EECS 684: Current Topics in Databases

Barzan Mozafari mozafari [at] umich.edu 4769 CSE

About Me

- PhD from UCLA 2006-2011
- Postdoc at MIT CSAIL 2011-2013
- Assistant Professor in CSE 2013-now
- Research:
 - Applying theory to build systems
 - large-scale data-intensive systems, database-as-a-service, and crowdsourcing
- Office: CSE 4769
 - http://web.eecs.umich.edu/~mozafari/

Today's Class in a Glance

- Introduction
 - What is EECS 684?
 - Getting to know each other

Course Overview

- Regular class meetings:
 - TuTh 1:30-3 PM (Class starts at 1:40 on Michigan time)
- Classroom
 - 1003 EECS
- Office Hours:
 - By appointment only (4769 CSE)
- Course Website:

http://web.eecs.umich.edu/~mozafari/fall2013/eecs584/

- Prerequisites:
 - EECS 484 or 485 or 584, or equivalent course, or instructor's permission

Course Syllabus

- Current Topics in Databases
 - 1. Predictability of performance
 - 2. Human-database interaction
 - 3. Distributed transaction processing
 - 4. Multi-core databases
 - 5. Large-scale machine learning

Course Objectives

- Learn advanced data management concepts
 - for understanding the state-of-the-art
 - for doing research in data management
 - for effective use of current technology
- Learn important research skills
 - Read & critically evaluate research papers
 - Present technical material (orally and in written form)
 - Conduct (small-scale) original research

Papers & Reviews

- You will read 1 paper per class
 - No official text; papers available on course website
 - Background / reference: Database Management Systems (3rd Edition) by Ramakrishnan & Gehrke
- Read paper and post a 300-400 word summary by 11:59
 PM the Sunday before class
 - What problem is addressed? Why important?
 - 1-2 main technical contributions? Describe.
 - 1-2 weaknesses or open questions? Describe and discuss.
- Note: no reviews needed for paper presented before Jan 21, i.e. the *first submission due Jan 19*

Seminar Format

- Typical class meeting:
 - Student-prepared paper presentation (40 minutes)
 - Class discussion (30 minutes)
- Paper presentation goals:
 - Motivate the paper, provide background
 - Highlight key contributions
 - Explain important technical points
 - Examples, examples!
- Use template on course website

Presentation Advice

- Good presentations come from lots of preparation
 - Give yourself plenty of time to read & understand paper
 - You may have to read cited & related papers to fully understand
 - Revise your slides several times
- Beware of presenting too much technical detail
 - Pick most important 1-2 technical items; summarize the rest
- Put yourself in authors' shoes
 - Why did they do what they did?
 - Are their decisions still good ones?

Discussion Format

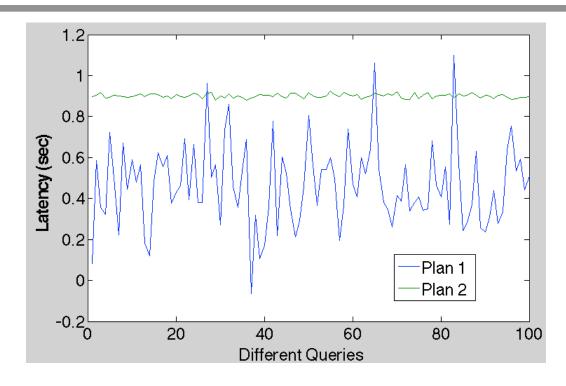
- Discussion Format
 - Instructor will lead discussion
 - Be prepared with key questions from the paper
 - I'll ask specific students questions if needed
- Examples of good discussion questions:
 - Locking and optimistic concurrency control can both be used to provide transactional semantics. When would it be better to use locking? What would it take for a DBMS to implement both kinds of concurrency control?
- All students are expected to participate in discussion!

Course Project

- Major component of the course
- Small-scale original research project
- Opportunity to study a database-related problem in depth
- Work on a project individually
- Not in DB? Choose a project that fits your other interests
- Choose your project by early October

Grading

Paper Reviews 25%	11:59 PM of the Sunday before class Student graded (1-3)
Class Discussions 15%	May skip 2 lectures w/ legitimate reasons
Paper Presentations 20%	Graded 1-3 based on quality 2 mandatory presentations 1 optional (extra 5% credit)
Final Project 40%	Proposal, final presentation, and final paper


Presentation Logistics

- Decide on a date
- Decide on a paper (choose from reading list, or find your own paper!)
- Student presentations begin *Tuesday Jan. 21*

Course Overview

- 1. Predictability of performance
- 2. Human-database interaction
- 3. Distributed transaction processing
- 4. Multi-core databases
- 5. Large-scale machine learning

1. Predictability of Performance

Why do we care about predictability?

Cloud Computing (Database-as-a-Service)

2. Human-Database Interaction

- Databases are a pain to use!
 - Operating a DB requires mad skills
 - Tuning a DB is black-art
 - Maintaining a DB is labor-intensive
 - DBs are not flexible
 - You need a rigid schema
 - You need to express your query in SQL
 - You need to provision resources in advance
- How can you make a DB easier to use?

3. Distributed Transactions

- What is a transaction?
- ACID properties:
 - Atomicity
 - Consistency
 - Isolation
 - Durability
- Why transactions need to be distributed?
- Trends:
 - NoSQL
 - NewSQL

4. Modern Hardware & Databases

- DBs were designed w/ 30 years, assuming:
 - Memory does not fit the entire data
 - Memory is volatile
 - Random reads slower than sequential seeks
 - There are few CPU cores
- Which one of these assumptions are still true?
- How to design DBs that can take advantage of modern hardware?

5. Machine Learning and Big Data

- Data is as useful as you make it!
 - Machine Learning (ML): a popular method for extracting value from raw data
 - Online Advertisement
 - Human-voice recognition
 - _____
- ML techniques tend to be computationally intense!
- How to design data-intensive systems that can cater to ML workloads?
 - Map-Reduce/Hadoop, GraphLab, etc.

Introduce Yourself

- Answer these questions
 - What is your name?
 - Where are you from?
 - What is your affiliation / program at UM?
 - What type of job are you interested in?