
The Interactive Join: Recognizing
Gestures for Database Queries

Arnab Nandi
Computer Science and
Engineering
The Ohio State University
Columbus, OH, USA
arnab@cse.osu.edu

Michael I. Mandel
Computer Science and
Engineering
The Ohio State University
Columbus, OH, USA
mandelm@cse.osu.edu

Copyright is held by the author/owner(s).
CHI’13, April 27 – May 2, 2013, Paris, France.
ACM 978-1-XXXX-XXXX-X/XX/XX.

Abstract
Direct, ad-hoc interaction with databases has typically
been performed over console-oriented conversational
interfaces using query languages such as SQL. With the
rise in popularity of gestural user interfaces, users are
resorting to gestures as their exclusive mode of
interaction. In the absence of keyboard-oriented
interaction, database query interfaces require a
fundamental rethinking to support gestures. Unlike
domain-specific applications, the scope of possible actions
is significantly larger if not infinite. Thus, the recognition
of gestures and their consequent queries is a challenge.
We present a novel gesture recognition system that uses
both the interaction and the state of the database to
classify gestural input into relational database queries.
Preliminary results show that using this approach allows
for fast, efficient and interactive gesture-based querying
over relational databases.

Author Keywords
Gesture Recognition, Query Interface, Databases,
Unsupervised Classification

ACM Classification Keywords
H.5.2 [Information interfaces and presentation: User
Interfaces – Graphical user interfaces.]:



Introduction
Gestural user interfaces have become a popular mode of
interaction with a wide variety of touch-based,
motion-tracking or eye-tracking devices. Given the rising
popularity of such devices, domain-specific applications
have come up with mappings between standard gestures
and actions pertinent to the system. The onus of gesture
recognition is on the user interface layer, which identifies
the gesture as one of a set of gestures predefined by the
operating system. The gesture type, with parameters such
as coordinates and pressure are sent to the application,
which then uses them to infer actions. This mapping of
gestures to actions can be considered as a classification
problem, and the bulk of the recognition is performed at
the interface layer, independent of the application state.

End-user-friendly interaction with databases is a
well-motivated problem [6]. There has been a wide variety
of work in open-domain query interfaces, however all

projectId	  
loca-on	  

	  Employee	  	  	  	  	  

	  	   	  	  	  	  	  	  
	  	  	  	  

id	  

deptId	  

parentProjectId	  
supervisorID	  

Project	  
id	  

managerId	  

	  	  	  	  

	  	   	  	   	  	  	  	  
	  	   	  	  

⋈	  1:2 
n=1200 

John	   SF	   Audit	   Tax	   Fin	   Joe	  
John	   LA	   Review	   Acc	   Fin	   Jen	  

Employee	  

Department	  

Project	  

Dependents	  

	  	  	  	  COMPANY	  

Figure 1: The Interactive Join being performed in the QWiK interface. Tables in a
relational database are joined together using multitouch gestures. As two tables are
brought close to each other, the attributes are presented in a curve such that they are
amenable to be joined. The most likely join is presented as a preview to the user.

current efforts are based on keyboard or mouse-driven
interaction, and are hence unsuitable for gestures.

In the context of ad-hoc, open-domain querying of
relational databases, the use of gestures as the sole mode
of interaction faces several challenges. First, the space of
possible actions is large1 – the action depends on the
underlying database query language (e.g., SQL), the
schema of the database (i.e. the tables and the attributes
for each table) and the data contained in it (the unique
values for each attribute, and the individual tuples for
each table). Thus, the classification problem of mapping a
limited set of parameterized gestures to actions becomes a
significant challenge – there are simply too many possible
actions. Clearly, we need to use more than just the
gestural information to perform an adequate classification.

To this end, we develop a novel two-stage classifier that
relies on both gestural input and the state of the database
to recognize queries. At the first level, the classifier
identifies an ordering of candidate query types that are
most likely to be associated with the gesture. At the
second level, the classifier leverages various metadata
stored in the database such as the schema, type
information and data distributions for each attribute to
narrow down on the exact query being formulated.

Our system has two additional constraints – the classifier
needs to be either unsupervised or trained offline to avoid
custom training on a per-user level. Second, the system
must work at interactive speeds, such that the user is
guided through the space of queries during the
articulation of the gesture itself. This allows the user to
gain insight into the database, and at the same time
disambiguate the gesture, improving gesture recognition.

1When considering n-ary joins, this space is infinite.



1	  
2	  

NYC	  

22	  

2	  
2	  
SF	  

31	  

3	  
4	  
ATL	  

3	  

Employee	  
id	  

projectId	  
loca:on	  

deptId	  

	  	  	  	  	  	  
	  	  
	  	  	  	  

	  	  
	  	  

	  	  	  	  

Employee	  
id	  

projectId	  
loca.on	  

deptId	  

	  	  	  	  

	  	   	  	  	  	  	  	  
	  	  	  	  

Person	  
id	  

projId	  
loca.on	  

department	  

	  	  	  	  

	  	   	  	   	  	  	  	  
	  	   	  	  

Figure 2: The PREVIEW and
UNION actions.

A Gesture-driven Database Query Interface
As depicted in Figure 1, the database query interface
allows users to directly manipulate results by interacting
with them in a sequence of gestures. Tables are dragged
to the workspace from the database tray. Each table in
the workspace represents a view of the table, i.e. cloned
representation of the data, and can be directly
manipulated. Each gesture denotes a single manipulation
action and impacts only the cloned instance – not the
original database. There are a finite number of intuitive
gestures that the user can learn, each of which when
performed on the workspace can correspond to an action.
Users can undo each action to return to the previous
workspace state. Since actions directly correspond to SQL
queries, all actions manipulate the target SQL view to
another SQL view. Thus, actions are stackable and can be
performed in sequence, manipulating tables in the
workspace till the desired result is achieved.

A Gesture Vocabulary
While the size of our gesture vocabulary (and the set of
corresponding types of actions) is quite large, we present
only three actions for the sake of conciseness and clarity.
The three actions, UNION, JOIN and PREVIEW allow the
user to view, compose and combine information from the
database. The gestures associated with these actions are
shown in Figures 1 and 2. At the same time, this
condensed vocabulary allows us to motivate and
demonstrate various aspects of the gesture recognition
problem.

PREVIEW: This action works on a single table. When
dragged from the database tray, each table is represented
by the name of the table and its attributes. By making
the pinch-out gesture on the table in the workspace, the
PREVIEW action is issued on the target table. This is

issued to the database as the SQL query SELECT * FROM

TARGET TABLE LIMIT 10;, presenting the first ten rows
of the table on screen2.

JOIN: Two tables can be composed together by moving
them close to each other. The JOIN action represents the
inner equijoin SQL query, representing combinations of
rows that have the same value for the attributes that are
being joined upon. Upon bringing tables close to each
other, the attribute list curves such that users can
articulate the intended pair of attributes.

UNION: Two tables can be unified into a single table if
their attributes are compatible; i.e. they have the same
number of attributes, and each pair of attributes is of the
same data type. To unify tables, the user drags one table
onto another from the top, in a stacking gesture. A
preview of the unified rows representing both originating
tables is depicted.

Gesture Recognition as Classification
We assume the input to our classifier similar to what is
available on current multitouch mobile platforms. The UI
layer will supply the classifier with a list of (x,y)
coordinates and an ordinal identifier indicating which
finger it is associated with. These identifiers are assigned
arbitrarily when a gesture is initiated, but are consistent
over the course of the gesture. Given this input, the
classifier makes a decision based on the most recent
coordinate for each identifier.

A gesture is classified as a particular query according to
the proximity and compatibility of the tables involved.
Proximity encompasses all of the spatial information
about the UI elements, including size, shape, position, and

2We skip more complex variants of preview for conciseness and
to focus on the gesture recognition challenges.



orientation of table and field graphical representations
along with their velocity and acceleration.

Employee	  
id	  

projectId	  
loca.on	  

deptId	  
.tle	  

	  	  	  	  

	  	   	  	  	  	  	  	  
	  	  	  	  

Project	  
id	  

supervisorId	  
parentProjectId	  

managerId	  
name	  

	  	  	  	  

	  	   	  	   	  	  	  	  
	  	   	  	  

supervisorId	  

pa
re
nt
Pr
oj
ec
tId

	  

Project	  

id	  
projectId	  

loca3on	  

deptId	  
3tle	  

id	  

man
ager

Id	  

name	  

	  Employee	  	  	  	  	  

	  	   	  	  	  	  	  	  
	  	  	  	  

	  	  	  	  

	  	   	  	   	  	   	  	  
	  	   	  	  

	  	  	  	  	  	  

projectId	  
loca-on	  

	  Employee	  	  	  	  	  

	  	   	  	  	  	  	  	  
	  	  	  	  

id	  

deptId	  

parentProjectId	  
supervisorId	  

Project	  
id	  

managerId	  

	  	  	  	  

	  	   	  	   	  	   	  	  
	  	   	  	  

name	  -tle	  

	  	  	  	  	  	  

Figure 3: Choices of Table
Layout: Tabular, Radial and
Arc. The responsive arc layout
allows all queries to be
expressed unambiguously while
still achieving readability.

Classification based solely on proximity is the currently
prevalent UI paradigm. By adding compatibility, we are
able to increase the likelihood of selecting semantically
meaningful queries. Compatibility criteria include schema
information like field type, and data distributions, like
histograms, extreme values, intersection in random
samples, or total intersection.

We use a maximum entropy classifier in which we define
many “features” of queries, including proximity and
compatibility features conditioned on each type of query,
and combine them linearly in the argument of an
exponential. Mathematically, the goodness g(q) of a
potential query q with feature values fi(q) is

g(q) = exp(
∑
i

λifi(q)). (1)

Features can be binary or real-valued, with 0 being the

value of an uninformative feature. Parameters of the
classifier, λi, can be learned across a collection of recorded
training gestures to tune the quality of the classifier. For
preliminary experiments in Section , these parameters are
set manually, and tuning using training data is scope for
further improvement in quality. New queries can be
defined by adding new feature functions fi(q) and adding
new potential queries q to the set of queries.

At each classification request, each query type (JOIN,
UNION, PREVIEW) independently selects a specific query
with the highest goodness and the query with the highest
overall goodness is selected. Each query type first
considers whether the current gesture could represent a
query of its type, i.e., it involves the correct number of

tables and the tables are compatible with each other and
with the query type. If so, it proceeds to find the best
specific query of its type, checking the proximity and
compatibility of the fields and tables involved, if necessary.

Design Considerations: Join Layout

While the PREVIEW and UNION interactions are
straightforward, laying out attributes during the JOIN

interaction faces several challenges. First, due to the
textual nature of the information, it needs to be presented
such that readability is preserved. Second, the interface
should allow the user to express all possible queries. In the
case of a pair of tables such that all the attributes are of
the same type, there are m× n possible joins, where m
and n are the number of attributes in the two tables.

We consider multiple layout options to represent the JOIN

operation, as shown in Figure 3. The first option is to
present each list of attributes as a simple vertical list. The
problem with such a layout is that for any given position
of two vertical lists, there may be more than one pair of
attributes that are the closest, thus leaving the JOIN

intent ambiguous. For example, a pair of attributes that
are both at the top of the list for their respective tables,
aligning the two will always result in aligning the second
attributes at the same distance, thereby resulting in an
ambiguous gesture.

A second option is to consider a radial layout where each
table is represented as a radial menu. Geometrically, two
circles can be closest at exactly one location, uniquely
specifying a pair of attributes. However, radial menus are
hard to read, don’t scale to a large number of attributes,
and will need to be rotated for all m× n possible
attribute pairs.



0"

20"

40"

60"

80"

100"

Pr
ed

ic
'o

n*

Gesture"Only" Schema" Schema+Data"

PREVIEW UNION JOIN 
Figure 4: Prediction scores for a workload of 15 queries, where 100% represents correct classification at the start of the gesture
articulation, and 0% represents an incorrect classification even after completion of the gesture. Information from the schema and data
in the database allows our classifier to better predict the intended database query for ambiguous gestures.

As a solution to these problems, we use an arc layout,
such that attributes are vertically stacked ensuring
readability, but are placed in an arc connected at the table
label. This ensures that joining intent is unambiguous
since arcs can be closest at exactly one location. Further,
the orientation of the arcs are flexible and user
controllable (a multitouch interaction involving four
points, two for each table), allowing the user to specify
any pair of attributes as the join predicate.

Preliminary Results
We now share some preliminary results on the quality of
our gesture recognition system. Experiments were
performed by collecting multitouch coordinates (a series
of X,Y coordinates per touched finger) from a prototype
system implemented using Javascript and HTML on an
iPad. Each set of coordinates represents a multitouch
gesture on one or more tables, representing a database
query. For JOIN queries, we test the classifier by not
allowing for rotations to the arc, forcing the classifier to
resolve ambiguity. In the database, each table contained 4
attributes with varying types and data distributions.
Coordinates were collected for 15 different gestures,

articulating 5 gestures each for JOIN, UNION and PREVIEW

queries.

We identify three key metrics: Accuracy, Prediction and
Performance. Accuracy measures the fraction of the
queries that our classifier correctly identified from the
gestures. Prediction measures how quickly our classifier
can correctly map the gesture to the intended query. It is
calculated as the fraction of touch coordinates till the
query is correctly identified. Performance measures how
quickly the system can react to a given input, measured
as the number of milliseconds it takes to identify the
query at each new touch coordinate.

For performance, we observed that our system performs
well within the 10ms range per classification and can thus
maintain a fluid touch interaction. As expected, all
PREVIEW queries are trivial to recognize since both touch
points are on the same object. In terms of accuracy, the
baseline gestural recognition fails to recognize 2 of the 15
queries tested. Given schema information, our classifier
correctly recognizes 100% of the queries (and implicitly,
query types). As shown in Figure 4, using the data



distribution information significantly improves prediction
ability for JOIN queries, and has no impact on UNION

queries, since the UNION operator does not leverage the
data information for disambiguation.

Related work
Gestural interaction in domain-specific use cases has been
studied [13] widely. User-friendly solutions to interacting
with databases have ranged from example-driven
querying [1], to automated form generation [7]
spreadsheet interfaces [2] to autocompletion [8, 9] and
query recommendation [3]. Visual analytics systems such
as Tableau [12], TaP [5] and SQL Server Kinection [10]
map interactions and gestures from the UI layer to a set
of database query templates, without considering the
contents of the database itself. Probabilistic methods to
improving gesture recognition[14] and mapping interaction
to actions [4, 11] have been discussed before, however
such methods would be too computationally intensive to
recognize the space of all possible database queries. In
contrast to these systems, our classifier performs a
two-stage recognition, mapping gesture coordinates to
action types, and then further using an arc layout and
database statistics to successfully identify the exact query.

Ongoing Work
We plan to evaluate the usability and learnability of our
system over users at multiple levels of proficiency of
querying databases and our gestural interface. Gesture
coordinates from these user studies will then be used to
further tune the parameters of our classifier, which can
then be evaluated using k-fold cross tests to measure the
benefits (in accuracy and prediction) and
generality (across both users and queries) of user training.
Finally, we plan to evaluate the impact of providing
insights to the user in the form of result previews for the

most likely query while the user is articulating the gesture
itself.

References
[1] Abouzied, A., et al. Dataplay: interactive tweaking

and example-driven correction of graphical database
queries. UIST (2012).

[2] Bakke, E., Karger, D., and Miller, R. A
spreadsheet-based user interface for managing plural
relationships in structured data. CHI (2011).

[3] Chatzopoulou, G., et al. Query recommendations for
interactive database exploration. SSDBM (2009).

[4] Damaraju, S., and Kerne, A. Multitouch gesture
learning and recognition system. Tabletops and
Interactive Surfaces (2008).

[5] Flöring, S., and Hesselmann, T. Tap: Towards visual
analytics on interactive surfaces. CoVIS (2010).

[6] Jagadish, H., et al. Making database systems usable.
SIGMOD (2007).

[7] Jayapandian, M., et al. Automating the design and
construction of query forms. TKDE (2009).

[8] Khoussainova, N., et al. Snipsuggest: context-aware
autocompletion for sql. VLDB (2010).

[9] Nandi, A., and Jagadish, H. Assisted querying using
instant-response interfaces. SIGMOD (2007).

[10] Patney, S., et al. Sql server kinection. PASS (2011).
[11] Schwarz, J., Mankoff, J., and Hudson, S. Monte

carlo methods for managing interactive state, action
and feedback under uncertainty. UIST (2011).

[12] Stolte, C. Visual interfaces to data. SIGMOD
(2010).

[13] Underkoffler, J., and Ishii, H. Illuminating light: an
optical design tool with a luminous-tangible
interface. CHI (1998).

[14] Weir, D., Rogers, S., Murray-Smith, R., and
Lochtefeld, M. A user-specific machine learning



approach for improving touch accuracy on mobile
devices. UIST (2012).


	Introduction
	A Gesture-driven Database Query Interface
	A Gesture Vocabulary

	Gesture Recognition as Classification
	Design Considerations: Join Layout
	Preliminary Results
	Related work
	Future Work
	References

