EECS 684: Current Topics in Databases

Barzan Mozafari
mozafari [at] umich.edu
4769 CSE
About Me

• PhD from UCLA 2006-2011
• Postdoc at MIT CSAIL 2011-2013
• Assistant Professor in CSE 2013-now
• Research:
 Applying theory to build systems
 • large-scale data-intensive systems, database-as-a-service, and crowdsourcing
• Office: CSE 4769
 http://web.eecs.umich.edu/~mozafari/
Today’s Class in a Glance

• Introduction
 – What is EECS 684?
 – Getting to know each other
Course Overview

• Regular class meetings:
 – TuTh 1:30-3 PM (*Class starts at 1:40 on Michigan time*)

• Classroom
 – 1003 EECS

• Office Hours:
 – By appointment only (4769 CSE)

• Course Website:
 http://web.eecs.umich.edu/~mozafari/fall2013/eecs584/

• Prerequisites:
 – EECS 484 or 485 or 584, or equivalent course, or instructor’s permission
Course Syllabus

• Current Topics in Databases
 1. Predictability of performance
 2. Human-database interaction
 3. Distributed transaction processing
 4. Multi-core databases
 5. Large-scale machine learning
Course Objectives

• Learn advanced data management concepts
 – for understanding the state-of-the-art
 – for doing research in data management
 – for effective use of current technology

• Learn important research skills
 – Read & critically evaluate research papers
 – Present technical material (orally and in written form)
 – Conduct (small-scale) original research
Papers & Reviews

• You will read 1 paper per class
 – No official text; papers available on course website

• Read paper and post a 300-400 word summary by 11:59 PM the Sunday before class
 – What problem is addressed? Why important?
 – 1-2 main technical contributions? Describe.
 – 1-2 weaknesses or open questions? Describe and discuss.

• Note: no reviews needed for paper presented before Jan 21, i.e. the first submission due Jan 19
Seminar Format

• Typical class meeting:
 – Student-prepared paper presentation (40 minutes)
 – Class discussion (30 minutes)

• Paper presentation goals:
 – Motivate the paper, provide background
 – Highlight key contributions
 – Explain important technical points
 • Examples, examples, examples!

• Use template on course website
Presentation Advice

- Good presentations come from lots of preparation
 - Give yourself plenty of time to read & understand paper
 - You may have to read cited & related papers to fully understand
 - Revise your slides several times

- Beware of presenting too much technical detail
 - Pick most important 1-2 technical items; summarize the rest

- Put yourself in authors’ shoes
 - Why did they do what they did?
 - Are their decisions still good ones?
Discussion Format

• Discussion Format
 – Instructor will lead discussion
 – Be prepared with key questions from the paper
 – I’ll ask specific students questions if needed

• Examples of good discussion questions:
 – Locking and optimistic concurrency control can both be used to provide transactional semantics. When would it be better to use locking? What would it take for a DBMS to implement both kinds of concurrency control?

• All students are expected to participate in discussion!
Course Project

- Major component of the course
- Small-scale original research project
- Opportunity to study a database-related problem in depth
- Work on a project individually
- Not in DB? Choose a project that fits your other interests
- Choose your project by early October
Grading

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Reviews</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>11:59 PM of the Sunday before class</td>
</tr>
<tr>
<td></td>
<td>Student graded (1-3)</td>
</tr>
<tr>
<td>Class Discussions</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>May skip 2 lectures w/ legitimate reasons</td>
</tr>
<tr>
<td>Paper Presentations</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Graded 1-3 based on quality</td>
</tr>
<tr>
<td></td>
<td>2 mandatory presentations</td>
</tr>
<tr>
<td></td>
<td>1 optional (extra 5% credit)</td>
</tr>
<tr>
<td>Final Project</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>Proposal, final presentation, and final paper</td>
</tr>
</tbody>
</table>
Presentation Logistics

• Decide on a date
• Decide on a paper (choose from reading list, or find your own paper!)
• Student presentations begin Tuesday Jan. 21
Course Overview

1. Predictability of performance
2. Human-database interaction
3. Distributed transaction processing
4. Multi-core databases
5. Large-scale machine learning
1. Predictability of Performance

Why do we care about predictability?

- Cloud Computing (Database-as-a-Service)
2. Human-Database Interaction

- Databases are a pain to use!
 - Operating a DB requires mad skills
 - Tuning a DB is black-art
 - Maintaining a DB is labor-intensive
 - DBs are not flexible
 - You need a rigid schema
 - You need to express your query in SQL
 - You need to provision resources in advance

- How can you make a DB easier to use?
3. Distributed Transactions

• What is a transaction?

• ACID properties:
 – Atomicity
 – Consistency
 – Isolation
 – Durability

• Why transactions need to be distributed?

• Trends:
 – NoSQL
 – NewSQL
4. Modern Hardware & Databases

- DBs were designed w/ 30 years, assuming:
 - Memory does not fit the entire data
 - Memory is volatile
 - Random reads slower than sequential seeks
 - There are few CPU cores
- Which one of these assumptions are still true?
- How to design DBs that can take advantage of modern hardware?
5. Machine Learning and Big Data

• Data is as useful as you make it!
 • Machine Learning (ML): a popular method for extracting value from raw data
 – Online Advertisement
 – Human-voice recognition
 – ...

• ML techniques tend to be computationally intense!
• How to design data-intensive systems that can cater to ML workloads?
 • Map-Reduce/Hadoop, GraphLab, etc
Introduce Yourself

• Answer these questions
 – What is your name?
 – Where are you from?
 – What is your affiliation / program at UM?
 – What type of job are you interested in?