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Abstract—Tackling computationally challenging problems with
high efficiency often requires the combination of algorithmic
innovation, advanced architecture, and thorough exploitation of
parallelism. We demonstrate this synergy through synthetic aper-
ture radar (SAR) via backprojection, an image reconstruction
method that can require hundreds of TFLOPS. Computation
cost is significantly reduced by our new algorithm of approximate
strength reduction; data movement cost is economized by soft-
ware locality optimizations facilitated by advanced architecture
support; parallelism is fully harnessed in various patterns and
granularities. We deliver over 35 billion backprojections per
second throughput per compute node on an Intel R© Xeon R© pro-
cessor E5-2670-based cluster, equipped with Intel R© Xeon Phi

TM

coprocessors. This corresponds to processing a 3K×3K image
within a second using a single node. Our study can be extended to
other settings: backprojection is applicable elsewhere including
medical imaging, approximate strength reduction is a general
code transformation technique, and many-core processors are
emerging as a solution to energy-efficient computing.

I. INTRODUCTION

Modern high-performance computing systems are increas-
ingly constrained by their energy consumption [1]. This makes
combined optimization efforts spanning multiple layers crucial
to solve computationally challenging problems at a reasonable
cost. Algorithmic optimizations often play significant roles in
improving efficiency, particularly when combined with a clear
understanding of the underlying hardware architecture. For
example, as the number of cores increases, researchers have
devised algorithms with a higher parallelization scalability,
thereby often achieving an order of magnitude performance
improvement [2]. At an implementation level, parallelism
found in applications must be fully exploited. However, careful
consideration of the underlying architecture is required be-
cause the best efficiency is realized only when parallelization
is accompanied with data access patterns optimized for the
memory hierarchy [3, 4]. At the same time, the hardware
should provide an architecture that enables efficiently harness-
ing parallelism in various types.

This paper demonstrates such combined optimization efforts
using synthetic aperture radar (SAR) [5] image formation via
backprojection as an example. SAR backprojection includes
key characteristics representative of computing challenges of
the future. Although faster SAR image formation algorithms
exist, backprojection offers increased versatility with respect to
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the collection geometry, which is desirable for important sce-
narios, including wide-area persistent surveillance. However,
this versatility is provided with substantially increased compu-
tational requirements. In a high-end input scenario presented
by Campbell et al. [6], more than 9 trillion backprojections are
required per image. SAR backprojection is also often used in
real-time applications. For example, the persistent surveillance
application presented in [6] imposes a real-time constraint of
producing one image each second. Real-time applications can
be severely constrained by power consumption, and, therefore,
it is critical to fully exploit highly-parallel architectures and
efficiently conduct data movement. A large amount of data are
streamed through at a rapid rate, a significant portion of which
are accessed in an irregular manner. We showcase that these
challenges can be addressed by many-core processors and
advanced architecture support for irregular memory access.

SAR backprojection also exhibits similarities with recon-
struction methods found in other domains, such as medical
imaging. For example, the computational pattern is similar
to that of X-ray computed tomography [7] and beamforming
used in ultrasound imaging [8]. Similarly to SAR backprojec-
tion, several reconstruction algorithms depend heavily upon
trigonometric function evaluation, interpolation, and irregular
memory access [9, 10]. In addition, image reconstruction
problems typically have a large degree of parallelism and, thus,
are attractive targets for many-core processors.

This paper makes the following contributions:
• We present an algorithmic optimization that reduces

the square root, sine, and cosine functions to a few
multiplications and additions. Our optimization resem-
bles strength reduction, a well-known compiler optimiza-
tion [11, 12]. While the standard strength reduction relies
on, and is thus constrained to, mathematical equivalence,
our optimization exploits the method of approximation.
Therefore, we call this approach approximate strength
reduction (ASR). The application of ASR to the backpro-
jection stage achieves 2–4× speedups, while preserving
a similar level of accuracy.

• We exploit hardware gather support of Intel R© Xeon Phi
TM

coprocessors for frequent irregular memory accesses, thus
improving the vectorization efficiency. The efficiency of
gather access is further improved by exploiting geometric
properties of backprojection used in SAR imaging. These
optimizations provide an additional 1.4× speedup.



• We harness parallelism found in SAR backprojection
to fully utilize abundant parallel resources available
in modern processors. We present parallelization and
evaluation of SAR backprojection in the context of a
full application—wide-area, persistent surveillance. Each
node of our platform comprises Intel R© Xeon R© E5-2670
(two 8-core processors, Sandy Bridge architecture) and
two 60-core Intel R© Xeon Phi

TM
coprocessors∗. As a result

of exploiting parallelism at multiple levels combined
with ASR, each node is capable of processing 35 billion
backprojections per second. Due to near-linear scaling,
our system with 16 nodes achieves over 0.5 trillion
backprojections per second, or equivalently a 13K×13K
image within a second. We project the performance to
further scale linearly and thus the aforementioned high-
end scenario can be handled by approximately 256 nodes.

The rest of this paper is organized as follows: Section II
briefly describes SAR backprojection, focusing on its computa-
tional characteristics. Section III presents approximate strength
reduction transformations for square root, sine, and cosine,
which significantly reduces the computational complexity of
SAR. Section IV describes how SAR backprojection is par-
allelized at multiple levels, including SIMD, OpenMP, co-
processor, and MPI, and how it is pipelined to overlap data
transfers with computation. Section V evaluates the perfor-
mance benefits of ASR and efficient mapping to multiple nodes
with Xeon processors and Xeon Phi coprocessors. Section VI
reviews related work, and Section VII concludes this paper.

II. SAR IMAGING VIA BACKPROJECTION
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Fig. 1: Synthetic aperture radar in a spotlight mode. A radar mounted
on an airplane repeatedly flies around the target imaging area while
maintaining an approximate circular orbit.

A large antenna aperture is required to reconstruct a high-
resolution image from radar data collected from a single
location. Synthetic aperture radar (SAR) [13] relaxes this
constraint by collecting data from multiple locations along a
platform trajectory using, for example, a radar mounted on an
airplane (Fig. 1). Thus, SAR “synthesizes” a large aperture,
thereby obtaining high cross-range resolution [5]. Each pulse
is modulated with a carrier frequency and sampled at high
speed after having been reflected from the imaged scene.

∗Evaluation card only and not necessarily reflective of production card
specifications.

TABLE I: An example of high-end input parameters [6] and
requirements for the real-time constraint (one image per second).

New pulses per image N 3K
Samples per pulse S 81K

Image size Ix, Iy 57K
Accumulation factor k 34

Registration control points Nc 929K
Registration neighborhood size Sc 31

CCD neighborhood size Ncor 25
CFAR neighborhood size Ncfar 25

Total 351 TFLOPS
Compute requirement Backprojection 347 TFLOPS

(after approximate 2D-Correlation 0.7 TFLOPS
strength reduction) Interpolation 0.2 TFLOPS

CCD 3 TFLOPS

SAR image formation via backprojection offers several
advantages over Fourier-based image formation techniques,
such as the polar formatting algorithm (PFA) [14], that are
currently more widely applied. PFA has a relatively low com-
putational complexity due to its utilization of the fast Fourier
transform, but it imposes assumptions of planarity on both the
reconstruction surface and the wavefront within the imaged
scene. In addition, PFA assumes an idealized trajectory for the
radar platform. To an extent, compensation can be applied for
deviations from these assumptions, but image quality degrades
as the deviations increase. Backprojection, on the other hand,
imposes no assumptions on the planarity of the wavefront or
imaged surface and can handle non-ideal collection trajec-
tories. However, backprojection provides this generality with
substantially higher computational requirements.

Table I shows a high-end input scenario and computational
requirements of the persistent surveillance problem from [6],
which includes SAR backprojection. Fig. 2 depicts the cor-
responding data-flow in which stages exhibit different com-
putational and communication characteristics. Backprojection
dominates the total compute time; it represents more than 98%
of the total FLOP count in the scenario shown in Table I.
However, other stages can quickly become bottlenecks due to
Amdahl’s law [15] if not parallelized, particularly in systems
with more than a thousand-fold parallelism such as ours. In
addition, special care must be taken to account for relatively
small compute-to-bandwidth ratios in other stages.

The backprojection stage computes the distance from the
radar platform to each pixel in the imaging region, which
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Fig. 2: The data-flow of persistent surveillance problem where SAR
images are formed via backprojection. The numbers between stages
denote the size of data streamed through per output image. Big O
notations inside stages denote compute complexities.



1 for y from 0 to Iy - 1

2 for x from 0 to Ix - 1 {
3 ~p = position of pixel (x, y)
4 r = sqrt((~p− ~p0) · (~p− ~p0))
5 bin = (r − r0)/dr
6 arg = (cos(2πkr), sin(2πkr))

7 sample = interp(In, bin)

// irregular memory access

8 Out[x, y] += arg × sample
}

(a) Baseline

⇒

01 for each pixel block {
02 pre-compute A, B, C, Φ, Ψ, and Γ
1 for each y in the current block {
12 γ = (1, 0)

2 for each x in the current block {

5 bin = A[x] + B[y] + x·C[y]
61 arg = Φ[x]×Ψ[y]× γ // 8 muls and 4 adds

62 γ ×= Γ[y] // 4 muls and 4 adds

7 sample = interp(In, bin)

8 Out[x, y] += arg × sample
}
}
}

(b) Strength reduction of sqrt, sin, and cos

Fig. 3: The inner loop of backprojection stage and application of approximate strength reduction to it.
(a) Baseline backprojection inner loop. Lines 4 and 6 involve computationally expensive mathematical functions. In line 7, interp(In, bin)
computes (1 - (bin - bbinc))·In[bbinc] + (bin - bbinc)·In[bbinc + 1], which requires irregular memory access since bin is non-linear
with respect to x. Bold faces denote complex numbers, and ~p0, r0, dr, and k are constants.
(b) After strength reduction of sqrt, sin, and cos. These math functions are reduced to a few multiplications, additions, and array accesses.
Section III explains steps involved in this transformation.

involves a square root computation (‖~p − ~p0‖ in Fig. 1). We
then compute the time delay from the platform to the pixel
and sample the received signal at the corresponding time.
Since signals are discretized in the time domain, we need to
interpolate multiple samples to reconstruct the signal at a given
time delay. This is repeated per pulse, and we accumulate
the corresponding samples. Since the time delay varies in a
non-linear fashion as we proceed from pixel to pixel, or from
pulse to pulse, memory accesses for sampling are irregular.
Furthermore, because the time delay for a pixel-pulse pair is
known, an ideal reflector response at that time delay is used as
a matched filter for the interpolated samples, which requires
a sine and cosine computation for each pixel-pulse pair [5].

Typically, in order to obtain the desired cross-range res-
olution, we use several seconds worth of collected data to
form an image, although we generate an image each second.
Thus, we use not only newly incoming pulses but also some
previously accumulated ones. Let N be the number of new
incoming pulses per second and k be the accumulation factor.
Instead of backprojecting (k + 1)N pulses per second, we
backproject only the new N pulses and combine those with
the previous k backprojection results. This approach is valid
because the backprojection process is linear. This incremental
backprojection is implemented using a circular buffer that
stores the prior k and the current backprojection results.
The feedback loop of the backprojection stage shown in
Fig. 2 references this buffering. This buffering reduces the
computational requirement of the backprojection stage by k
times at the expense of using more memory, which is beneficial
because our system will still be more limited by compute than

memory capacity requirements1.
The stages following backprojection shown in Fig. 2 post-

process the reconstructed images. The registration stage cor-
rects for distortions or misalignments in the reconstructed
image by aligning it with a reference image. This stage
involves (1) finding a transformation that matches the current
image closely to the reference image using Nc Sc×Sc 2D
FFTs followed by solving linear systems via normal equations
with six unknowns, and (2) applying the transformation using
bilinear interpolation for resampling. The coherent change
detection (CCD) stage then computes correlations between
Ncor×Ncor-size windows centered at the same position in
the current and reference images. Its straightforward imple-
mentation requires Θ(N2

corIxIy) operations, which can be
reduced to Θ(NcorIxIy) by incrementally computing cor-
relation values. The final stage, constant false alarm rate
(CFAR) detection, identifies differences between the current
and reference images, while maintaining a constant false alarm
rate under certain statistical assumptions [5]. Its complexity
is Θ(NcfarNd), where Nd denotes the number of pixels for
which the correlation value produced by CCD falls below a
threshold; Nd is typically substantially smaller than Ix×Iy .

III. APPROXIMATE STRENGTH REDUCTION

Fig. 3(a) shows the inner loop of backprojection. As indi-
cated in lines 4 and 6, backprojection spends a significant

1In the scenario shown in Table I, the memory capacity requirements will
increase from 100 GB to 948 GB, where double buffering for pipelining is
taken into account. This requires 119 Xeon Phis, assuming 8GB GDDR each.
This is still fewer than the number for the compute requirements—more than
182 are required for 351 TFLOPS to produce one image per second even
assuming 100% FLOP efficiency (1,920 GFLOPS per Xeon Phi).



amount of its time in mathematical functions, specifically
square root, sine, and cosine. This section describes our new
algorithm of approximate strength reduction that converts
these functions into a few multiplications and additions.

A. Overview

At a high level, our optimization applies the well-known
strength reduction compiler optimization to the truncated
Taylor series approximation of mathematical functions. The
pseudo code below exemplifies a simple strength reduction:

1 for i from 0 to N

2 A[i] = c×i ⇒

0 t = 0

1 for i from 0 to N

21 A[i] = t

22 t += c

We reduce the “strength” of multiplication operations to
additions by exploiting the recurrence relation between A[i]s.
Similarly, in Fig. 3(b), we reduce square root, sine, and cosine
functions to a few multiplications and additions. At a high
level, this transformation (1) approximates r as a quadratic
function of x and y (i.e., a truncated Taylor series), (2) applies
the trigonometric recurrence sin(a · (i+ 1) + b) = sin(a · i+
b) · cos(a) + cos(a · i + b) · sin(a) and a similar recurrence
for cosine, and (3) applies the standard strength reduction
optimization. However, in contrast to the conventional strength
reduction, the transformation shown in Fig. 3(b) is inexact
since approximating square roots as quadratic functions intro-
duces errors. Nevertheless, we have a certain level of control
over the accuracy by blocking the loop and applying per-block
approximations. To distinguish from the conventional strength
reduction, we call the transformation presented in Fig. 3(b)
approximate strength reduction (ASR). We present the details
for ASR in the following sections.

B. Strength Reduction through Quadratic Polynomial Approx-
imation

We consider the general setup of a problem as computing
a two-variable function f(x, y) in a doubly nested loop:

for m from 0 to M - 1

for ` from 0 to L - 1

z[m, `] = f(x0 + `∆x, y0 +m∆y)

The strength of f(x0 + `∆x, y0 + m∆y) is to be reduced
via a quadratic approximation

f(x0 + `∆x, y0 +m∆y)

' f(x0, y0) + ax`+ aym+ bx`
2 + bym

2 + cxy`m, (1)

where ax, ay, bx, by , and cxy are constants involving ∆x, ∆y ,
and first and second partial derivatives of f .2

2We approximate around ` = 0 and m = 0 for illustrative purposes, instead
of using a more accurate approximation around ` = L/2 and m = M/2. This
more accurate approximation is a straightforward modification from the one
presented here and is used in the evaluation section.

for m from 0 to M - 1

for ` from 0 to L - 1

z̃[m, `] = f(x0, y0)+ax`+aym+bx`
2+bym

2+cxy`m

From here, we can apply standard techniques of (exact)
strength reduction as follows:

// pre-computation

A[0] = f(x0, y0)
for ` from 1 to L - 1

A[`] = A[` - 1] + (ax - bx) + 2bx`
B[0] = 0, C[0] = 0

for m from 1 to M - 1

B[m] = B[m - 1] + (ay - by) + 2bym
C[m] = C[m - 1] + cxy

// the main loop

for m from 0 to M - 1

c = 0

for ` from 0 to L - 1

z̃[m, `] = A[`] + B[m] + c
c += C[m]

C. Square Root Strength Reduction

Consider the function f(x, y) =
√
x2 + y2 + α2. We ap-

proximate using the second-order Taylor series around the
point (x0, y0):

f(x0 + `∆x, y0 +m∆y)

' f(x0, y0) + `∆xfx(x0, y0) +m∆yfy(x0, y0)+

1

2!
[`2∆2

xfxx(x0, y0) + 2`∆xm∆yfxy(x0, y0)+

m2∆2
yfyy(x0, y0)],

where fx, fy, fxx, fxy , and fyy are partial derivatives of f .
By collecting terms, we can represent f(x0 + `∆x, y0 +

m∆y) in the form shown in Equation 1, where

ax =
∆xx0

f(x0, y0)
, ay =

∆yy0
f(x0, y0)

,

bx =
∆2

x

2f(x0, y0)
− ∆2

xx
2
0

2f(x0, y0)3
,

by =
∆2

y

2f(x0, y0)
−

∆2
yy

2
0

2f(x0, y0)3
,

cxy = − ∆x∆y

f(x0, y0)3
x0y0.

D. Trigonometric Function Strength Reduction

Consider the function g(x, y) = eif(x,y) and suppose that
f(x0 + `∆x, y0 +m∆y) can be approximated by a quadratic
function as shown in Equation 1.3 Then,

g(x0 + `∆x, y0 +m∆y)

= g(x0, y0) · eiax` · eiaym · eibx`
2

· eibym
2

· ecxy`m

Therefore, we can transform the loop

3Recall that eix = cos(x) + isin(x)
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Fig. 4: Pipelining the persistent surveillance problem that uses SAR backprojection. Dark bars and arrows denote one iteration of the pipeline.
Numbers denote execution times when 16 nodes are used to output 13K×13K images (the detailed setup is described in Section V).

for m from 0 to M - 1

for ` from 0 to L - 1

z[m, `] = g(x0 + `∆x, y0 +m∆y)

as follows (compare this with Fig. 3(b)):

// pre-computation

A[0] = g(x0, y0)
for ` from 1 to L - 1

A[`] = A[` - 1]×ei((ax−bx)+2bx`)

B[0] = ei0, C[0] = ei0

for m from 1 to M - 1

B[m] = B[m - 1]×ei((ay−by)+2bym)

C[m] = C[m - 1]×eicxy

// the main loop

for m from 0 to M - 1

c = ei0

for ` from 0 to L - 1

z̃[m, `] = A[`]×B[m]× c
c ×= C[m]

E. Accuracy-performance Trade-offs

The accuracy of ASR drops as we move away from the
center of approximation. This is because the Taylor approxi-
mation shown in Equation 1 incurs larger errors as `∆x and
m∆y increase: cf. the linear Taylor approximation of

√
1 + x

around x = 0, 1 + 1
2x, incurs larger errors as |x| increases.

We control the accuracy of ASR by blocking the loop and
applying ASR to each block as exemplified by the outer loop
in Fig. 3(b). Section V shows that when using sufficiently
small blocks (64×64), applying ASR to SAR backprojection
maintains a similar level of accuracy to an approach with no
such approximations.

In addition, we can trade off accuracy for performance by
changing the block size: a larger block size increases errors,
but reduces the pre-computation time. This trade-off can be
helpful in radar applications where the required accuracy
ultimately depends upon the final application and can thus
vary from task to task. ASR and its application to accuracy-
performance trade-offs can be generalized to other mathemat-
ical functions in different applications, but such generalization
is out of the scope of this paper.

This section presented an algorithmic improvement on

backprojection that reduces complex mathematical functions
to simpler operations. The application of ASR to SAR back-
projection was motivated by its geometric properties: the
distance from the radar varies little from pixel-to-pixel and
the variation has a regular pattern than can be approximated
by a quadratic polynomial. Our algorithm not only reduces
mathematical complexity, but also facilitates implementations
optimized for the hardware. For example, Section V will show
that implementations without ASR require mixed usage of
double and single precision operations in the inner-most loop
to achieve a desired accuracy. In contrast, ASR can achieve
the desired accuracy while performing the inner-most loop
computation entirely with single precision. This allows for
easier vectorization and increases the effective SIMD width.

IV. PARALLELIZATION

The persistent surveillance application imposes a real-time
constraint of producing one image per second. The ASR
optimization presented in the previous section significantly
reduces the computational requirement, but satisfying this
constraint is still a challenge.

This section presents the following approaches that address
this challenge:

• The application is pipelined to hide the latency of data
transfers. The application is less sensitive to the latency
than throughput.

• Parallel resources in modern computation platforms are
fully exploited. The computation is carefully partitioned
between Intel Xeon and Xeon Phi so that the benefits of
Xeon Phi’s high compute intensity can be maximized.

• Data movement is optimized for locality and vector-
ization, which is facilitated by architecture support for
irregular memory access.

A. Overall parallelization

Fig. 4 illustrates how our application is pipelined. Execution
times denoted were measured when 16 compute nodes were
processing 13K×13K images. Note that the proportion of
backprojection time depicted is significantly smaller than the
actual for illustrative purposes. A large portion of backpro-
jection is offloaded to Xeon Phis. Due to its high compute-
to-communication ratio, data transfer via PCIe can be easily
overlapped with computation. For example, in Fig. 4, transfer-
ring input pulses and output images through PCIe take 3 ms



for each pulse n from 0 to N - 1 {
In = Inglobal[n]

for y from 0 to Iy - 1 {
for x from 0 to Ix - 1 {
... // Read In and update Out[x, y].
// See more details in Fig. 3(a)

}
}
}
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(ith MPI process, 
jth thread)

Cube 
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(b)

Fig. 5: (a) Pseudo code showing the structure of baseline implemen-
tation of backprojection stage, and (b) partitioning and blocking of it.
The 3D iteration space [16] is hierarchically partitioned into cubes in
three levels: MPI, OpenMP, and cache blocking levels. Cube B is an
OpenMP-level cube and cube C is a cache-blocking-level cube. We
have Mx/y/n MPI processes along x/y/pulse dimensions and Tx/y/n

OpenMP threads per MPI process along x/y/pulse dimensions.

and 10 ms, respectively, which is much faster than the 900 ms
of backprojection computation time. On the other hand, other
stages of the pipeline have smaller compute-to-communication
ratios and less parallelism. Therefore, offloading them is not
beneficial due to the cost in terms of latency and energy
consumption associated with PCIe transfers.

In our implementation, the CPUs spawn two types of
threads: compute threads and I/O threads. We use two com-
pute threads per core to exploit 2-way SMT. We have three
I/O threads, two of which initiate offloading to Xeon Phis.
The remaining I/O thread handles disk I/O, MPI, and PCIe
operations to overlap data transfers with computation. These
I/O threads do not interfere with the compute threads since
they are blocked by I/O events and de-scheduled by the oper-
ating system most of time. The I/O threads are synchronized
with the compute threads through concurrent bounded queues
implemented with Pthread condition variables.

Each stage, except for the linear system solver for regis-
tration, is parallelized both via MPI and OpenMP. The linear
system solver is not parallelized because its execution time is
negligible due to its relatively small system size. A portion
of the output image is assigned to each MPI process and
then to each OpenMP thread as illustrated by Fig. 5; the
following section elaborates on this partitioning. The MPI
communication prior to backprojection involves distributing

the input pulse data among nodes, but the communication
time is still much lower than the overall execution (e.g., 9 ms
in Fig. 4), and can be easily overlapped with computation.
In other MPI communications, each node sends neighbors
small boundary areas of the assigned image portion, all of
which take negligible time. For example, before registration,
each node sends boundaries with width Sc of the current and
reference images, which takes 3 ms in Fig. 4. Before CCD,
each node sends boundaries with width Ncorr of the distortion-
corrected image (1 ms). Finally, before CFAR, each node sends
boundaries with width Ncfar of the correlation values (1 ms).

B. Backprojection Partitioning

Fig. 5(a) presents a high-level structure of the backprojec-
tion stage in its unoptimized form (the inner-loop is shown in
Fig. 3(a)). The iteration space [16] of the triple-nested loop is
depicted as cube A shown in Fig. 5(b). The outer-most loop
iterates over N input pulses, and the two inner loops iterate
over Ix × Iy output image pixels. We partition the iteration
space in 3D blocks both in MPI and OpenMP as indicated by
cube B. For parallelization, we partition output image pixels
instead of input pulses when possible. This is because the latter
involves privatization followed by reduction of the array Out
with non-trivial cache miss and computation overheads. We
resort to partitioning input pulses only when the partition size
of output image pixels becomes smaller than the ASR block
size. However, this does not occur in practical settings with
large enough images, such as those evaluated in Section V.

C. Backprojection Locality Optimization

We improve the locality of accessing arrays In and Out
using 3D cache blocking within the partition mapped to each
OpenMP thread as illustrated by cube C in Fig. 5(b). Within
the cube, we iterate along the output image dimension first,
since this yields repeated accesses of the same entries of In.
For example, when the radar pulse wavefront is as depicted in
Fig. 6, iterating along the y axis will yield similar r values,
which, in turn, leads to accessing the same entries of In. We
thus reorder the x and y loops for each pulse depending on the
orientation of the radar pulse wavefront relative to the imaging
region. We can analytically compute how many consecutive
backprojections access the same entry of In on average. This
value is 5 when reordering optimization is not used and the
edge length of the imaging region is 1/10 of the scene-to-

x

y

Approximately
Equidistance

Fig. 6: Optimizing the locality of pulse array by dynamic loop
iteration reordering. When the radar is mostly horizontally distanced
from the imaging center, iterating along y axis first results in similar
r values, thereby improving the locality of accessing input pulses.



radar distance. This value increases to 17 when reordering
optimization is applied, hence improving the locality.

To avoid cache conflict misses, each thread writes to a
private image buffer so that each 3D block is accessed contigu-
ously without long strides. At the end of the backprojection
loop, the content of each temporal buffer is copied into the
corresponding portion of the final output buffer. When multiple
threads work on the same portion of the image, multiple
buffers are reduced while synchronized by barriers.

D. Vectorization

Irregular memory accesses to In are a challenge for
vectorizing the backprojection loop. On Intel Xeon pro-
cessors, we layout the input data in an array-of-structure
format so that In[bbinc].real/imag and In[bbinc +

1].real/imag can be loaded together using an 128-bit load
instruction. Each iteration loads 8 128-bit values and trans-
poses them into 4 256-bit registers, which requires 30 AVX
instructions. In Xeon Phi, we use hardware-supported gather
instructions and maintain the input data in a structure-of-
array layout. Section V shows that Xeon Phi spends a smaller
portion of time in accessing In relative to Xeon processors.

While ASR reduces the computation complexity, it intro-
duces loop-carried dependencies in the inner loop. We break
the dependency by increasing the recurrence step size to
the SIMD width. In Xeon Phis with wider SIMD units, it
is important to also vectorize the pre-computation step even
though it is located in an outer-loop (i.e., the loop shown in
line 01 of Fig. 3(b)). Thus, we aggregate pre-computations for
SIMD-width iterations of the outer-loop and vectorize them.

V. EVALUATION

A. Setup

We evaluate the performance of our optimized application
on the Endeavor cluster. Each node consists of dual-socket
Intel R© Xeon R© E5-2670 processors (Sandy Bridge architec-
ture) and two Intel R© Knights Corner coprocessors, both of
which are detailed in Table II.

The real-time constraint of the persistent surveillance appli-
cation requires producing one image per second. Therefore, in
practical settings, one would choose a large enough cluster to
satisfy this constraint for a given problem size. Our evaluation

TABLE II: System Configuration

Intel Xeon E5-2670 Knights Corner∗
Socket×core×SMT×SIMD 2 × 8 × 2 × 8 1 × 60 × 4 × 16

Clock (GHz) 2.60 1.00
Single precision GFLOP/s 660 1,920

L1/L2/L3 Cache (KB)4 32/256/20,480 32/512/-
DRAM 64 GB 8 GB GDDR

PCIe BW 10 GB/s

Interconnect QDR Infiniband 4× (peak 4 GB/sec)
A two-level 14-ary fat tree

Software Intel R© Compiler v13.0.0, Intel R© MPI v4.0
∗Evaluation card only and not necessarily reflective of production
card specifications.
4Private L1/L2, shared L3

setup reflects this practical setting: for each cluster size, we
choose the largest input that can be processed while satisfying
the real-time constraint. The number of new pulses per image
(N ) is fixed at 2,809 as shown in Table I. In this case, a
single node can process one 3K×3K image per second, but
requires more than one second for larger images. Therefore,
we use 3K×3K images for single-node experiments. For 16
nodes, the corresponding largest image size is 13K×13K.
Other parameters such as S and Sc are scaled proportionally
from the values listed in Table I.

The input data are generated by simulating a radar plat-
form circling around clusters of reflectors, which appear
and disappear at pre-determined times. The simulation model
assumes linear frequency modulated pulses (i.e., chirp) [5].
The input pulses contain baseband complex signals down-
converted from the reflected signals. A random perturbation is
induced for the radar trajectory to test the robustness of SAR
imaging via backprojection. In addition, to test the registration
process, shifts in the recorded platform trajectory are induced
between images. These random perturbation and induced shifts
are designed to mimic inaccuracies in the platform location
provided by the inertial navigation system.

B. Single Processor Efficiency Improvements in Backprojec-
tion Stage

1) Compute Complexity Reduction through Approximate
Strength Reduction: Fig. 7 breaks down the execution times of
backprojection before and after ASR optimization. The base-
line uses double precision for computing r and for reducing
the argument of the sine and cosine functions, which depend
upon r, to the range [−π, π]. Using single precision for these
calculations incurs errors in the sine and cosine arguments
that are large relative to π since r typically has a substantial
magnitude (e.g., 20K). Both in Xeon and Xeon Phi, before
applying ASR, square roots account for the largest fraction
of time because they are computed in double precision. Sine
and cosine are computed by approximation polynomials [17]
that are vectorized and yield an accuracy equivalent to that
of Intel R© MKL VML in the Enhanced Performance mode.
Argument reduction accounts for 40% of the time spent on
the sine and cosine computations on Xeon and Xeon Phi. This
implies that we can reduce the sine and cosine time by at most
60% even with hardware sine and cosine units, which typically
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Fig. 7: Performance improvements of backprojection from ASR.
Images with 3K×3K size are reconstructed from 2,809 pulses with
4K samples each.
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Fig. 8: Accuracy-performance trade-offs using ASR. A dual-socket
Xeon is used with the same input data for Fig. 7.

require that operands are within the range [−π, π] in order to
provide the desired accuracy.

ASR removes square root, sine, and cosine computations
from the inner-loop with minimal pre-computation overhead,
achieving 2.2× and 3.9× speedups in Xeon and Xeon Phi,
respectively. ASR requires maintaining a few pre-computed
values such as the arrays A and B shown in Fig. 3(b), but all
of them fit comfortably in the L1 cache.

Although ASR approximates square roots as polyno-
mial functions, by performing the accuracy sensitive pre-
computation in double precision, we can achieve a compa-
rable accuracy relative to the baseline. With ASR, double
precision is easily accommodated during pre-computation
for the sine and cosine operations. However, in the base-
line, it would be expensive to include double precision in
the inner loop for the sine and cosine operations. Fig. 8
presents how accuracy and performance vary with different
ASR block sizes relative to the baseline. We measure the
accuracy using the signal-to-noise ratio (SNR) computed as
10 · log10

∑
(reference)2∑

(measured signal−reference)2 . We compute the ref-
erence using full double precision calculations. We use the
logarithmic decibel (dB) scale for SNR. For example, a 20dB
higher SNR indicates an 1-digit higher accuracy. As described
above, the baseline computes sine and cosine in an accuracy
similar to that of Intel MKL VML, which results in 55dB. Using
sine and cosine functions in the standard C math library instead
results in a marginally better accuracy of 58dB. Even with the
standard C math library, when computing r in single precision,
the accuracy drops to 12dB. In addition, the sine and cosine
functions in the standard C math library are not vectorized as
efficient as the baseline due to its more complex control flow
for supporting a wide-range of inputs.

Fig. 8 shows that, with block sizes less than 64×64, ASR
achieves an accuracy higher than the baseline. We choose
64×64 in other experiments, including Fig. 7, to evaluate the
performance of ASR with a similar level of backprojection
accuracy as the baseline.

2) Parallelization and Locality Optimizations: Xeon and
Xeon Phi achieve 4.6× and 10× speedups from vectorization
with 8 and 16-wide SIMD units, respectively5. These non-
linear speedups mostly stem from overhead associated with

5When measuring the vectorization speedups, ASR is applied to both non-
vectorized and vectorized versions of backprojection.

irregular access to the input pulse data. In particular, Xeon
spends 53% of the total backprojection time on accessing the
pulse data due to the overhead of transposing array-of-structure
representations into structure-of-array formats in registers. The
dynamic reordering of x and y loops reduces the input pulse
data access time by 42% in Xeon Phi by reducing the number
of cache lines accessed per gather instruction.

Support for hardware threads on Xeon Phi helps more (Xeon
1.2× vs. Xeon Phi 2.2×) due to its more hardware threads per
core and in-order pipeline. OpenMP parallelization realizes
near-linear speedups in both: 15.9× using 16 cores and 63×
speedups using 60 cores. The super-linear scaling on Xeon Phi
is due to the working set per core decreasing and the effective
cache capacity thereby increasing.

Overall, Xeon and Xeon Phi achieve 42% and 28% of the
ideal peak FLOP performance despite the overhead associated
with irregular memory access. The lower efficiency of Xeon
Phi is mainly due to the ideal Xeon Phi peak FLOP only
being realized when there is a fused multiply-add every cycle,
which is not the case for backprojection. Each backprojection
iteration contains 38 FLOPs, 22 of which can be fused.

C. Offloading Backprojection to KNCs

TABLE III: Single-node backprojection throughput

Throughput (Billion Speedup vs. FLOP
Backproject./Sec.) 2-socket Xeon Efficiency

Xeon (2-socket) 7.4 1.0× 42%
1 Xeon Phi 14.0 1.9× 28%

Xeon + 2 Xeon Phi 35.5 4.8× 30%

Table III shows the backprojection throughput when Xeon
and Xeon Phi are used individually, and then in combination.
A Xeon Phi coprocessor is about 2× faster than a dual-socket
Xeon, and we achieve a 5× speedup when two Xeon Phis
are used together with Xeon. Since each system can have
CPUs and Xeon Phis with different computation capabilities,
we adjust the ratio of offloading to Xeon Phis based on the
execution time ratio observed with the first few images.

We herein use 3K×3K images, for which the single node
Xeon and Xeon Phi combination can satisfy the real-time con-
straint. With this input, backprojection takes around 0.75 sec-
ond per image. Around 150 MB of data need to be transferred
for offloading and 6 GB/s PCIe throughput is realized, resulting
in 0.03 seconds of transfer time. This is overlapped with
compute by asynchronous PCIe transfers using the #pragma

offload_transfer and #pragma offload_wait constructs
supported in the Intel C compiler.

D. Scaling the SAR Pipeline to Multi-nodes

While the preceding sections evaluate the performance of
backprojection stage in isolation with a single node, this
section evaluates the entire pipeline with multiple nodes. The
pipeline outputs a stream of images, one image per second, and
we measure the performance of the pipeline after reaching a
steady state. We conduct weak scaling experiments that reflect
the real-time constraint of processing one image per second:



TABLE IV: Multi-node weak scaling. For each number of nodes, we select the largest image size that can be processed while satisfying
the real-time constraint.

Nodes Input Throughput (Billion MPI Parallelization
Ix, Iy N k S Backprojections/Sec. Efficiency

1 3K

2,809

2 4K 35 1.00
2 4K 3 6K 71 1.01
4 6K 4 9K 138 0.97
8 9K 6 13K 265 0.94

16 13K 9 19K 530 0.93

TABLE V: The projection of largest inputs that can be handled while satisfying the real-time constraint

Nodes Input Throughput (Billion Parallelization Time Breakdown (%)
Ix, Iy N k S backprojections/Sec.) Efficiency Registration CCD PCIe MPI Disk

32 18K

2,809

12 26K 1,060 0.93 0.11 0.30 1.63 3.71 10.38
64 27K 17 38K 2,115 0.93 0.18 0.45 1.52 3.45 7.19

128 38K 23 54K 4,213 0.93 0.39 0.63 1.45 3.35 5.05
256 54K 33 77K 8,373 0.92 0.76 0.89 1.40 3.37 3.52

for each cluster size, we choose the largest image size that can
be handled while satisfying the real-time constraint. Thus, the
throughput measured in images per second is slightly higher
than one in each configuration (larger clusters process larger
images). Therefore, we measure the throughput in terms of
backprojections per second in order to quantify the scaling of
compute capabilities. The time spent on other stages is also
taken into account when computing the backprojections per
second throughput.

Table IV reports the throughput with varying node counts.
The backprojection throughput is not noticeably degraded
from running stages other than backprojection and their as-
sociated data transfers. In addition, near-linear speedups are
observed by using more nodes, and more than 0.5 trillion back-
projections per second throughput is achieved with 16 nodes.
This is due to (1) multi-level parallelization of each stage and
(2) careful overlapping of data transfers with computation.
Each stage can become a bottleneck if not parallelized either
via OpenMP or MPI. For example, if we do not parallelize
2D-correlation and interpolation in the registration step using
OpenMP, the registration step will take a comparable time
as backprojection. By parallelizing all stages, except for the
registration linear system solver, we maintain CPU compute
time at less than 4% for all stages other than backprojection.

Although we evaluate up to 16 nodes, it is projected that
the throughput will scale near-linearly as more nodes are
added, and that the corresponding problem size that can be
handled will scale accordingly. This projection is based on
our analysis tabulated in Table V, which estimates that 256
nodes will handle the input size similar to that of the high-
end scenario in Table I. It is shown that backprojection will
continue to dominate the compute time and data transfers will
continue to be comfortably overlapped with compute. The time
breakdowns denote the time spent for each component relative
to the total execution time to output one image. It is shown
that the proportion of compute times of stages other than
backprojection will not grow to be a significant fraction. It
is also shown that data transfer times (through PCIe, MPI, and
disk I/O) will be kept considerably smaller than the compute

time.
The compute time of each component is estimated as

(FLOPS required)/((Processors’ ideal peak FLOPS)×(FLOP effi-
ciency)). The FLOP efficiency of the 2D-FFTs used in the regis-
tration step is assumed to be 10%. Other stages’ FLOP efficien-
cies are assumed to be same as that of backprojection, which is
measured to be consistent across 1–16 nodes. The FLOP count
of n×n 2D-FFT is computed as 10n2logn. The FLOP count
of bilinear interpolation is computed as 54IxIy: IxIy bilinear
interpolations per image and 54 FLOPs per interpolation. The
FLOP count of CCD is computed as 20 · 2NcorrIxIy .6 The
data transfer times are estimated assuming each node can
realize 6 GB/s PCIe and , 2 GB/s MPI, and 200 MB/s disk I/O
bandwidth. We assume that the interconnect has a 3D-torus
topology with 2G GB/s channels.

VI. RELATED WORK

In order to overcome the demanding computation require-
ments of SAR backprojection, researchers have implemented
it on a cluster of FPGAs [18]. Their partitioning method is
aligned with ours—partition in the output image dimension
first, and in the input pulse dimension only when it is neces-
sary. There also have been GPU implementations of SAR back-
projection [19–22]. GPUs provide hardware texture lookup
support that improves the backprojection performance by up to
15% at the expense of lower accuracy [22]. GPUs also provide
hardware trigonometric units but their performance benefits
depend on required image formation accuracy, which will be
explained later in this section. ASR eliminates trigonometric
functions from the inner-loop of backprojection, and it can
also be applicable to GPUs.

Researchers have developed methods for reducing the com-
putational complexity of SAR backprojection [23–25]. Typi-
cally, these methods hierarchically decimate the phase history

6Correlation values are incrementally computed by maintaining∑
x,

∑
y,

∑
xy,

∑
‖x‖2, and

∑
‖y‖2, where x and y denote complex

pixel values in the current window of the current and reference images,
respectively. When we move to the next pixel, the window drops Ncorr

values and obtains Ncorr values. Updating the maintained sums for each
dropped or obtained value requires 20 FLOPs.



data in the pulse dimension for localized regions of the
image in a manner that maintains sampling requirements and
preserves image quality. Thus, the larger image formation
problem is decomposed into several smaller image formation
problems each with a corresponding reduced-size data set. In
such cases, traditional backprojection is utilized as a base case
operation for the reduced-size data sets. Therefore, develop-
ments in the optimization of the traditional backprojection
algorithm will also directly benefit the reduced-complexity
algorithms. In addition, the most computationally intensive
component other than backprojection introduced by these hier-
archical techniques is typically the fast Fourier transform, for
which efficient implementations have been studied extensively.

Strength reduction [11] can be used to reduce exponentia-
tion to multiplications, and division/modulo to subtractions as
discussed in [12]. However, the most frequent application is
reduction of multiplications to additions. In comparison, our
ASR targets more time consuming functions such as square
root, sine, and cosine. In addition, while the standard strength
reductions maintain equivalent results (modulo errors from
limited floating point precision), ASR introduces errors but
gives flexibility of trading off accuracy and performance by
controlling the block size.

Trigonometric functions are typically computed by poly-
nomials derived from the Chebyshev approximation, whose
coefficients are similar to those of Taylor polynomials but
provide a near optimal solution (i.e., the maximum error
is very close to the smallest possible for any polynomial
of the same degree) [17]. ASR also exploits polynomial
approximations but is differentiated as follows. First, ASR can
achieve a similar accuracy with fewer floating point operations
provided that arguments to the trigonometric functions vary
little (relative to π) over loop iterations. Second, reducing
arguments to a specific range (e.g., [-π, π]) is often the most
time-consuming and accuracy-sensitive part of trigonometric
function calculation [17], especially when the magnitude of
arguments can be large. For example, in SAR backprojection,
we need to reduce arguments in double precision in the base-
line implementation. Hardware trigonometric functional units
implemented in accelerators also typically assume that input
arguments are within the range [-π, π] [26]. Consequently, we
cannot avoid the complexity of argument reduction even with
hardware trigonometric units. In contrast, ASR can achieve
a high accuracy mostly using single precision operations for
even arguments with large magnitude. CORDIC [27] is another
method of computing trigonometric functions, but it is used
only in simple hardware without multipliers and floating point
units. Similar to Chebyshev-approximation-based approaches,
CORDIC also requires arguments to be in a certain range (e.g.,
[-π/2, π/2]).

Recently, there has been a growing interest on offloading
computation to many-core wide-vector coprocessors such as
Intel R© Xeon Phi

TM
or GPUs to improve single-node perfor-

mance [28–30]. Similar to our work, a part of the application
with limited parallelism is typically run on CPUs, while the
highly data-parallel portion is offloaded to the coprocessor.

VII. CONCLUSION

This paper demonstrated that the challenging computa-
tional requirements of SAR backprojection can be efficiently
handled by the combination of algorithmic improvements,
data movements optimized for the underlying architecture,
and systematic exploitation of parallel resources available in
modern compute platforms.

Algorithmic improvements from our approximate strength
reduction significantly reduced the computational cost of SAR
backprojection. Our method can be applied to other image
reconstruction applications that share similarities such as fre-
quent use of trigonometric functions and interpolation. This
generalization is not limited to other types of radar applications
but also applicable to medical imaging applications with sim-
ilarly challenging computational requirements. For example,
although purposely omitted to focus on SAR, we have applied
the ASR method to beamforming used in ultrasound imag-
ing, thereby achieving a 5× speedup. ASR also exemplified
that understanding the mathematical structure of the problem
plays a key role in devising domain or application specific
algorithmic optimizations. Applying ASR was motivated by
geometric properties of SAR imaging via backprojection: the
distance from the radar to pixels varies little and the variation
has a regular pattern that can be approximated by quadratic
polynomials.

Improvements in modern many-core architectures were also
demonstrated to be beneficial in addressing computationally
challenging applications. The hardware gather support reduced
the cost associated with delivering data from irregular loca-
tions and helps effectively utilize wide vector units. This paper
showcased the synergy of conventional CPUs and emerging
many-core coprocessors with a high compute intensity. Many-
core coprocessors offloaded the backprojection stage with a
high compute-to-communication ratio and large degree of par-
allelism. Intel R© Xeon R© processors complemented this by han-
dling portions with relatively low compute-to-communication
ratios and orchestrating data transfers to be overlapped with
computation.

As a result of our combined optimization efforts, over 0.5
trillion backprojections per second throughput was realized
with 16 nodes. When combined with hierarchical backpro-
jection techniques, we believe our optimizations will render
computationally challenging SAR imaging via backprojection
considerably more affordable.
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