
CRIUS: UserFriendly Database Design
∗

Li Qian
Univ. of Michigan, Ann Arbor

eql@umich.edu

Kristen LeFevre
Univ. of Michigan, Ann Arbor

klefevre@umich.edu

H. V. Jagadish
Univ. of Michigan, Ann Arbor

jag@umich.edu

ABSTRACT
Non-technical users are increasingly adding structures to their data.
This gives rise to the need for database design. However, traditional
database design is deliberate and heavy-weight, requiring techni-
cal expertise that everyday users may not possess. For this reason,
we propose that users of personal data management applications
should be able to create and refine data structures in an ad-hoc way
over time, thereby “organically” growing their schemas. For this
purpose, we develop a spreadsheet-like direct manipulation inter-
face. We show how integrity constraints can still provide value,
even in this scenario of frequent schema and data modifications.
We also develop a back-end database implementation to support
this interface, with a design that permits schema changes at a low
cost.

We have folded these ideas into a system, called CRIUS, which
supports a nested data model and a graphical user interface. From
the user’s perspective, the chief advantages of CRIUS are its sup-
port for simple schema definition and modification through an in-
tuitive drag-and-drop interface, as well as its guidance towards user
data entry based on incrementally updated data integrity. We have
evaluated CRIUS by means of user studies and performance stud-
ies. The user studies indicate that 1) CRIUS makes it much eas-
ier for users to design a database, as compared to state-of-the-art
GUI database design tools, and 2) CRIUS makes user data entry
more efficient and less error-prone. The performance experiments
show that 1) the incremental integrity update in CRIUS is very ef-
ficient, making the data entry guidance applicable and 2) the back-
end database implementation in CRIUS significantly improves the
performance of schema update tasks, without a significant impact
on other operations.

1. INTRODUCTION
1.1 Motivation

As technology makes inroads into our daily lives, non-technical
people are increasingly discovering the necessity of storing, man-
aging, accessing, and manipulating electronic data. In effect, we
are seeing the masses, who lack technical expertise, managing per-
sonal and business data, without help from any consultants or DBAs.

∗This work was supported in part by NSF grant IIS 1017296.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 2
Copyright 2010 VLDB Endowment 21508097/10/11... $ 10.00.

Name City Address

Orlando Erie 2251 Elliot

Keith Erie 3207 Grady

(a) Simple Spreadsheet

City Name [Address]
Address

Erie Orlando 2251 Elliot

Erie Keith 3207 Grady
7943 Walnut

(b) Structured Spreadsheet
Figure 1: Example Address Books

Where the data is a single list, most users have no difficulty with
the structure. But even with slightly more complex structures, there
frequently are choices to be made, with both performance and ex-
tensibility implications. In fact, the requirement for schema speci-
fication is a major barrier to database use.

Due to their simplicity, spreadsheets are still the most common
data management application used by people without technical train-
ing. By design, spreadsheets implement an extremely simple data
model, consisting of a single flat table, with rows and columns.
However, due to the increasing complexity of personal and small-
business data, users often find it necessary to augment this basic
data model with additional ad-hoc structure. Implicitly, these users
are defining schemas for their data.

EXAMPLE 1. Consider the basic task of maintaining a personal

address book. In the simplest case, this can be done using the basic

data model of spreadsheets, as shown in Figure 1(a). However, it

is easy to imagine situations in which the user will require more

structure in order to manage her data. For example, suppose that

the contact named Keith purchases a second home. In this case, the

user is likely to capture this by defining some ad-hoc structure, for

example as shown in Figure 1(b).
The above example illustrates the challenge of allowing non-

technical users to define and evolve their schemas. One might argue
that most data management applications will be designed by pro-
fessionals, who will construct appropriate schemas for a large class
of users. Indeed, this may be sufficient in some scenarios. How-
ever, there will always be users who are not completely satisfied
with what they can get out of the box and desire something more.
Even users who are initially satisfied with an application may wish
to enhance or customize it as their requirements change. For in-
stance, after the user has made some international friends, she may
wish to record the nationality for each of her contacts. Ideally, the
database should respond gracefully to changes like this, in a way
that places minimal burden on the user.

In this paper, we study the issue of user-defined structure in data.
How can an end user, beginning with a simple spreadsheet, such
as an address book with just names and phone numbers, extend
this “database” to include more attributes and structure? This sort
of organic “schema evolution” may happen because of an intrinsic
need to capture some additional information (e.g., nationalities). It
will also take place when the user comes upon the need to repre-
sent some information that does not quite fit the current structure.
For example, when the user realizes that some of her contacts are

81

married couples, she may decide that it makes more sense to store
one address per family, rather than one address per person.

Traditional database design is deliberate – there is extensive gath-
ering of requirements, careful analysis, and methodical step-by-
step design, all performed by highly trained personnel. In con-
trast, the database “design” in our scenario is organic – it is not
carefully considered, and it is expected to be modified as new data
reveals weaknesses in the current design or exposes assumptions
that are now violated. If schema modification is possible at a rea-
sonable cost, this sort of organic schema growth is not a problem
– rather it becomes the desired style of design. But to accomplish
this, schema modification must be rendered easy and cheap.

Based on our experience, a spreadsheet-like nested-table may
naturally support such organic schema growth for non-technical
users. Observe, for example, the propensity of non-technical users
to define complex spreadsheets (e.g., using Microsoft Excel), rather
than migrating their data to relational databases, even those that are
designed for personal and small-business use (e.g., Microsoft Ac-
cess). We believe the reason for this is that a typical relational
database is too discrete for end-users to manipulate conveniently.
Users have to understand table schemas separately and learn the
inter-table relationships. In contrast, having the information of in-
terest folded into a single spreadsheet-like structure makes it much
easier to comprehend.

While the users may enjoy the freedom of organically growing
their schema, we have to be aware that user-defined schemas are
subject to denormalization. Consequently, users have to explicitly
deal with duplicated data entries, which may easily produce errors
violating integrity constraints. In this paper, we also study how
to provide usable guidance towards data entry in such a freestyle
environment, by efficiently managing integrity constraints.

1.2 Challenges
In summary, our goal is to support organic schema creation and

modification using a natural spreadsheet-like interface, while en-
suring efficient and effective data entry on this organic schema. To
accomplish this, there are multiple challenges to be addressed:

• Schema Update Specification: Specifying a schema update as
in Example 1 is challenging with existing tools. For example, us-
ing conventional spreadsheet software, it is impossible to arrive
at a hierarchical schema such as the one in Figure 1(b). Alter-
natively, using a relational DBMS, one has to manually split the
table and set up the cross-table relationships. This is not easy for
end-users, even with support from GUI tools. Instead, we would
like to support schema creation and modification via a direct ma-
nipulation (“point-and-click”) interface.

• Data Migration: Once a new schema is specified, there is still
a critical task of migrating existing data to the new schema. If
the schema is simply augmented, this migration may be easy.
However, if the schema structure is changed (e.g, from allowing
one address per contact to multiple addresses), then one has to
introduce a complex mapping in order to “fit” the existing data
into the new schema. Even if spreadsheet software supporting
hierarchical schema is provided, the user still has to manually
copy data in a cell-by-cell manner to perform such mappings.
This process is both time-consuming and error-prone.

• Data Entry: As a result of the denormalization due to organic
schema growth, data entry may become inefficient and error-
prone. One may use integrity constraints to assist in data en-
try. However, since users cannot understand complex integrity
constraints, and constraints are also subject to user update, this
cannot be done in a naive way. It other words, we have to con-
struct a positive feedback loop between data entry and constraint
update in the usability context, with a practical response time.

• Schema evolution Performance: Schema evolution is usually a
heavy-weight operation in traditional systems. IT organizations
allow days to execute schema evolutions, since they plan them
carefully in advance. However, everyday users require a swift
feedback when updating schema as their plans are immediate and
casual. Thus, we need to develop techniques to support quick
schema evolution without giving up other desirable features.

1.3 Contributions
The primary contribution of this paper is the design of a novel

system called CRIUS. From the user’s perspective, the main bene-
fit of CRIUS lies in the user-friendly interface, which allows non-
technical users to create and modify the schemas associated with
their data in an organic way. Rather than requiring users to adjust
data to the new schema in a cell-by-cell manner, we have designed
the UI so that each schema update requires only a single drag-and-
drop with the mouse. The details of this interface, addressing the
specification challenge, can be found in Section 2.1. The design
of direct manipulation operators on the interface, addressing the
migration challenge, is covered in Section 2.2.

To address the data entry challenge, we have designed a data en-
try guidance feature, which auto-completes duplicated values and
reacts to possible input errors based on functional dependancies
(FDs). To make this feature practical, one has to break the per-
formance bottleneck of repeatedly inducing FDs using traditional
algorithms. Thus, we propose the first incremental algorithm for
FD induction. How CRIUS assists data entry by FDs, and how
these FDs are incrementally computed are discussed in Section 3.

CRIUS uses a relational database as a natural back-end. Ide-
ally, the storage format should support efficient schema evolution,
which has not conventionally been a priority in relational databases.
For this reason, we suggest a storage format whereby nested rela-
tional tables are recursively, vertically partitioned into flat relations.
These implementation issues, as discussed in Section 4, address the
challenges of data migration and performance.

Finally, in Section 5, we describe the evaluation of our prototype
system. Through user studies, we have found that schema develop-
ment is much easier in CRIUS than using a GUI tool provided by
Microsoft SQL Server Management Studio 2008. The study also
shows that the integrity-based guidance feature does reduce typing
effort and input errors. Our experiments demonstrate that our in-
cremental FD induction algorithm is much faster than traditional
approaches, and the schema modification and data reconstruction
performance of CRIUS are reasonable.

2. CRIUS DESIGN
2.1 Interface Design

The presentation layer of our system is based on a next-generation
spreadsheet, as described in the introduction. Information from
multiple related “tables” is combined to present a cohesive nested
representation, as shown in Figure 2.

Conventional spreadsheets are not designed to handle complex
schemas. If a user wants to add more structure to her data, this
must be done in an ad-hoc way. Worse, spreadsheets only support
cell-by-cell data modifications. As a result, if the user wishes to
modify her schema, this is a complex and error-prone process that
often consists of cell-, row-, and column- level copy and paste op-
erations.

In contrast, the CRIUS user interface supports easy schema cre-
ation and modification through a simple drag-and-drop interface,
as shown in Figure 2. The shaded region at the top of the screen is
the schema header, and the region below it displays the data body.
The user can modify the schema by simply dragging a cell in the
schema header using the mouse. For example, Figure 3(a) shows a

82

Figure 2: Screenshot of CRIUS

(a) Importing StateName (b) Floating Person

Figure 3: Screenshot of Schema Evolution in CRIUS

screenshot of a user dragging an attribute StateName inward, and
making it part of the sub-relation Address. (We refer to this op-
eration as an IMPORT.) Conversely, the user can EXPORT State-
Name back to the StateProvince relation in a similar way.

The user can also create new sub-relations by dragging attributes
up and down. Figure 3(b) shows an example where Person is
dragged up to insert a new intermediate level with only itself. Sim-
ilarly, one can also drag it down, nesting it to a new sub-relation.
(We refer to these operations as FLOAT and SINK, respectively.)

2.2 Operator Design
We refer to an instance of the spreadsheet in CRIUS as a span

table. The UI allows users to restructure the span table schema us-
ing drag-and-drop direct manipulations (e.g., IMPORT, EXPORT,
FLOAT, and SINK, as described above), and to augment/diminish
schema using point-and-clicks (adding/dropping columns). It also
supports data manipulation operations (inserting/deleting tuples,
updating cells). Collectively, we will refer to this set of opera-
tors as the span table algebra. (A brief introduction to the span
table operators can be found in Appendix A.) In this section, we
introduce our key schema update operators in the span table alge-
bra, and compare the expressive power of the algebra to the nested
relational algebra.

2.2.1 IMPORT and EXPORT
[Person]

City Zipcode Name [Address]
Address

Detroit 48205 Peter 1023 Westwood Ave

Erie 48109 Orlando 2251 Elliot Avenue

Erie 48105 Keith 3207 S Grady Way
7943 Walnut Ave

(a) Address Book Before Evolution
[Person]

City Name [Address]
Zipcode Address

Detroit Peter 48205 1023 Westwood Ave

Orlando 48109 2251 Elliot Avenue
Erie Keith 48105 3207 S Grady Way

48105 7943 Walnut Ave

(b) Address Book After Evolution

Figure 4: Address Book With Multiple Levels

EXAMPLE 2. Suppose the user has an address book span ta-

ble as shown in Figure 4(a), and wishes to associate Zipcode with

Address rather than City. The CRIUS UI enables the user to do

this by simply pressing the mouse on Zipcode , and dragging it

onto [Address]. The system then needs to execute the schema up-

date and transform the nested relation to the one shown in 4(b).

Readers familiar with nested relational algebra may consider an

implementation consisting of a series of nest and unnest: 1) unnest

[Person], 2) unnest [Address], 3) nest Zipcode, Name and Address,

and 4) nest Zipcode and Address. However, this would introduce a

large amount of unnecessary computation moving data from unre-

lated columns (e.g. Name and Address). Moreover, this series of

operations does not semantically conform to the user’s intention of

the simple drag-and-drop manipulation.

To overcome the problems with the traditional nested algebra in
our scenario, we introduce two new schema modification operators,
namely IMPORT and EXPORT. We set up some notation and then
define the basic IMPORT and EXPORT operators.

A nested relation N has schema expression S(N) and schema
tree Tree(N). S(N) is the flattened version of Tree(N) by a
postorder traversal. For example, S(N) for Fig. 4(a) is {City, Zip-
code, {Name, {Address}}}. t[X] is a tuple projection, where
t is a nested relational tuple and X is a list of attributes.

⊔
is the

relation union operation used in [20].
The IMPORT operator imports an atomic attribute into a nested

relation. Intuitively, it pushes down the atomic attribute to become
a “child” of a sibling group.

DEFINITION 1 (BASIC IMPORT OPERATOR). Given a nested

relation N with S(N) = {AXP{Q}}, where A denotes a list of

atomic attributes, X denotes a list of relation-valued attributes,

P denotes an atomic attribute being transported and {Q} denotes
the target relation-valued attribute, which consists of a list of both
atomic and relation-valued attributes, IMPORTP,{Q}(N) = N ′,

where S(N ′) = {AX{P,Q}} and N ′ is the set of all t′ for which
there exists t ∈ N , such that:

(1) t′[A] = t[A]

(2) ∀X in list X, t′[X] =
⊔
{t′′[X]|t′′ ∈ N ∧ t′′[A] = t[A]}

(3) t′[{P,Q}] = {t′′|∃t′′′ ∈ N, s.t. t′′[P] = t′′′[P] ∧ t′′[Q] ∈

t′′′[{Q}] ∧ t′′[A] = t′′′[A]}

According to this definition, the manipulation in Example 2 can
be executed in two imports: 1) IMPORTZipcode,{Name,{Address}}

and 2) IMPORTZipcode,{Address}.
The EXPORT operator is the inverse of IMPORT. It raises an

atomic attribute from a deeper nested level to a shallower nested
level and naturally maps existing data to the new schema.

DEFINITION 2 (BASIC EXPORT OPERATOR). Given a nested

relation N with S(N) = {AX{P,Q}}, where A denotes a list of

atomic attributes, X denotes a list of relation-valued attributes,

and {P,Q}} denotes the source relation from which the atomic
attribute P will be extracted and inserted into the target relation

S(N), EXPORTP (N) = N ′, where S(N ′) = {AXP{Q}}
and N ′ is the set of all t′ for which there exists t ∈ N , such that:

(1) t′[A] = t[A]

(2) t′[X] = t[X]

(3) ∃t′′ ∈ t[{P,Q}]s.t.t′[P] = t′′[P]

(4) t′[{Q}] = {t′′[Q]|t′′ ∈ t[{P,Q}] ∧ t′′[P] = t′[P]}

For instance, executing EXPORTZipcode twice will bring the
span table in 4(b) back to the span table in 4(a).

In practice, our algebra extends IMPORT/EXPORT to span mul-
tiple schema levels, which allows the user to import Zipcode from
the root to Address in one step. The algebra also includes schema
update operators to create new sub-relations (SINK/FLOAT) to-
gether with other data manipulation operators. The extensions of
IMPORT/EXPORT and the definitions of other operators are de-
tailed in Appendix A.

83

2.2.2 Expressive Power Analysis
Though nested relational algebra does not naturally lend itself to

supporting a direct manipulation interface, we show that the span
table algebra and nested relational algebra are actually equivalent in
expressive power given a fixed set of universal attribute (recall that
nested relational algebra cannot add/drop attributes). To do this, all
we have to show is that NEST and UNNEST can both be expressed
using the span table algebra, and vice versa. For simplicity, we will
restrict IMPORT and EXPORT to their basic versions in lemmas 3
and 4. The general case follows directly by induction.

The IMPORT and EXPORT operators can be expressed in terms
of NEST and UNNEST, as given by the following two lemmas. The
SINK and FLOAT operators are just restricted versions of NEST.

LEMMA 1. Let N be a relation with S(N) = {AXP{Q}}, then

IMPORT
P,{Q}(N) = NEST

P,{Q} · UNNEST{Q}(N).

LEMMA 2. Let N be a relation with S(N) = {AX{P,Q}},

then EXPORTP (N) = NEST{Q} · UNNEST
P,{Q}(N).

Also, we have the following theorem.

THEOREM 1. Any NEST or UNNEST can be expressed as a se-

quence of span-algebra schema update operations.

The proofs of the lemmas and the theorem are in Appendix A.
Thus, we have not sacrificed expressiveness for usability; any-

thing that can be expressed using nested relational algebra can also
be captured using the direct manipulations supported by CRIUS.

3. INTEGRITYBASED GUIDANCE
Unlike conventional databases where data is carefully normal-

ized according to integrity constraints at design time, in our envi-
ronment, non-technical users are not able to normalize their data.
This increases the user burden to enter duplicated data, as well as
the risk of erroneous data entry. To address this problem, CRIUS
provides an important set of features that we call integrity-based

guidance. The basic idea is to induce from the data and maintain a
set of “soft” functional dependencies.

These “soft” FDs are then used in two ways to assist in data entry.
The first is inductive completion, which auto-completes the deter-
mined attribute (the righthand side) of an FD according to existing
data. For instance, suppose we have inferred the FD Name →
Grade in Table 1. If the user were to enter a new row for Peter,
CRIUS would automatically suggest a grade A. In addition, CRIUS
uses these FDs for error prevention, by warning about possible data
entry errors. Following the above example, suppose the user has
updated Leo’s grade in row 3 from A to B. CRIUS will prompt the
user that the update may be a mistake since it violates the inferred
FDs. The user may decide whether to undo it or not. In case the
user commits the update, CRIUS further asks the user if he wants
to: (i) also update the other Leo’s grade in row 4 to preserve the FD
or (ii) force the update. Option (ii) indicates that the previously in-
duced FD Name → Grade is an artifact of the database instance
and must be updated.

Since user updates may continuously invalidate induced FDs in
our environment, we need to frequently update them. While there
is a large body of literature on FD induction [8, 12, 15, 26], past
solutions are too expensive to be adopted in our scenario where the
need to update FD is frequent. To reduce performance cost, CRIUS
instead incrementally maintains these FDs.

The incremental maintenance can be challenging. For example,
if an FD (e.g., Name → Grade in Table 1) has been invalidated
by a user update (e.g., the grade in tuple 2 from A to B), it is
not enough to remove that FD from the minimal set, since one or
more weaker FDs (e.g., Name,Course → Grade) may still hold.
These weaker FDs would not have been previously recorded in the

ID Name Course Grade

1 Peter Math A

2 Peter Physics A

3 Leo Math B

4 Leo Physics B

5 Jack Math A

Table 1: Student Records

minimal set because they were dominated by the now violated FD.
Similarly, after a certain update, an FD may be dominated by some
stronger FDs, and become no longer minimal.

In this paper, we develop the IFDI (Incremental FD Induction)
algorithm. To the best of our knowledge, this is the first algorithm
to induce FDs incrementally upon value updates. The algorithm
works by maintaining an in-memory lattice which contains all the
information for FD induction, and incrementally updating part of
the lattice. The algorithm differs from existing FD induction algo-
rithms in three ways: 1) Unlike traditional algorithms which fetch
data from the database, IFDI only accesses the database once. Sub-
sequent updates can be efficiently processed using the in-memory
lattice; 2) IFDI needs to access at most half of the lattice nodes;
3) On average, IFDI only needs to update a very small portion of
each lattice node. In this section, we describe the initialization and
maintenance phases of the IFDI algorithm separately. In Section 5,
we show that the cost of IFDI is significantly smaller than naive
approaches.

We also briefly describe how we extend IFDI to the nested sce-
narios and prove that all the nested FDs are preserved under schema
evolution when an appropriate representation is chosen and trans-
formed. Our user study in Section 5 shows that the guidance feature
based on these induced nested FDs does improve usability.

3.1 Inducing Initial FDs
Before the incremental maintenance, we first construct a set of

important data structures and induce the initial set of FDs.
For flat relations, there is a body of literature on minimal FD

induction [8, 12, 15]. As a starting point, we adopt the ideas of
attribute partition and attribute lattice introduced in [8]. An at-
tribute partition on a set of attributes X , denoted by ΠX , is a set
of partition groups, where each group contains all the tuples shar-
ing the same values at X . For instance, in Table 1, Π{Name} =
Π{Name,Grade} = {{1, 2}, {3, 4}, {5}}. An FD X → Y holds iff
ΠX = ΠX∪Y [8, 26]. (For instance, Name → Grade holds since
Π{Name} = Π{Name,Grade}.) We strip partitions by omitting par-
tition groups of size one for simplicity (For instance, Π{Name} =
{{1, 2}, {3, 4}}). An attribute lattice is a lattice in which each node
corresponds to an attribute set and each edge represents a possible
FD. An edge goes from node X to node Y iff Y contains X and
exactly one more attribute. The attribute lattice for Table 1 is shown
in Figure 5. (For simplicity, hereafter we abbreviate Name by N,
Course by C and Grade by G.) The following example demonstrates
the initialization phase of the algorithm.

Figure 5: The Set Attribute Lattice of Table 1 in Example 3,

and its evolution (as depicted by the arrows) in Example 4

84

EXAMPLE 3. The algorithm reads the metadata and generates

the stripped partitions for each single attribute. The stripped par-

titions are then fed into the first level of the lattice (shown at the

top in Figure 5). The algorithm processes the lattice in a top-down

manner level by level, generating the child partition by taking the

product [8] of any two parent partitions (For instance. ΠC ·ΠG =
ΠCG). The algorithm outputs an FD if its parent and child par-

titions are identical. For Table 1, only two FDs are discovered:

Name → Grade (the dash and dot line) and Name,Course →
Grade (the solid line). However, since the latter is dominated by

the former, it is pruned by the algorithm.

3.2 Maintaining FDs on Value Update
Once the lattice and the partitions for each node are constructed,

the maintenance phase of IFDI is performed for each value update.
IFDI checks for FD updates by traversing the lattice and comparing
the partitions, in the same way as the existing algorithms. How-
ever, IFDI effectively reduces the cost of updating partitions and
the number of lattice nodes that must be visited.

Efficient Partition Update: The partition product operation in
the traditional FD induction algorithm is a performance bottleneck
since it executes a linear scan on the partition, whose size is pro-
portional to the number of tuples in the relation. However, when
updating a partition in the incremental case, one does not need to
visit most partition groups that are irrelevant to the updated cell.

EXAMPLE 4. After the Grade of Peter in row 2 in Table 1 is

updated from A to B, the lattice evolves as shown in Figure 5. One

may use the traditional algorithm to compute the new ΠCG from

ΠC and the new ΠG: for each group in ΠG, assign each tuple in

it to the groups in ΠC and then collect them group-wise as the new

groups of ΠCG. Specifically, for {1, 5} in the new ΠG, 1 and 5 are

assigned to the same group {1, 3, 5} of ΠC . This group thus gen-

erates only one new group in ΠCG: {1, 5}. However, for {2, 3, 4}
in ΠG, 3 is assigned to the first group in ΠC , while 2,4 are as-

signed to the second. Thus this group generates two new groups:

{3} and {2, 4}. Collectively, the new ΠCG becomes {1, 5}, {2, 4}
(with {3} stripped).

IFDI handles the update of ΠCG in an incremental way. Instead

of updating every group in ΠCG, IFDI only focuses on two groups:

the group to which tuple 2 previously belonged, and the group to

which it will belong after the update. IFDI removes the updated

tuple from the old group and adds it into the new group, with the

other groups unchanged. In the example, {2} is a singleton in the

old ΠCG, so there is no need for removal. When assigning tuple 2

to its new group, IFDI first retrieves the group containing 2 from

ΠC ({2,4} in this case), and then scans the group for any other tu-

ple that has the same value on the updated attribute as the modified

cell (tuple 4 is returned here since {2, 4} is in ΠC and tuple 4 also

has a grade of B). IFDI then retrieves the group containing tuple

4 from ΠCG (the stripped singleton {4}) and adds tuple 2 to that

group (forming a new group {2, 4}). Note that we have finished

updating ΠCG without even touching group {1, 5} or {3} in the

old ΠCG.

Because IFDI maintains indexes for each partition and its groups,
group retrieval, insertion and removal cost constant time. The ma-
jor cost comes from scanning one group until a value-matched tuple
is found. In the worst case, this may be as large as the size of the
group. However, we prove that for many common cases, the cost
is proportional to the number of distinct values in each column and
exponential to the number of columns. Detailed analysis can be
found in Appendix B.

Less Lattice Traversal: Another advantage of IFDI is that it
only walks through the lattice nodes that contain the modified at-
tribute. This is because the other nodes must be unchanged after

the update. For instance, in Figure 5, IFDI only visits the nodes
within the ellipse, which saves half of the cost.

3.3 Extending IFDI to Nested FDs
In the nested scenario, [26] designed the first system for efficient

discovery of XML FDs by extending the algorithm proposed in [8,
12, 15]. In CRIUS, we seamlessly integrate the flat-case IFDI with
the discoverXFD algorithm from [26] and propose the incremental
nested FD induction algorithm. The algorithm works recursively
from the leaves to the root of the schema tree (see Appendix A.1)
and builds NFDs from potential flat FDs. It is implemented in
CRIUS and studied empirically in Section 5.

3.4 Maintaining NFDs on Schema Evolution
Schema evolution may also affect Nested FDs: as the nested

structure changes, certain FDs may be invalidated or satisfied. Un-
like value update, the representation of NFDs largely affects its
transformation on schema evolution. [7] proposed a NFD repre-
sentation which can be either global or local. We prove that: 1)
each local NFD can be represented as an equivalent global NFD
and 2) each NFD is preserved on schema evolution, after a trivial
transformation. Detailed proofs are omitted due to space.

4. RELATIONAL DATABASE BACKEND
Storage management has been so carefully engineered for rela-

tional databases that a flat relational storage manager is a natural
back-end for a system such as CRIUS. [3] has suggested a possibil-
ity to store nested relations using flat tables, but a practical storage
plan is left open. There is also excellent related work on storing
XML in relational databases, such as [22, 5]. However, such work
has traditionally focused on query performance, and has not placed
a high priority on the cost of schema evolution.

We extend column store [24, 6] ideas to nested relations and de-
velop a recursive vertical partitioning approach, which eliminates
the need to ever use ALTER TABLE when performing schema up-
dates, delivering low-overhead schema evolution. We implemented
this on a row-major RDBMS, because column store requires con-
siderable customization on hierarchical structuring. We observe in
our experiments that the storage format efficiently supports other
tasks (e.g., data display) that are common in our spreadsheet-like
environment.

4.1 Vertical Partitioning
We represent a nested relation as a recursively vertically par-

titioned relational database. The vertical partitioning is standard.
The recursion is the result of the nesting – additional tables are re-
quired to link nested tuples with their corresponding nesting tuples.
For example, Figure 6 shows a nested relation, and its decomposi-
tion, where table (b) links the IDs of nested and nesting tuples. We
also maintain a structure table to record how the decomposed rela-
tions are structured to represent the nested relation.

Figure 6: Vertical Partitioning Example

4.2 Upward and Downward Mappings
Using the vertically partitioned storage format, we further define

a mapping from the relational database to span tables (the upward

85

mapping) and another mapping of opposite direction (the down-

ward mapping). The upward mapping statically maps the relational
database to a span table, according to the decomposition described
above, while the downward mapping dynamically maps each span
table operator to a sequence of manipulations on the underlying
relational database. More details can be found in Appendix C.

5. EVALUATION
Our experiments are designed to answer four main questions:
1. How usable is the drag-and-drop interface in CRIUS, com-

pared to state-of-the-art GUI schema design tools?
2. How usable is the integrity-based guidance?
3. How efficient is the incremental FD induction algorithm, com-

pared to traditional FD induction approaches?
4. What are the performance implications of the storage repre-

sentation, for common tasks (schema modification and data
display)? How does the vertically-decomposed format com-
pare to a standard relational storage format?

Due to space, we have focused on the big picture for each experi-
ment. Specifications can be found in Appendix D.

5.1 User Study on Schema Operations
Our first set of experiments measured the usability of schema

manipulation in CRIUS. We recruited eight volunteers with no data-
base background, and two database experts for comparison. As a
baseline, we compared CRIUS to Microsoft SQL Server Manage-
ment Studio 2008 (SSMS), which is representative of the state-of-
the-art GUI-based relational database design. In the first experi-
ment, users were asked to design (from scratch) a schema for an
address book. We asked the same group of subjects to accomplish
this task using both CRIUS and SSMS, and recorded the time to
define the schema with both tools. The times are shown in Figure 7
(D for database expert, N for non-technical users). Results show
that design using CRIUS was about thrice faster. 1 While the first

Figure 7: Time defining a schema with CRIUS vs. SSMS.

experiment tested the performance of users constructing a schema
from scratch, we also conducted a second experiment, which asked
users to modify an existing schema by moving an attribute. To
accomplish the move using CRIUS, users only need to specify an
IMPORT by a drag-and-drop. However, this task proved difficult
in SSMS because, while users could construct a new schema using
the GUI tool, migrating data from the old schema to the new one
required them to write SQL. As a result, none of the non-technical
users were able to complete the task using SSMS. In contrast, all
users were able to complete the task within seconds using CRIUS.

Finally, to gain further insight into the usability of CRIUS, we
asked the same users to perform the same schema update task using
CRIUS and a strawman system that we constructed. The strawman
implements a very similar drag-and-drop GUI interface to CRIUS;
however, unlike CRIUS’s span table algebra, it implements drag-
and-drop manipulations that are direct implementations of nested
relational algebra operators.

1Using the Mann-Whitney test (a standard test of statistical signif-
icance), this difference is significant with p-value < 0.0002.

Figure 8: Time specifying an attribute transportation with

CRIUS v.s. Nested Algebra GUI.
Figure 8 compares the user performance for this task. 2 All the

users were able to accomplish the task almost thrice faster using
CRIUS than using the system with a nested algebra interface.3 This
difference supports the intuition that the span table operators sup-
ported in CRIUS are more natural direct manipulations for users
than nested algebra operators, even though the two are equivalent
in expressive power within the schema restructuring domain.

5.2 User Study on IntegrityBased Guidance
Our second user study measured how much the users may benefit

from the integrity-based guidance offered by CRIUS. Again, we
recruited eight non-technical volunteers and two computer experts.
The subjects were asked to complete three tasks on an address book
in CRIUS twice, once with the guidance feature on and the other
off. Their tasks were: 1) insert a new contact and his address into
the address book, 2) update the cell phone number of one contact
and 3) update the address of one contact to the address of another
contact. For each subject, we measured the time for each task, and
the overall count of key strokes and mouse clicks.

Figure 9: Time for data entry tasks, with guidance on and off

Figure 10: Number of key strokes and mouse clicks for data

entry tasks, with and without guidance
All subjects finished all of the tasks. From the time shown in

Figure 9, we observe a significant improvement with the guidance

2Since we reduced the database size to fit the user study, the query
execution time is negligible compared to the user operation time.
3This is statistically significant with p-value < 0.0002.

86

feature on. 4 This demonstrates that CRIUS successfully leverages
integrity constraints to save data entry time and improves usability.

We also recorded the number of key strokes and mouse clicks,
since they may serve as strong evidence of input errors. The num-
bers are shown in Figure 10. Although detailed intermediate errors
were hard to report, these numbers show that users made many
fewer errors with integrity-based guidance. 5 In other words, this
supports that CRIUS improves usability by preventing input errors.

5.3 Performance of IFDI
To evaluate the effectiveness of our incremental FD induction

algorithm, we conducted experiments to compare the performance
for both the naive approach (which recalculates the FDs for each
update) and the IFDI algorithm, in a simulated incremental update
environment. We measured the average time for both approaches
to generate a new set of FDs upon simulated updates in simulated
tables, by varying the number of columns and rows.

(a) (b)
Figure 11: Average time generating new FDs using naive ap-

proach and IFDI, for (a) a five-column table with varying row

size, and (b) a ten-thousand-row table with varying column size

We first fixed the number of columns to five and recorded the
time at each row size. The result is shown in Figure 11(a). While
the performance of the naive approach is linear in the number of
rows, the cost for IFDI was extremely small and nearly constant.
This is because for each lattice node, the traditional algorithm re-
constructed each partition by doing a partition product, which in-
volves a linear scan on the input partitions. In contrast, IFDI only
updates existing partitions and touches rows with the same values
as the updated tuple. The number of such rows has a very small
upper bound, as shown in Appendix B.

(a) (b)
Figure 12: Average number of partition rows accessed when

generating new FDs using naive approach and IFDI, for (a)

a five-column table with varying row size, and (b) a ten-

thousand-row table with varying column size

Our second experiment fixed the number of rows to ten thousand
and measured the average time for various number of columns. The
result is shown in Figure 11(b). While the costs for both approaches
increase exponentially, the IFDI is more than three orders of mag-
nitude faster. Again, the improvement in performance is due in
large part to an tremendous decrease in partition rows accessed by
the incremental algorithm, as shown in Figure 12. For example,
for five columns and ten thousand rows, the incremental algorithm
accessed an average of 42.9 partition rows for each update, while
the naive approach accessed an average of 257196.9 partition rows.
4According to the Mann-Whitney test, the p-values are 0.0002,
0.0209 and 0.001 for the three tasks, respectively.
5Key strokes has a p-value of 0.0002 and mouse clicks has 0.0019.

5.4 Performance of Vertical Storage
Our last set of experiments compared the performance of the

vertically-partitioned storage in CRIUS with a naive approach, which
stores tables contiguously using a row-major layout. Recall that in
designing the storage system we had two main goals: (1) efficient
schema evolution, and (2) efficient data display. Our performance
experiments measure each in turn.

5.4.1 Schema Update Performance
Our first experiment measured the time for the same schema up-

date task in 5.1, on both a naive storage and the vertical partitioned
storage in CRIUS. The result is shown in Figure 13. As expected,
the vertically partitioned storage offered much faster schema mod-
ifications than the naive approach, particularly for large databases.
This is because for each ALTER TABLE command, the naive method
must restructure an entire relation, which greatly degraded perfor-
mance. In contrast, CRIUS only manipulated the column tables
involved in the move.

Figure 13: Average time transporting an attribute in CRIUS

vs. naive storage, for different database scale

5.4.2 Data Display Performance
In addition to schema update, our vertically partitioned storage

should also support other common tasks such as data display. To
show this, our last experiment measured the time for loading data
and constructing a span table from both the native storage and
CRIUS storage. Figure 14 shows our results.

The time cost increased linearly with the number of attributes
projected in CRIUS, but remained constant for the naive storage.
This is because in CRIUS, the number of required joins grows lin-
early with the number of columns selected. At the same time, while
data display queries are more efficient using the naive storage for-
mat, the difference between the naive and CRIUS is not huge, de-
spite the additional joins required by CRIUS. This supports that
CRIUS is able to improve the performance of schema modification
tasks, without losing much efficiency on the data display task.

Figure 14: Average data display time in CRIUS vs. the naive

storage, for different database scale

6. RELATED WORK
Database schema design has been studied extensively [1, 17].

There is a great deal of work on defining a good schema, both from

87

the perspective of capturing real-life requirements (e.g., normal-
ization) and supporting efficient queries. However, schema design
has typically been considered a heavyweight, one-time operation,
which is done by a technically skilled database administrator, based
on careful requirements analysis and planning. The new challenge
of enabling non-expert user to “give birth” to a database schema
was posed recently [10], but no solution was provided.

The focus of this paper has been the challenge of specifying and
executing schema modifications. However, once a schema modifi-
cation has taken place, other interesting challenges may arise, such
as answering historical queries on an evolving schema [14].

The theoretical foundation of CRIUS is built on nested relations
and their normal forms, which have been studied extensively [20,
16, 13, 2, 19, 18, 20, 25, 4, 21]. In particular, when mapping nested
relation views to flat relational databases, our solution is inspired
by [3], which treats the mapping as a simulation.

Polaris [23] is an interface for exploration of multidimensional
databases that extends the Pivot Table interface to directly generate
a rich and expressive set of graphical displays. This inspires our
work of organizing a user-specific hierarchical data presentation.
While their work focuses on displaying statistical data analysis in a
user-friendly and flexible way on top of a static database, our work
enables schema evolution in an intuitive manner as the underlying
database is dynamically modified.

Recent work [9] proposed a model and architecture for seam-
lessly combining design-time and run-time aspects of data integra-
tion. The idea of such combination is reflected in a schema defini-
tion context in our work. However, they are dealing with data inte-
gration among multiple datasets, while we are focusing on integrat-
ing schema update and data manipulation inside a single database.

7. CONCLUSIONS
In this paper, we described the design and implementation of

CRIUS, a system that allows non-technical users to develop and
evolve schemas for their data, within the familiar context of a spread-
sheet-style interface and data model. In support of the friendly
drag-and-drop user interface, we developed a novel span table al-
gebra that is equivalent in expressive power to the nested algebra.

User operations on a spreadsheet are usually error-prone. In-
tegrity constraints, such as functional dependencies can save user
input and protect the data from mistakes. However, incremental FD
induction is non-trivial when the database is modified frequently.
In this paper, we introduced the first algorithm for incrementally
updating the set of induced FDs upon value update and schema
evolution. CRIUS uses these FDs to recommend auto-completions
for updates and to warn the user about potential data entry errors.

While the data model exposed to CRIUS users is a nested span
table, the underlying storage model may be different. Because of its
pervasiveness, we elected to store our span tables as flat relations
in a relational database system. While past work has considered
storing nested tables in flat relations, the mapping is only treated as
a simulation to establish theoretical results. In contrast, CRIUS re-
quires materialization of such a mapping to support efficient query
processing and efficient schema evolution. For these reasons, we
implemented a recursively vertically decomposed storage format.
We also show how span table algebra operators can be mapped to
SQL operations on the relational database.

Finally, we evaluated the CRIUS implementation via both user
studies and performance experiments. The user study showed that
the drag-and-drop schema modification meets our primary goal of
making schema evolution easy to specify, and our integrity-based
guidance feature effectively reduces data entry effort and input er-
rors. The performance results indicated that the our incremental
FD induction algorithm is much faster compared to the traditional

approaches, and the vertical decomposition storage format is con-
siderably more efficient than past techniques for schema evolution,
while query processing performance remains reasonable.

8. REFERENCES
[1] J. Biskup. Achievements of relational database schema design theory

revisited. In Semantics in Databases, pages 29–54, 1998.

[2] L. S. Colby. A recursive algebra and query optimization for nested
relations. In SIGMOD, pages 567–582, 1989.

[3] J. V. den Bussche. Simulation of the nested relational algebra by the
flat relational algebra, with an application to the complexity of
evaluating powerset algebra expressions. Theoretical Computer

Science, 254(1-2):363–377, 2001.

[4] R. Fagin. Multivalued dependencies and a new normal form for
relational databases. TODS, 2(3):262–278, 1977.

[5] D. Florescu, R. INRIA, and D. Kossmann. Storing and querying xml
data using an rdmbs. IEEE Data Engineering Bulletin, page 27, 1999.

[6] G. Graefe. Efficient columnar storage in b-trees. SIGMOD, 2007.

[7] C. Hara and S. Davidson. Reasoning about nested functional
dependencies. In PODS, pages 91–100, 1999.

[8] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. Tane: An
efficient algorithm for discovering functional and approximate
dependencies. The Computer Journal, 42(2):100, 1999.

[9] Z. G. Ives, C. A. Knoblock, S. Minton, M. Jacob, P. P. Talukdar,
R. Tuchinda, J. Ambite, M. Muslea, and C. Gazen. Interactive data
integration through smart copy and paste. In CIDR, 2009.

[10] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li,
A. Nandi, and C. Yu. Making database systems usable. In SIGMOD,
pages 13–24, 2007.

[11] M. Jayapandian, A. Chapman, V. Tarcea, C. Yu, A. Elkiss, A. Ianni,
B. Liu, A. Nandi, C. Santos, P. Andrews, et al. Michigan molecular
interactions (mimi): putting the jigsaw puzzle together. Nucleic acids

research, 35:D566, 2007.

[12] S. Lopes, P. Jean-Marc, and L. Lakhal. Efficient discovery of
functional dependencies and armstrong relations. EDBT, pages
350–364, 2000.

[13] W. Y. Mok, Y.-K. Ng, and D. W. Embley. A normal form for
precisely characterizing redundancy in nested relations. TODS,
21(1):77–106, 1996.

[14] H. J. Moon, C. A. Curino, A. Deutsch, C.-Y. Hou, and C. Zaniolo.
Managing and querying transaction-time databases under schema
evolution. In PVLDB, volume 1, pages 882–895, 2008.

[15] N. Novelli and R. Cicchetti. Functional and embedded dependency
inference: a data mining point of view. Information Systems,
26(7):477–506, 2001.

[16] Z. M. Ozsoyoglu and L. yan Yuan. A new normal form for nested
relations. TODS, 12:111–136, 1987.

[17] E. Papadomanolakis and A. Ailamaki. Autopart: Automating schema
design for large scientific databases using data partitioning. In
SSDBM, pages 383–392, 2004.

[18] J. Paredaens and D. Van Gucht. Converting nested algebra
expressions into flat algebra expressions. TODS, 17(1):65–93, 1992.

[19] B. Rathakrishnan and J. L. Kim. An extended recursive algebra for
nested relations and itsoptimization. In COMPSAC, page 145, 1993.

[20] M. A. Roth, H. F. Korth, and A. Silberschatz. Extended algebra and
calculus for nested relational databases. TODS, 13(4):389–417, 1988.

[21] H. Schek and M. Scholl. The relational model with relation-valued
attributes. Information Systems, 11(2):137–147, 1986.

[22] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and
J. F. Naughton. Relational databases for querying xml documents:
Limitations and opportunities. In VLDB, page 314, 1999.

[23] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for
query,analysis and visualization of multi-dimensional relational
databases. IEEE Trans. Vis. Comput. Graphics, 8(1):52–65, 2002.

[24] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, et al. C-store: a
column-oriented dbms. In VLDB, pages 553–564, 2005.

[25] D. Van Gucht and P. Fischer. Multilevel nested relational structures.
Journal of Computer and System Sciences, 36(1):77–105, 1988.

[26] C. Yu and H. Jagadish. Efficient discovery of xml data redundancies.
In VLDB, pages 103–114, 2006.

88

APPENDIX

A. SPAN TABLE ALGEBRA
In this section, we define the operators in the span table alge-

bra. An informal description is in Table 2. The span table algebra
differs from the nested relational algebra in the following aspects.
First, each span table operator is naturally and directly supported
by the UI, while the nested algebra is hard to be implemented using
direct manipulation. Second, the nested algebra is designed mainly
for structural query, while the span table algebra aims to perform
schema evolution. For instance, columns can be added/dropped in
the span table algebra, but not in the nested algebra. Finally, data is
static under the nested algebra, but can be updated using span table
operators. Such update is non-trivial since it may change the table
structure and affect further schema evolution.

We also provide the proofs for the lemmas and the theory men-
tioned in Section 2.2.

Operators Description

Import(A) Move A inward into a descendant-relation.

Export(A) Move A outward into an ancestor-relation.

Sink(A) Push A to create a new leaf relation.

Float(A) Lift A to create a new intermediate relation.

Add/Drop(A) Add/drop attribute A.

Insert/Remove/Update(T) Insert/remove/update a tuple T.

Table 2: Span Table Operators

A.1 Basics
We will assume the reader is familiar with the basic concepts

of nested relational algebra (e.g., nest and unnest) [2, 20, 25, 21].
In CRIUS, we chose to adopt partitioned normal form (PNF) [20],
which asserts functional dependencies from the set of all the atomic
attributes at each schema level, since it is consistent with our need
to preserve data integrity. We also adopt the schema tree described
in [25]. To summarize, each node in the schema tree represents
either an atomic attribute or a relation-valued attribute in the cor-
responding nested relation. An edge from one node to another in-
dicates that the parent node contains the attribute represented by
the child node. For example, the schema updating process in Fig-
ures 4(a) and 4(b) can be expressed by a schema tree evolution
shown in Figure 15. We also define the schema level of a certain
relation to be the depth of its corresponding node in the schema
tree, with zero for the root.

Zipcode

Address

City

Root

[Person]

Name

[Address]

Zipcode Address

City

Root

[Person]

Name

[Address]

Figure 15: Address Book Schema Evolution

A.2 Schema Update Operators
The span table algebra has four schema restructuring operators:

IMPORT, EXPORT, SINK, and FLOAT. Each operator not only up-
dates the schema but also maps existing data to the updated schema.

• IMPORT: The basic IMPORT, as defined in Section 2.2, can
only take place at the root of a schema tree and can only push at-
tributes down to a schema level that is exactly one level deeper.
These limitations must be lifted if we are to support drag-and-
drop driven organic schema modification. In the following, we
upgrade the basic IMPORT so that it is able to reach an arbi-
trarily deep schema level starting from anywhere in the schema
tree. We denote the parent of a given attribute Q by Parent(Q).
Parent(Root) is null. We denote the ancestor and descen-
dent of Q by Ancestor(Q) and Descendent(Q), respectively.
Both Ancestor(Root) and Descendent(Leaf) are nulls. If

T ∈ Descendent(L), we define Path(L, T) to be the ordered
list of schema nodes from L to T, excluding L and including T.
Then, the full IMPORT can be defined as below.

DEFINITION 3 (IMPORT OPERATOR). Assume N is a nest-

ed relation with schema tree Tree(N). Let L = {A,X, P} and

T be the schema nodes in Tree(N) such that T ∈ Descendent(L)
and T is relation-valued, then IMPORTP |L,T (N) = N ′, wh-

ere S(N ′) differs from S(N) by removing P from L and in-

serting it to T . Also, N ′ is the result relation of the follow-

ing operations: for each Q on Path(L, T) following the or-

der, on each sub relation with schema Parent(Q) in N , execute

IMPORTP,Q.

In practice, by observing some transitive features of the upgraded
IMPORT sequence, we can avoid repeated copying and merging,
and thereby implement it cheaply compared to a literal imple-
mentation of Definition 3.

• EXPORT: The basic EXPORT has been defined in Section 2.2.
Now we extend it to its full version similar to IMPORT. Due
to space, we omit the full definition and illustrate IMPORT and
EXPORT by the following example.

EXAMPLE 5. Consider an address book in Figure 16(a).

The user may call EXPORT on State6 to augment categorizing

information by state name. The resulting relation is pictured in

Figure 16(b), with the value of “Keith” duplicated. Finally, the

user may decide to categorize data only by State. So she calls

IMPORT on Name7, resulting in the final address book in Fig-

ure 16(c), with the two “MI”s merged.

Name [Address]
State Address

Orlando MI 2251 Elliot Avenue

Keith MI 3207 S Grady Way
OH 7943 Walnut Ave

(a) Categorized by Name

Name State [Address]
Address

Orlando MI 2251 Elliot Avenue

Keith MI 3207 S Grady Way

Keith OH 7943 Walnut Ave

(b) Categorized by Name and State

State [Address]
Name Address

MI Orlando 2251 Elliot Avenue
Keith 3207 S Grady Way

OH Keith 7943 Walnut Ave

(c) Categorized by State

Figure 16: Categorizing an Address Book

• SINK: IMPORT and EXPORT serve to transport atomic attributes
across different levels of the schema tree. However, they do not
create new schema levels, as is normally done by NEST in tra-
ditional nested algebra. A traditional NEST operator combines
multiple attributes into a nested relation. This is difficult to do
in a single drag-and-drop. A multi-step operation, with selecting
attributes first and then nesting and moving them, is much less
user-friendly. To solve this problem, we restrict the NEST oper-
ator to a single attribute, and name it SINK to distinguish it from
NEST. SINK is also defined from the basic version.

DEFINITION 4 (BASIC SINK OPERATOR). Given a nested

relation N with S(N) = {AXP}, where A and X have the
same meaning as before, and P denotes the atomic attribute to

be nested, SINKP (N) = N ′, where S(N ′) = {AX{P}} and

N ′ is the set of all t′ for which there exists t ∈ N , such that:

(1) t′[A] = t[A]

6EXPORTState|{State,Address},Name
7IMPORTName|{Name,State,{Address}},{Address}

89

(2) t′[X] =
⊔
{t′′[X]|t′′ ∈ N ∧ t′′[A] = t[A]}

(3) t′[{P}] = {t′′[P]|t′′ ∈ N ∧ t′′[A] = t[A]}

DEFINITION 5 (SINK OPERATOR). Assume N is a nested

relation with schema tree Tree(N). Let L = {A,X, P} be a

certain schema node in Tree(N), then SINKP |L(N) = N ′,

where S(N ′) differs from S(N) by replacing L with {A,X, {P}}.

Also, N ′ is the result relation after executing SINKP on all sub

relations with schema L within N .

• FLOAT: Theoretically, IMPORT, EXPORT and SINK form an
orthogonal and complete (with respect to NEST and UNNEST
in nested relational algebra) set of operators. However, in some
cases, the users may wish to create a new schema level by sink-
ing most of the attributes on the current level. For the sake of
usability, we propose another operator, namely FLOAT, to com-
plement SINK. FLOAT relatively lifts an atomic attribute up by
sinking all its siblings by one level.

DEFINITION 6 (BASIC FLOAT OPERATOR). Given a nested

relation N with S(N) = {PQ}, where Q is a set of attributes,
and P denotes the atomic attribute to be floated, FLOATP (N) =

N ′, where S(N ′) = {P{Q}} and N ′ is the set of all t′ for
which there exists t ∈ N , such that:

(1) t′[P] = t[P]

(2) t′[{Q}] = {t′′[Q]|t′′ ∈ N ∧ t′′[P] = t[P]}

DEFINITION 7 (FLOAT OPERATOR). Assume N is a nested

relation with schema tree Tree(N). Let L = {A,X, P} be a

certain schema node in Tree(N), then FLOATP |L(N) = N ′,

where S(N ′) differs from S(N) by replacing L with {P,X, {A}}.

Also, N ′ is the result relation after executing FLOATP on all

sub relations with schema L within N .

Note that FLOAT and SINK can be applied at any nesting level
but move the affected attribute by only one level. We do not
extend to multi-level as we did for IMPORT and EXPORT be-
cause multi-level FLOAT/SINK can result in an intermediate sub
relation with no atomic child, which violates PNF.

In addition to the four schema restructuring operators, the alge-
bra also includes operators to augment/diminish schema, such as
adding/dropping/permuting columns. All these operators are re-
stricted to a single schema level and behave identically to their flat
versions. In the interest of space, we skip their formal definitions.

A.3 Data Manipulation Operators
Besides the schema update operators, three data manipulation

operators, namely INSERT/DELETE/UPDATE, are also provided
with the algebra. These are consistent with their traditional seman-
tics except that i) all of them are extended to the nested scenario
so that manipulating data at arbitrary schema level becomes fea-
sible, and ii) insertion and deletion trivially guarantee foreign key
constraints in a cascading manner.

A.4 Proofs
LEMMA 3. Let N be a nested relation with S(N) = {AXP{Q}},

then IMPORT
P,{Q}(N) = NEST

P,{Q} · UNNEST{Q}(N).

Proof of Lemma 3: Let N be a nested relation with S(N) = {AXP{Q}}, N ′ =
UNNEST{Q}(N) and N ′′ = NESTP,{Q}(N

′). According to definition,

UNNEST{Q}(N) = {t′|∃tt′ ∈ N s.t. t
′
[A] = tt′ [A]

∧ t
′
[P] = tt′ [P] ∧ t

′
[X] = tt′ [X] ∧ t

′
[Q] ∈ tt′ [{Q}]} (1)

where tt′ is the tuple in N with the same values at A ∪ P as t′ (and is thus unique).

NESTP,{Q}(N
′
) = {t′′|∃t′ ∈ N

′
s.t. t

′′
[A] = t

′
[A]

∧ t
′′
[X] =

⊔
{t′[X]|t′[A] = t

′′
[A]}

∧ t
′′
[{P,Q}] = {t′[P,Q]|t′[A] = t

′′
[A]}} (2)

Since for each t′ ∈ N ′, we have a tt′ ∈ N , ∃t′ ∈ N ′ always implies ∃tt′ ∈ N .

Furthermore, according to the first line in equation (1), t′[A] = tt′ [A]. Thus, the

first line in equation (2) can be translated to ∃tt′ ∈ N s.t. t′′[A] = tt′ [A].
Moreover, we define EV ,W to be the set of t′ which map to the same tt′ , with

t′[A] = V ∧ t′[P] = W . Then, {t′|t′[A] = t′′[A]} can be classified into a
group of Et′′[A],W , each of which corresponds to a tt′ ∈ N with tt′ [P] = W .

We denote this group by Rt′′[A]. Now we can rewrite
⊔
{t′[X]|t′[A] = t′′[A]} as

⊔
R

t′′[A]
{
⊔
{t′[X]|t′ ∈ Et′′[A],t′′[P]}}. According to (1), t′[X] are the same

as long as their values at A and P are the same, which is the same as that of their corre-
sponding tt′ . Thus,

⊔
{t′[X]|t′ ∈ Et′′[A],t′′[P]} = tt′ [X]. So the second line

in (2) can be translated to t′′[X] =
⊔

R
t′′[A]

{tt′ [X]} =
⊔
{tt′ [X]|tt′ [A] =

t′′[A]}. Similarly, {t′[P,Q]|t′[A] = t′′[A]} =
⋃

R
t′′[A]

{t′[P,Q]|t′ ∈

Et′′[A],t′′[P]}. According to (1), t′[P] = tt′ [P] and t′[Q] ∈ tt′ [{Q}] for tt′

corresponding to each Et′′[A],t′′[P]. So,
⋃

R
t′′[A]

{t′[P,Q]|t′ ∈ Et′′[A],t′′[P]}

=
⋃

R
t′′[A]

{t′[P,Q]|t′[P] = tt′ [P]∧ t′[Q] ∈ tt′ [{Q}]}. In other words, the

third line in (3) can be translated to t′′[{P,Q}] = {t′|∃t′′′ ∈ N, s.t. t′[P] =

t′′′[P] ∧ t′[Q] ∈ t′′′[{Q}] ∧ t′[A] = t′′′[A]}. In all, by substituting (1) into
(2), we obtain the following equation:

NESTP,{Q} · UNNEST{Q}(N)

= {t′′|∃tt′ ∈ N s.t. t
′′
[A] = tt′ [A]

∧ t
′′
[X] =

⊔
{tt′ [X]|tt′ [A] = t

′′
[A]}

∧ t
′′
[{P,Q}] = {t′|∃t′′′ ∈ N, s.t. t

′
[P] = t

′′′
[P]

∧ t
′
[Q] ∈ t

′′′
[{Q}] ∧ t

′
[A] = t

′′′
[A]}} (3)

Which is identical to the definition of IMPORT.

LEMMA 4. Let N be a nested relation with S(N) = {AX{P,Q}},

then EXPORTP (N) = NEST{Q} · UNNEST
P,{Q}(N).

The proof is similar to the proof of Lemma 3.

THEOREM 2. Any NEST or UNNEST can be expressed as a se-

quence of span-algebra schema update operations.

PROOF. Let N be a nested relation with schema S(N) = {Q, {A1, A2, ...,
An}}, and denote Gi = Ai, Ai+1, ...An, then according to Lemma 4:

UNNEST{A1,A2,...,An}(N) = UNNESTGn ·

NESTGn · UNNESTGn−1
· ... ·NESTG3·

UNNESTG2
·NESTG2 · UNNESTG1

(N)

= EXPORTAn · EXPORTAn−1
· ...

· EXPORTA2
· EXPORTA1

(N) (4)

Similarly, for NEST, suppose the nested relation being operated on is N with schema
S(N) = {Q,A1, A2, ..., An}, using the same notation for G, we have:

NESTA1,A2,...,An (N) =

NESTG1 · UNNESTG2
· ... ·NESTGn−2

·

UNNESTGn−1
·NESTGn−1 · UNNESTGn (N) · SINKGn (N)

= IMPORTA1
· IMPORTA2

· ...

· IMPORTAn−2
· IMPORTAn−1

(N) · SINKAn (N) (5)

B. THE IFDI ALGORITHM
Here we describe in detail our algorithm for incremental FD in-

duction (IFDI). The algorithm consists of two phases: the initial-
ization phase (IFDI-Initialize) which generates the original set of
minimal FDs and the update phase (IFDI-Update) which updates
the FDs incrementally. For incremental induction purposes, we
maintain two data structures generated by the initialization process:
the initialPartitions which records the unstripped partitions for
each attribute with data values as group keys, and P which stores all
the stripped partitions. After a cell is updated to a different value,
we pass the attribute associated with the cell, the tuple id of the
cell and the new value to IFDI-Update. The algorithm first updates

90

the initial partition of the modified attribute by invoking Update-
Initial-Partition(line 1). It then traverses the sub-lattice formed by
nodes whose labels contain the modified attribute, and checks the
validity of FDs represented by the edges within the sub lattice by
checking if the attribute partitions of the LHS and RHS of the FD
are identical. In practice, this is done by introducing an error rate

which is defined to be the total size of the partition groups mi-
nus the total number of partition groups. For example, the error
rate of ΠName, denoted as P (Name).e, is 5 − 3 = 2. Strip-
ping has no effect on error rates. And P (X \ {A}) = P (X) iff
P (X\{A}).e = P (X).e (line 6). Before the algorithm moves for-
ward to the next level, it computes the partitions in the next level by
invoking Update-Partition(line 15). The traditional pruning tech-
nique for non-minimal FDs still works(line 5-11).

We analyze the time complexity of IFDI on top of the follow-
ing general assumption. The table has M columns and N rows,
data from each column uniformly distributes over a value pool of
size R, and different columns are independent and identically dis-
tributed. For each update, traditional FD induction algorithm con-
structs each partition by a partition product, whose cost is propor-
tional to N . Since in the worst case, the traditional algorithm tra-
verses the whole lattice and perform such construction for each

node, it has a worst-case time complexity of O(N2M). For the
IFDI algorithm, we reconstruct each partition by executing Update-
Partition. Since we maintain indexes on partitions, to remove the
modified tuple from the old group costs constant time (line 1-8).
The time complexity of Update-Partition is thus dominated by the
for loop which seeks another tuple that has the same values as the
modified tuple at the columns associated with that partition (line
10-15). The cost of this loop is upper-bounded by the size of gx
(line 10) and estimated by the expected number of executions of
the loop body. On one hand, under our assumption, the expec-
tation of the size of gx decreases geometrically with respect to
its depth in the lattice. Thus, the overall cost is upper-bounded
by the summation of such expectations over the lattice, which is

kN((1 + 1/R)M − 1) (where k is the constant time for one ex-
ecution of the loop body). On the other hand, the loop terminates
immediately after a match (line 14-15), which means the cost es-
timates to the expected number of tries before the match is found.
Under our assumption, these numbers conform to a geometric dis-
tribution, which has an expectation of R. Since IFDI traverses half

of the lattice, the average-case complexity is kR2M−1. To summa-

rize, the time-complexity of IFDI cam be estimated by kR2M−1

when the value pool is small (R << N), and upper-bounded by

kN((1 + 1/R)M − 1) ≈ kMN/R when the value pool is large
(R >> M). This explains why the IFDI algorithm is much faster
than the traditional algorithm and the cost for the former is ex-
tremely small and nearly constant.

IFDI-INITIALIZE()
1 {R,n} ← RETRIEVE-METADATA()
2 initialPartitions← INITIALIZE-PARTITIONS()
3 strippedPartitions← STRIP-PARTITIONS()
4 L0 ← {{∅}}
5 C({∅})← R
6 L1 ← {{A}|A ∈ R}
7 for each A ∈ R
8 do P ({A})← strippedPartitions(A)
9 for i← 1 to n

10 do for each X ∈ Li

11 do C(X)←
⋂

A∈X C(X \ {A})

12 for each A ∈ X ∩ C(X)
13 do if P (X \ {A}).e = P (X).e
14 then FD ← FD ∪ (X \ {A} → A)
15 C(X)← C(X) \ {A}
16 C(X)← C(X) ∪X
17 if i < n
18 then Li+1 ← {X|X \ {A} ∈ Li, A ∈ X}
19 for each X ∈ Li+1

20 do Let A be an arbitrary element in X
21 P (X)← P ({A}) · P (X \ {A})

IFDI-UPDATE(M, id, value)
1 UPDATE-INITIAL-PARTITION(M, id, value)
2 L1 ← {{M}}
3 for i← 1 to n
4 do for each X ∈ Li

5 do C(X)←
⋂

A∈X C(X \ {A})

6 for each A ∈ X ∩ C(X)
7 do if P (X \ {A}).e = P (X).e
8 then FD ← FD ∪ (X \ {A} → A)
9 C(X)← C(X) \ {A}

10 C(X)← C(X) ∪X
11 else FD ← FD \ (X \ {A} → A)
12 if i < n
13 then Li+1 ← {X|X \ {A} ∈ Li, A ∈ X}
14 for each X ∈ Li+1

15 do UPDATE-PARTITION(initialPartitions(M),
16 P (X \ {M}), P (X), id, value)

UPDATE-INITIAL-PARTITION(A, id, value)
1 pai ← initialPartitions(A)
2 valueold = pai.T (id).value
3 g ← pai(valueold)
4 g ← g \ id
5 if g.isEmpty()
6 then pai ← pai \ g
7 else pai.e← pai.e− 1
8 g ← pai(value)
9 if g 6= NIL

10 then g ← g ∪ id
11 pai.e← pai.e + 1
12 else g ← id
13 pai ← pai ∪ g
14 pai.T.remove(id)
15 pai.T.put(id, g)
16 pa = pai.strip()
17 P (A)← pa;

UPDATE-PARTITION(pa, px, pax, id, value)
1 gax ← pax.T (id)
2 if gax 6= NIL

3 then

4 pax.e← pax.e− 1
5 if gax.size = 2
6 then pax ← pax \ gax

7 else gax ← gax \ id
8 gx ← px.T (id)
9 rid← NIL

10 for each tid ∈ gx
11 do if tid = id
12 then continue
13 if pa.T (tid).value = value
14 then rid← tid
15 break
16 if rid 6= NIL

17 then pax.e← pax.e + 1
18 if pax.T (rid) = NIL

19 then g ← rid ∪ id
20 pax ← pax ∪ g
21 pax.T.put(rid, g)
22 pax.T.put(id, g)
23 else gax ← pax.T (rid)
24 gax ← gax ∪ id

C. DOWNWARD MAPPING
We describe the downward mapping for IMPORT with a few key

points here. Other mappings are similar.

C.1 Mapping IMPORT
A multi-level IMPORT can be evaluated in two stages: (1) trans-

porting source column with value naively duplicated and (2) the
merge operation, which corresponds to

⊔
operator in PNF. The

first stage is making the schema change, and the second stage is
adjusting the data to this changed schema.

Let Source denote the source attribute, and Target denote the
target relation. According to the tree structure, we can obtain a
unique ordered path from P (Source) to Target. Let the relations
on this path, excluding P (Source), be {R1, R2...Rn}. Also, for
any attribute A, denote its corresponding flat table with Flat(A).
Suppose S(Flat(Source)) = {ID,AS}. Then, the first stage can

91

be formalized by:

Flat(Source)← ΠID,AS
(ρY (Flat(Source)) ⊲⊳Y.ID=Z.PID

ρZ(PID,ID)(ΠLi.PID,Ln.CID

(⊲⊳Li.CID=Li+1.PID

{Li = Flat(Ri), Li+1 = Flat(Ri+1) : i = 1..n− 1}))) (6)

This formula finds the tuple relationship by joining all the linking
tables from source parent to target. It then joins the result with the
original source column, which is a value table, achieving the goal
for replicating AS according to tuple ID correspondence.

Also, the structure table has to be updated. However, the update
is extremely simple in that we only need to update the parent rela-
tion of the source attribute to the target relation, and do the obvious
bookkeeping on the auxiliary information.

For the second stage, a merge is applied recursively, on each
relation merging all tuples whose set of atomic attributes at this
schema level are the same. This involves three steps: updating
atomic values, updating the parent link table, and updating the link
tables for all relation-valued children.

We first define the ungrouped table, which is a join of parent
link table and all atomic value tables at current level. Suppose the
set of atomic attributes in current level are {R1, R2, ...Rn}, with
S(Flat(Ri)) = {ID,Ai}. Also suppose the parent relation of
current level is Parent, then:

ungrouped(Parent)←

ΠPID,CID,A1,A2,...,An (ρY Flat(Parent)

(⊲⊳Y.CID=Vi.ID
{Vi = Flat(Ri)})) (7)

After merge, the corresponding table would be:
grouped(Parent)←

ungrouped(Parent) group by {PID,A1, A2, ..., An} (8)

If the size of ungrouped and grouped table is the same, than there
is no need to merge. Otherwise:

Flat(Ri) ← ΠCID,Ai
(grouped(Parent)) (9)

For i = 1..n, and:
Flat(Parent) ← ΠPID,CID(grouped(Parent)) (10)

The link tables of child relation-valued attributes are updated in
a similar manner. The merge stage is done by following this proce-
dure recursively. The recursion will never exceed the target relation
since schema elements below that relation are untouched.

In general, the whole structure of the flat database needs very
few changes, since most of the structural updating is reflected by
the structure table. Further, no “ALTER TABLE” command is re-
quired, which avoids the high cost of traditional schema updates.

C.2 Mapping other operators
The EXPORT works quite similarly to IMPORT in terms of spec-

ifying tuple relationship by joining linking tables, except no merge
is required. FLOAT and SINK also work in a similar manner, with
much simpler procedures required.

For other schema update operators, Adding/Dropping columns
requires only creating/dropping flat tables corresponding to the at-
tributes and insertion/deletion of tuples in the structure table. Per-
mutation is trivially exchanging attribute IDs in the structure table.

Data manipulation operations are much simpler. INSERT and
DELETE update the corresponding value tables and link tables.
UPDATE is similar to INSERT except an additional merge is re-
quired for preserving PNF.

D. EXPERIMENT SPECIFICATIONS

D.1 User Study on Schema Operations
For the schema design task, we asked the users to define three

relations: 1) a Person relation with two attributes: FirstName and
LastName, 2) an Email relation with one attribute Email. and 3)

a Phone relation with one attribute Phone. We also required the
users to structure the database hierarchically so that each person
may have multiple emails and phones. We taught the users how
to do this in both CRIUS and SSMS. In CRIUS, we taught them
to use the Span Table operators to create the structure. In SSMS,
we taught them to specify foreign key references from both Email
and Phone to Person, by creating ID columns and dragging links
between them to indicate foreign key references using the database
diagram UI in SSMS.

For the schema modification task, we used a more complex sche-
ma from MiMI [11]. We focused on two relations: the Gene re-
lation and the Interaction relation. Gene records individual gene
information. It consists of five attributes: gene id, symbol, type,
taxid, and description. Interaction stores the basic information
describing how two genes which interact with each other, includ-
ing nine attributes: int id, gid1, symbol1, type1, taxid1, gid2,
symbol2, type2, and taxid2. gid1 and gid2 are foreign keys ref-
erencing gene id. We nested Interaction inside Gene by gene id
to bring them into a single spreadsheet. We asked the users to move
one attribute (Description) from Gene to Interaction, which was
a practical need from current MiMI users.

For both tasks, we equally alternated the order of which system
is used first, in order to counterbalance the learning effect.

D.2 User Study on IntegrityBased Guidance
For this user study, we designed an address book with schema

Name, {Address, Zipcode,HomePhone,CellPhone}. It con-
tained three contacts and six addresses, and induced these FDs:
Name → CellPhone, HomePhone → Zipcode, Address →
HomePhone, HomePhone → Address and Address
→ Zipcode. A brief tutorial on how to use CRIUS was given to
each subject prior to the study. We started timing after the subject
was clear about each task and ready to execute it. In order to coun-
terbalance the learning effect, the guidance feature was turned on
first for half of the studies, and turned off first for the other half.

D.3 Performance of IFDI
For both experiments, we simulated the table to have one near-

FD (50% of the rows satisfied the FD) from the first column to
the second. All the data (except in the determined column) was
randomly generated from a value pool of size ten. Each cell update
changed an FD-violating row to a FD-satisfying row by updating its
second column. We repeated the experiment by varying the number
of rows and columns. Time in both tests were averaged upon ten
tables and one hundred updates for each table.

D.4 Performance of Vertical Storage
Both performance tasks used data from MiMI, as described in

Appendix D.1. For the schema update experiment, we set up two
versions of the MiMI: The first (Naive) stores the two relations just
as they are stored in MiMi, with gene id and int id as the primary
keys. The second (CRIUS) partitions the two relations in a per-
column manner similar to that depicted in Figure 6, with a primary
key ID column associated with each column table. In both cases,
only a clustered index on the primary key is constructed for each re-
lation. Our experiment repeatedly moved the description attribute
between the Gene and Interaction relations in each database.

The data display experiment is designed to verify that the verti-
cal partitioned storage still offers reasonable performance for other
common tasks in this environment. Specifically, we focused on a
query to retrieve the gene id, symbol, type, and taxid of all the
genes that interact with a given gene whose symbol matches a ran-
dom pattern. We executed this query on both the naive and CRIUS
databases.

92

