
Foofah: A Programming-By-Example System for
Synthesizing Data Transformation Programs

Zhongjun Jin Michael R. Anderson Michael Cafarella H. V. Jagadish
University of Michigan, Ann Arbor

{markjin,mrander,michjc,jag}@umich.edu

ABSTRACT
Advancements in new data analysis and visualization tech-
nologies have resulted in wide applicability of data-driven
decision making. However, raw data from various sources
must be wrangled into a suitable form before they are pro-
cessed by the downstream data tools. People traditionally
write data transformation programs to automate this process,
and such work is cumbersome and tedious.

We built a system called Foofah for helping the user eas-
ily synthesize a desired data transformation program. Our
system minimizes the user’s effort by only asking for a small
illustrative example comprised of the raw input data and the
target transformed output; Foofah then synthesizes a pro-
gram that can perform the desired data transformation. This
demonstration showcases how the user can apply Foofah to
real-world data transformation tasks.

Keywords
Data Transformation; Program Synthesis; Programming By
Example; A* algorithm; Heuristic

1. PROBLEM AND MOTIVATION
Data transformation is a crucial first step that reorganizes

raw data (Table 1 for example) into a format that can be
easily consumed by databases or data analytics tools (Ta-
ble 2). Manually wrangling the raw data using tools like Excel
is inefficient and cumbersome when the size of the data is
large. Traditionally, programmers write data-specific scripts
to automate the transformation process. However, the job
of handwriting data transformation programs is still tedious
and labor-intensive: these programs are tailored to particular
data sources and are not able to adapt newly acquired data
sources. Further, writing a correct program is often hard. In
practice, analysts normally spend more time preparing data
than analyzing it; up to 80% of a data scientist’s time can
be spent on transforming data into a usable state [10].

Recent research into automated and assisted data trans-
formation systems has focused on reducing the user’s time

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3058732

Bureau of I.A.
Regional Director Numbers
Niles C. Tel: (800)645-8397

Fax: (907)586-7252

Jean H. Tel: (918)781-4600
Fax: (918)781-4604

Frank K. Tel: (615)564-6500
Fax: (615)564-6701

. . .

Table 1: A spreadsheet of business contact information

Tel Fax
Niles C. (800)645-8397 (907)586-7252
Jean H. (918)781-4600 (918)781-4604
Frank K. (615)564-6500 (615)564-6701

. . .

Table 2: A relational form of Table 1

1. Split ‘column 2’ on ‘:’

2. Delete rows where ‘column 3’ is null

3. Fill split with values from above

4. Unfold ‘column 2’ on ‘column 3’

Figure 1: The desired data transformation program

and required skill level, with some success [6,8]. Wrangler [8],
for example, provides a user-friendly, web-based interaction
framework that helps non-professionals create data trans-
formation programs composed of operations defined in the
Potter’s Wheel system [11].

However, existing data transformation tools remain hard
to use for two reasons: (1) High Skill : Users are required to
know the various transformation operations (which are often
complicated and difficult to understand) and then decide
what operations to use and in what order. (2) High Effort :
The amount of user effort increases as the length of the data
transformation program grows.

Take the raw business contact information data in Table 1
as an example. The program shown in Figure 1 uses some
operators from Potter’s Wheel [11] to transform the raw input
data to the relational form shown in Table 2. Composing this
program with Wrangler will show both of the above usability
issues. The steps the Wrangler user must take (illustrated
in Figure 2) require the user to provide a healthy amount of
information: (1) the correct operators, with (2) parameters
for each operator (e.g., which rows the Delete operator should
remove), (3) in the correct program order. Note that the user
must provide this information even when the transformation
program is relatively straightforward and “boring” (High
Effort). In some cases, discerning the right parameterization
can be genuinely intellectually challenging; for example, the

http://dx.doi.org/10.1145/3035918.3058732

Unfold operation in Step 4 “unflattens” tables and moves
information from data values to column names; this step is
difficult for näıve users to grasp (High Skill).

To address these usability issues, we developed a Pro-
gramming By Example (PBE) data transformation program
synthesizer, Foofah. Our system is designed to be used by
people without any programming background and to require
minimal user effort. Unlike Wrangler, which asks the end user
for procedural hints, our system allows the user to describe a
desired transformation simply by specifying an input-output
example: the user only needs to know how to describe the
transformed data, as opposed to knowing any particular trans-
formation operation that must be performed. Moreover, the
amount of user effort that our system requires does not scale
with the length of the desired transformation program.

Previous PBE-based data transformation program syn-
thesizers [2, 5, 9] have been limited in their expressiveness.
FlashRelate [2] and ProgFromEx [5] can only express layout
transformations (i.e., changing data cells locations), while
FlashExtract [9] only supports syntactic transformation (i.e.,
manipulating strings). Our working demonstration system
will show that Foofah is effective in solving complex data
transformation tasks, which are mixtures of both syntactic
transformations and layout transformations. It requires fewer
iterations and less interaction time than competing methods.
Conference attendees will be able to interact with the work-
ing Foofah system, using either their own custom data or
data that we provide.

We will now introduce the design of Foofah including the
user input, algorithms, and architecture in Section 2. We will
discuss the demonstration experience in Section 3.

2. SYSTEM FRAMEWORK
In this section, we explain the user input, the system

output, our proposed solution, the user interaction model,
and the system performance.

2.1 User Input
We require the user to describe the expected transfor-

mation through input-output examples. An input-output
example E consists of a pair of datasets (ei, eo), where ei is
the input example sampled from the raw data to be trans-
formed and eo is the output example of what ei should be
transformed into after being processed by the data trans-
formation program. The raw data is a grid of values (i.e.,
a spreadsheet). It can be non-relational, but should follow
some regular structures. We assume the desired output is
always a relational table. Further, we assume the input data
can be transformed without any extra semantic information,
such as knowing that MI is an abbreviation for Michigan.
Other researchers have focused on composing dictionaries to
address this latter problem [1,3, 13]

The effectiveness of Foofah relies on the fidelity and
representativeness of the user input. (1) The user needs to be
faithful to the desired transformation while specifying E , and
not make any mistakes (e.g., typos or copy-paste mistakes).
Otherwise, Foofah terminates the synthesis process early,
allowing the user to fix any errors. (2) User-specified input-
output example E should be representative enough to describe
the desired transformation. In principle, the sample may need
to be large, but we observed in our experiments that a small
example made from two to three data records will almost
always suffice.

Numbers
Tel: (800)645-8397
Fax: (907)586-7252

. . .

Table 3: The second col-
umn of Table 1

Numbers
Tel (800)645-8397
Fax (907)586-7252

. . .

Table 4: Split the second col-
umn of Table 1 by ‘:’

2.2 Synthesized Program
Our desired transformation programs convert raw data

into a relational form. Such transformations usually require
structural reorganizations or reshaping of the table cells and
sometimes modification of the cell values themselves. We
use some operators from the Potter’s Wheel system [11],
including Split, Drop, Move, Copy, Merge, Fold, Unfold, Fill,
Divide, Delete, Extract and Transpose. This is a set of general-
purpose data transformation operators expressive enough to
accomplish many real data transformation tasks. A typical
operator is Split, parameterized by a column number and a
delimiter. When applying Split by ‘:’ to the second column
of Table 1 (shown in Table 3), the output is Table 4.

All of our data transformation operators take a whole table
as input and output a new table. A good transformation
program applies a sequence of appropriately-parameterized
operators, repeatedly yielding a table that is closer to the
desired output. The resulting transformation program is
a loop-free or straight-line program, which is a program
structure that has been successfully applied in many previous
efforts in data transformation [5, 8, 14].

We formally define the data transformation to be synthe-
sized as a loop-free series of operations p1, p2, ..., pk such
that: (1) each operation pi = (opi, par1, . . .) : tin → tout. pi
includes operator opi with corresponding parameter(s) and
transforms input data table tin to output data table tout; (2)
the output of operation pi is the input of pi+1.

2.3 Our Approach
We formulate our program synthesis problem as a search

problem in a state space graph G(V,A), where arcs represent
potential data transformation operations, vertices represent
intermediate states of the data as transformed by the opera-
tion on previously traversed arcs, ei is the initial state of G,
and eo is the goal state.

To efficiently solve this search problem, we applied the
well-known A* search algorithm. The A* algorithm requires a
heuristic function that estimates the cost of the cheapest path
from the current state to the goal, which it uses to determine
the ultimate lowest-cost path through the search space. In
our problem, the search path is made up of a series of Potter’s
Wheel operations. Thus, for the A* heuristic function, we
use “Potter’s Wheel distance” (i.e., the minimum number of
Potter’s Wheel operations required to transform the current
intermediate state of the data to the goal state). One possible
approach to measure “Potter’s Wheel distance” is to create a
rule-based heuristic to estimate the operators possibly needed.
However, this is impractical in that (1) the rule-base heuristic
is less reliable when multiple data transformation operations
are used in one task, especially when using operations that
drastically change the layout of the data, and (2) the rule-
base heuristic may not apply when new data transformation
operators are introduced. Thus, we developed a method that
estimates “Potter’s Wheel distance” without the necessity of
guessing the actual operators used.

Operator Filter
Drop
Fold

...

Try an Operation

Operation Preview

Select An Operation

Operation Execution

System

Ite
ra

te
 U

nt
il

Fu
lly

 T
ra

ns
fo

rm
ed

User

Tabular Form Raw Data

Select Region

Suggested Operations

Transformed View

Transformed View

Program Verification
Raw Data

Transformed View

R
ol

lb
ac

k
if

In
co

rr
ec

tly
 T

ra
ns

fo
rm

ed

Sampled Raw Data

Figure 2: Wrangler architecture

We observed that each Potter’s Wheel data transformation
operator can be seen as a set of cell-level edit operations; the
distinct cell-level operators are AddCell, RemoveCell, MoveCell,
and TransformCell. For example, a Delete operation consists
of a set of RemoveCell operations. Computing the cost of
cell-level edit operations resembles the graph edit distance
problem [12]. We hence created a novel concept, Table Edit
Distance (TED), defined in (1), to measure the distance or
dissimilarity between tables. TED is the minimum total cost
of cell-level edit operations required to transform table T1

to table T2, where P(T1, T2) denotes the set of edit paths
transforming T1 to T2 and cost(ei) is the cost of each cell-level
edit operation ei. We designed an efficient approximation
algorithm to estimate TED (TED is equivalent to computing
graph edit distance, which is NP-complete [4]).

TED(T1, T2) = min
(e1,...,ek)∈P(T1,T2)

k∑
i=i

cost(ei) (1)

Note that TED is not a suitable heuristic function for our
problem since we actually wish to estimate Potter’s Wheel
distance, not the number of cell-level edit operations. We thus
created a batch algorithm that reduces TED to an estimated
Potter’s Wheel distance. The batch algorithm groups the
table edit operations in the edit path obtained from the TED
calculation. This is inspired by our observation that Potter’s
Wheel operations tend to change horizontally or vertically
adjacent cells. To further reduce the size of the graph and
speed up the search, we created some operator-independent
pruning rules using our domain knowledge. Thorough de-
scriptions of our algorithms and methods are presented in
our full paper [7].

2.4 System Architecture
Figure 3 depicts Foofah’s architecture and user inter-

action workflow. Foofah saves the user from the complex
interaction process in data transformation shown in Figure 2,
only requiring a small amount of input from the user and
simplifying the system architecture.
Foofah provides users with a web-based graphical in-

terface with three major pages. The first page, Example
Creation, is shown in the screenshot in Figure 4. It allows
the user to provide an input-output example indicating the

Program Synthesis

System

Ite
ra

te
 U

nt
il

C
or

re
ct

ly
 T

ra
ns

fo
rm

ed

User

Tabular Form Raw Data

Input-output Ex.

Synthesized Program

Raw Data
Program Verification

Transformed View

Sampled Raw Data
Operator Set

Pruning Rules

Figure 3: Foofah architecture

desired data transformation. The Input Example tabular
form on the left is where the sampled raw data is specified.
The user types in or copy-and-pastes a small sample of raw
data, usually two to three records. In the Output Example
tabular form on the right, the user enters the transformed
view of the sample. The user presses the button on the bot-
tom to trigger Foofah’s synthesis process. The server-side
Program Synthesis uses this input-output example in the
A*-driven search process described in Section 2.3.

In our prototype, we set a 60-second time limit for each
round of program synthesis. If Foofah successfully synthe-
sizes a program, the program is displayed on the Synthe-
sized Program page.1 If Foofah encounters a timeout, it
reports a failure. The synthesized program is guaranteed
to transform the input example to the output example the
user provides initially, but might fail to correctly transform
the entire set of raw data, since the original sample may
not be sufficiently representative. Without expertise in data
transformation and programming, the user may not be able
to verify the correctness of the program by just viewing it.
To check whether the synthesized program is the desired one,
the user may go to the Verification page, which has two
tabular forms—Raw Data and Transformed Data—to input
a new sample of the raw data, which could be as large as the
entire raw data set. After the user hits the “Execute Program”
button, the new data is sent along with the synthesized pro-
gram to the Program Verification component on the server,
which executes the program on the new sample. The system
will return the transformed view of this new sample in the
Transformed Data form, where the user can verify the cor-
rectness of the data transformation. If the program does not
correctly transform the new data, the user can return to the
Example Creation page to create a more representative
example and start a new synthesis.

2.5 System Performance
Experiments (detailed in our full paper [7]) show that

Foofah is able to efficiently synthesize high-quality data
transformation programs with a small amount of user effort.
In 86% of our benchmark tests, Foofah successfully syn-
thesized programs in under five seconds using input-output
examples composed of just three or fewer data records. Ad-
ditionally, to test the impact of the size of user input, we

1Foofah currently returns a Python program to the user for
use with its accompanying Python library, but the operations
could be implemented in any suitable language.

Figure 4: Foofah UI for specifying input-output examples

from Operations import *
We hide the details of loading raw

data for presentation purpose, and
assume t is the loaded raw table
represented by 2d list in python.

split Column 1 on ’:’
t = split(t, 1, ’:’)
delete rows where Column 2 is null
t = delete(t, 2)
fill Column 0 with value above
t = fill(t, 0)
Unfold on Column 1
t = unfold(t, 1)

Figure 5: Synthesized program

varied the size of E from one to five records. We observed a
near-linear increase of the synthesis time (average Pearson
correlation of 0.75), though the synthesis time was still short
in most cases (under five seconds in 72% of test cases with
five records).

3. DEMONSTRATION
Our demonstration aims to show to the conference atten-

dees that our proposed system Foofah is able to help a näıve
user synthesize some real-world data transformation tasks
and that it is generally easy to use.

To best illustrate how to use our tool, we collected three
demonstration test cases: the motivating example in Section 1
and two other cases used by [8] and [5]. Attendees can also
manually enter data.

To show how Foofah can help a user generate a correct
data transformation program, we will use the motivating
example from Section 1, where a user would do the following2:

1. Copy the first two records including the header informa-
tion (lines 1-7) from the raw data in Table 1 and paste
them into the Input Example form on the Example
Creation page (Figure 4).

2. Specify the transformed view of the input example in
the Output Example form on that same page:

2.1. Type “Tel” and “Fax” as the column headers.

2.2. Copy the human name “Niles C.”, phone number
“(800)645-8397”, and fax number “(907)586-7252”
from the Input Example form and paste them in
second row of the Output Example form.

2.3. Repeat the above process for the second record in
the sampled raw data.

3. Hit the “Foofah!” button.

Foofah quickly infers the program shown in Figure 5,
and displays it on the Synthesized Program page.

4. To verify the program, copy the first three records (lines
1-10) of the raw data in Table 1 and paste them into
the Test Data form in Verification page.

5. Hit the “Execute Program” button.

The post-transformed view of the new sample shown to
the user matches Table 2, enabling the user to verify
the correctness of the synthesized program.

2A video can be found at https://youtu.be/Ura2pxez Bo

4. CONCLUSION
Our demonstration showcases the ease-of-use of the pro-

posed data transformation program synthesizer Foofah.
With only a small example illustrating the desired trans-
formation, Foofah can synthesize a high-quality program
efficiently. This demonstration is a good illustration of our
vision for a data transformation tool that requires minimal
user effort and programming skill.

5. ACKNOWLEDGMENTS
This project is supported by National Science Foundation

grants IIS-1250880, IIS-1054913, NSF IGERT grant 0903629,
a Sloan Research Fellowship, and a CSE Dept. Fellowship.

6. REFERENCES
[1] Z. Abedjan, J. Morcos, I. Ilyas, M. Ouzzani, P. Papotti, and

M. Stonebraker. DataXFormer: A robust transformation
discovery system. In ICDE, 2016.

[2] D. W. Barowy, S. Gulwani, T. Hart, and B. Zorn.
FlashRelate: Extracting relational data from semi-structured
spreadsheets using examples. In SIGPLAN, 2015.

[3] Z. Chen, M. Cafarella, and H. Jagadish. Long-tail vocabulary
dictionary extraction from the web. In WSDM. ACM, 2016.

[4] M. R. Gary and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-completeness.
WH Freeman and Company, New York, 1979.

[5] W. R. Harris and S. Gulwani. Spreadsheet table
transformations from examples. In ACM SIGPLAN Notices,
volume 46, pages 317–328. ACM, 2011.

[6] D. Huynh and S. Mazzocchi. Openrefine.
http://openrefine.org, 2012.

[7] Z. Jin, M. R. Anderson, M. Cafarella, and H. V. Jagadish.
Foofah: Transforming data by example. In SIGMOD, 2017.

[8] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
Interactive visual specification of data transformation scripts.
In CHI, 2011.

[9] V. Le and S. Gulwani. FlashExtract: A framework for data
extraction by examples. In ACM SIGPLAN Notices,
volume 49, pages 542–553. ACM, 2014.

[10] S. Lohr. For big-data scientists, janitor work is key hurdle to
insights. The New York Times, 17, 2014.

[11] V. Raman and J. M. Hellerstein. Potter’s Wheel: An
interactive data cleaning system. In VLDB, 2001.

[12] A. Sanfeliu and K.-S. Fu. A distance measure between
attributed relational graphs for pattern recognition. IEEE
Trans. on Systems, Man, and Cybernetics, (3):353–362, 1983.

[13] R. Singh and S. Gulwani. Learning semantic string
transformations from examples. PVLDB, 5(8):740–751, 2012.

[14] I. H. Witten and D. Mo. TELS: Learning text editing tasks
from examples. In Watch what I do, pages 183–203. 1993.

https://youtu.be/Ura2pxez_Bo
http://openrefine.org

	Problem and Motivation
	System Framework
	User Input
	Synthesized Program
	Our Approach
	System Architecture
	System Performance

	Demonstration
	Conclusion
	ACKNOWLEDGMENTS
	References

