
DBSeer: Pain-free Database Administration through
Workload Intelligence∗

Dong Young Yoon

University of Michigan
Ann Arbor

dyoon@umich.edu

Barzan Mozafari

University of Michigan
Ann Arbor

mozafari@umich.edu

Douglas P. Brown

Teradata Inc.
San Diego

doug.brown@teradata.com

ABSTRACT
The pressing need for achieving and maintaining high performance
in database systems has made database administration one of the
most stressful jobs in information technology. On the other hand,
the increasing complexity of database systems has made qualified
database administrators (DBAs) a scarce resource. DBAs are now
responsible for an array of demanding tasks; they need to (i) provi-
sion and tune their database according to their application require-
ments, (ii) constantly monitor their database for any performance
failures or slowdowns, (iii) diagnose the root cause of the perfor-
mance problem in an accurate and timely fashion, and (iv) take
prompt actions that can restore acceptable database performance.

However, much of the research in the past years has focused on
improving the raw performance of the database systems, rather than
improving their manageability. Besides sophisticated consoles for
monitoring performance and a few auto-tuning wizards, DBAs are
not provided with any help other than their own many years of ex-
perience. Typically, their only resort is trial-and-error, which is a
tedious, ad-hoc and often sub-optimal solution.

In this demonstration, we present DBSeer, a workload intelli-
gence framework that exploits advanced machine learning and causal-
ity techniques to aid DBAs in their various responsibilities. DBSeer
analyzes large volumes of statistics and telemetry data collected
from various log files to provide the DBA with a suite of rich func-
tionalities including performance prediction, performance diagno-
sis, bottleneck explanation, workload insight, optimal admission
control, and what-if analysis. In this demo, we showcase various
features of DBSeer by predicting and analyzing the performance of
a live database system. Will also reproduce a number of realistic
performance problems in the system, and allow the audience to use
DBSeer to quickly diagnose and resolve their root cause.

1. INTRODUCTION

∗DBSeer is an open-source tool and can be downloaded at
http://dbseer.org and a video demonstration of its features
can be found at http://dbseer.org/video

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Many enterprise applications rely on database management sys-
tems to store and query their business data. This increasing reliance
on database systems has made performance requirements less for-
giving; any performance degradation in such databases can directly
breed customer discontent and cause revenue loss. Thus, a ma-
jor responsibility of DBAs is to sustain database performance 24/7,
and at a level that can meet the mission-critical requirements of
the underlying business operations. To fulfill this goal, DBAs are
required to perform various operations:

• Database Provisioning. DBAs need to provision their database
with the resources necessary to meet the application level
SLAs (service-level agreements). For example, DBAs need
to determine the best hardware configuration given a fixed
budget or a target peak load, e.g., how to best allocate N
dollars between more/faster processors, more memory, larger
SSDs, and faster disks.

• Database Tuning. DBAs need to design and tune their database
for their target workload. They also need to define user quo-
tas and admission control policies (a.k.a. throttles) to mini-
mize SLA violations.

• Performance Diagnosis. A major responsibility of DBAs
in large organizations is to constantly monitor their database
for any performance failures or slowdowns. However, diag-
nosing the root cause of performance problems is a tedious
task, as it requires the DBA to consider many possibilities by
manually inspecting various log files and queries executed
over time. These challenges are exacerbated in highly con-
current workloads (e.g., shared databases in large organiza-
tions and OLTP workloads), where performance problems
cannot be traced back to a few demanding queries or their
poor execution plans. Often, each query takes only a small
fraction of the overall resources to complete. However, tens
or hundreds of concurrent queries competing for the same
resources (e.g., CPU, network, disk I/O, memory) can create
highly non-linear and counter-intuitive effects on database
performance.

• Performance Mending. Once the root cause of a perfor-
mance problem is found, appropriate actions need to be taken
to restore acceptable database performance. Though the nec-
essary action may be straightforward in some cases, in many
cases several alternatives may be present. Besides their past
experience, most DBAs simply rely on trial and error to find
the most appropriate action.



Given the complexity of today’s database management systems,
these responsibilities are quite daunting for all but the most expe-
rienced of DBAs. As a result of this increasing demand, qualified
database administrators (DBAs) have become a scarce resource [1].

Over the past few years, we have developed an open-source frame-
work, called DBSeer, that integrates several functionalities to assist
DBAs in the tasks above [6, 5]. DBSeer is not meant to replace an
experienced DBA. Rather, DBSeer is designed to alleviate DBAs
from their current trial-and-error procedures—which are tedious,
adhoc and error-prone—by offering them a set of automated, prin-
cipled and more accurate alternatives.

To enable accurate provisioning, DBSeer uses machine learning
and statistical regression techniques to identify the bottleneck re-
sources and predict performance for a given set of resources. These
features help DBAs decide how to best allocate their budget to vari-
ous types of resources. For instance, by analyzing the current work-
load, DBSeer might predict that memory will be the bottleneck re-
source if the load on the system were to triple [6]. DBSeer also
summarizes and mines past workloads, providing DBAs further in-
sight into their own workload and underlying applications.1

DBSeer also comes with a performance explanation module, called
DBSherlock. DBSherlock utilizes the statistics collected from the
database and the operating system. By combining techniques from
outlier detection and causality analysis, DBSherlock assist DBAs
in diagnosing performance problems more easily, more accurately,
and in a principled manner. Through a graphical user interface, the
DBA can specify certain instances of past performance that he/she
deems abnormal; the DBSherlock module then automatically ana-
lyzes past statistics and many possible explanations to suggest the
most likely cause of the user-perceived performance anomaly.

Finally, DBSeer uses the same performance prediction features
described above to enable what-if analysis [5]. This features allows
the DBA to predict the outcome of certain actions on performance
before taking those actions. For example, in an overloaded system,
the DBA can ask whether halving the number of queries issued by
a certain user will bring the CPU usage back to 80%.

We propose to demonstrate DBSeer in action. We believe that
a system designed for making database administration easier is
best appreciated when tested and used in person. To provide this
first-hand experience, we will re-produce a set of realistic perfor-
mance problems in a live database, and then ask our audience to use
DBSeer’s various features to diagnose and rectify the performance
problem himself/herself. The audience will observe how DBSeer
can predict performance, tune the database, or provide performance
diagnosis and automatic explanations. DBSeer is currently avail-
able as an open-source, third-party tool.2

The rest of this paper is organized as follows. Section 2 provides
a high-level overview of DBSeer’s architecture and it various mod-
ules. Section 3 describes our demonstration scenario at VLDB. We
conclude in Section 4.

2. DBSEER ARCHITECTURE
DBSeer’s architecture consists of several major components, as

depicted in Figure 1. Next, we describe each of these components.

2.1 Data Collection
DBSeer collects various aggregate statistics from the database

(e.g., MySQL, Postgres, or MariaDB) and the operating system
1To enable better database, we have developed a different tool,
called CliffGuard [7]. Unlike existing tuning advisors, CliffGuard
finds a robust physical design that is resilient against sudden
changes of the workload; see http://cliffguard.org.
2http://dbseer.org

Modeling

End	  UserDBMS

SQL	  Logs

DBMS	  Logs

OS	  Logs
4me CPU RAM DISK
10:24:01 80 1204 120
10:24:02 70 1080 90
10:24:03 88 909 88

Preprocessing	  /	  
Clustering

Aligned	  Logs

X

Y

0
123

462

147
75

123

Visualizing Explaining

Causal	  Models

Predicates
1.	  Avg.	  Lock	  
Wait	  >	  100ms
2.	  Avg.	  CPU	  >	  
40%

Causes
1.	  Log	  Rota4on
2.	  I/O	  
Satura4on
3.	  Network	  
Slowdown

Input (Logs)
Output (Graph) / 
Input (Anomaly)

Output (Explanation) / 
Input (Cause)

(2)

(1)

(3) (a)

(b)

(c)

Disk	  
Model

Lock	  
Model

CPU	  
Model

...	  
Model

(d)

DBSeer

Output (Insight)

DBSherlock

Reconfigure / Tune

Figure 1: DBSeerArchitecture

(Linux in our case) in situ, via their standard logging features. This
is shown as component (1) in Figure 1. These statistics are col-
lected at one-second intervals and consist of the following:

1. Aggregated OS statistics, including per-core CPU usage, num-
ber of disk I/Os, number of network packets, number of page
faults, number of context switches.

2. Workload statistics from the DBMS, including the number of
SELECT, UPDATE, DELETE and INSERT commands executed,
number of flushed and dirty pages, and the total lock wait-
time.

3. Timestamped query logs, containing start-time, duration, and
the SQL statements executed by the system.

2.2 Automatic Workload Clustering/Classification
DBSeer further processes the collected data for performance mod-

eling, prediction, and diagnosis (component (2) in Figure 1). First,
DBSeer uses the collected statistics to cluster the transactions and
queries into a set of types or classes that exhibit a similar access
pattern, i.e., they perform similar operations on each table or ex-
hibit similar patterns of resource usage.

Extracting query types allows us to model and categorize dif-
ferent queries in the workload. DBSeer parses the query logs and
extracts features, called query summaries, including the tables ac-
cessed, locking mode (e.g., exclusive or shared), the approximate
number of row accessed, the time between statements. DBSeer uses
these extracted features to apply the DBSCAN [3] clustering algo-
rithm, which groups individual queries into a number of categories
based on their access patterns.

DBSeer also computes aggregate performance statistics for each
time interval (e.g., the average and quantile latencies, total page-
faults, etc.). These aggregate statistics are then aligned with the OS
and DBMS statistics according to their timestamps. The aligned,
timestamped logs are processed by DBSeer for performance mod-
eling, prediction and explanation, as described next.

2.3 Performance Prediction
DBSeer utilizes both black-box and white-box models for pre-

dicting various types of performance metrics. The black-box mod-
els work quite well for certain resources such as CPU, network, and
log writes. These models make minimal assumptions about the un-
derlying system, and hence are not specific to a particular DBMS.
White-box models are needed for other resources (e.g., locking,
page flushes due to log recycling) when making predictions about
a drastically different workload than the one observed during train-
ing. Our white-box models include an iterative model for log recy-
cling, as well as a number of optimizations to Thomasians’s model
of two-phase locking (2PL) [8].



Figure 2: DBSeer’s performance prediction console

Using these statistical regression models, DBSeer provides sev-
eral features (see Figure 2):

1. What-if Analysis. Users can inquire about unseen situa-
tions, e.g., what will happen to 99% latencies if the overall
load triples? Or what will happen to the CPU usage if the to-
tal number of ‘payment’ transactions doubles? This feature
enables DBAs to better provision and tune their database to
meet their performance goals. This is far more accurate and
less tedious than the current trial-and-error approach.

2. Bottleneck Analysis. Users can pose questions about the
maximum throughput that their database can sustain. They
can also ask which resource (e.g., CPU, disk, or locks) will
bottleneck first if their load increases. This feature provides
great insight into the workload characteristics, e.g., buying
faster disks may not help with a workload that is lock-bound.

3. Blame Analysis. When the system is overload, users can
ask which type of transactions is most responsible for the
high CPU usage, disk usage, or lock contention in the sys-
tem. For example, in the TPC-C benchmark, the ‘order sta-
tus’ and ‘payment’ transactions are most repressible for high
disk reads and writes, respectively. This features helps DBAs
decide which parts of their workload should be further in-
spected, optimized, or migrated to a separate server.

4. Throttle Analysis (Optimal Admission Control). When
the overall load exceeds available resources, performance
metrics plummet and SLAs are violated. In these situation, a
critical question is which queries or transactions need to be
throttled in order to minimize the SLA violations. For in-
stance, given a different penalty for throttling each type of
transaction, DBSeer can determine the maximum number of
each type of transaction to guarantee a certain 99% latency.

2.4 DBSherlock
DBSherlock is an integrated module in DBSeer, to perform perfor-

mance diagnosis and explanations. DBSherlockutilizes the same in-
put data gathered from DBSeer’s data collection and preprocessing
(components (1), (2) in Figure 1). The DBSherlock module performs
performance explanation and diagnosis in four steps, as shown in
Figure 1.

1. Visualization. Through our graphical user interface, the end
user (e.g., a DBA) can generate scatter plots of various per-
formance statistics of the DBMS over time.

Figure 3: Screenshot of DBSherlock’s user interface

2. Anomaly Detection. If the end user deems any of the perfor-
mance metrics of the DBMS unexpected, abnormal, or suspi-
cious in any period of time, s/he can select that region of the
plot and query DBSherlock for an explanation of the observed
anomaly or performance problem.

3. Anomaly Explanation. Given the user-specified region of
anomaly, DBSherlock analyzes the collected statistics and ex-
plains the anomaly using either descriptive predicates or ac-
tual causes.

4. Anomaly Diagnosis and User Feedback. Once a DBA has
diagnosed the actual cause of the observed performance prob-
lem by looking at DBSherlock’s explanations, s/he provides
evaluative feedback to DBSherlock. This feedback is then in-
corporated in DBSherlock as a causal model and used for im-
proving future explanations.

Figure 3 is a screenshot of DBSherlock’s graphical user interface,
where users can plot a graph of various performance metrics over
their time window of interest. For instance, users may plot the av-
erage latency of queries, number of disk I/Os, or CPU usage over
the past hour, day or week. Here, Figure 3 shows a scatter plot of
the average latency of queries over time. The user can select some
region(s) of the graph where she finds some metrics abnormal, sus-
picious, counter-intuitive, or simply worthy of an explanation. Re-
gardless of the user’s particular reason, we simply call the selected
region(s) an anomaly (or abnormal regions). Optionally, the user
can also specify other regions of the graph where s/he thinks are
normal (otherwise, the rest of the graph is implicitly considered as
normal). After specifying the regions, users can query DBSherlock

to find likely causes or explanations for the observed anomaly.
Given a user-specified anomaly, DBSherlock provides explana-

tions in one of the following forms:
(i) predicates over different attributes of the input data; or

(ii) likely causes (and their corresponding confidence) based on ex-
isting causal models.

DBSherlock generates a number of predicates that best explain the
anomaly by identifying anomalous values of some of the attributes
in the input data. The generated predicates are conjunctive. For
example, DBSherlock may explain an anomaly caused by a network
slowdown by generating the following predicates:

network send < 10KB ∧ network recv < 10KB ∧
client wait times > 100ms ∧ cpu usage < 5

showing that there are clients waiting without much CPU activ-
ity. These predicates are generated by our novel predicate gener-
ation algorithm, which aims to find predicates that segregate the
input tuples in the user-perceived abnormal region well from those



Type of anomaly Description
Workload Spike Greatly increase the rate of transactions and the number of clients simulated by OLTPBenchmark (128

additional terminals with transaction rate of 50,000).
I/O Saturation Invoke stress-ng, which spawns multiple processes that spin on write()/unlink()/sync() system calls.
Table Restore Dump the pre-dumped history table back into the database instance.
CPU Saturation Invoke stress-ng, which spawns multiple processes calling poll() system calls to stress CPU resources.
Flush Log/Table Flush all tables and logs by invoking mysqladmin commands (‘flush-logs’ and ‘refresh’).
Network Congestion Simulate network congestion by adding an artificial 300-milliseconds delay to every traffic over the network

via Linux’s tc (Traffic Control) command.
Lock Contention Change the transaction mix to execute NewOrder transactions only on a single warehouse and district.
Poorly Written Query Execute a poorly written JOIN query, which would run efficiently if written properly.
Poor Physical Design Create unnecessary indexes on tables where INSERT statements are mostly executed.

Table 1: Nine types of performance anomalies

in the normal regions. Once the user identifies the actual prob-
lem (network congestion, in this example) using these predicates
as diagnostic hints, she can provide feedback to DBSherlock by ac-
cepting these predicates and labeling them with the actual cause
found. This ‘cause’ and its corresponding predicates comprise a
causal model, which then is utilized by DBSherlock for future diag-
noses.

Log	  
Rota(on	  

Latency	  
>	  100ms	  

Disk	  
Write	  >	  
5MB/s	  

CPU	  
Wait	  >	  
50%	  

Figure 4: An example of a causal model in DBSherlock

DBSherlock uses a simplified version of the causal model pro-
posed in the seminal work of Halpern and Pearl [4]. Our causal
model couples the user-labeled, actual ‘cause’ with its correspond-
ing predicates from the user’s feedback. Figure 4 is an example
of a causal model with ‘Log Rotation’ as the cause and three cor-
responding predicates. When there are any causal models in the
system of DBSherlock from previous diagnoses, DBSherlock calcu-
lates the confidence of every existing causal model for the given
anomaly. This confidence measures a causal model’s fitness for the
given situation. The use of the causal model enables DBSherlock

to generate explanations that are more descriptive and informative
than just predicates, facilitating a fast and accurate diagnosis of the
performance problem.

3. DEMONSTRATION DETAILS
We will collect live data by running various types of workloads

using MySQL and OLTPBenchmark [2]. We will show DBSeer’s
visualization and live monitoring features to our audience using the
collected data. Then, we will demonstrate DBSeer’s capability in
performance and resource prediction. The audience can then use
DBSeer to predict various performance metrics and perform vari-
ous type of analysis, e.g., what-if analysis, blame analysis, throttle
analysis, and so on. The users will compare DBSeer’s predictions
against the actual system.

We will also have input logs collected from a number of sce-
narios for reproducing different types of performance anomalies.
These performance anomalies will include some of the most com-
mon problems faced in every-day operations of any DBMS, such
as network congestion, I/O saturation, database maintenance, as
listed in Table 1. We will demonstrate how users can interact with

the DBSherlock module in DBSeervia its graphical user interface.
Our audience will inspect some of the graphs on aggregated statis-
tics and ask DBSherlock for explanations by selecting the abnor-
mal region(s). Before revealing the true cause, we will first ask
the audience to provide an explanation for each anomaly, based on
their own intuition. We will then allow them to invoke DBSherlock

to display the most likely causes as an explanation for the user-
perceived anomaly. By comparing their accuracy before and af-
ter seeing DBSherlock’s explanations, the audience will be able to
judge DBSherlock’s effectiveness in finding the actual cause of per-
formance problems.

4. CONCLUSION
DBSeer performs statistical performance modeling and predic-

tion, assisting a DBA in understanding how database resource con-
sumption and performance vary as load on the system changes.
DBSeer can also explain performance anomalies in the context of
a complex database system. Currently, such tasks are performed
manually by highly-skilled and highly-paid DBAs, as they spend
many hours inspecting various log files and queries. Consequently,
it is a tremendous cost to the enterprise when DBAs, who are scarce
resources themselves, spend much of their time on these tedious
tasks. In this regard, DBSeer helps DBAs maintain their database
performance with much less effort. Our demonstration will high-
light the main functionalities of DBSeer and its accuracy in perfor-
mance prediction and explanation, focusing on the usability of our
framework by a general audience.

5. REFERENCES
[1] The most wanted jobs in IT. http://tinyurl.com/odezqov,

2014.
[2] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux.

Oltp-bench: An extensible testbed for benchmarking relational
databases. PVLDB, 7, 2013.

[3] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise.
In KDD, 1996.

[4] J. Y. Halpern and J. Pearl. Causes and explanations: a structural-model
approach. part i: causes. In UAI, 2001.

[5] B. Mozafari, C. Curino, A. Jindal, and S. Madden. Performance and
resource modeling in highly-concurrent OLTP workloads. In
SIGMOD, 2013.

[6] B. Mozafari, C. Curino, and S. Madden. Dbseer: Resource and
performance prediction for building a next generation database cloud.
In CIDR, 2013.

[7] B. Mozafari, E. Z. Y. Goh, and D. Y. Yoon. Cliffguard: A principled
framework for finding robust database designs. In SIGMOD, 2015.

[8] A. Thomasian. On a more realistic lock contention model and its
analysis. In ICDE, 1994.


