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ABSTRACT
Sparse matrix-vector multiplication (SpMV) is an important ker-
nel in many scientific applications and is known to be memory
bandwidth limited. On modern processors with wide SIMD and
large numbers of cores, we identify and address several bottlenecks
which may limit performance even before memory bandwidth: (a)
low SIMD efficiency due to sparsity, (b) overhead due to irregu-
lar memory accesses, and (c) load-imbalance due to non-uniform
matrix structures.

We describe an efficient implementation of SpMV on the Intel R©

Xeon Phi
TM

Coprocessor, codenamed Knights Corner (KNC), that
addresses the above challenges. Our implementation exploits the
salient architectural features of KNC, such as large caches and
hardware support for irregular memory accesses. By using a spe-
cialized data structure with careful load balancing, we attain per-
formance on average close to 90% of KNC’s achievable memory
bandwidth on a diverse set of sparse matrices. Furthermore, we
demonstrate that our implementation is 3.52x and 1.32x faster, re-
spectively, than the best available implementations on dual Intel R©
Xeon R© Processor E5-2680 and the NVIDIA Tesla K20X architec-
ture.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming; C.1.4
[Processor Architectures]: Parallel Architectures
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ESB format, Intel Many Integrated Core Architecture (Intel MIC),
Intel Xeon Phi, Knights Corner, SpMV
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1. INTRODUCTION
Sparse matrix-vector multiplication (SpMV) is an essential ker-

nel in many scientific and engineering applications. It performs the
operation y← y+Ax, where A is a sparse matrix, and x and y are
dense vectors. While SpMV is considered one of the most impor-
tant computational kernels, it usually performs poorly on modern
architectures, achieving less than 10% of the peak performance of
microprocessors [7, 26]. Achieving higher performance usually re-
quires carefully choosing the sparse matrix storage format and fully
utilizing the underlying system architecture.

Recently, Intel announced the Intel R© Xeon Phi
TM 1 Coprocessor,

codenamed Knights Corner (KNC), which is the first commercial
release of the Intel R© Many Integrated Core (Intel R© MIC) architec-
ture. Unlike previous microprocessors from Intel, KNC works on a
PCIe card with GDDR5 memory and offers extremely high mem-
ory bandwidth. The first model of KNC has 60 cores, featuring a
new 512-bit SIMD instruction set. With a clock speed in excess of
1 GHz, KNC has over 1 Tflops double precision peak performance
from a single chip.

In this paper, we consider the design of efficient SpMV ker-
nels on KNC. We first evaluate the new architecture with a sim-
ple SpMV kernel using the widely-used Compressed Sparse Row
(CSR) format. Our experiments on KNC reveal several perfor-
mance bottlenecks that diverge from our prior knowledge about
SpMV on other architectures. From this experience, we design a
novel sparse matrix format, called ELLPACK Sparse Block (ESB),
which is tuned for KNC. The new format extends the well-known
ELLPACK format with (a) finite-window sorting to improve the
SIMD efficiency of the SpMV kernel; (b) a bit array to encode
nonzero locations to reduce the bandwidth requirement; and (c)
column blocking to improve memory access locality.

With a large number of cores, one critical performance obstacle
of SpMV on KNC is load imbalance. To address this problem,
we present three load balancers for SpMV on KNC and compare
them with other load balancing methods. Using the ESB format and
the proposed load balancers, our optimized SpMV implementation
achieves close to 90% of the STREAM Triad bandwidth of KNC
and is 1.85x faster than the optimized implementation using CSR
format. Compared to other architectures, SpMV on KNC is 3.52x
faster than on dual-socket Intel R© Xeon R© Processor E5-2680 and
is 1.32x faster than on NVIDIA Tesla K20X.

1Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corpora-
tion in the U.S. and/or other countries.



2. OVERVIEW OF KNIGHTS CORNER

2.1 Knights Corner Architecture
Knights Corner is a many-core coprocessor based on the Intel R©

MIC architecture. It consists of x86-based cores, caches, Tag Di-
rectories (TD), and GDDR5 Memory Controllers (MC), all con-
nected by a high speed bidirectional ring. An architectural overview
of KNC is given in Fig. 1.
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Figure 1: High-level block diagram of KNC.

Each core of KNC is composed of four components: an in-
order dual-issue pipeline with 4-way simultaneous multi-threading
(SMT), a 512-bit wide SIMD engine called Vector Processing Unit
(VPU); 32 KB L1 data and instruction caches; and a 512 KB fully
coherent L2 cache. The KNC’s L2 caches are fully coherent using
a set of tag directories. Each of the tag directories responds to L2
cache misses from a fixed portion of the memory space. As shown
in Fig. 1, the memory controllers are symmetrically interleaved
with pairs of cores around the ring. The memory addresses are
uniformly distributed across the tag directories and memory con-
trollers. This design choice provides a smooth traffic characteristic
on the ring and is essential for good bus performance.

Given the large number of cores and coherent caches, L2 cache
misses on KNC are expensive compared to those on other x86 pro-
cessors. On a L2 cache miss, an address request is sent on the ring
to the corresponding tag directory. Depending on whether or not
the requested address is found in another core’s cache, a forward-
ing request is then sent to that core or memory controllers, and the
request data is subsequently forwarded on the ring. The cost of each
data transfer on the ring is proportional to the distance between the
source and the destination, which is, in the worse case, on the order
of hundreds of cycles. Overall, the L2 cache miss latency on KNC
can be an order of magnitude larger than that of multi-core CPUs.

2.2 Intel R© Initial Many Core Instructions
KNC provides a completely new 512-bit SIMD instruction set

called Intel R© Initial Many Core Instructions (Intel R© IMCI). Com-
pared to prior vector architectures (MMX, SSE, and AVX), Intel R©
IMCI has larger SIMD width and introduces many new features.
One important new feature is write-mask, which we use in our
SpMV implementations. The write-mask in a SIMD instruction is a

mask register coming with the destination vector. After the SIMD
instruction is executed, each element in the destination vector is
conditionally updated with the results of the instruction, contingent
on the corresponding element position bit in the mask register.

The Intel R© IMCI also supports irregular memory accesses, which
are very useful for SpMV. The gather instruction loads sparse lo-
cations of memory into a dense vector register, while the scatter
instruction performs the inverse. In both instructions, the load and
store locations of memory are specified by a base address and a
vector of signed 32-bit offsets.

2.3 Test Platform
The platform used for experimental tests in this paper is a pre-

production part of KNC with codename ES B0, which is installed
with Intel R© MIC Platform Software Stack (MPSS) Gold 2.1. The
pre-production system is equipped with 8 GB GDDR5 memory and
includes a 61-core KNC coprocessor running at 1.09 GHz, which
is capable of delivering 1.05 Tflops double precision peak perfor-
mance.2 In this work, we use 60 cores to test the SpMV implemen-
tations, leaving the remaining core to run the operating system and
administrative software. The STREAM Triad benchmark on this
system achieves a score of 163 GB/s with ECC turned on.

3. UNDERSTANDING THE PERFORMANCE
OF SPMV ON KNC

We first implemented a simple SpMV kernel using CSR format
on KNC. The CSR format is standard, consisting of three arrays:
the nonzero values of the sparse matrix are stored in val; the column
indices corresponding to each nonzero are stored in colidx; and the
list of indices giving the beginning of each row are stored in rowptr.

3.1 Test Matrices
Table 1 lists sparse matrices used in our performance evaluation.

These are all the matrices used in previous papers [26, 21, 9] that
are larger than the 30 MB aggregate L2 cache of KNC (using 60
cores). A dense matrix stored in sparse format is also included.
These matrices come from a wide variety of applications with dif-
ferent sparsity characteristics. No orderings were applied to these
matrices, but our results may be better if we use orderings that pro-
mote locality when accessing the vector x.

Table 1: Sparse matrices used in performance evaluation.

Name Dimensions nnz nnz/row
Dense8 8K×8K 64.0M 8000.00
Wind Tunnel 218K×218K 11.6M 53.39
Circuit5M 5.56M×5.56M 59.5M 10.71
Rail4284 4K×1.09M 11.3M 2633.99
Mip1 66K×66K 10.4M 155.77
In-2004 1.38M×1.38M 16.9M 12.23
Si41Ge41H72 186K×186K 15.0M 80.86
Ldoor 952K×952K 46.5M 48.86
Bone010 987K×987K 71.7M 72.63
Rucci1 1.98M×110K 7.8M 3.94
Cage15 5.16M×5.16M 99.2M 19.24
Rajat31 4.69M×4.69M 20.3M 4.33
12month1 12K×873K 22.6M 1814.19
Spal_004 10K×322K 46.1M 4524.96
Crankseg_2 64K×64K 14.1M 221.64
Torso1 116K×116K 8.5M 73.32

2Evaluation card only and not necessarily reflective of production
card specifications.



3.2 Overview of CSR Kernel
Similar to earlier work on SpMV for multi-core CPUs [26, 7],

our CSR kernel is statically load balanced by row decomposition,
in which the sparse matrix is partitioned into row blocks with ap-
proximately equal numbers of nonzeros. Each thread multiplies
one row block with a SIMD kernel. We also applied common opti-
mizations to our CSR kernel, including loop unrolling and software
prefetching of nonzero values and column indices.

Algorithm 1: Multiply a row block (from row startrow to
endrow) in CSR format (rowptr, colidx, val).

1 rowid← startrow;
2 start← rowptr [rowid];
3 while rowid < endrow do
4 idx← start;
5 end← rowptr [rowid +1];
6 vec_y← 0;

/* compute for a row */
7 while idx < end do
8 rem← end− idx;
9 writemask← (rem > 8 ? 0xff : (0xff� (8− rem)));

10 vec_idx← load (&colidx [idx],writemask);
11 vec_vals← load (&val [idx], writemask);
12 vec_x← gather (vec_idx, &x [0], writemask);
13 vec_y← fmadd (vec_vals, vec_x, vec_y, writemask);
14 idx← idx+8;

15 y [rowid]← y [rowid] + reduce_add (vec_y);
16 start← end;
17 rowid← rowid +1;

Alg. 1 shows the pseudocode of the SIMD kernel, in which the
inner loop (lines 7-14) processes a matrix row. In each iteration, at
most 8 nonzeros are multiplied as follows. First, the elements from
colidx and val are loaded into vectors (lines 10 and 11). Next, the
elements from vector x are gathered into vec_x (line 12). Finally,
vec_vals and vec_x are multiplied and added to vec_y by the fused
multiply-add instruction (line 13). When fewer than 8 nonzeros are
left in a row, only a portion of the slots in the SIMD instructions will
be used. In this case, we only update the corresponding elements
in the destination vectors. To achieve this, a write-mask (line 9) is
used to mask the results of the SIMD instructions.

3.3 Performance Bounds
We use four performance bounds (measured in flops) to evaluate

the performance of our CSR kernel. First, the memory bandwidth
bound performance is the expected performance when the kernel is
bounded by memory bandwidth. It is defined as

Pbw =
2 nnz
M/B

where nnz is the number of nonzeros in the matrix, B is the STREAM
bandwidth of KNC, and M is the amount of memory transferred in
the SpMV kernel, which is measured by Intel R© VTune

TM
.

The compute bound performance is measured by running a mod-
ified CSR kernel, in which all memory accesses are eliminated.
Concretely, the modified kernel only uses the first cache lines of
val and colidx. It also eliminates the memory accesses on vector x
by setting colidx to be {0, 8, 16, 24, 32, 40, 48, 56}.

The ideal balanced performance is the achievable performance
when SpMV kernels are perfectly balanced, and is computed as

Pbalanced =
2 nnz
Tmean

where Tmean is the average execution time of the threads.

Finally, the effective bandwidth bound performance is the best
performance one would expect given that (a) the kernel is band-
width bound; (b) there are no redundant memory accesses to vec-
tors x and y. It is defined as

Pebw =
2 nnz

Mmin/B

where Mmin is the minimum memory traffic of SpMV assuming
perfect reuse of vectors x and y.

Prior work has shown that SpMV is memory bandwidth bound
on modern architectures [7, 26, 6]. Thus, it is expected that for all
matrices the compute bound performance is larger than the memory
bandwidth bound performance. The ideal balanced performance
represents the achievable peak performance of a balanced SpMV
kernel. For an efficient SpMV implementation, it should be close
to the memory bandwidth bound performance. Additionally, the
difference between the ideal balanced performance and the mea-
sured performance may quantify the degree of load imbalance.

3.4 Performance Bottlenecks
Fig. 2 shows the performance of our CSR kernel on all test ma-

trices and the corresponding performance bounds. By comparing
the measured performance of our CSR kernel to these performance
bounds, we discover some unexpected performance issues.
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Figure 2: Performance of CSR kernel and performance bounds. The aver-
age number of L2 cache misses per nonzero is shown in vertical bar.

3.4.1 Low SIMD Efficiency
As seen in Fig. 2, for some matrices that have very short row

lengths, e. g., Rajat31 and Rucci1, the compute bound performance
is lower than the bandwidth bound performance, suggesting that
their performance is actually bounded by computation. Previous
work on SpMV [7, 4] attributes the poor performance of matrices
with short rows to loop overheads. For wide SIMD, we argue that
this is also because of the low SIMD efficiency of the CSR kernel,
i. e., low fraction of useful slots used in SIMD instructions.

More precisely, for a matrix with very few nonzeros per row, the
CSR kernel cannot fully utilize KNC’s 512-bit SIMD instructions.
As a result, the CSR kernel on this matrix performs poorly, and if
the SIMD efficiency is very low, the compute bound performance
of the kernel may be smaller than the memory bandwidth bound
performance. For example, the matrix Rucci1 has on average 3.94
nonzeros per row. Multiplying this matrix using our CSR kernel
on KNC can only use half of the SIMD slots. Thus, the SIMD
efficiency is only 50%.

Low SIMD efficiency is not a unique problem for CSR. It can
be shown that the compute bound performance will be lower than



the memory bandwidth bound performance when the SIMD effi-
ciency is lower than some threshold. Given a matrix format, its
SpMV implementation on KNC usually includes a basic sequence
of SIMD instructions similar to lines 7-14 in Alg. 1, which multi-
plies at most 8 nonzeros (in double precision). Assuming that the
basic SIMD sequence takes C cycles (C accounts for both SIMD in-
structions and loop overheads) and F is the clock speed (Hz), then
the compute time for the SIMD sequence is C/F . The minimum
memory transfer time for the SIMD sequence is (8s×P×η)/B,
where s is the working set size (in bytes) for one nonzero, where P
is the number of cores in use, η is the SIMD efficiency, and B is
the STREAM bandwidth. To avoid being bounded by computation,
the compute time should be greater than the memory transfer time,
thus η needs to satisfy

η > ηmin =
B

8s×P
×C/F (1)

This provides the minimum required SIMD efficiency for the given
matrix format. We will revisit this in Section 4.

3.4.2 Cache Miss Latency
Four matrices, Rail4284, Cage15, 12month1 and Spal_004, have

ideal balanced performance much lower than both the compute
bound performance and the memory bandwidth bound performance.
This suggests that, even if the kernel is perfectly balanced, the per-
formance is neither bounded by computation nor bandwidth.

To determine the reason for this, Fig. 2 shows the average num-
ber of L2 cache misses (measured by Intel R© VTune

TM
) per nonzero

for all test matrices. From this figure, we see that those matrices
whose ideal balanced performance is lower than the compute and
memory bandwidth bound performance have much more L2 cache
misses than other matrices (per nonzero). We also notice that their
effective bandwidth bound performance is much higher than the
memory bandwidth bound performance, which means there are a
large number of redundant memory accesses on vector x. This im-
plies that the poor performance of these matrices may be because of
excessive cache misses due to accessing vector x. Unlike accesses
to matrix values, accesses to x are not contiguous and can be very
irregular, and we do not have an effective way to perform prefetch-
ing on x to overcome cache miss latency. While KNC has hardware
support for prefetching irregular memory accesses, it does have an
overhead that often negates its benefits.

Cache miss latency is not a unique problem for KNC. However,
it is more expensive on KNC than on other architectures. To better
understand the problem, we compare the cache miss latency (mem-
ory latency) and memory bandwidth of KNC with those of CPUs
and GPUs. Sandy Bridge, an example of recent multi-core CPUs,
has an order of magnitude smaller latency and 5x less memory
bandwidth than KNC. While the memory latency of Sandy Bridge
still affects performance, the SpMV kernels on it tend to be mem-
ory bandwidth bound. High-end GPUs have comparable memory
bandwidth and latency to KNC. However, memory latency is usu-
ally not a problem for GPUs as they have a large number of warps
per streaming multiprocessor (vs. 4 threads per core on KNC) so
the memory latency can be completely hidden.

3.4.3 Load Imbalance
In the CSR kernel, we statically partition the matrix into blocks

with equal numbers of nonzeros. We call this partitioning scheme
static-nnz. Although static-nnz is widely used in previous SpMV
implementations on multi-core processors and leads to good per-
formance, it performs poorly on KNC. As shown in Fig. 2, for at

least 8 matrices the CSR kernel is highly unbalanced. This results
in a significant performance degradation up to 50%.

The poor performance of static-nnz in these cases is mainly due
to the fact that the sparsity structure of a sparse matrix often varies
across different parts of the matrix. In one case, some parts of the
matrix may have more rows with shorter row lengths than other
parts. The threads assigned to these parts are slower than the other
threads because they are burdened by more loop overheads. In an-
other case, some parts of the matrix may have very different mem-
ory access patterns on vector x than others. For these parts of the
matrix, accessing vector x may cause more cache misses. Consid-
ering that KNC has far more cores than any other x86 processor,
it is more likely to have some partitions with very different row
lengths or memory access patterns from others. As a result, while
all partitions in static-nnz have the same number of nonzeros, they
can have very different performance. This explains why static-nnz
performs well on previous CPUs but is not effective on KNC.

In summary, the results using our CSR kernel on KNC reveal
that, depending on the matrix, one or more of three bottlenecks can
impact performance: (a) low SIMD efficiency due to wide SIMD
on KNC; (b) high cache miss latency due to the coherent cache
system; (c) load imbalance because of the large number of cores.
We will first address the low SIMD efficiency and the cache miss
latency bottlenecks in the next section by proposing a new matrix
format. The subsequent section addresses load imbalance.

4. ELLPACK SPARSE BLOCK FORMAT

4.1 Motivation
From the architectural point of view, KNC bears many similar-

ities with x86-based multi-core CPUs. On the other hand, there
are also similarities between KNC and GPUs, for example, both
have wide SIMD. Thus, before considering a new matrix format
for KNC, it is necessary to first evaluate existing matrix formats
and optimization techniques used for CPUs and GPUs.

4.1.1 Register Blocking
Register blocking [8] is one of the most effective optimization

techniques for SpMV on CPUs, and is central to many sparse ma-
trix formats [3, 4, 26]. In this section, we explain why this tech-
nique is not appropriate for KNC. In register blocking, adjacent
nonzeros of the matrix are grouped into small dense blocks to facil-
itate SIMD, and to reuse portions of the vector x in registers. Given
that KNC has wider SIMD and larger register files than previous
x86 CPUs, it seems advantageous to use large blocks on KNC.
However, sparse matrices in general cannot be reordered to give
large dense blocks; zero padding is necessary, resulting in redun-
dant computations with zeros and low SIMD efficiency.

To evaluate the use of register blocking, we measure the average
nonzero density of the blocks (ratio of the number of nonzeros in
a block to the number of nonzeros stored including padding zeros)
using various block sizes and compare these with the minimum
required SIMD efficiency (ηmin) in Eq. 1. In general, the SIMD
efficiency of SpMV is approximately equal to the average nonzero
density. It can be shown that, even when the smallest block sizes for
KNC to facilitate SIMD are used, the nonzero densities for many
matrices are still smaller than ηmin. Thus register blocking leads to
low SIMD efficiency on KNC. The details are as follows.

First, we calculate ηmin for register blocking using Eq. 1. In
register blocking, all nonzeros within a block share one coordinate
index, thus the working set for one nonzero is roughly equal to
the number of bytes for storing one double-precision word, i. e.,



8 bytes. To multiply 8 nonzeros using register blocking, an ef-
ficient implementation of the basic SIMD sequence requires ap-
proximately 6 cycles (1 cycle for loading x, 1 cycle for loading
val, 1 cycle for multiplication, and 2-3 cycles for loop overheads
and prefetching instructions). Additionally, we use 60 cores at
1.09 GHz, and the STREAM bandwidth on KNC achieves 163
GB/s. Putting these quantities together and using Eq 1, we ob-
tain ηmin = 23.7%. We now measure the nonzero densities for the
smallest block sizes that facilitate SIMD on KNC. The results are
displayed in Table 2, showing that, for 4× 4, 8× 2 and 8× 8 reg-
ister blocks, 6, 7 and 8 matrices have nonzero density lower than
23.7%, respectively. We note that this is a crude study because no
matrix reordering was used, but the above illustrates the point.

Table 2: Average percent nonzero density of register blocks and ELLPACK
slices (slice height 8).

Matrix Register blocking SELLPACK
4 × 4 8 × 2 8 × 4

Dense8 100.00 100.00 100.00 100.00
Wind Tunnel 69.83 63.47 59.91 98.96
Circuit5M 29.70 21.82 18.39 60.07
Rail4284 20.09 14.00 10.75 38.18
Mip1 82.08 77.52 73.30 90.10
In-2004 37.99 37.59 28.19 66.69
Si41Ge41H72 30.30 25.38 20.45 64.88
Ldoor 59.60 53.64 45.98 89.75
Bone010 58.83 51.71 45.98 94.02
Rucci1 12.26 18.11 9.32 98.55
Cage15 17.25 12.47 9.98 97.16
Rajat31 12.22 10.98 6.67 98.73
12month1 9.82 8.86 5.66 25.39
Spal_004 23.12 14.00 13.66 91.39
Crankseg_2 52.17 48.72 40.33 89.76
Torso1 73.52 69.55 62.85 93.42

4.1.2 ELLPACK and Sliced ELLPACK
The ELLPACK format and its variants are perhaps the most ef-

fective formats for GPUs. ELLPACK packs the nonzeros of a
sparse matrix towards the left and stores them in a m×L dense ar-
ray (the column indices are stored in a companion array) where m is
the row dimension of the matrix, and L is the maximum number of
nonzeros in any row. When rows have fewer than L nonzeros, they
are padded with zeros to fill out the dense array. The dense array
is stored in column-major order, and thus operations on columns of
the dense array can be vectorized with SIMD operations, making
this format very suitable for architectures with wide SIMD.

The efficiency of the ELLPACK format highly depends on the
distribution of nonzeros. When the number of nonzeros per row
varies considerably, the performance degrades due to the overhead
of the padding zeros. To address this problem, Monakov et al. [15]
proposed the sliced ELLPACK (SELLPACK) format for GPUs,
which partitions the sparse matrix into row slices and packs each
slice separately, thus requiring less zero padding than ELLPACK.

Table 2 also shows the average nonzero density of slices in SELL-
PACK using slice height 8, corresponding to KNC’s double preci-
sion SIMD width. For matrices with highly variable numbers of
nonzeros per row, the SELLPACK format still requires excessive
zero padding.

4.2 Proposed Matrix Format
SpMV in the CSR format suffers from low SIMD efficiency, par-

ticularly for matrices with short rows. Since SIMD efficiency is
expected to be higher in the ELLPACK format, and since the for-
mat supports wide SIMD operations, it forms the basis of our pro-

posed matrix format, called ELLPACK Sparse Block (ESB). At a
high level, ESB effectively partitions the matrix coarsely by rows
and columns into large sparse blocks. The row and column parti-
tioning is a type of cache blocking, promoting locality in accessing
vector x. The sparse blocks in a block column are appended and
stored in a variant of the ELLPACK format.

In practice, matrices generated by an application code may have
an ordering that is “local,” e. g., rows corresponding to nearby grid
points of a mesh are ordered together, which translates to locality
when accessing the vector x. Such an ordering may also be im-
posed by using a bandwidth reducing ordering. The coarse row and
column partitionings in ESB are intended to maintain locality, as
described below.

4.2.1 SELLPACK Storage with a Bit Array
The original ITPACK-ELLPACK format was designed for clas-

sical vector processors which required long vector lengths for ef-
ficiency. SIMD processing on GPUs requires vector lengths equal
to the number of threads in a thread block, and thus it is natural
to store the matrix in slices (i. e., SELLPACK) which requires less
zero padding. SIMD processing on CPUs including KNC only re-
quires vector lengths equal to the width of SIMD registers. Again
it is natural to store the matrix in slices, and the smaller slice height
required on CPUs can make this storage scheme particularly effec-
tive at reducing zero padding.

To further reduce the memory bandwidth associated with the
padding zeros, we can avoid storing zeros by storing instead the
length (number of nonzeros) of each row, as done in ELLPACK-R
[22] for GPUs. Here, each CUDA thread multiplies elements in a
row until the end of the row is reached. For SIMD processing on
CPUs, we can store the length of each column of the dense ELL-
PACK arrays, corresponding to the length of the vector operations
for processing that column (this assumes that the rows are sorted
by length and thus the nonzeros in each column are contiguous).

For KNC, instead of storing column lengths, it is more efficient
to store a bit array, with ones indicating nonzero locations in the
SELLPACK dense array with slice height 8. (Rows within a slice
also do not need to be sorted by length when a bit array is used.)
Each 8 bits corresponds to one column of a matrix slice and can be
used expediently as a write-mask in KNC’s SIMD instructions to
dynamically reconstruct the SELLPACK dense array as the SpMV
operation is being carried out. Required memory bandwidth is
reduced with this bit array technique, but it technically does not
increase SIMD efficiency because we still perform arithmetic on
padding zeros. We note that earlier work has also used bit arrays
for storing the sparsity pattern of blocks of sparse matrices in order
to avoid explicitly storing zeros [27, 3].

4.2.2 Finite-Window Sorting
On GPUs, row sorting can be used to increase the nonzero den-

sity of slices for SELLPACK [5, 11]. Rows of the sparse matrix are
sorted in descending order of number of nonzeros per row. As ad-
jacent rows in the sorted matrix have similar numbers of nonzeros,
storing the sorted matrix in SELLPACK format requires less zero
padding than without sorting.

The adjacent rows in the sparse matrix in the original ordering
often have high temporal locality on accesses to vector x. This is
because the matrix either naturally has good locality or has been
reordered to reduce the matrix bandwidth. While row sorting in-
creases the nonzero density, it may destroy this locality, which re-
sults in extra cache misses. To limit this side effect of row sorting,
instead of sorting the entire matrix, we partition the matrix into row
blocks with block height w and sort the rows within each block in-



dividually. We call this new sorting scheme Finite-Window Sorting
(FWS). We refer to w as the window size. As mentioned, this is a
row partitioning that promotes locality when accessing vector x.

To evaluate FWS, we measure the average nonzero density of
SELLPACK slices for various window sizes and the corresponding
amount of memory transfer due to the accesses on vectors x and y
(measured by Intel R© VTune

TM
) of the SpMV kernel using SELL-

PACK format. As an example, the result for In-2004 is shown
in Fig. 3 (results for other matrices are similar). We see that the
nonzero density and the amount of memory transfer both increase
as the window size increases. However, an important observation
is that when the window size is smaller than some value, e. g., 1000
for In-2004, the amount of memory transfer appears to grow much
more slowly than the nonzero density. This is a positive result
since it suggests that we may use FWS to significantly increase
the nonzero density while only slightly increasing the amount of
memory transfer.
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Figure 3: Nonzero density and memory I/O as a function of window size
(w) for In-2004.

To address the low SIMD efficiency problem of SELLPACK, we
use FWS to increase the average nonzero density of slices to be
just larger than ηmin. Since ηmin is relatively small, a small w is
sufficient for most matrices, thus the increase in memory transfer is
very slight. We use the same w for the entire matrix.

Fig. 4 illustrates the ESB format for a m× n matrix. The ESB
format consists of six arrays: val, the nonzero values of the matrix;
colidx, the column indices for the nonzeros; vbit, an array of bits
marking the position of each nonzero in SELLPACK; yorder, the
row ordering after FWS (c permutation vectors of length m); sli-
ceptr, a list of m/8× c values indexing where each slice starts in
val; vbitptr, a list of c values indexing where each column block
starts in vbit.

4.3 SpMV Kernel with ESB Format
The multiplication of a column block of ESB matrix is illustrated

in Alg. 2. Due to the use of the bit array, every SIMD instruction in
the inner loop, which processes one slice, has a write-mask. At the
end of each inner iteration, the popcnt instruction (line 17) is used
to count the number of 1’s in vbit, which is equal to the number of
nonzeros processed in this iteration. Since the rows of the matrix
have been permuted, we use gather and scatter instructions to load
and store y, using the offsets stored in yorder.

In practice, we also parallelize the SpMV operation across col-
umn blocks. Here, we use a temporary copy of y for each block and
use a reduce operation across these temporary copies at the end of
the computation.

c = 3

B0 B1
slice

w
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E F G H
I J K
L M
N O
P
Q
R

8

1 1 1 1
1 1 1 1
1 1 1 0
1 1 0 0
1 1 0 0
1 0 0 0

0
1 00 0
1 0 0

A B C DE F G HI J KL MN OP Q Rval

vbit

B2

Figure 4: ELLPACK sparse block format. The sparse matrix is partitioned
into c column blocks. Each column block is sorted by FWS with window
size w and stored in SELLPACK format (slice height = 8) with a bit array.

The reconstruction of the dense arrays are implemented using
load unpack instructions (lines 13 and 14), which are able to load
contiguous elements from memory and write them sparsely into
SIMD registers. The write-mask in the load unpack instruction is
used to mark which positions of the SIMD register to write the
loaded elements.

Algorithm 2: Multiply the i th column block of matrix in ESB
format.

1 yr← i×m;
2 startslice← i×m/8;
3 endslice← (i+1)m/8;
4 sliceidx← startslice;
5 idx← sliceptr [sliceidx];
6 while sliceidx < endslice do
7 k← vbitptr [i];
8 end← sliceptr [sliceidx+1];

/* compute for a slice */
9 vec_offsets ← load (&yorder [yr]);

10 vec_y← gather (vec_offsets, &y [0]);
11 while idx < end do
12 writemask← vbit [k];
13 vec_idx← loadunpack (&colidx [idx], writemask);
14 vec_vals← loadunpack (&val [idx], writemask);
15 vec_x← gather (vec_idx, &x [0], writemask);
16 vec_y← fmadd (vec_vals, vec_x, vec_y, writemask);
17 idx← idx+ popcnt (vbit [k]);
18 k← k+1;

19 scatter (vec_y, vec_offsets, &y [0]);
20 yr← yr+8;
21 sliceidx← sliceidx+1;

Given the ESB kernel shown in Alg. 2, we can calculate ηmin
for the ESB format. From the ESB kernel assembly code, the basic
SIMD sequence (lines 11-18) takes approximately 26 cycles. In
ESB format, the working set for one nonzero includes one value
and one column index, i. e., 12 bytes. Using Eq. 1, we have that the
SIMD efficiency of any SpMV kernel using the ESB format needs
to be larger than 68.3%.

4.4 Selecting c and w
To select the number of block columns c and the window height

w, several values are tested for each matrix. Although c and w are
not independent, we find that they are only weakly related and that
it is better to select c before selecting w.

The choice of number of block columns c is dependent on the
structure of the sparse matrix. Nishtala et al. [16] describes situ-
ations where cache blocking is beneficial, including the presence



of very long rows. We found column blocking to be beneficial for
three of our test matrices: Rail4284, 12month1 and Spal_004.

For matrices that favor cache blocking, the execution time of
SpMV can be modeled as T (c)= (12nnz+16mc+Mx(c))/B, where
the first two terms in the numerator represent the memory traffic
due to accessing the matrix and vector y respectively, and Mx(c) is
the memory traffic due to accessing vector x. Since Mx decreases
as c increases and m is relatively small, this model suggests that
the execution time of the SpMV kernel might first decrease as c
decreases until a certain value, near where there is no more tem-
poral locality of vector x to exploit. After that point, the execution
time will increase since the memory traffic due to accessing vector
y increases as c increases.

Fig. 5 shows the performance of the ESB kernel for the three
matrices that favor cache blocking as c varies between 1 and 1024,
which confirms the implication of our performance model. The
figure also shows that the performance decreases slowly when c is
larger than the optimal value. We thus use the heuristic that we can
safely choose c as a power of 2.

Number of column blocks (c)

100 200 300 400 500 600 700 800 900 1000

G
flo

ps

5

10

15

20

25

Rail4284
12month1
spal_004

Figure 5: Performance of ESB kernel for Rail4284 12month1, and
Spal_004 as a function of the number of column blocks (c).

We select the window size w by gradually increasing it until the
nonzero density of slices exceeds ηmin. As discussed in Section 4.3,
ηmin of ESB format is 68.3%, however, we use 75% to be more
conservative. The cost of search can be reduced by a matrix sam-
pling scheme, proposed in [8] for choosing register block sizes. In
the matrix sampling scheme, 1% of the slices are selected from the
SELLPACK matrix to form a new matrix, and the new matrix is
sorted to estimate the nonzero densities for various w.

5. LOAD BALANCERS FOR KNC
SpMV is parallelized across 240 threads on KNC, or 4 threads

per core. To assign work to each thread, we consider three partition-
ing/load balancing schemes. The starting point for these schemes
is a matrix in ESB format, where parameters such as c, w, and ma-
trix ordering are considered fixed. We note that these balancers are
general and may be applied to other KNC workloads.

5.1 Static Partitioning of Cache Misses
The performance of SpMV kernels highly depends on the amount

of memory transfer and the number of cache misses. This leads to
our first load balancer, called static-miss. Here, the sparse matrix is
statically partitioned into row blocks that have equal numbers of L2
cache misses. This is accomplished approximately using a simple
cache simulator which models key characteristics of the L2 cache
of a single core of KNC: total capacity, line size and associativity.

The main drawback of static-miss is the high cost of cache sim-
ulation for each matrix of interest. In our implementation, the cost
is greater than that of a single matrix-vector multiplication, which
means that the application of static-miss is limited to cases where
the SpMV kernel is required to execute a large number of times
with the same matrix. Like other static partitioning methods, static-
miss also does not capture dynamic runtime factors that affect per-
formance, e. g., the number of cache misses is sometimes highly
dependent on thread execution order.

5.2 Hybrid Dynamic Scheduler
A more sophisticated load balancing method for SpMV on KNC

is to use dynamic schedulers, which are categorized into two types:
work-sharing schedulers and work-stealing schedulers. However,
both types have performance issues on KNC. For work sharing
schedulers, the performance bottleneck is the contention for the
public task queue. Due to the large number of cores, data con-
tention on KNC is more expensive than on multi-core CPUs, es-
pecially when data is shared by many threads. On the other hand,
work stealing schedulers on KNC suffer from the high cost of steal-
ing tasks from remote threads. The stealing cost is proportional to
the distance between the thief thread and the victim thread.

To address the performance issues of both work-sharing and work-
stealing schedulers, we design a hybrid work-sharing/work-stealing
scheduler, inspired by [18]. In the hybrid dynamic scheduler, the
sparse matrix is first partitioned into P tasks with equal numbers of
nonzeros. The tasks are then evenly distributed to N task queues,
each of which is shared by a group of threads (each thread is as-
signed to a single queue). Within each thread group, the work-
sharing scheduler is used to distribute tasks. Since each task queue
is shared by a limited number of threads, the contention overhead is
lowered. When a task queue is empty, the threads on the queue steal
tasks from other queues. With this design, the number of stealing
operations and the overhead of stealing are reduced.

The two parameters P and N need to be carefully selected to
achieve high performance. P controls the maximum parallelism
and also affects the temporal locality of memory accesses. With
smaller tasks, the SpMV kernel will lose the temporal locality of
accessing vector x. For our test matrices, P is chosen in the range
of 1000-2000, based on the size of the sparse matrix. N is a tradeoff
between the costs of work sharing and work stealing and is chosen
to be 20 in our SpMV implementation, i. e., 12 threads (3 cores)
share one task queue.

5.3 Adaptive Load Balancer
In many scientific applications, such as iterative linear equation

solvers, the SpMV kernel is executed multiple times for the same
matrix or matrix sparsity pattern. For these applications, it is pos-
sible to use performance data from earlier calls to SpMV to repar-
tition the matrix to achieve better load balance.

This idea, which we call adaptive load balancing, was first pro-
posed for SpMV by Lee and Eigenmann [12]. In their load bal-
ancer, the execution time of each thread is measured after each ex-
ecution of SpMV. The normalized cost of each row of the sparse
matrix is then approximated as the execution time of the thread to
which the row is assigned, divided by the total number of rows as-
signed to that thread. For the next execution of SpMV, the sparse
matrix is re-partitioned by evenly dividing costs of rows.

Although Lee and Eigenmann’s method was originally designed
for distributed memory systems, we adapted it to KNC with minor
changes. To reduce the cost of re-partitioning, we used the 1D par-
titioning algorithm of Pinar and Aykanat [19]. Experiments show
that the adaptive tuning converges in fewer than 10 executions.



6. EXPERIMENTAL RESULTS

6.1 Load Balancing Results
We first test the load balancing techniques discussed in Section 5

for parallelizing SpMV for matrices in ESB format. We compare
the following load balancers:

- static-nnz: statically partition the matrix into blocks with ap-
proximately equal numbers of nonzeros;

- static-miss: statically partition the matrix into blocks with
approximately equal numbers of cache misses;

- work-sharing: working-sharing dynamic scheduler;
- work-stealing: working-stealing dynamic scheduler;
- hybrid-scheduler: hybrid dynamic scheduler;
- adaptive-balancer: adaptive load balancer after 5 tuning ex-

ecutions.
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Figure 6: Normalized performance of SpMV using various load balancers.

Fig. 6 shows the results, which are normalized against those
of static-nnz. As evident in the figure, adaptive-balancer gives
the best SpMV performance, achieving on average 1.24x improve-
ment over static-nnz. The hybrid-scheduler has best SpMV per-
formance among all the dynamic schedulers, but is 5% worse than
adaptive-balancer, likely due to scheduling overheads. Results for
hybrid-scheduler are generally better than those for work-stealing
and work-sharing. The work-sharing scheduler is worst for most
matrices and only outperforms static-nnz and static-miss on the
largest matrices, e. g., Circuit5M and Cage15, for which data con-
tention overheads can be amortized.

The static partitioning methods have an advantage over dynamic
schedulers when the matrices have regular sparsity patterns, such
as even distributions of the number of nonzeros per row, as in Wind
Tunnel and Rajat31. We found static-miss to give better perfor-
mance than static-nnz for all the matrices, but its results are not
uniformly good, likely because of the poor accuracy of our simple
cache simulator for irregularly structured matrices.

6.2 ESB Results
SpMV performance results using ESB format are presented in

Fig. 7. In these results, optimal values of w and c were selected
using the method described in Section 4.4. The timings do not
include time for selecting these parameters or for FWS. The hybrid
dynamic scheduler was used for load balancing.

To quantify the effect of column blocking (CB), and the use of
bit arrays and FWS, we also test SpMV kernels that incrementally
implement these techniques. In the figure, green bars show SpMV
performance using the SELLPACK format, which is our baseline.
Yellow bars show the improvement by using column blocking only
(applied to three matrices). Orange bars show the additional im-

provement by using bit arrays. Red bars show the performance
using the full set of ESB optimizations.

We also use pink squares to show results using complete row
sorting (no windows used for sorting). Finally, blue triangles are
used to show the performance of the CSR kernel.
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Figure 7: Performance of SpMV implementations using ESB format, show-
ing increasing levels of optimizations of column blocking, bit array and
finite-window sorting.

Although column blocking gives an improvement for the three
matrices with very long rows, the improvement in two cases is very
modest. A disadvantage of column blocking is that it can decrease
the average nonzero density of the blocks and thus decrease SIMD
efficiency.

The bit array technique improves performance in most cases,
however, a small performance degradation (< 3%) is also observed
for some matrices, including Dense8, Rucci1 and Cage15. This is
expected for matrices with nonzero densities that are already large,
since the bit array introduces additional overhead while there is no
room to reduce bandwidth.

The figure also shows the significance of using FWS, which
helps 6 matrices that have nonzero density lower than ηmin. Due
to its destruction of locality, complete sorting leads to poor results
on KNC, with results that are poorer than the baseline for many
matrices. This justifies the use of FWS.

The final ESB implementation outperforms the CSR implemen-
tation, as to be expected. On average, ESB is 1.85x faster than CSR.
The greatest speedups come from the matrices with low SIMD ef-
ficiency, cache miss latency problems, and/or load imbalance.
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Fig. 8 shows the achieved and the effective bandwidth of our
ESB kernel. The achieved bandwidth was measured by Intel R©

VTune
TM

. The effective bandwidth, which is used in prior work [26,
5], accounts only for the “effective” memory traffic of the ker-
nel. For a sparse matrix with m rows, n columns and nnz nonze-
ros, the optimistic flop:byte ratio of SpMV in ESB format is λ =
2 nnz/(12 nnz+16 m+8 n), which excludes redundant memory ac-
cesses to vectors x and y. Assuming SpMV on the matrix achieves
P flops, the effective bandwidth is P/λ .

By comparing the achieved and the effective bandwidth with the
STREAM bandwidth, we see how far the performance of our ker-
nel is from the upper performance bound. On average, the achieved
bandwidth and effective bandwidth are within 10% and 20% of the
STREAM Triad bandwidth, respectively, indicating that the imple-
mentation is very efficient.

6.3 Performance Comparison
We now compare the performance of SpMV on KNC with SpMV

performance on the following architectures:
- NVIDIA K20X: NVIDIA Tesla K20X (Kepler GPU), 6 GB

GDDR5 memory, 1.31 Tflops peak double precision perfor-
mance, 181 GB/s (ECC on) STREAM Triad bandwidth;

- Dual SNB-EP: 2.7 GHz dual-socket Intel R© Xeon R© Proces-
sor E5-2680 (Sandy Brige EP), 20 MB L2 cache, 32 GB
DDR memory, 346 Gflops peak double precision performance,
76 GB/s STREAM Triad bandwidth.

For K20X, we used two SpMV codes: cuSPARSE v5.03 and CUSP
v0.3 [2], which use a variety of matrix formats, CSR, COO, DIA,
BCSR, ELLPACK, and ELL/HYB [1]. For each of the test ma-
trices, we ran experiments with both codes using all the formats.
For brevity, we only report the best of these results. For the dual
SNB-EP system, we tested three SpMV codes: the CSR format im-
plementation from Intel R© MKL v11.0, the auto-tuning implemen-
tation from Williams et al. [26] and the Compressed Sparse Block
(CSB) implementation (2011 release) from Buluç et al. [3]. Again,
only the best performance of the three implementations is reported.
For comparison purposes, ECC was turned on in all the platforms.
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Figure 9: Performance comparison of SpMV implementations on KNC,
SNB-EP and GPUs.

Fig. 9 shows the comparative results. KNC has a large advantage
over dual SNB-EP; for most matrices, KNC-adaptive and KNC-
hybrid are 3.52x and 3.36x faster, respectively, than SNB-EP, which
is expected since KNC has significantly higher memory bandwidth.
Compared to the K20X, although KNC has a lower STREAM band-
width, KNC-adaptive is on average 1.32x faster than the best SpMV

3https://developer.nvidia.com/cusparse

implementation on K20X. We believe that this mainly due to KNC
having much larger caches than K20X, so accesses to vectors x
and y are more likely to be directed to caches rather than memory.
For the matrices with “regular” sparsity patterns, e. g., banded ma-
trices, which are easily handled by small caches, KNC has little
performance advantage over or is slower than K20X. For matrices
that have complex sparsity patterns, KNC’s advantage over K20X
can be as high as 2x.

7. RELATED WORK
SpMV optimization has been extensively studied over decades

on various architectures. Relevant for us is optimizations for CPUs
and GPUs. For a comprehensive review, we refer to several survey
papers [23, 8, 26, 7].

Blocking is widely used for optimizing SpMV on CPUs. De-
pending on the motivation, block methods can be divided into two
major categories. In the first category, blocking improves the spa-
tial and temporal locality of the SpMV kernel by exploiting data
reuse at various levels in the memory hierarchy, including regis-
ter [13, 8], cache [8, 16] and TLB [16]. In the second category,
block structures are discovered in order to eliminate integer index
overhead, thus reducing the bandwidth requirements [24, 20]. Be-
sides blocking, other techniques have also been proposed to reduce
the bandwidth requirements of SpMV. These techniques broadly
include matrix reordering [17], value and index compression [25,
10], and exploiting symmetry [3].

Due to the increasing popularity of GPUs, in recent years nu-
merous matrix formats and optimization techniques have been pro-
posed to improve the performance of SpMV on GPUs. Among
the matrix formats, ELLPACK and its variants have been shown to
be most successful. The first ELLPACK-based format for GPUs
was proposed by Bell and Garland [1], which mixed ELLPACK
and COO formats. Monakov et al. [15] invented the Sliced ELL-
PACK format, in which slices of the matrix are packed in ELL-
PACK format separately, thus reducing zero padding. Vázquez et
al. [22] used another approach to address zero-padding. Here, in
ELLPACK-R, all the padding zeros are removed, and a separate
array is used to store the length of each row. Kreutzer et al. [11]
proposed the pJDS matrix format, which extended ELLPACK-R
by row sorting. There are also blocked SpMV implementations
on GPUs. Jee et al. [5] proposed the BELLPACK matrix format
which partitions the matrix into small dense blocks and organizes
the blocks in ELLPACK format. Monakov et al. [14] proposed a
format also using small dense blocks, but augments it with ELL-
PACK format for nonzeros outside this structure.

8. CONCLUSIONS
This paper presented an efficient implementation of SpMV for

the Intel R© Xeon Phi
TM

Coprocessor. The implementation uses a
specialized ELLPACK-based format that promotes high SIMD ef-
ficiency and data access locality. Along with careful load balanc-
ing, the implementation achieves close to optimal bandwidth uti-
lization. The implementation also significantly outperforms an op-
timized implementation using the CSR format.

There has been much recent work on SpMV for GPUs, and high
performance has been attained by exploiting the high memory band-
width of GPUs. However, GPUs are not designed for irregularly
structured computations, such as operations on sparse matrices with
nonuniform numbers of nonzeros per row. For our test set, we
find our SpMV implementation on KNC to perform better on av-
erage than the best implementations currently available on high-
end GPUs. One general explanation is that KNC has much larger



caches than GPUs, which helps reduce the cost of irregular accesses
on vector x. Also, additional hardware support on KNC, such as
load unpack, enables more delicate optimization techniques, e. g.,
the bit array technique used in this paper, than would be possible
on GPUs without such support. Indeed, we expect that the many
compression techniques for SpMV proposed in the literature (and
independent of the ideas of this paper) can further reduce required
bandwidth and improve the performance of our SpMV implemen-
tation, but these may be difficult to implement on GPUs.

The general performance issues raised in this paper for SpMV
also apply to other workloads. Due to its large SIMD width, achiev-
ing high performance on KNC will require carefully designing al-
gorithms to fully utilize SIMD operations, even for applications
that are memory bandwidth bound. Careful attention to data lo-
cality and memory access patterns can help minimize the perfor-
mance impact of high cache miss latencies. Our experience with
SpMV also demonstrates the importance of a well-designed load
balancing method.
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