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Abstract

The current trend is for processors to deliver dramatic
improvements in parallel performance while only modestly
improving serial performance. Parallel performance is har-
vested through vector/SIMD instructions as well as multi-
threading (through both multithreaded cores and chip mul-
tiprocessors). Vector parallelism can be more efficiently
supported than multithreading, but is often harder for soft-
ware to exploit. In particular, code with sparse data access
patterns cannot easily utilize the vector/SIMD instructions
of mainstream processors. Hardware to scatter and gather
sparse data has previously been proposed to enable vector
execution for these codes. However, on multithreaded ar-
chitectures, a number of applications spend significant time
on atomic operations (e.g., parallel reductions), which can-
not be vectorized using previously proposed schemes.

This paper proposes architectural support for atomic
vector operations (referred to as GLSC) that addresses this
limitation. GLSC extends scatter-gather hardware to sup-
port atomic memory operations. Our experiments show that
the GLSC provides an average performance improvement
on a set of important RMS kernels of 54% for 4-wide SIMD.

1 Introduction

Future chip multiprocessors (CMPs) will use a combi-
nation of multiple cores, multiple hardware thread contexts
per core, and single-instruction-multiple-data (SIMD) sup-
port to deliver high performance. Each of these features
has different costs in terms of area, power, and design com-
plexity, as well as provide different performance. Among
these features, SIMD support for exploiting vector paral-
lelism has the highest performance-to-cost ratio.

The best SIMD width (number of 32-bit data elements
on which to operate simultaneously) for a processor is de-
termined by a combination of two things: the amount of
vector parallelism in the target applications, and the spe-
cific architectural support for SIMD in the processor. Many
mainstream processors [1, 4, 16] already have support for

4-wide SIMD. The high data-level parallelism in graphics
applications allows GPUs to use much wider SIMD (effec-
tive SIMD width of 32 on G80 [5]) to deliver high FLOPS.

Three main inefficiencies limit the effectiveness of
SIMD operations. First, if the different SIMD elements
take different control paths, only part of the computation
performed by each SIMD instruction will be useful. Sec-
ond, if the program has irregular data accesses, more pow-
erful memory operations [2, 5, 16] that can read (gather) and
write (scatter) data to non-contiguous memory locations are
beneficial (Section 2.2). Third, if the program spends sig-
nificant time in atomic operations on a set of sparse memory
locations, these can become a bottleneck if the architecture
lacks support for atomic vector1 operations.

We examine a set of benchmarks from an emerging
application domain, Recognition, Mining, and Synthesis
(RMS) [9, 11, 23]. Many RMS applications have a lot of
data-level parallelism and should benefit from SIMD sup-
port. However, we find that an important subset of these
RMS applications spends significant time in atomic oper-
ations on a set of sparse locations and sees limited benefit
from SIMD due to the lack of support for atomic vector op-
erations in current architectures.

This paper, therefore, proposes novel architectural sup-
port for atomic vector operations (referred to as GLSC). To
the best of our knowledge, our proposal is the first to pro-
vide support for fast atomic vector operations. Our contri-
butions are as follows:
• GLSC extends scatter-gather and read-modify-write

functionality to provide support for atomic vector op-
erations. The proposed solution is easy for software to
use and has low hardware complexity.

• We demonstrate that the proposed architectural support
provides significant performance improvements. On a
set of seven RMS benchmarks, GLSC provides an av-
erage performance improvement of 54% over existing
hardware when using 4-wide SIMD with 16 software
threads (four cores with four hardware threads per core).

1In this paper, we use the terms SIMD and vector interchangeably.
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Figure 1. Base system architecture and inter-

nal organization of GSU(gather/scatter unit)

Further, we show that if SIMD widths increase in the fu-
ture, the benefits from GLSC will grow substantially for
applications with high SIMD efficiency.

2 Baseline Architecture

Many of today’s processors take advantage of both
thread- and data-level parallelism. They have both multiple
cores, to exploit thread-level parallelism, and SIMD hard-
ware, to exploit data-level parallelism.

The left-hand side of Figure 1 shows our base CMP. It
has multiple cores, and each core has support for simulta-
neous multithreading. Each core has a single level of pri-
vate cache, and all cores share an inclusive, physically dis-
tributed second-level cache. Cores and slices of the second-
level cache are both attached to an on-die interconnect. The
shared cache holds directory information for each cache line
to maintain coherence amongst the private caches.

Our base system also includes SIMD support. In SIMD
execution, a single instruction operates on multiple data el-
ements simultaneously. This is typically implemented by
extending the widths of registers and ALUs, allowing them
to hold or operate on multiple data elements, respectively.
The rest of the system is left untouched.

Adding and widening SIMD hardware is significantly
cheaper than increasing the number of cores in a CMP.
However, it is often more difficult to use SIMD efficiently
than to use multiple threads. There are three common sce-
narios which traditionally limit the applicability of SIMD
operations and, as a result, lower the SIMD efficiency of
an application: (1) control flow, (2) irregular data accesses,
and (3) atomic operations. Hardware support for SIMD in
the first two situations has previously been proposed. Hard-
ware support for atomic vector operations has received little
attention and we address it in this paper. We now describe
the three situations in more detail and explain how our base
system deals with them.

2.1 Conditionals

A SIMD instruction simultaneously operates on all data
elements packed into a SIMD register. However, some-

times programmers want to use conditional SIMD opera-
tions, where only a subset of the data elements are oper-
ated on. This is typically supported through the use of bit
masks [2]. For each SIMD instruction, a bit mask is pro-
vided to specify which operands to ignore. Our base system
includes support for masked SIMD instructions, where the
masks are held in special mask registers.

2.2 Irregular Access Patterns

SIMD instructions operate on a set of densely packed
data elements, which are typically aligned in the same
cache line. As a result, conventional SIMD architectures
require that the elements being read or written are stored
contiguously in memory. However, many applications uti-
lize data structures where elements are accessed indirectly
(e.g., A[B[i]]) rather than contiguously. Efficiently uti-
lizing SIMD in these applications often requires rearrang-
ing data, which can result in substantial overhead. To ad-
dress this, hardware support for SIMD loading and stor-
ing non-contiguous data elements has been previously pro-
posed [2, 5, 16]. This hardware performs what is commonly
referred to as “gather/scatter” operations. Namely, a gather
operation reads (gathers) multiple data elements from in-
directly addressed locations, and packs them into a single
SIMD register. Conversely, a scatter operation unpacks the
elements in a SIMD register and writes (scatters) them into
a set of indirectly addressed locations.

Our base system includes hardware and instruction sup-
port for gather and scatter operations. The right-hand figure
in Figure 1 illustrates the organization of the gather/scatter
unit (GSU) and the related load/store unit (LSU). A sin-
gle instruction initiates a gather or scatter request. The in-
structions are blocking; that is, until all elements are read
or written, the thread cannot proceed. The GSU instruc-
tion buffer has one gather/scatter instruction entry per SMT
thread (four in our case). Once a gather/scatter instruction is
inserted in the GSU instruction buffer, the control logic gen-
erates the sequence of corresponding addresses to gather or
scatter. Each address is compared with the addresses in the
load/store queue and the write buffer. To preserve memory
ordering correctly in the presence of a conflict, a conflict-
ing request waits in the GSU until corresponding requests
in the LSU and write buffer have been sent to the L1 cache.
The GSU shares the L1 cache ports with the LSU. In or-
der to reduce port contention and improve GSU throughput,
all memory accesses from a single gather/scatter instruc-
tion which fall onto the same cache line are combined. For
example, if all elements are on the same cache line, the in-
struction will require only a single cache access.

2.3 Atomic Operations

Shared memory multiprocessor architectures usually in-
clude hardware support for performing scalar atomic read-
modify-write operations on memory. This is commonly
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1: for( i = 0; i < numPixels; i++) {
2: // determine the bin to increment
3: bin = Minput[i] % numBins;
4: do {
5: ll Rtmp, &Mbins[bin];
6: Rtmp++;
7: sc Rsuccess, &Mbins[bin], Rtmp;
8: } while (!Rsuccess); // Retry if sc failed
9: }

Figure 2. Pseudo-code to perform parallel

histogram using traditional support (load-

linked and store-conditional).

used to implement lock acquires and parallel reductions.
Our base system includes support for the well known load-
linked (ll) and store-conditional (sc) read-modify-write
primitives [19], which we explain through an example.

Figure 2 shows pseudo-code that computes a histogram
in parallel. Histogram calculations are common operations
in many image processing applications. A histogram is an
array of bins, where each bin contains the number of ele-
ments that map into it. In multi-threaded execution, multi-
ple threads may update the same bin simultaneously. Fig-
ure 2 includes an example usage of the ll and sc prim-
itives to guarantee the atomicity of each update. The bin
index, calculated in line 3 is used to perform the ll to load
the current bin value into the register Rtmp, and set a hard-
ware reservation bit. Next, the register value is incremented
and the sc attempts to store the incremented value back into
the bin. If the reservation bit has been cleared since the last
ll, indicating an intervening conflicting write from another
thread, sc fails and the entire ll-sc sequence repeats.

Atomic operations account for a significant fraction of
time in some applications. This fraction is even larger in
applications where the rest of the code can utilize SIMD.
These applications can significantly benefit from SIMD ex-
ecution of atomic operations. The hardware required for
this must be capable of simultaneously performing multi-
ple independent atomic read-modify-write operations. To
our knowledge, no existing processor has such support.
Transactional memory schemes have been proposed to al-
low atomic execution of dependent operations in critical
sections [18]. While transactional memory has some simi-
larities with our proposal, there are fundamental differences
between the two that are discussed in detail in Section 6.

3 Architectural Support for Atomic Vector
Operations

There are many possible models for supporting atomic
vector operations. Supporting atomic vector operations on
a set of contiguous memory locations requires only a rel-
atively small extension to existing hardware. In contrast,
providing more general support (i.e., for sparse locations) is
significantly more challenging since a single atomic vector

operation may touch multiple cache lines or even pages. We
tackle the more general case because many of the applica-
tions we have examined require this support. We therefore
leverage existing gather and scatter operations since they
already have the ability to handle irregular memory access
patterns.

We also choose to enforce a best-effort model, where a
subset of the SIMD elements involved in an atomic oper-
ation are allowed to succeed rather than requiring that all
elements either succeed or fail. A best-effort model simpli-
fies a number of hardware issues, and allows a wide range
of hardware implementations. For example, a very cheap
but slow implementation would only attempt the atomic op-
eration on one element at a time, whereas an aggressive one
would attempt to operate on all elements simultaneously,
regardless of issues such as the number of pages the ele-
ments are located on. The semantics of the already existing
scalar load-linked and store-conditional instructions match
this best-effort model. Load-linked sets a reservation for
a location, and the corresponding store-conditional is ex-
pected to succeed unless the reservation has been invali-
dated by another thread writing to the location. However,
an implementation is correct as long as it is conservative
enough—it is acceptable to have reservations invalidated for
other reasons, such as cache line evictions.

Therefore, to provide atomic vector operations, we ex-
tend load-linked and scatter-conditional to a SIMD context,
and add support for gathering and scattering. We call the
resulting instructions gather-linked and scatter-conditional
(referred to as GLSC). These instructions are similar to con-
ventional gather and scatter instructions, except that gather-
linked obtains reservations for the locations being gathered,
and scatter-conditional will only scatter values to elements
whose corresponding reservations are still held. Since a
scatter-conditional may only succeed for a subset of the ele-
ments (or for none at all), the instruction has an output mask
which indicates success or failure, analogous to the output
of a store-conditional. We also support an output mask for
the gather-linked instruction; while this is not analogous to
load-linked, it allows more flexibility in hardware imple-
mentations.

Another key difference between scatter-conditional and
conventional scatter operations is in the handling of element
aliasing, where a single SIMD operation attempts to write
multiple values to the same location. Conventional scatters
have undefined behavior in this situation because aliasing
tends to be rare in general. However, we find that in many
applications atomic operations have the potential for alias-
ing. Therefore, scatter-conditional’s behavior in the pres-
ence of aliasing is well-defined—only one of the aliased el-
ement updates will succeed, indicated by the output mask.
Since both gather-linked and scatter-conditional have out-
put masks, the alias detection and resolution can be imple-
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mented as part of either instruction.
In Section 3.1, we detail the two new instructions. We

discuss some of the implications of our proposed ISA ad-
ditions in Section 3.2. Then, we propose a specific hard-
ware implementation of the instructions in Section 3.3, and
provide a detailed example of the proposed scheme in Sec-
tion 3.4.

3.1 ISA Extensions

We propose two new instructions for gather-linked and
scatter-conditional:

1. vgatherlink Fdst, Vdst, base, Vindx, Fsrc
2. vscattercond Fdst, Vsrc, base, Vindx, Fsrc

Instruction vgatherlink gathers up to SIMD-width
data elements under mask Fsrc from SIMD-width (not
necessarily contiguous or unique) memory locations,
base[Vindx[0]], ..., base[Vindx[SIMD WIDTH-1]], and
stores them into destination register Vdst. Analogous to
its load-linked counterpart, this instruction also reserves the
memory locations of the gathered data elements. It may
succeed for only a subset of the memory locations; it sets
the bits of the output mask, Fdst, corresponding to these el-
ements. It clears the bits of Fdst corresponding to the failed
elements or the elements whose Fsrc bits are not set.

Instruction vscattercond scatters up to SIMD-width
contiguous data elements under mask Fsrc from source
register Vsrc, into SIMD-width (not necessarily con-
tiguous or unique) memory locations base[Vindx[0]],
..., base[Vindx[SIMD WIDTH-1]]. Analogous to store-
conditional, vscattercond stores only to memory locations
retaining their reservation from the most recent vgatherlink
instruction. It may therefore succeed for only a subset of el-
ements, for which it sets the corresponding bits in the output
mask, Fdst, and clears all other bits in the output mask.

As explained earlier, if element aliasing exists within a
group of SIMD-width elements, vscattercond detects the
aliasing and clears the corresponding output mask bits for
all but one of the affected elements. An implementation
where vgatherlink performs alias detection and resolution
is equally valid.

Figure 3(A) shows our previous histogram example (Fig-
ure 2) using vgatherlink and vscattercond.

We load SIMD-width elements from the input array Min-
put into vector register Vinput (line 3), which we use to
compute the index vector, Vbins, into a global histogram
array Mbins (line 5). We initialize the mask register FtoDo
to all 1’s (line 6) to indicate that the SIMD reduction should
be performed on all SIMD-width vector elements.

We then loop (lines 7-15) until we have completed the
histogram update on all SIMD-width elements. On line 10,
we use vgatherlink to gather data elements from Mbins into
the vector register Vtmp, and set mask Ftmp for the suc-
cessfully gathered and linked elements. We increment the

A: Using GLSC to perform the reduction directly

1: for( i = 0; i < numPixels; i += SIMD_WIDTH) {
2: // Load the next SIMD_WIDTH inputs into Vinput
3: vload Vinput, &Minput[i];
4: // Compute the bins
5: vmod Vbins, Vinput, numBins;
6: FtoDo = ALL_ONES;
7: do {
8: // Do remaining elements specified by FtoDo
9: Ftmp = FtoDo;

10: vgatherlink Ftmp, Vtmp, Mbins, Vbins, Ftmp;
11: vinc Vtmp, Vtmp, Ftmp; // Increment bins
12: vscattercond Ftmp, Vtmp, Mbins, Vbins, Ftmp;
13: // Record elements that processed successfully
14: FtoDo ˆ= Ftmp;
15: } while (FtoDo != 0);
16: }

B: Using GLSC to implement locks for critical sections

1: Vzero = { 0, 0, 0, ... };
2: Vone = { 1, 1, 1, ... };
3:
4: // Implements test-and-set lock (0 => available)
5: #define VLOCK(MlockArray, Vindex, F) {
6: // Gather-linked locks indicated by F
7: vgatherlink Ftmp1, Vtmp, MlockArray, Vindex, F;
8: // Determine which locks are avaiable
9: vcompareequal Ftmp2, Vzero, Vtmp, Ftmp1;

10: // Attempt to obtain available locks
11: vscattercond F, Vone, MlockArray, Vindex, Ftmp2;
12: // F now indicates locks acquired successfully
13: }
14:
15: #define VUNLOCK(MlockArray, Vindex, F) {
16: // Free the locks indicated by F
17: vscatter Vzero, MlockArray, Vindex, F;
18: }
19:
20: for( i = 0; i < numPixels; i += SIMD_WIDTH) {
21: // Load the next SIMD_WIDTH inputs into Vinput
22: vload Vinput, &Minput[i];
23: // Compute the bins
24: vmod Vbins, Vinput, numBins;
25: FtoDo = ALL_ONES;
26: do {
27: // Do remaining elements specified by FtoDo
28: Ftmp = FtoDo;
29: VLOCK( MlockArray, Vbins, Ftmp)
30: // Call function that increments the specified
31: // bins using SIMD instructions
32: updateFn( &Mbins[0], Vbins, Ftmp);
33: VUNLOCK( MlockArray, Vbins, Ftmp)
34: // Record elements that processed successfully
35: FtoDo ˆ= Ftmp;
36: } while (FtoDo != 0);
37: }

Naming Conventions: Names starting with M refer to mem-
ory locations, those starting with F refer to mask registers
(Section 2.1), and those starting with V refer to vector reg-
isters. The mask register is a bitmask with SIMD WIDTH
bits. ALL ONES is a binary immediate value containing
SIMD WIDTH ones.

Figure 3. Pseudo-code to perform parallel

histogram using GLSC.
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elements of Vtmp on line 11. On line 12, we use vscatter-
cond to scatter the updated Vtmp back to the shared Mbins
data structure. We do this under mask to ensure that we only
attempt this operation for elements that were successfully
gathered and linked, and that we have not updated in a pre-
vious iteration. Vscattercond clears Ftmp for the elements
it failed to scatter. The final xor operation (line 14) updates
the mask FtoDo so that it only holds 1’s corresponding to
elements that have not yet been updated.

Besides enabling SIMD-friendly parallel reductions,
vgatherlink and vscattercond can be used for acquiring
locks in SIMD. We demonstrate this with the same his-
togram example. In this example (Figure 3(B)), we use
fine-grained locking so that each bin is protected by a sepa-
rate lock variable. In each iteration of the inner loop (lines
26-36), we acquire a subset of the locks corresponding to a
set of SIMD-width elements, update the elements for which
we acquire the lock, and release the locks. It is possible that
due to lock contention with other threads no locks will be
acquired in a given iteration of the while loop. This will re-
sult in the updateFn (line 32) acting as a NOP because the
mask will have all 0’s.

3.2 ISA Implications

Our definition of vgatherlink and vscattercond is flexi-
ble. For example, in the above example, we prevent dead-
lock by proceeding with execution on a subset of elements
rather than waiting until we hold all SIMD-width locks si-
multaneously. However, we could choose to acquire all
SIMD-width locks before performing the updates, and pre-
vent deadlock another way.

In addition, our definition also provides design freedom
for trading-off between various hardware implementations.
In contrast to scalar load-linked, which always succeeds,
vgatherlink may fail on a subset of elements. A hardware
designer may choose to have vgatherlink fail on an element
in a number of situations in order to simplify the design or
to deliver better performance. These include: (a) Another
thread has already linked a cache line containing one of the
elements, (b) Bringing one of the elements into the cache
will evict an already linked line (e.g., due to limited asso-
ciativity), and (c) The latency for accessing the element is
higher than others in the same set (e.g., it is a cache miss).

Allowing vgatherlink to fail in some cases can reduce
the amount of contention. In particular, if we never allow
vgatherlink to fail, we may need to hold the reservations for
some elements for a long time. This increases the chance
that another thread will invalidate those elements’ reserva-
tions. Proceeding with only the subset of elements that we
can quickly gather reduces the chances for contention on
those elements.

Our handling of element aliasing simplifies vectoriza-
tion. We could require that the software guarantee unique-

Figure 4. Gather-linked scatter-conditional

microarchitecture

ness for all sets of SIMD-width elements. However, this
forces a programmer to partition elements (or locks) into
subsets of unique elements prior to entering the main com-
putation loop, which may be expensive. For example, when
multiple elements are simultaneously inserted into a tree,
the programmer may not know at compile time which ele-
ments are unique. Instead, with our definition of how ele-
ment aliasing is handled, this overhead can be avoided, and
we make programming easier.

Additionally, supporting partial (or even complete) fail-
ures allows vgatherlink/vscattercond to gracefully handle
exceptions such as page faults. The hardware designer can
choose whether to deliver an exception when first encoun-
tered, or to group the exceptions together by initially clear-
ing mask bits corresponding to the vector elements that en-
counter exceptions.

3.3 Gather-Linked Scatter-Conditional
Architecture Design

We propose augmenting the gather/scatter unit (GSU)
and L1 cache to implement the vgatherlink and vscattercond
instructions as described in Section 3.1.

The GSU treats a gather-linked as a gather, except it
sends load-linked requests to the L1 cache instead of normal
loads. Similarly, the GSU sends store-conditional requests
instead of normal stores. In addition, the GSU assembles
and stores the output mask for these operations based on
success or failure of the individual requests.

We extend the L1 cache tag structure with a single GLSC
entry per cache line. A GLSC entry contains two fields: a
valid bit and a hardware thread ID (to distiguish among the
SMT threads on the same core). For gather-linked opera-
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tions, some of the L1 requests may fail (for the reasons de-
scribed in Section 3.1). For each request that succeeds, the
cache updates the correspondingGLSC entry (the valid bit is
set and the requester’s thread ID is filled), the GSU sets the
corresponding bit in the output mask, and the GSU places
the data in the destination register. For scatter-conditional
operations, an individual store-conditional request succeeds
if the corresponding GLSC entry valid bit is set and the
GLSC entry thread ID matches the requester’s thread ID. In
our implementation, this will be true if the corresponding
cache line has not been modified by an intervening write or
evicted since it was successfully linked by a matching load-
linked request from a gather-linked. On store-conditional
success, the cache clears the GLSC valid flag, modifies the
data in the cache line, and the GSU sets the corresponding
bit in the output mask.

The storage overhead for the GLSC entries is (1 + # of
SMT threads) bits per cache line, or if we encode the thread
ID, 1 + log

2
(# of SMT Threads) bits per cache line. For

example, if the core supports 4-way SMT and the cache line
size is 64 bytes, a GLSC entry is three bits per cache line,
which is less than 1% of the data size.

An alternative implementation of the GLSC entries
would be to hold them in a fully associative buffer. The
buffer would additionally hold a tag for each GLSC en-
try. The number of entries in this buffer could vary from
one to SIMD-width × # of SMT threads, and so could be
made quite small. The buffer would need to be accessed
whenever a GLSC entry is accessed (i.e., on load-linked and
store-conditional requests, on cache line evictions, and on
all normal stores since they might clear a GLSC valid bit).

3.4 Example

We now illustrate the behavior of the hardware when ex-
ecuting vgatherlink and vscattercond instructions on a pro-
cessor with 4-wide SIMD (Figure 4). The input mask value
to the vgatherlink instruction is 1011 (i.e., the second el-
ement is ignored), and the addresses of the first (A), third
(B), and fourth (C) elements are 104, 220, and 128, respec-
tively. During the execution of vgatherlink, the GSU sends
a load-linked request for cache line 100 for the first element
(A) and cache line 200 for the third element (B). For the
fourth element (C), it does not send a load-linked request
because it is located in the same cache line as A. The L1
cache sets the GLSC entry valid bits for the two lines (we do
not show the thread IDs in the figure) and returns the lines
to the GSU, which assembles a vector (A-BC) and writes
it back into the destination register. The GSU also sets the
output mask to 1011, indicating success for vgatherlink for
A, B, and C. Figure 4 shows the state of the hardware just
after executing the vgatherlink instruction.

Assume that the GLSC entry valid bit of cache line 200
is cleared by a write from another thread before the vscat-

tercond executes. During the execution of vscattercond, the
GSU sends a single store-conditional request to cache line
100 for elements A and C and another store-conditional re-
quest to cache line 200 for element B. The L1 cache checks
the GLSC entry valid bits (and thread IDs) for lines 100 and
200. Since the bit is still set for line 100, it updates the con-
tents of A and C and returns a notice of success to the GSU.
However, the GLSC entry valid bit has been cleared for line
200, so the cache discards the new value of B and returns
a notice of failure to the GSU. The GSU writes the output
mask (1001). The application needs to retry this sequence
until the update for element B succeeds.

4 Experimental Framework

4.1 System Modeled

We use a cycle-accurate, execution-driven CMP simu-
lator for our experiments. Table 1 summarizes our sys-
tem’s configuration. Cores issue instructions in-order, and
each core can simultaneously execute instructions from up
to four threads. Each core has a private L1 data cache with
a hardware stride prefetcher, and all cores share an inclu-
sive L2 cache. Coherence is maintained between the L1s
via a directory-based MSI protocol. Each L2 cache line also
holds the directory information for the line. The L2 cache is
broken into multiple slices and physically distributed across
the chip.

To explore the future CMP design space, we vary SIMD
width between one and sixteen, and vary the number of
cores and hardware threads between one and four2.

We model gather/scatter latency as follows. Once issued,
gather and scatter instructions stall the subsequent instruc-
tions from the same thread until memory operations for all
elements are complete. Address generation and cache ac-
cesses are pipelined to hide latency. The GSU generates at
most one cache request per cycle. Hence, it takes SIMD-
width cycles to generate all the requests for a single gather
or scatter instruction. Multiple requests to the same cache
line are combined to reduce contention for the L1 cache
ports. The L1 cache arbitrates between the LSU and the
GSU, giving the LSU higher priority. As it receives each
data reply, the GSU assembles the corresponding parts of
the result vector and output mask; thus, the latency for this
is mostly hidden. Note that the minimum GLSC latency in
Table 1 refers to the best case scenario, i.e., every access
from the GSU hits in the L1 cache and has no L1 port con-
tention from the LSU.

We evaluate the performance benefits of GLSC by com-
paring it to a baseline architecture (referred to as Base).
Both configurations use same the simulation parameters
presented in Table 1. The difference is in the mechanism

2For brevity, we use use the notation mxn to refer to a configuration
that has m cores, n threads per core. In this configuration, the parallel
benchmark is parallelized to exploit m × n software threads.
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Processor Configuration Memory Hierarchy Memory Latency
Number of Cores 1–4 Private L1 Cache 32KB, 4-way, 64B line L1 Access Latency 3 cycles
Threads per Core 1–4 Shared L2 Cache 16MB, 8-way, 16 banks Min L2 Access Latency 12 cycles
SIMD Width 1, 4, 16 GLSC Handling Rate 1 element/cycle Main Memory Access 280 cycles
Core Issue Width 2 Min GLSC Latency (4 + SIMD-width) cycles

Table 1. Simulated system parameters.

used for atomic operations in the benchmarks; for Base,
the benchmarks use the standard load-linked and store-
conditional instructions (Section 2.3), while for GLSC, they
use the new instructions proposed in this paper.

4.2 Benchmarks

We evaluate our proposal on benchmarks from a key
emerging application domain: Recognition, Mining, and
Synthesis [9, 11, 23]. All benchmarks were parallelized
and vectorized within our group. The benchmarks and their
datasets are shown in Table 3.

Most parallel architectures provide some support for
scalar atomic operations which is necessary to implement
various types of synchronization such as locks, barriers,
and condition variables. In general, locks are used to im-
plement critical sections. However, in a number of these
benchmarks, critical sections perform only one atomic read-
modify-write operation on a single memory location. Such
operations can be more efficiently implemented by us-
ing instruction sequences that directly utilize atomic read-
modify-write operations (referred to as reductions) instead
of using locks. Using locks for these benchmarks would
exaggerate the benefit of our proposal. Consequently, the
atomic reductions are implemented directly using the opti-
mal instruction sequences.

A wide variety of software techniques such as segmented
scan [10], pre-hashing, and privatization can be employed
to eliminate or to reduce the granularity of synchronization.
These techniques involve additional preprocessing or post-
processing computation. To ensure an optimal base case,
we have used these techniques when they are beneficial.
The parallel work is always split between threads to mini-
mize contention on locks and reduction variables. HIP uses
privatization. Privatization can accelerate a reduction by
eliminating most of its synchronization operations. It in-
volves making a private copy of the accumulators for each
thread and combining them at the end of the computation.
Updates to the private accumulators do not need synchro-
nization. GPS reorders constraints to improve the efficiency
of SIMD execution. Fine-grained synchronization works
best for most benchmarks because, for low contention mem-
ory locations, atomic read-modify-write operations can be
implemented very efficiently on CMPs.

Table 2 describes the benchmarks and Table 3 provides
relevant characteristics of the benchmarks including type of
critical section, and datasets used for evaluating our pro-
posal.
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Figure 5. Benchmark behavior with GLSC in a
1x1 configuration. A and B bars show the data for
the two datasets for that benchmark.

5 Evaluation

5.1 Benefit of GLSC on 4-wide SIMD

Figure 6 compares the performance of GLSC with Base
for two datasets (A and B) for each benchmark. The figure
shows the speedup with 4-wide SIMD for four configura-
tions: 1 and 4 cores with 1 hardware thread per core (1x1
and 4x1, respectively) and 1 and 4 cores with 4 threads per
core (1x4 and 4x4, respectively).

In most cases, GLSC delivers a significant improvement
in performance over Base. GLSC is on average 76% and
54% faster than Base for the 1x1 and 4x4 configurations,
respectively.

Benchmark characteristics. To better understand the
performance benefits of GLSC, we first examine the rele-
vant characteristics of the benchmarks. Figure 5(a) shows
the percentage of execution time spent in synchronization
operations for 1x1 using 1-wide SIMD and GLSC. Since 1-
wide SIMD is effectively scalar, this is very similar to the
amount of time spent in synchronization operations when
using Base. These benchmarks spend a significant fraction
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Datasets DescriptionBenchmark Atomic Operation
Dataset A Dataset B

GBC Single Lock Critical Section 649 objects in 8191 grid cells 5649 objects in 65521 grid cells
FS Floating-point Subtract 2171x5167 with 2.47% density 3136x9408 with 15.06% density
GPS Multiple Lock Critical Section 625 objects 1600 objects
HIP Integer Increment 480x480 image of cars 480x480 image of people
SMC Floating-point Add 32K particles 256K particles
MFP Multiple Lock Critical Section 1500 nodes and 6800 edges 3888 nodes and 18252 edges
TMS Floating-point Add 21616x67841 with 0.87% density 209614x41177 with 0.01% density

Table 3. Benchmarks characteristics. Single vs. multiple lock critical sections refers to the number of locks
acquired for each SIMD-element worth of work performed in a critical section.

of their time in synchronization operations. Without support
such as GLSC for atomic vector operations, the synchro-
nization portion of the code will remain non-vectorized,
which fundamentally limits the SIMD efficiency. In con-
trast, GLSC allows the synchronization code to get faster
with increased SIMD width. To quantify SIMD efficiency,
Figure 5(b) shows the speedup due to 4-wide and 16-wide
SIMD over 1-wide SIMD for each of the benchmarks.
These benchmarks have significant SIMD parallelism and
all of them can derive performance benefit from short vec-
tors. With 4-wide SIMD, these benchmarks are on average
2.6x faster than with 1-wide SIMD. A few benchmarks can
also get significant additional performance with 16-wide
SIMD. On average, the benchmarks are 5x faster with 16-
wide SIMD compared to 1-wide SIMD.

Detailed analysis. Table 4 presents statistics that help to
explain the performance benefits from GLSC. The benefits
are attributed to three main sources.
• As shown in the third column, GLSC results in a large

reduction in the number of dynamic instructions com-
pared to Base (33.8% on average).

• GLSC overlaps the memory requests from
vgatherlink and vscattercond instructions.
When two or more of these accesses miss in the L1
cache, their miss latencies will be overlapped. This
can reduce the stalls due to cache misses. In contrast,
with Base, atomic operations on memory locations are
performed one at a time and do not overlap their L1
cache miss latencies. As shown in Table 4 GLSC incurs
23.4% fewer memory stalls than Base on average.
Base could also overlap misses by explicitly issuing
software prefetches, but this involves additional over-
heads. Not only does it require additional instructions
to issue prefetches (and sometimes repeat address com-
putations) but it also results in additional pressure on the
L1 cache. For instance, we modified TMS to explicitly
issue prefetches with Base, but performance decreased.

• GLSC reduces the number of L1 accesses. The GSU is-
sues only one request for each distinct cache line speci-
fied by a vgatherlink or vscattercond instruc-

tion. Most benchmarks see a small reduction in the
number of L1 accesses (2.5% on average), while FS and
HIP see a significant reduction (16% and 17%, respec-
tively).

The effectiveness of GLSC is also determined by the
fraction of SIMD elements that succeed for each dynamic
instance of vgatherlink and vscattercond. For in-
stance, with 4-wide SIMD, even if three of the four ele-
ments succeed, in most cases, the entire vgatherlink
and vscattercond sequence needs to be repeated for the
remaining element.

The last two columns in Table 4 show the GLSC ele-
ment failure rate for the 1x1 and the 4x4 configurations.
There are three main sources of element failures. First, if
the number of cache requests which map into the same set
exceeds the associativity of the cache, one or more of the
requests will fail due to a set conflict. In our configuration,
the SIMD width is equal to the cache associativity (4-way),
hence such failures will not occur. Second, when there is
element aliasing, only one of the aliased elements will suc-
ceed. In the 1x1 configuration, this is the only source of fail-
ure. Such conflicts are significant in only two of the bench-
marks: GBC and HIP. In a number of other benchmarks,
aliasing may be more common with other datasets. GLSC
element failure can also occur when two threads running on
the same or different cores try to perform atomic operations
on the same memory location simultaneously. The differ-
ence between the element failure rate in 4x4 and the 1x1
configurations provides a rough estimate of element failures
due to conflicting atomic operations by multiple threads.3

In all benchmarks we study, this is fairly small (less than
0.1%).

Finally, HIP is an exception in that it performs slightly
better with Base than with GLSC for one of the datasets
(see Figure 6). This is due to a combination of two factors.
First, HIP uses privatization (Section 4.2). Consequently, it
does not need atomic operations when updating its private
copy and so Base can use a simpler instruction sequence

3There are other possible reasons for element failures including cache
line evictions. Their contributions are negligible in our experiments.
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Reduction with GLSC on 4x4 GLSC failure rate
Benchmark Dataset

Instructions Memory Stalls L1 Accesses 1x1 4x4
A 15.94 % 21.80 % 10.23% of 2.17 % 31.08 % 31.18 %GBC
B 13.81 % 17.36 % 11.46% of 1.94 % 34.24 % 34.29 %
A 75.43 % 59.19 % 68.03% of 24.67 % 0.00 % 0.05 %FS
B 60.53 % 21.86 % 61.72% of 10.30 % 0.00 % 0.33 %
A 18.79 % -3.83 % 39.00% of 1.91 % 0.00 % 0.02 %GPS
B 20.76 % -5.46 % 49.09% of 1.88 % 0.00 % 0.00 %
A 28.12 % n/a % 34.39% of 47.26 % 34.97 % 34.97 %HIP
B 39.85 % n/a % 41.88% of 47.15 % 19.62 % 19.62 %
A 29.96 % 45.48 % 67.83% of 3.39 % 0.00 % 0.02 %SMC
B 33.59 % 49.93 % 68.34% of 3.95 % 0.00 % 0.01 %
A 18.85 % 12.46 % 52.40% of 2.67 % 0.00 % 0.04 %MFP
B 17.66 % 15.08 % 55.09% of 2.47 % 0.00 % 0.01 %
A 47.10 % 56.02 % 21.47% of 20.95 % 0.00 % 0.02 %TMS
B 52.28 % 37.62 % 33.63% of 23.46 % 0.00 % 0.00 %

The Instructions column shows the reduction in the number of instructions for GLSC compared to Base. The Memory Stalls
column shows the reduction in the number of stall cycles due to memory accesses for GLSC compared to Base. This number is
n/a for HIP because its implementation with GLSC and Base are different. The L1 Accesses column shows two numbers for each
row. The second number shows the percentage of L1 accesses due to atomic operations (i.e., GLSC). The first number shows the
percentage reduction in the number of L1 accesses due to atomic operations because of cache line reuse in the gather-scatter unit.
The last two columns show the percentage of atomic operations that fail due to aliasing or collisions between threads.

Table 4. Analysis of GLSC.

for this. The instruction sequence with GLSC is more com-
plex since it needs to handle element aliasing (see Figure 3).
For 1-wide SIMD, GLSC requires 28% more instructions
than Base. Second, HIP experiences a high element fail-
ure rate since the elements map to a small number of lo-
cations. If the element failure rate was low, the 28% extra
instructions can be offset with SIMD parallelism on 4-wide
SIMD. In particular, we tested an input composed of ran-
dom numbers. This has a much lower element failure rate
than either of our experimental inputs, and GLSC is 26%
faster on 4-wide SIMD than Base.

5.2 Microbenchmark

We use a microbenchmark to further analyze the three
sources of performance benefits in GLSC discussed above.
The microbenchmark consists of a loop with a fixed num-
ber of iterations, in which the threads operate on an ar-
ray of counters. In each iteration, a thread selects an in-
dex randomly and atomically increments the corresponding
counter. The array is chosen to be small enough to fit in
the L1 and the cache is warmed up prior to taking measure-
ments.

The sequence of indices is randomly generated, but has
certain properties to allow us to study the benefits of GLSC
in different cases. The indices are precomputed to avoid
introducing artifacts during measurements. Note that even
with microbenchmarks, it is difficult to completely isolate
the three sources of performance improvements. We exam-
ine four scenarios.

Scenario A highlights the benefits from overlapping L1

misses with GLSC, although GLSC also benefits here from
executing fewer instructions. For this scenario, each of
the SIMD-width addresses is in a distinct cache line, i.e.,
there is no element aliasing and each SIMD operation needs
SIMD-width cache lines. Further, when multiple threads
are running, the needed cache lines are often in another
core’s L1 cache. Finally, the number of counters is large
enough that two threads rarely try to update the same
counter at the same time.

In the remaining scenarios, each thread operates on a dis-
joint subset of indices and each thread will always hit in its
L1 cache. Thus, GLSC will no longer derive any benefits
from overlapping L1 misses.

Scenario B highlights the benefits from reducing the
number of instructions as well as accesses to the L1. To
do this, the SIMD-width addresses are to different locations
on the same cache line. This ensures two things: there is no
element aliasing, and only one L1 access is needed.

Scenario C highlights the savings from the reduction in
the number of instructions. To do this, Scenario B is mod-
ified so that each of the SIMD addresses is to a different
cache line.

Scenario D highlights the case where there are no advan-
tages available to GLSC. To do this, Scenario B is modified
so that each of the SIMD addresses is the same, i.e., there
is no SIMD parallelism available and GLSC has to serially
process each of the SIMD elements.

Figure 7 shows the results of the four scenarios. GLSC
improves performance due to a combination of all three fac-
tors with fewer accesses to L1 being the smallest of the
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Grid-based Collision Detection (GBC) is the broad phase of col-
lision detection, which determines potentially colliding pairs of
objects using a multi-resolution grid [12]. It maps each object
into (potentially multiple) grid cells such that potentially collid-
ing objects occupy the same grid cell. The objects in each cell
are stored in a linked list. The objects are divided evenly amongst
threads, and each thread processes multiple objects using SIMD.
Insertion of objects into linked lists is protected with locks.
Forward Triangular Solve (FS) is an important step in a direct
sparse linear solver [24], which solves a sparse lower triangular
system of equations Lx = y. The matrix is divided into contigu-
ous dense subblocks. Thread-level parallelism is exploited across
the subblocks using a dependence graph, which specifies the order
in which these subblocks are processed. SIMD parallelism is ex-
ploited within each subblock which involves dense matrix-vector
multiplication and atomic reductions into a shared vector.
Game Physics Solver (GPS) iteratively solves a set of force equa-
tions in a game physics constraint solver [26]. These equations are
represented as a set of constraints, each of which updates one or
two distinct objects. The constraints are divided evenly amongst
threads. Multiple constraints within a thread are updated using
SIMD. Constraints must be updated atomically using locks. To
avoid SIMD aliasing (for regular scatters), constraints within each
thread are reordered into groups of independent constraints.
Histogram for Image Processing (HIP) generates a histogram of
colors of pixels in an image for image-based retrieval [27]. The
similarity of two images is defined by the similarity of the two
color histograms. To parallelize, an image is row-wise partitioned
among threads. Each thread updates its own local copy of the his-
togram using SIMD reductions and a global merge is performed
at the end. Due to privatization, HIP does not utilize the atomicity
feature of GLSC, but takes advantage of its alias detection.
Surface Extraction using Marching Cubes (SMC) extracts and
renders a surface for fluid simulation using particles in a uniform
3D grid of nodes [22]. The nodes store density values which rep-
resent the 3D scalar field. Each particle updates the density of
nodes in its local neighborhood and then extracts the fluid sur-
face. We parallelize SMC by dividing the particles among threads.
Multiple particles are processed using SIMD. Atomic SIMD re-
ductions perform simultaneous updates of the nodes.
Maxflow Push (MFP) is a key computational kernel used
in graph algorithms such as parallel push-relabel maximum
flow [14]. The flow is repeatedly pushed from one node to an-
other within the graph. Our parallel implementation evenly di-
vides graph nodes among threads and pushes the flow within each
partition using SIMD. The push operations must be performed
atomically and use SIMD locks.
Transpose Matrix-Vector Multiply (TMS) is an important lin-
ear algebra kernel which performs the operation y = AT x, where
AT is a transpose of sparse matrix A, and x and y are dense vec-
tors. Algorithmically, each non-zero element Aij is multiplied
by xi and the result is reduced into yj . We parallelize TMS by
evenly dividing nonzero elements of A amongst threads. Multi-
ple elements are processed using SIMD and use atomic reductions
to update the destination vector y.

Table 2. Description of Benchmarks.
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Figure 6. Normalized performance for 4-wide
SIMD: In each graph, performance is normalized to
execution time of the benchmark in the 1x1 GLSC
configuration for that dataset.
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Figure 7. Benefit of GLSC on a microbenchmark
for 4-wide and 16-wide SIMD in the 4x4 configura-
tion. Each bar shows the ratio of the execution times
of Base to GLSC.

three contributors. For 16-wide SIMD, GLSC is slower
than Base for scenario D; although the instruction counts
are roughly the same, GLSC instructions on average incur
longer latency—even though the SIMD elements are the
same, the GLSC hardware repeatedly generates and com-
pares the addresses.

5.3 Sensitivity to SIMD width

Figure 8 compares the change in execution time with
GLSC compared to Base for 1-wide SIMD and 16-wide
SIMD on the 4x4 configuration.

1-wide SIMD. When the SIMD width is changed to one,
GLSC does not provide any of the three sources of perfor-
mance improvement discussed above. Thus, 1-wide SIMD
exposes any overheads (additional instruction latency or ex-
tra instructions needed to manipulate the masks) that GLSC
might introduce. On average, GLSC has the same perfor-
mance as Base. The benchmarks for GLSC and Base use
similar code sequences. For 1-wide SIMD, the dynamic in-
struction streams are therefore only slightly different. In
some cases, the GLSC version of the benchmark uses fewer
instructions per iteration than the Base version, and in
some cases, a few more. The results indicate that GLSC
will typically not have worse performance than Base even
if each iteration only successfully completes an atomic op-
eration on a single SIMD element.

16-wide SIMD. When the SIMD width is changed to 16,
the benefit of GLSC increases as expected (103% on av-
erage). This is more pronounced for those benchmarks that
have higher SIMD efficiency (Figure 5(b)). For benchmarks
GPS, SMC, and MFP, GLSC is on average faster than Base
by 55%, 115%, and 100%, respectively.

6 Related Work

Many microprocessors and research proposals have in-
cluded hardware support for efficiently performing scalar
atomic read-modify-write operations. IBM 370 included
the atomic compare&swap instruction [3], while Intel x86

allows some instructions (like integer increment, exchange,
compare&exchange, etc.) to have a “lock” prefix to make
them atomic. MIPS [19] and PowerPC [6] offer hardware
support for load-linked and store-conditional instructions.
The NYU Ultracomputer [15] was the first to propose sup-
port for fetch-and-add operations in the memory controller.
Such support is especially beneficial in the presence of con-
tention. A number of other machines including SGI Ori-
gin [21] and Cray T3E [25] have provided such support.
However, none of the above architectures provide hardware
support for vector versions of atomic read-modify-write op-
erations.

Scatter-add [8] extends the fetch-and-add mechanism to
support parallel reductions on data parallel architectures.
The Cray Black Widow [7] provides similar hardware sup-
port for atomic vector operations at the memory controller.
Other proposals [13, 17] extend the fetch-and-add mecha-
nism to streams of memory locations. In contrast to our
proposal, these proposals require additional floating-point
hardware in the memory controller and support only lim-
ited forms of reductions (typically only additions). They
also require imprecise floating-point exception semantics.
Finally, they do not address the implementation of locks.

Recently introduced NVIDIA GPUs (8500 and 8600)
support concurrent atomic increments to shared device
memory using a single SIMD instruction [5]. However,
even in the presence of a single alias within a SIMD opera-
tion, our measurements show that its performance degrades
dramatically (orders of magnitude). In addition, there is no
efficient mechanism to implement vector locks.

There is a large body of work on transactional memory
(TM) [18] ([20] discusses much of the work in this area).
TM schemes have been proposed to allow atomic execution
of a transaction, which is a sequence of instructions. While
transactional memory provides an easy and intuitive pro-
gramming model, it is overly restrictive for SIMD execu-
tion. SIMD execution of an atomic section is often parallel
execution of multiple independent atomic sections (corre-
sponding to each position in the SIMD vector). In contrast,
a transaction in transactional memory treats all memory ac-
cesses as part of one atomic unit—if any of the memory
accesses in a transaction conflict with another thread, the
entire transaction aborts. Furthermore, current TM schemes
provide no support to detect conflicts between the multiple
atomic operations being executed in a SIMD fashion.

7 Conclusions

While vector parallelism can be efficiently supported
in today’s processors via SIMD hardware, SIMD effi-
ciency is compromised in the presence of irregular data
access patterns and atomic operations. We therefore in-
troduce two new instructions, gather-linked and scatter-
conditional (GLSC). GLSC delivers significant improve-
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Figure 8. Benefit of GLSC for 1-wide, 4-wide, and 16-wide SIMD in the 4x4 configuration. Each bar shows the
ratio of the execution times of Base to GLSC.

ment in performance over a baseline SIMD architecture
with gather/scatter support. Using 4-wide SIMD, GLSC ex-
ecutes 76% faster on average for runs with one thread and
54% faster on average for runs with 4 cores and 4 hardware
threads per core. The performance improvement comes
from three key factors: (1) GLSC reduces the dynamic in-
struction count, (2) GLSC overlaps L1 misses for atomic
operations, and (3) GLSC can reduce the number of L1 ac-
cesses. We find that the majority of the benefit comes from
the first two factors. We also show that as SIMD widths in-
crease in the future, the already significant benefits from
GLSC will grow substantially for applications with high
SIMD efficiency.
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