
Robustness in Automatic Physical Database Design

Kareem El Gebaly
Ericsson

kareem.gebaly@ericsson.com

Ashraf Aboulnaga
University of Waterloo

ashraf@cs.uwaterloo.ca

ABSTRACT

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

145

the benefit of a physical design may be inaccurate, and (2)
the production workload may be di↵erent from the training
workload. We slightly modify the formulation of the auto-
matic physical design problem to incorporate robustness as
a goal, and we define metrics for measuring robustness that
can be used e↵ectively in our problem formulation. We fo-
cus on making index recommendation more robust. Adding
robustness to other aspects of automatic physical design,
such as recommending materialized views or partitioning, is
a subject of future work.

The first kind of robustness we consider in this paper is
robustness to query optimizer cost estimation errors. All de-
sign advisors that we are aware of rely on query optimizer
cost estimation to evaluate the benefit of candidate physical
designs, augmenting the optimizer with “what-if” interfaces
to create hypothetical physical designs and basing physi-
cal design decisions on query optimizer cost estimates [18].
Query optimizer costing is far from being accurate, espe-
cially when attributes have correlated data distributions.
Mitigating the e↵ect of cost estimation errors due to correla-
tion on query optimization is an active field of research [7, 8,
23]. However, optimizers are likely to continue to make cost
estimation errors in the presence of correlation, and there is
no physical design advisor that is robust against these errors.
In this paper we characterize the e↵ect of query optimizer
costing errors in terms of physical design risk. We define a
Risk metric that quantifies the robustness of index configu-
rations to optimizer errors, and we integrate this metric into
the design advisor.

The second kind of robustness we consider in this paper
is robustness to changes in the workload. Design advisors
assume that the workload used for choosing the physical de-
sign (which we call the training workload) is representative of
the workload in the production environment (which we call
the production workload). Hence, the goal of the advisor
is to find the physical design that minimizes the estimated
execution cost of the training workload. If the production
workload is even slightly di↵erent from the training work-
load, it may not benefit from the chosen physical design. In
this sense, the physical design is overtrained to the training
workload and lacks generality. We define a Generality met-
ric and integrate it into the design advisor to get physical
designs that are more robust.

Our contributions in this paper are as follows:

• Modifying the formulation of the automatic physical
design problem to include robustness as a goal, in ad-
dition to benefit in execution cost.

• Introducing a risk metric that quantifies the robustness
of a physical design to query optimizer errors.

• Introducing a generality metric that quantifies the ro-
bustness of a physical design to workload changes.

• Implementing our proposed metrics in a multi-objective
design advisor (MODA) for PostgreSQL, and an exper-
imental evaluation using this implementation.

The rest of this paper is organized as follows. In Sec-
tion 2, we present an overview of related work. In Section 3,
we present our problem formulation. Sections 4 and 5 intro-
duce our Risk and Generality metrics. Section 6 describes
the design advisor we implemented for PostgreSQL [1], and
Section 7 presents an experimental evaluation of our work
using this advisor. We present conclusions in Section 8.

2. RELATED WORK
Physical design advisors employ di↵erent techniques for

candidate enumeration and search. In [19], candidates are
enumerated externally to the optimizer and a greedy algo-
rithm is used for search. The technique in [25] uses the query
optimizer to choose all relevant indexes then searches for the
best index configuration by solving a 0-1-knapsack problem.
Work shown in [12] introduces a relaxation based approach
for index tuning. The tuning advisor starts by selecting the
optimal configuration for each query to come up with an
optimal overall configuration, then reduces the size of this
configuration by merging indexes until the space constraint
is satisfied. Our work can be used to add robustness to a
design advisor that uses any of these approaches.

In [13, 14, 15] an approach for on-line tuning is intro-
duced, but the important notion of robustness is not dis-
cussed. In [6], the authors introduce a richer workload model
that captures temporal variations in the workload. If the
database has more than one workload that are active at dif-
ferent times, the proposed tuning advisor will be able to
separately tune the separate workloads instead of finding a
design that will benefit the union of all workloads. This
diversity in workloads and designs also increases the impor-
tance of robustness.

One of our goals in this paper is to improve the robust-
ness of physical design recommendations to query optimizer
cost estimation errors. Reducing query optimizer cost es-
timation errors is itself an active area of research. A large
body of work in this area is aimed at improving the col-
lection and maintenance of the data distribution statistics
used by the optimizer [2, 9, 10, 11, 23]. That work deals both
with which statistics to collect and when to collect the statis-
tics [3]. In [7], the estimated runtimes of relational operators
in query plans are modeled as probability distributions, and
the optimizer uses these distributions to choose plans whose
costs are guaranteed to be optimal with probability larger
than a user defined threshold.

All this work in the area of robust query optimization aims
at reducing errors in the cardinality and cost estimates made
by the optimizer. As these estimates become more accurate,
the risk of di↵erent physical designs is reduced. In the limit,
if the optimizer makes no mistakes, there is no need for quan-
tifying or minimizing risk in physical designs. However, we
argue that optimizers will always make errors since they rely
on a model of the data distributions that is necessarily lossy
(since we want to minimize the space required for the model
and the time required for query optimization). Thus, while
work on automatic statistics collection and robust query op-
timization may reduce the riskiness of physical designs, it
will never eliminate it completely.

The other form of robustness we address in this paper is
robustness to workload changes. In physical design liter-
ature, finding a “representative” workload is done through
workload compression, either by using the most expensive
queries as the training workload [4, 19, 20, 26], or by using
more principled workload compression approaches [17, 22].
These approaches to workload compression help reduce the
complexity of finding a good physical design, but they do not
improve the generality of the physical design. If the work-
load changes, the recommended physical design may not be
useful at all.

146

3. PROBLEM FORMULATION
To estimate the benefit to the query workload of a pro-

posed physical database design, current design advisors rely
on a special “what-if” mode of the query optimizer. In this
mode, the design under consideration is simulated by in-
serting the corresponding metadata and statistics into the
catalog. The workload queries are optimized with this simu-
lated physical design in place, and the estimated cost of the
queries is used to measure the quality of the physical design.

The objective of current design advisors is to maximize
the benefit to workload queries of the recommended physical
design (which is equivalent to minimizing estimated execu-
tion cost), subject to a constraint on the amount of storage
available for the physical design. This formulation does not
include robustness as a goal.

To add robustness as a goal of the design advisor, we
need to change the objective function that is maximized.
In this paper, we propose using a simple, weighted multi-
objective function, ⇢(.), that combines three di↵erent met-
rics to measure the quality of a physical design: a benefit
metric, Benefit(.), and two robustness metrics for the two
types of robustness that we consider in this paper, Risk(.)
and Generality(.). The function ⇢(.) combines these metrics
in a weighted sum, and is defined as follows:

⇢(W, CO, CN , q) =

q1 ⇤Benefit(W, CO, CN) + q2 ⇤Risk(W, CO, CN)

+q3 ⇤Generality(W, CO, CN) (1)

The arguments of ⇢ are a SQL query workload, W , which
is the training workload, and two physical design configura-
tions CO and CN . CO is the initial (or default) configuration
that we are trying to improve, and CN is the configuration
to be evaluated. CO is used as a reference configuration
when computing the di↵erent quality metrics, and it can be
the empty configuration. The qi’s are user specified weights
that capture the relative importance of the di↵erent metrics
to the user. We require that

P3
i=1 qi = 1.

Note that adding robustness as a goal does not mean that
we ignore the benefit in execution time of candidate physi-
cal designs. The execution time benefit is still an important
metric in the objective function, but it is now combined with
other metrics. Furthermore, adding robustness as a goal
does not require us to fundamentally change other compo-
nents of the design advisor such as candidate enumeration
or search. By simply changing the objective function, we ob-
tain physical designs that improve performance and at the
same time are robust. We call a design advisor that uses
our multi-objective quality function a multi-objective design
advisor. The goal of such an advisor is to maximize ⇢ for a
given database and workload, subject to a constraint on the
available storage. Our definition of ⇢ has worked well for us
in this work. As part of future work, it would be interesting
to investigate whether alternative ways of combining benefit
and robustness can produce better results.

To be able to easily combine the three quality metrics
in the objective function, their ranges must be comparable.
Thus, we require the Benefit and Generality metrics to
produce values in the range [0, 1], with 0 being the minimum
benefit or generality and 1 being the maximum. The Risk
metric quantifies a property that we want to minimize, so
we require it to produce values in the range [�1, 0], with 0
being the least risky and �1 being the most risky. To fit

this formulation, we define Benefit as follows:

Benefit(W, CO, CN) =
Cost(W, CO)� Cost(W, CN)

Cost(W, CO)
(2)

where Cost(W, C) is the cost estimate produced by the query
optimizer in “what-if” mode for the total execution time
of the workload, W , under physical design configuration
C. This formula is based on the assumption that, for a
“good” CN , Cost(W, CN) Cost(W, CO). Defining Risk
and Generality is a key contribution of this paper, and is
the focus of the next two sections.

4. RISK IN PHYSICAL DESIGN
The Risk metric quantifies the sensitivity of the estimated

benefit of an index configuration to query optimizer errors.
It attempts to measure the e↵ects of the assumptions made
by the optimizer during cost estimation. Our goal in defin-
ing this metric is to choose physical designs with minimal
di↵erence between query optimizer costs and the worst case
costs that may be encountered for workload queries.

4.1 Motivating Risk
Query optimizers make costing errors for many reasons,

but the major cause of error is inaccurate cardinality estima-
tion due to the lack of multi-column statistics on correlated
columns [2, 16]. In the absence of such statistics, query opti-
mizers assume that columns are independently distributed,
which typically leads to cardinalities being significantly un-
derestimated and to bad query execution plans being cho-
sen [3]. Hence, we focus on this type of error.

First, we show that if the physical design advisor bases its
decisions on inaccurate cost estimates, it may recommend
physical designs that can hurt performance instead of help-
ing it. In that sense, the physical designs are risky. As an
example, we use queries on the TPC-H Benchmark database
with scale factor 1 (1GB) [24]. Throughout the paper we use
PostgreSQL as our database system (details in Section 7).
Consider the following query template:

Q1:
SELECT AVG (l extendedprice)
FROM LineItem
WHERE l shipdate BETWEEN D1 AND D2
AND l receiptdate BETWEEN D3 AND D4.

The two columns l shipdate and l receiptdate in the
LineItem table are correlated. This may be known to the
DBA through domain knowledge, but it is not known to a
design advisor. To examine the e↵ect of this correlation on
physical design, we vary the dates D1–D4 to create high
selectivity time intervals that are 10 days long and low se-
lectivity time intervals that are 1 month long. The date
ranges we choose for l shipdate and l receiptdate either
correspond exactly, in which case the predicates are posi-
tively correlated, or the l receiptdate interval is before the
l shipdate interval, in which case the predicates are nega-
tively correlated.

We study the performance of queries with the di↵erent
combinations of low (L) vs. high (H) selectivity and nega-
tive (N) vs. positive (C) correlation. Figures 2 and 3 show
the estimated and actual execution costs, respectively, for
the di↵erent combinations when no indexes exist and when
there is an index on (l shipdate,l receiptdate). When the
index exists, the query optimizer chooses it as the access
path. When there is no index, the query optimizer must

147

Figure 2: E↵ect of correlation (estimated cost).

Figure 3: E↵ect of correlation (actual cost).

choose a sequential scan. From Figure 2, we see that the
estimated cost using a sequential scan is significantly higher
than the estimated cost using indexes. From Figure 3, we
see that the actual execution time of the queries with no
correlation is indeed significantly lower using an index ver-
sus using sequential scan. On the other hand, the execution
time of the correlated queries using an index is much worse
than the runtime using sequential scan. The query optimizer
makes this error because it is assuming that l shipdate and
l receiptdate are independent, and this leads to the bene-
fit of the index being estimated much higher than it really
is. Therefore, this index will most likely be selected over
potentially more useful indexes or even a cheaper sequential
scan. Thus, the index is risky. The query optimizer and
candidate enumeration algorithm of the design advisor have
no means to avoid this. In fact, we argue that a good de-
sign advisor enumeration algorithm must choose indexes on
selective predicates as candidate indexes.

Since the query optimizer tends to overestimate the bene-
fit of risky indexes, the design advisor will choose these less
useful or even bad indexes over more useful ones. This has
two undesirable e↵ects. If the index is used, it will be in-
volved in a wrong plan that may cause a performance degra-
dation instead of improvement. At best, if the query opti-
mizer is a learning or proactive optimizer the index may not
be used in the future. In this case, the index will end up
hurting the performance of update statements and wasting
useful disk space budget. Thus, our goal is to avoid such
risky indexes. We present our metric for enabling this next.

4.2 Risk Metric
We require the query optimizer to return two cost esti-

mates for each query and not one: a normal cost and a
worst case cost. The normal cost is the unchanged query
optimizer estimated cost, while the worst case cost is cal-
culated assuming the optimizer assumptions are violated in
the worst possible way. Since we focus on the independence
assumption, whenever the optimizer needs to estimate the
joint selectivity of multi-column predicates we assume full
correlation instead of assuming independence. For this pes-
simistic approach, the joint selectivity of the predicates is
the minimum of the selectivities and not their product. We
call this worst case costing method Minimal Assumptions
eXtreme cost Estimation or MAXE cost.

To support MAXE cost estimation, we need to make
changes to the database server to modify the query opti-
mizer so that it returns two costs for each operator: the
normal cost and the MAXE cost assuming worst case car-
dinality for multi-columns predicates. The MAXE cost is
always greater than or equal to the normal cost. We have
made these changes in the query optimizer of PostgreSQL
and we describe them in Section 4.3. The required changes
in any other DBMS would be similar.

We define the MAXE gap as the ratio between the MAXE
cost of the workload on index configuration C and normal
cost of the workload on this configuration. This represents
an estimate of how much worse the worst case cost could be
as compared to the expected cost:

MAXE Gap(W, C) =
MAXE(W, C)

Cost(W, C)

Directly using the MAXE gap as a measure of risk for a
configuration, CN , can yield poor results because it ignores
the MAXE gap of the original configuration, CO. Instead,
we use the factor of increase in the MAXE gap of CN as com-
pared to CO: MAXE Gap(W, CN)/MAXE Gap(W, CO).
The higher this factor, the more risky the configuration CN .
Since we want the risk metric to range from �1 to 0, with
�1 being the most risky, we define our risk metric as follows:

Risk(W, CO, CN) =
0

@
P

q2W

⇣
MAXE(q,CO)

Cost(q,CO) /MAXE(q,CN)
Cost(q,CN)

⌘

|W |

1

A � 1 (3)

If the increase in MAXE gap for configuration CN is high
(i.e., CN is risky), the ratio inside the summation will de-
crease, and hence the overall Risk metric will move closer
to �1. Dividing by |W | is necessary to normalize the sum-
mation to the range [0, 1].

4.3 Calculating MAXE Cost in PostgreSQL
We have made changes to PostgreSQL 8.1 to add the

server side extensions required for our work. We added
a new keyword HYPOTHETICAL. Starting a CRE-
ATE INDEX command with HYPOTHETICAL will cre-
ate the index as a virtual (hypothetical) index. The Post-
greSQL server is allowed to add the index metadata to the
catalog but index creation is stopped before actually build-
ing the index. The index size is an important statistic, so
we make sure it is computed correctly. Virtual indexes can
be used by the optimizer like normal indexes, which enables

148

us to estimate normal plan costs for any configuration.
To estimate MAXE cost, we need to estimate worst case

selectivity. This required modifying two routines in which
selectivities of multiple predicates are combined:

1. Clause List Selectivity Estimation:
This routine is used by the PostgreSQL query opti-
mizer to compute the selectivity of conjunctive and
disjunctive lists of predicates on the same relation.

2. Cost Bitmap And Node:
This routine estimates the overhead of using an index
to access a relation. It calculates the cost of retrieving
record ids or values from the B-tree index, depending
on the selectivity of the predicates using the index.

In both these routines, PostgreSQL assumes that predi-
cates on di↵erent columns are independent, so the optimizer
multiplies the selectivities of the predicates to evaluate the
overall selectivity. This overall selectivity is used to estimate
the normal (non-MAXE) cost. To compute the MAXE se-
lectivity we select the minimum selectivity of all the predi-
cates, which is the worst case selectivity in the case where all
predicates are fully correlated, and we use this minimum se-
lectivity as the overall selectivity of the predicate list. This
MAXE selectivity is then used by the optimizer to estimate
MAXE cost for the query plan.

In addition to modifying the way selectivities are esti-
mated, we also needed to change the cost estimation func-
tions of PostgreSQL to return two costs instead of one:
the original query optimizer cost, and the MAXE cost. A
fundamental change that enables this is changing the selec-
tivity and cost data types in PostgreSQL from doubles to
structs with two members for the two costs. In total, our
modifications to PostgreSQL required changes in 35 files and
involved 2300 lines of code. More details about the changes
are available in [21].

5. GENERALITY IN PHYSICAL DESIGN
The second type of robustness that we consider in this

paper is robustness to changes in the workload. State of the
art physical design advisors recommend the physical design
that minimizes the execution cost of the training workload.
This assumes that the production workload will not be dif-
ferent from the training workload. In practice, the training
workload is collected from past queries and compiled state-
ments. Therefore, it is possible for the production workload
to be di↵erent from the training workload, and it would be
desirable for the design advisor to be able to deal with this
possibility. Queries in the production workload could be any
list of valid SQL queries, and they could be di↵erent from
the training workload in parameter markers, frequencies, or
query templates. We discuss each of these categories of dif-
ferences next:

1. Parameter Marker Change:
For this type of change, the query templates and fre-
quencies in the production workload are the same as
the training workload but the parameter marker values
(the constant values provided to the query) are di↵er-
ent. This case is relevant if the queries in the workload
come from prepared statements or precompiled appli-
cations. In this case, the values bound to the param-
eter markers will vary depending on the behavior of

the application. Changes in parameter marker values
reflect on the desired indexes in two ways. First, they
may make indexes on new candidate column combina-
tions desirable. Second, they may a↵ect the desired
index column order.

We observe that it is possible to e↵ectively provision
for changes in parameter marker values by choosing in-
dex configurations that have a higher number of unique
index prefixes. An index configuration with a higher
number of unique prefixes will benefit a wider class
of queries, so we say it is more general. We propose
a generality metric that assesses how general the in-
dex configuration is along this dimension. Our metric
quantifies how good an index configuration is in terms
of the number of unique (non-redundant) prefixes. The
less redundant the prefixes are, the better the general-
ity of the index configuration.

2. Query Frequency Change:
For this type of change, the query templates and pa-
rameter markers do not change in a way that a↵ects
the desired physical design, but the relative frequencies
of the queries in the workload do change. This happens
when the mix of application requests in the produc-
tion workload is di↵erent from the mix in the training
workload. Having a general configuration with a high
number of unique prefixes will also provide robustness
to this type of change.

3. Query Template Change:
If query templates are not fixed, meaning that each
query could be completely di↵erent from all previous
queries, then the cost-based workload aware approach
is not appropriate for index tuning. There is no room
for provisioning for this type of change since the pro-
duction workload may be arbitrarily di↵erent from any
training workload. The best solution for index tuning
in this case is to rely on heuristic-based physical de-
signs.

5.1 Motivating Generality
In this section, we motivate the need for choosing index

configurations with a large number of leading columns. We
start by demonstrating how overtraining to the given work-
load can lead to configurations with a small number of lead-
ing columns.

Consider the following database and workload. The
database has one relation R with five attributes (a, b, c, d,
x), each of type decimal. In this synthetic relation, rows
are generated according to a uniform distribution in the
range [0 � 1]. The attributes are generated independently,
so query optimizer estimates are accurate. Throughout our
study of generality, we always rely on optimizer cost esti-
mates to evaluate physical designs, and we make sure that
the attributes are uniform and independent so that these op-
timizer estimates are indeed accurate. This is appropriate
for the goal of generality, which is to provision for changes
in the workload, not for optimizer errors. Thus, using opti-
mizer estimates to study generality is the simplest and most
direct approach.

We have generated a sample relation R with 4M rows
(455MB on disk). We consider a workload of four queries,
given in Figure 4, that has an estimated execution cost of
506K optimizer units on a configuration with no indexes. Let

149

Index Column Order Estimated Cost
; 180,966

a,b,c 48,078
a,c,b 48,078
b,a,c 44,427
b,c,a 44,427
c,a,b 40,159
c,b,a 40,159

Table 3: Estimated cost for Q2.

us assume that we have an unbounded disk space budget, so
we can recommend any indexes we want. In this case, the op-
timal configuration that minimizes the estimated execution
cost has four indexes {I(R.a), I(R.a, R.b), I(R.a, R.b, R.c),
I(R.a, R.b, R.c, R.d)}. In this optimal configuration, the in-
dex columns exactly match the columns in the query pred-
icates and the column order in the index matches the se-
lectivity of the predicates. The estimated execution cost of
this configuration is 311K optimizer units. However, there
is a lot of redundancy in the recommended indexes, and
if the selectivities of the predicates change due to changes
in parameter values, no good indexes will be found. The
index configuration has only 4 unique leading prefixes, as
shown in Table 1. On the other hand, consider the alter-
native configuration {I(R.a), I(R.b, R.a), I(R.c, R.a, R.b),
I(R.d, R.a, R.b, R.c)}. This configuration would give a sub-
optimal estimated execution cost of 370K optimizer units
(an increase of 19%), but the number of unique leading pre-
fixes in this configuration is 10, as shown in Table 2. There-
fore, it benefits a wider class of queries. We can see that
the first index configuration is naive and overtrained. An
expert DBA would never allow these indexes to reach pro-
duction unless she has prior knowledge that the production
workload will exactly match the training workload.

Our solution to prevent this kind of overtraining is to mea-
sure the number of unique leading prefixes in the index con-
figurations and try to maximize it. This may cause a slight
reduction in performance but it allows the design advisor
to provision for a much wider class of workloads and not
overtrain for the given training workload. To illustrate the
importance of having many di↵erent leading prefixes (i.e.,
many di↵erent index column orders), consider the following
two queries on relation R described above:

Q2:
SELECT AVG (x)
FROM R
WHERE a < 0.15 AND b < 0.125 AND c < 0.1

Q3:
SELECT AVG (x)
FROM R
WHERE a < 0.01 AND b < 0.1 AND c < 0.5

The estimated execution cost of these two queries for dif-
ferent index configurations each containing one index with
di↵erent index column orders is shown in Tables 3 and 4.
The tables shows that index column order does not matter
for Q2. The di↵erence between the worst and the best col-
umn orders is 20%. On the other hand, index column order
has a significant e↵ect on the performance of Q3. Choosing
the wrong index column order can degrade performance by

Index Column Order Estimated Cost
; 180,953

a,b,c 8,900
a,c,b 8,900
b,a,c 24,767
b,c,a 24,767
c,a,b 98,868
c,b,a 98,868

Table 4: Estimated cost for Q3.

an order of magnitude. We would like the design advisor
to include as many column orders as possible, potentially
choosing column orders that are suboptimal where it does
not matter, such as for Q2, so that the required column or-
ders are available when they do matter for a query such as
Q3, even if this query was not part of the training workload.
We rely on the fact that indexes can be useful even if the
query predicates do not exactly match index columns. For
example, an index I(a, b, c) could be used to reduce runtime
of queries on columns {a, b, d}. In general, an index on a set
of columns can benefit a query on a di↵erent set of columns
if the two sets of columns have a common prefix. Hence our
focus on increasing the number of prefixes.

A design advisor will typically recommend indexes with
an increasing number of unique prefixes as the number of
training queries increases. Thus, the design advisor becomes
more general and less overtrained as it sees more queries. By
defining generality as a goal for the design advisor, we di-
rect it to recommend index configurations with many unique
prefixes even without seeing many queries. This allows the
recommended configurations to benefit queries beyond those
seen in the training workload.

5.2 Generality Metric
We use a simple metric to assess the generality of an in-

dex configuration. We know that the higher the number
of unique prefixes the better the generality. At the same
time, we want the generality metric to return a number in
the range [0, 1]. Thus, we define the Generality metric as
follows:

Generality(W, CO, CN) =

Number of unique index prefixes in CN

Number of possible unique prefixes for CN
(4)

The number of unique index prefixes in CN is the car-
dinality of the set containing all the index prefixes in the
configuration. The number of possible unique index pre-
fixes for CN is calculated by adding the number of columns
in every index. For example, the configuration {I(a, b, c),
I(b, d)} has a three column index and a two column index.
The three column index I(a, b, c) may be used whenever one
of the three indexes {I(a), I(a, b), I(a, b, c)} would be useful.
Thus, the three column index gives us the opportunity to
have three unique prefixes. Similarly, the two column in-
dex I(b, d) may be used whenever one of the two indexes
{I(b), I(b, d)} would be useful, so it gives us the opportu-
nity to have two unique prefixes. Therefore the number of
possible unique prefixes for this configuration is five. In this
case, the actual number of unique prefixes is also five, so the
configuration is as general as possible and has a Generality
value of 1.

Our generality metric is easy to compute without the need

150

SELECT AVG (x)
FROM R
WHERE a<0.01

SELECT AVG (x)
FROM R
WHERE a < 0.09 AND b < 0.11

SELECT AVG (x)
FROM R
WHERE a<0.25 AND b< 0.3 AND c< 0.35

SELECT AVG (x)
FROM R
WHERE a< 0.3 AND b< 0.35 AND c< 0.4
AND d< 0.45

Figure 4: Workload for illustrating overtraining.

Indexes Unique Prefixes
R(a) {R(a)}
R(a, b) {R(a), R(a, b)}
R(a, b, c) {R(a), R(a, b), R(a, b, c)}
R(a, b, c, d) {R(a), R(a, b), R(a, b, c), R(a, b, c, d)}
{R(a), R(a, b), R(a, b, c), R(a, b, c, d)} {R(a), R(a, b), R(a, b, c), R(a, b, c, d)}

Table 1: Unique prefixes in the optimal configuration.

for any server side extensions. It does not depend on W ,
which is expected since it is measuring the potential for
benefiting queries beyond W . It also does not depend on
CO. With the metrics defined in Equations 2–4, we now
have all the components of the objective function defined in
Equation 1, and we can use this objective function to add
robustness to a physical design advisor.

6. MULTI-OBJECTIVE DESIGN ADVISOR
To evaluate the e↵ectiveness of our approach for pro-

viding robustness, we have implemented a design advisor
that optimizes the multi-objective cost function defined in
Equation 1. We call our design advisor MODA for Multi-
Objective Design Advisor. The weights in Equation 1 enable
the user to specify the relative importance of the di↵erent
quality metrics. If the user sets the weight on the Risk and
Generality metrics to zero, MODA will behave like a nor-
mal index tuning advisor that does not have robustness as a
goal. On the other hand, if the user increases the weight on
risk and generality, MODA will be biased towards choosing
designs that provision for query optimizer errors and work-
load changes.

In this paper we want to focus on the e↵ects of the pro-
posed robustness metrics on the behavior of the design ad-
visor. Hence, we want the candidate enumeration, search,
and benefit estimation of MODA to be as comprehensive
as possible. Typical design advisors use di↵erent techniques
that reduce tuning time but may also reduce the quality
of the chosen solution. In particular, design advisors may
choose to ignore index interaction and compute the benefit
of an index only once regardless of what other indexes exist.
Design advisors may also prune the space of configurations
searched using heuristics, and these heuristics may prune
away the optimal configuration. In MODA, we take index
interaction into account and we have minimal pruning. To
take index interaction into account, we re-evaluate the ben-
efit of all candidate indexes whenever we add an index to
the recommended configuration. To avoid excessive prun-
ing, we only prune syntactically irrelevant index columns
and indexes that do not benefit any query in the workload.

Algorithm 1 presents the outline of the MODA index rec-
ommendation process. The algorithm takes as input a work-
load, W , the amount of available storage, S, the current

index configuration, CO, and the weights for the di↵erent
quality metrics, q1–q3. The algorithm starts by generat-
ing candidate indexes by syntactically analyzing the work-
load. We consider any column mentioned in the SELECT,
WHERE, ORDER BY, and GROUP BY clauses as a
candidate index column. We also consider all combinations
of two or three candidate columns as candidate indexes. The
algorithm then repeatedly computes the overall quality of
every candidate index and greedily chooses the candidate
with the highest quality while satisfying the disk space con-
straint. Candidate indexes are re-evaluated after adding an
index to the recommended configuration so that we can take
index interactions into account. If a candidate index has
zero benefit for all workload queries (or negative benefit due
to updates) we remove it from further consideration. The
algorithm stops when it exhausts the available disk space
budget.

This algorithm employs a greedy search over an exten-
sive set of candidates while taking index interaction into ac-
count, which means that it may be slow but it will typically
find an index configuration that is close to optimal. This
makes it suitable for the purpose of evaluating our metrics.
We have implemented the server side extensions required for
MODA in PostgreSQL, as described in Section 4. The client
side MODA application connects to this modified server and
recommends index configurations for a given workload.

7. EXPERIMENTAL EVALUATION

7.1 Experimental Setup
In our experiments we use a PostgreSQL 8.1 server mod-

ified as described in Section 4.3. The client side MODA
application is written in C++. All the experiments are run
on a machine with dual 3.4GHz Intel Xeon CPUs and 4.0
GB of RAM running Fedora Core 6. The memory settings
for PostgreSQL are 100MB for shared bu↵ers, 100MB for
temporarily bu↵ers, and 50MB for working memory. All
our experiments were run cold, with the PostgreSQL bu↵ers
and the file system cache cleared between experiments.

Di↵erent experiments use di↵erent databases and work-
loads, described in their respective sections. We chose to
use di↵erent databases and workloads because we want to
illustrate di↵erent kinds of problems that arise due to lack of

151

Indexes Unique Prefixes
R(a) {R(a)}
R(b, a) {R(b), R(b, a)}
R(c, a, b) {R(c), R(c, a), R(c, a, b)}
R(d, a, b, c) {R(d), R(d, a), R(d, a, b), R(d, a, b, c)}
{R(a), R(b, a), R(c, a, b), R(d, a, b, c)} {R(a), R(b), R(c), R(d), R(b, a), R(c, a),

R(c, a, b), R(d, a), R(d, a, b), R(d, a, b, c)}

Table 2: Unique prefixes in the alternative configuration.

Algorithm 1 Multi-Objective Design Advisor - (MODA)

MODA(W , S, C0, q1, q2, q3)

1 cands All candidate indexes generated from W
2 CN C0 ⇤ Recommended configuration.
3 A S ⇤ Available disk space.
4 candFound true ⇤ Did we add a candidate in the last iteration?
5 while A > 0 and candFound
6 do
7 ⇤ Evaluate candidates.
8 for i 0 to |cands|
9 do

10 CreateHypotheticalIndex(cands[i])
11 CTemp CN [cands[i]
12 cands[i].size Estimated size of hypothetical index cands[i]
13 cands[i].benefit Benefit(W, CO, CTemp)
14 cands[i].risk Risk(W, CO, CTemp)
15 cands[i].generality Generality(W, CO, CTemp)
16 cands[i].MODA quality q1 ⇤ cands[i].benefit + q2 ⇤ cands[i].risk + q3 ⇤ cands[i].generality
17 ⇤ Prune candidates that do not benefit any query.
18 if (cands[i].benefit <= 0)
19 then
20 Remove cands[i] from cands
21 DropHypotheticalIndex(cands[i])
22
23 ⇤ Choose next candidate.
24 candFound false
25 Sort cands descendingly on MODA quality
26 for i 0 to |cands|
27 do
28 if cands[i].size < A
29 then
30 candFound true
31 CN CN [cands[i]
32 A A� cands[i].size
33 CreateHypotheticalIndex(cands[i])
34 Remove cands[i] from cands
35 break ⇤ Goto 5.
36 return CN

152

Figure 5: Execution time of Q4 - Bitmap Index Scan.

robustness and how well we protect against them. One can
view the di↵erent problems as di↵erent kinds of“bugs” in the
physical design. It is possible to devise a single database and
workload that illustrates all the di↵erent kinds of bugs, but
that database and workload will likely be highly contrived
and hence will not help us gain any insights. Using di↵erent
databases and workloads for di↵erent experiments helps us
gain the required insights.

7.2 Measuring Risk
In our first experiment, we ask how much risk there can

be in a physical design, and whether our approach for mea-
suring this risk is e↵ective. Consider the following query
template on relation S(a, b, c):

Q4:
SELECT AVG (c)
FROM S
WHERE a BETWEEN V 1 AND V 2
AND b BETWEEN V 3 AND V 4

We synthetically generate di↵erent instances of relation
S(a, b, c), each with 16 million rows. To be able to control
the degree of correlation we generate the three columns a,
b, and c as independent, uniformly distributed random vari-
ables in the range [0 � 1]. We then choose a percentage of
the rows and make their a and b columns equal, thereby
introducing correlation. For this experiment, we vary the
percentage of rows for which a and b are made equal from
0% to 100%.

Figure 5 shows the actual execution time of Q4 on rela-
tions with varying degrees of correlation when V 1-V 4 are
chosen to make the selectivity of the predicates on a and
b both be 0.1. The query optimizer assumes a and b are
independent and so it estimates the combined selectivity of
both predicates to be 0.01. Based on this, the optimizer
would choose to use an index on (a, b) if one exists, using
the Bitmap Index Scan relational operator to access the in-
dex. Figure 5 shows the execution time when an index on
(a, b) exists and is used by the query and when no index ex-
ists so a sequential scan is used. At the level of correlation
of 0%, which is the point assumed by the optimizer, using
the index is indeed better than using a sequential scan so
the decision to use the index is correct. When correlations

Figure 6: Execution time of Q4 - Index Scan.

exist, the sequential scan is always better than the index
scan because the index scan performs a lot more I/O so the
choice made by the optimizer is wrong. The execution time
using the index can be almost 3 times slower than using the
sequential scan, due to the riskiness of the index. Note that
at higher degrees of correlation the execution time using an
index drops and becomes similar to that of a sequential scan
because the file system detects the pattern of I/O requests
and prefetches the file containing the relation in a sequential
fashion.

Figure 6 shows the same experiment as Figure 5, but when
V 1-V 4 are chosen to make the selectivity of the predicates
on a and b both be 0.001. The PostgreSQL query optimizer
still chooses to use an index on (a, b) if one exists, but for
these more selective predicates it uses an Index Scan oper-
ator instead of a Bitmap Index Scan operator. As in the
previous experiment, we see that the index is risky, and can
degrade performance by a factor of almost 7.

Thus, we can see that even for simple queries, choosing
risky designs can lead to significant performance degrada-
tion. For the first query, the estimated cost when using the
index on (a, b) is 36, 034 optimizer units, while the MAXE
cost is 118, 839 optimizer units, leading to a MAXE gap of
3.3. For the second query, the estimated cost using the index
is 301 optimizer units while the MAXE cost is 29, 410 opti-
mizer units, giving a MAXE Gap of 97.7. Thus, we can see
that our approach to measuring risk does distinguish more
risky from less risky designs.

7.3 Effectiveness of the Risk Metric
Next, we turn our attention to whether our Risk met-

ric can e↵ectively make recommended physical designs more
robust to query optimizer errors. For this experiment, we
use our MODA design advisor and two realistic workloads
based on the TPC-H Benchmark with scale factor 1 (1GB).
For each workload, we run the MODA design advisor on the
workload queries giving it a disk space budget that its twice
the database size, create the recommended index configura-
tion, and measure the actual execution time of the workload
using this configuration. We repeat the process for di↵erent
values of q2, the weight on the risk metric in Equation 1.
Sine the training workload is the same as the test workload,
we set the weight on the generality metric, q3, to 0. The
weight on benefit is set to q1 = 1� q2.

For our first experiment in this section, we use a syn-

153

Figure 7: E↵ectiveness of the risk metric - synthetic
queries.

thetic workload on an unmodified TPC-H database. The
workload consists of queries with range predicates on the
correlated l shipdate, l receiptdate, and l commitdate
attributes of the LineItem table. A listing of these queries
can be found in [21]. Figure 7 shows the execution time of
these queries for varying weights on the risk metric in the
MODA design advisor. Due to the correlation in the data,
the physical design recommended when the weight risk is 0
is sub-optimal. However, by increasing the weight on the
risk metric, the design advisor will start shifting towards
configurations that are less risky (i.e. more robust) so exe-
cution time decreases up to a certain point. After this point
the design advisor starts to choose bad designs because it de-
emphasizes benefit too much. The point at which the weight
on risk is 0 resembles the performance of a traditional de-
sign advisor. It is clear that the risk-aware design advisor
performs much better than such a traditional advisor.

For the second experiment in this section, we use
the standard 22 TPC-H Benchmark queries, but
we modify the TPC-H data generator to introduce
correlation among columns (LineItem.l quantity,
LineItem.l discount), (Part.p container, Part.p size),
and (PartSupp.ps availqty, PartSupp.ps supplycost).
Figure 8 shows the execution time of the 22 TPC-H Bench-
mark queries while varying the weight on risk. As before,
we observe that the risk-aware design advisor performs
better than the traditional design advisor.

7.4 Evaluating Generality
To evaluate the generality metric, we need a setting that

is rich enough so that the test workload can be significantly
di↵erent from the training workload. To get this, we create
a synthetic relation, G, that has 4M rows and 11 decimal
columns each generated independently according to a uni-
form distribution in the range [0 � 1]. This matches the
assumptions made by the optimizer and allows us to rely on
optimizer estimates to evaluate performance.

We generate workloads that contain 100 aggregation queries
using the following query template:

Q5:
SELECT AVG (x)
FROM G
WHERE P � list

Figure 8: E↵ectiveness of the risk metric - TPC-H
benchmark queries.

Figure 9: Unique prefixes - 3⇥ DB size

P � list is a list of conjunctive range predicates generated
using the following random process. We first choose a ran-
dom integer in the range [1, 5] which determines the number
of range predicates to use. We choose the columns to use
with each predicate at random according to a uniform dis-
tribution. To determine the selectivity of each predicate we
generate a uniform random variable in the range [1, 10] to
determine the selectivity class. We have chosen 10 di↵erent
selectivity classes ranging from very high selectivity to very
low selectivity. The selectivities of predicates in the di↵erent
selectivity classes are as follows: {1⇤10�3, 5⇤10�3, 1⇤10�2,
5 ⇤ 10�2, 1 ⇤ 10�1, 0.5, 0.6, 0.7, 0.8, 0.9}.

We have created three di↵erent workloads, which we call
the Left, Right, and Uniform workloads. To generate the
Left workload we restrict predicates on the first four columns
to the five most selective predicate classes. To generate
the Right workload, we restrict predicates on the last four
columns to the five most selective predicate classes. For the
Uniform workload there are no restrictions on the selectiv-
ity classes. Having three workloads allows us to have a test
workload that is di↵erent from the training workload, which
is important to evaluate generality.

The first experiment in this section explores the relation-
ship between the number of unique prefixes recommended
by a traditional design advisor and the number of queries

154

Figure 10: Unique prefixes - 4⇥ DB size

Figure 11: Unique prefixes - varying size constraint.

in the training workload. The goal is to show that a tradi-
tional design advisor makes more general recommendations
as it sees more queries. Figures 9 and 10 show the number
of unique prefixes in the configuration recommended by the
MODA design advisor for a disk space budget of 3 times and
4 times the database size, respectively. In each figure, we
vary the number of queries in the training workload from 2
to 100, using queries in the Left workload. Since we are mod-
eling a traditional design advisor, we set the weight on the
benefit metric to 1 and the weights on the risk and generality
metrics to 0. We observe that the number of unique prefixes
increases by increasing the number of queries in the train-
ing workload, which means that the design advisor becomes
more general and less overtrained as it sees more queries. It
also means that the more queries there are in the workload,
the larger the number of unique prefixes that can be useful.
This validates our goal of increasing the number of unique
prefixes even for a small number of queries in the training
workload. In the current experiment, the design advisor
that saw, say, 20 queries will not be able to recommend the
unique prefixes that are useful for the remaining 80 queries
in the workload. The generality metric is aimed at enabling
the design advisor to recommend such prefixes.

In our next experiment, we study the e↵ectiveness of our
generality metric in capturing the number of unique prefixes
and helping the design advisor maximize it. Figure 11 shows
the number of unique prefixes recommended by the MODA
design advisor for the 100 queries in the Left workload. The

Figure 12: Evaluating generality - 3⇥ DB size

Figure 13: Evaluating generality - 4⇥ DB size

figure shows values for five di↵erent settings of the weight on
generality (GW), and for varying index configuration size.
The weight on risk is set to 0. When the weight on generality
is set to 0, MODA behaves like a traditional design advisor.
As the weight on generality increases, MODA starts to max-
imize the number of unique index prefixes more rapidly than
the traditional design advisor. This shows that the general-
ity metric achieves its goal of maximizing number of unique
prefixes.

In our final experiment, we demonstrate that the gener-
ality metric helps the design advisor benefit queries beyond
those seen in the training workload. We train the design
advisor with the Left workload, and we implement the con-
figuration it recommends. We then test performance with
the Left, Right, and Uniform workloads. Recall that each
workload has 100 queries. We set the weight on risk metric,
q2, to 0, and we vary the weight on the generality metric, q3.
The weight on benefit is set to q1 = 1�q3. Figures 12 and 13
show the results of this experiment for index configurations
that are 3 and 4 times the database size, respectively. The
figures show that increasing the weight on generality does
not hurt the performance of the training workload (Left)
but it improves the performance of the test workloads (Right
and Uniform). Thus, we can see that the generality metric
helps us achieve the goal of recommending robust physical
designs that benefit not only the training workload, but also
previously unseen test workloads.

155

8. CONCLUSION
As we increasingly move towards database systems with

truly zero administration, physical design advisors need to
make recommendations that are more robust, since they will
be implemented without being verified by a DBA. In this pa-
per, we present two dimensions for measuring the robustness
of a physical design and two metrics for evaluating the qual-
ity of a physical design along these dimensions. The Risk
metric quantifies confidence in the query optimizer costing of
the benefit of an index to a query workload. The Generality
metric quantifies the robustness of an index configuration
to changes in the query workload. These two metrics can
be combined with the expected benefit of the recommended
physical design in a multi-objective design advisor. We have
implemented such an advisor for PostgreSQL, and we show
experimentally using this implementation that our approach
does indeed result in physical design recommendations that
are more robust.

For future work, it would be interesting to expand our
current work to include other notions of robustness such as
protecting against errors made by the optimizer for reasons
other than cardinality estimation inaccuracy, robustness to
changes in query frequencies in the workload, and even ro-
bustness to fundamental changes in the query templates. It
would also be interesting to investigate robustness in the
context of other physical design decisions, such as recom-
mending materialized views. Also, since many database sys-
tems are moving towards automatically collecting workload
aware multi-column and join statistics, it would be inter-
esting to see how much these statistics would reduce risk,
and how to adapt the risk metric to systems that use these
statistics. Finally, it would be interesting to integrate our
notion of robustness into an on-line physical design tuner as
a step towards truly zero administration database systems.

ACKNOWLEDGMENT
This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

9. REFERENCES
[1] PostgreSQL. http://www.postgresql.org.
[2] A. Aboulnaga and S. Chaudhuri. Self-tuning

histograms: building histograms without looking at
data. In Proc. SIGMOD, 1999.

[3] A. Aboulnaga, P. J. Haas, S. Lightstone, G. M.
Lohman, V. Markl, I. Popivanov, and V. Raman.
Automated statistics collection in DB2 UDB. In Proc.
VLDB, 2004.

[4] S. Agrawal, S. Chaudhuri, L. Kollár, A. P. Marathe,
V. R. Narasayya, and M. Syamala. Database tuning
advisor for Microsoft SQL Server 2005. In Proc.
VLDB, 2004.

[5] S. Agrawal, S. Chaudhuri, and V. R. Narasayya.
Automated selection of materialized views and indexes
in SQL databases. In Proc. VLDB, 2000.

[6] S. Agrawal, E. Chu, and V. R. Narasayya. Automatic
physical design tuning: Workload as a sequence. In
Proc. SIGMOD, 2006.

[7] B. Babcock and S. Chaudhuri. Towards a robust
query optimizer: A principled and practical approach.
In Proc. SIGMOD, 2005.

[8] S. Babu, P. Bizarro, and D. DeWitt. Proactive
re-optimization. In Proc. SIGMOD, 2005.

[9] N. Bruno and S. Chaudhuri. Exploiting statistics on
query expressions for optimization. In Proc. SIGMOD,
2002.

[10] N. Bruno and S. Chaudhuri. E�cient creation of
statistics over query expressions. In Proc. ICDE, 2003.

[11] N. Bruno and S. Chaudhuri. Conditional selectivity
for statistics on query expressions. In Proc. SIGMOD,
2004.

[12] N. Bruno and S. Chaudhuri. Automatic physical
database tuning: A relaxation-based approach. In
Proc. SIGMOD, 2005.

[13] N. Bruno and S. Chaudhuri. Physical design
refinement: The “merge-reduce” approach. In Proc.
EDBT, 2006.

[14] N. Bruno and S. Chaudhuri. To tune or not to tune?
A lightweight physical design alerter. In Proc. VLDB,
2006.

[15] N. Bruno and S. Chaudhuri. An online approach to
physical design tuning. In Proc. ICDE, 2007.

[16] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A
multidimensional workload-aware histogram. In Proc.
SIGMOD, 2001.

[17] S. Chaudhuri, A. K. Gupta, and V. R. Narasayya.
Compressing SQL workloads. In Proc. SIGMOD, 2002.

[18] S. Chaudhuri and V. Narasayya. Autoadmin “what-if”
index analysis utility. In Proc. SIGMOD, 1998.

[19] S. Chaudhuri and V. R. Narasayya. An e�cient
cost-driven index selection tool for Microsoft SQL
Server. In Proc. VLDB, 1997.

[20] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zäıt,
and M. Ziauddin. Automatic SQL tuning in Oracle
10g. In Proc. VLDB, 2004.

[21] K. El Gebaly. Robustness in automatic physical
database design. Master’s thesis, University of
Waterloo, 2007. Also available as University of
Waterloo Computer Science Technical Report
CS-2007-29.

[22] A. C. König and S. U. Nabar. Scalable exploration of
physical database design. In Proc. ICDE, 2006.

[23] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil.
LEO - DB2’s LEarning Optimizer. In Proc. VLDB,
2001.

[24] Transaction Processing Performance Council. TPC-H,
the Ad-hoc Decision Support Benchmark.
http://www.tpc.org.

[25] G. Valentin, M. Zuliani, D. C. Zilio, G. M. Lohman,
and A. Skelley. DB2 advisor: An optimizer smart
enough to recommend its own indexes. In Proc. ICDE,
2000.

[26] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman,
A. Storm, C. Garcia-Arellano, and S. Fadden. DB2
design advisor: Integrated automatic physical
database design. In Proc. VLDB, 2004.

156

