e.g., Figure 7), we are forced to minimize the
number of tasks to keep the amount of replication and
redundant computation at an acceptable level. However,
this comes at a cost of significant load imbalance that may
limit parallel scaling.

Task Queuing: We implement a task queue to distribute
parallel tasks across the cores. For some modules, the task
queue overhead becomes a bottleneck for the scalability.
In our implementation of task queues, all tasks are
enqueued before we enter the parallel section. Therefore,
if the number of tasks is large and/or the parallel section
is small, the enqueue overhead becomes significant. Note
that an alternative implementation of task queues might
solve the problem, one of which is discussed in [8].

Locking: Grabbing and releasing locks incurs
synchronization overhead. However, we observe that the
locking overhead does not increase with the number of
threads. Since there is little contention on the locks,
locking does not significantly limit scalability.
Nevertheless, accessing an uncontended lock still incurs
parallelization overhead as it is extra work that is not
required in a serial code.

In addition to the reasons listed above, parallel scaling is
also affected by the memory behavior, which is covered
in detail in the next section.

IMPLICATIONS FOR THE MEMORY
SUBSYSTEM
Memory bandwidth requirements grow proportionally to
the number of cores on a multi-core chip. Furthermore, as
applications and workloads evolve, memory bandwidth
requirements are expected to grow. Current server
memory bandwidth projections are mostly based on
traditional benchmarks such as TPC-C, SPECjAppServer
(SJAS), and SPECjbb (SJBB). Unfortunately, these
benchmarks do not accurately reflect future important
workloads such as our physical simulation applications.

Figure 11 shows the projected external memory
bandwidth requirements for five different sizes of
last-level cache (the other caches are assumed to be small
and inclusive). The projection is based on running the
workloads at 64 giga-instructions-per-second (GIPS). We
analyze the bandwidth requirements for all important
modules and compare them to TPC-C, SJAS, and SJBB.
For each cache size, the modules are sorted according to
their bandwidth requirements. The bandwidth
requirements for the traditional benchmarks are
highlighted for comparison.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 258

-

50

100

150

200

250

B
an

dw
id

th
 u

sa
ge

 (G
B

/s
) a

t 6
4G

IP
S/

s
Modules in physics simulations TPCC, SJAS, SJBB

32MB 64MB 128MB16MB8MB

Figure 11: Projection of external memory bandwidth requirements (GB/s) for a given last-level on-die cache size

The results show the following behaviors:

(1) If we have less than 128MB of last-level cache,
modules in physical simulation have a wide range of
bandwidth requirements, ranging from a few
gigabytes per second to over 200GB/s. The
bandwidth usage of traditional benchmarks, on the
other hand, is much lower than that (maximum of
40GB/s, even if we have only 8MB of cache).

(2) To put the results into context, we compare the
requirements to projected available bandwidth in
2010. Memory bandwidth typically grows at 30%
per year, so we expect the available bandwidth to be
about 48GB/s in 2010. Workloads with bandwidth
requirements greater than this will suffer
performance-wise. Some of our modules have
bandwidth requirements that greatly exceed 48GB/s
unless the last-level cache is at least 64MB.

(3) The average bandwidth usage for each of the
applications is significantly lower than the peak
bandwidth usage. This is because each application is
made up of modules with different bandwidth

requirements. The scalability of the module with
the highest bandwidth requirement often limits the
scalability of the entire application.

(4) Our physical simulation modules benefit significantly
more than traditional benchmarks do from a large
last-level cache. When an application’s entire
working set fits into cache, the external memory
bandwidth usage becomes minimal. For our
applications, this happens when the cache is 128MB.

(5) One of our most memory-intensive modules is the
incomplete Cholesky Preconditioned Conjugate
Gradient (PCG) method from production fluid
simulation. PCG is used to solve a system of
equations arising from the discretization of the
Poisson Equation.1 It consists of a number of

1 PCG is one of the most popular approaches for solving
large symmetric positive-definite systems of equations
because it is more robust than direct solvers and
converges fast. As such, PCG is of great importance
beyond the study of this application.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 259

operations performed sequentially on a set of two
matrices and a number of vectors. The solver iterates
tens of times until the solution converges. During each
iteration, both matrices (which occupy about 40MB
each) are streamed over. Thus, we see a huge
bandwidth requirement when the last-level cache
cannot hold the matrices. When the last-level cache is
big enough to hold both matrices (and all the vectors),
the bandwidth requirement is greatly reduced.

CONCLUSION
We consider two broad categories of physical simulation
applications: production physics and game physics.
Production physics is used by movie studios for creating
special effects that may take many minutes to process a
single frame. In contrast, game physics is used by the
gaming industry and has a more stringent real-time
requirement of about 30-60 frames per second. The
difference in execution time requirements affects the
choice and design of algorithms for the two categories of
physical simulation.

We have parallelized applications in both categories and
achieve parallel scalability of 30-60× on a cycle-accurate
simulator of a multi-core chip with 64 cores. Many
modules of these applications require extensive effort to
achieve good performance scaling. In some cases, the best
serial algorithms have poor parallel scalability. For these,
we use alternative algorithms which are slower on one
core, but have more parallelism. In other cases, we
modify the algorithm to expose more parallelism. The
overhead of exposing the parallelism is often small
compared to the benefits of improved scaling.

While our applications scale well, some modules are far
from the theoretical maximum scaling. This is primarily
due to overheads in the task queues and to imperfect
load balancing.

Some modules also have significant overheads from
locking, but these overheads do not grow with the number
of cores (i.e., the locks have low contention), and
therefore do not impact scalability. However, the cost of
locking still has a significant impact on the overall
performance of the parallelized application.

We find that future physics workloads will require large
last-level caches (i.e., 128MB) or main memory
bandwidths in excess of 100GB/s. This is due to the
applications’ use of streaming access patterns combined
with large data sets (e.g., tens of thousands of objects for
game physics and hundreds of thousands to a few million
objects for production physics).

We also find that physical simulation applications have
very different memory characteristics than traditional
benchmarks such as TPC-C, SPECjAppServer, and

SPECjbb. These traditional benchmarks do not get a big
boost from a large last-level cache since their working
sets are extremely large. However, physical simulation
applications benefit greatly from a 128MB cache since it
can fit the whole working set of all application modules.

ACKNOWLEDGMENTS
We thank Radek Grzeszczuk, Matthew J. Holliman,
Richard Lee, Andrew P. Selle, and Jason Sewall for
their contributions to the project. We also thank Pradeep
Dubey who encouraged us to look into this problem.

REFERENCES
[1] D. Baraff, “Physically Based Modeling: Principals

and Practice,” Online Course Notes, SIGGRAPH,
1997.

[2] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of
Clothing with Folds and Wrinkles,” in Proceedings
of the Eurographics Symposium on Computer
Animation, 2003.

[3] D. H. Eberly, Game Physics, Morgan
Kaufmann/Elsevier, San Francisco, 2003.

[4] D. P. Enright, S. R. Marschner, and R. P. Fedkiw,
“Animation and Rendering of Complex Water
Surfaces,” ACM Transactions on Graphics,
21(3):736–744, July 2002.

[5] C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S.
Kumar, A. P. Selle, J. Chhugani, M. Holliman, and
Y.-K. Chen, “Physical Simulation for Animation and
Visual Effects: Parallelization and Characterization
for Chip Multiprocessors,” in Proceedings of the 34th
International Symposium on Computer Architecture,
June 2007.

[6] Intel® Thread Building Blocks Reference, 2006,
Version 1.3.

[7] T. Jacobsen, “Advanced Character Physics,”
Game Developers Conference, 2001.

[8] S. Kumar, C. J. Hughes, A. Nguyen, “Carbon:
Architectural Support for Fine-Grained Parallelism
on Chip Multiprocessors,” in Proceedings of the 34th
International Symposium on Computer Architecture,
June 2007.

[9] M. Muller, D. Charypar, and Markus Gross,
“Particle-based fluid simulation for interactive
applications,” in Proceedings of the Eurographics
Symposium on Computer Animation, 2003.

[10] OpenMP Application Program Interface, May 2005,
Version 2.5.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 260

[11] PhysBAM physical simulation package, at
http://graphics.stanford.edu/~fedkiw*

[12] E. Sifakis, A. Selle, A. Robinson-Mosher, and
R. Fedkiw, “Simulating Speech with a Physics-Based
Facial Muscle Model,” in Proceedings of the
Eurographics Symposium on Computer Animation,
2006.

[13] R. Smith, “Open Dynamics Engine, at
http://www.ode.org*

AUTHORS’ BIOGRAPHIES
Yen-Kuang Chen is a Principal Engineer in the Corporate
Technology Group. His research interests include
developing innovative multimedia applications, studying the
performance bottleneck in current architectures, and
designing next-generation microprocessors/platforms. He is
one of the key contributors to Supplemental Streaming
SIMD Extension 3 in the Intel® Core™2 processor family.
He received his Ph.D. degree from Princeton University. His
e-mail is yen-kuang.chen at intel.com.

Jatin Chhugani is a Staff Researcher in the Corporate
Technology Group. His research interests include
developing algorithms for interactive computer graphics,
parallel architectures, and image processing. He received
his Ph.D. degree from The Johns Hopkins University,
Baltimore, MD. His e-mail is jatin.chhugani at intel.com.

Christopher J. Hughes is a Staff Researcher in the
Corporate Technology Group. His research interests are
emerging workloads and computer architectures, with a
current focus on parallel architectures and memory
hierarchies. He received his Ph.D. degree from the
University of Illinois at Urbana-Champaign. His e-mail is
christopher.j.hughes at intel.com.

Daehyun Kim is a Senior Research Scientist in the
Corporate Technology Group. His research interests
include parallel computer architecture, intelligent memory
systems, and emerging workloads. He received his Ph.D.
degree from Cornell University. His e-mail is
daehyun.kim at intel.com.

Sanjeev Kumar is a Staff Researcher in the Corporate
Technology Group. His research interests are parallel
architectures, software, and workloads especially in the
context of chip-multiprocessors. He received his Ph.D.
degree from Princeton University. His e-mail is
sanjeev.kumar at intel.com.

Victor Lee is a Senior Staff Research Scientist in the
Corporate Technology Group. His research interests are
computer architecture and emerging workloads. He
is currently involved in defining next-generation
chip-multiprocessor architecture. He received his S.M.

degree from the Massachusetts Institute of Technology.
His e-mail is victor.w.lee at intel.com.

Albert Lin is a graduate intern in the Corporate
Technology Group. His work is primarily in memory
systems for future processors with many cores. He
received his B.S. and M.Eng. degrees in Electrical
Engineering and Computer Science from the
Massachusetts Institute of Technology. While at MIT, he
was a recipient of the Siebel Scholar Fellowship and a
student member of the American Academy of
Achievement. He is currently an Electrical Engineering
doctoral candidate at Stanford University. His e-mail is
albert.c.lin at intel.com.

Anthony D. Nguyen is a Senior Research Scientist in the
Corporate Technology Group. His research interests
include developing emerging applications for architecture
research and designing the next-generation
chip-multiprocessor systems. He received his Ph.D.
degree from the University of Illinois, Urbana-
Champaign. His e-mail is anthony.d.nguyen at intel.com.

Eftychios Sifakis is a visiting researcher in the Corporate
Technology Group. He received B.Sc. degrees in
Computer Science and Mathematics from the University
of Crete, Greece in 2000 and 2002, respectively, and he
received his Ph.D. degree in Computer Science from
Stanford University in 2007. His research focuses on
simulation and analysis of human body and face motion
and simulation algorithms for deformable solids. He has
been working with Intel since 2005 on the mapping of
physics-based simulation on chip-multiprocessors. His
e-mail is eftychios.d.sifakis at intel.com.

Mikhail Smelyanskiy is a Senior Research Scientist in
the Corporate Technology Group. His research focus is
on building and analyzing parallel emerging workloads to
drive the design of the next-generation parallel
architectures. He received his Ph.D. degree from the
University of Michigan, Ann Arbor. His e-mail address is
mikhail.smelyanskiy at intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino,
Centrino logo, Core Inside, FlashFile, i960, InstantIP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside
logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel
NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel
Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium
Inside, MCS, MMX, Oplus, OverDrive, PDCharm,
Pentium, Pentium Inside, skoool, Sound Mark, The
Journey Inside, VTune, Xeon, and Xeon Inside are
trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

http://graphics.stanford.edu/~fedkiw
http://www.ode.org/

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 261

Intel’s trademarks may be used publicly with permission
only from Intel. Fair use of Intel’s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 262

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright © 2007 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
www.intel.com/sites/corporate/tradmarx.htm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 100
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

