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ABSTRACT
Crowd-sourcing has become a popular means of acquiring labeled

data for many tasks where humans are more accurate than comput-

ers, such as image tagging, entity resolution, and sentiment anal-

ysis. However, due to the time and cost of human labor, solutions

that rely solely on crowd-sourcing are o�en limited to small datasets

(i.e., a few thousand items).�is paper proposes algorithms for in-

tegrating machine learning into crowd-sourced databases in order

to combine the accuracy of human labeling with the speed and cost-

e�ectiveness of machine learning classi�ers. By using active learn-
ing as our optimization strategy for labeling tasks in crowd-sourced
databases, we can minimize the number of questions asked to the

crowd, allowing crowd-sourced applications to scale (i.e., labelmuch
larger datasets at lower costs).

Designing active learning algorithms for a crowd-sourced database

posesmanypractical challenges: such algorithmsneed to be generic,

scalable, and easy to use, even for practitioners who are notmachine

learning experts. We draw on the theory of nonparametric boot-

strap to design, to the best of our knowledge, the �rst active learning

algorithms that meet all these requirements.

Our results, on 3 real-world datasets collected with AmazonsMe-

chanical Turk, and on 15 UCI datasets, show that our methods on

average ask 1–2 orders of magnitude fewer questions than the base-

line, and 4.5–44× fewer than existing active learning algorithms.

1. INTRODUCTION
Crowd-sourcingmarketplaces, such asAmazon’sMechanical Turk,

have made it easy to recruit a crowd of people to perform tasks that

are di�cult for computers, such as entity resolution [3, 4, 25, 30,

37], image annotation [35], and sentiment analysis [27]. Many of

these tasks can be modeled as database problems, where each item

is represented as a row with some missing attributes (labels) that

the crowd workers supply. �is has given rise to a new generation

of database systems, called crowd-sourced databases [17, 19, 25], that
enable users to issue more powerful queries by combining human-

intensive tasks with traditional query processing techniques. Fig-

ure 1 provides a few examples of such queries, where part of the

query is processed by the machine (e.g., whether the word “iPad”

appears in a tweet) while the human-intensive part is sent to the
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Figure 1: Examples of Labeling Queries in a Crowd-sourced DB.

crowd for labeling (e.g., to decide if the tweet has a positive senti-

ment).

While query optimization techniques [17, 24, 28] can reduce the

number of items that need labeling, any crowd-sourced database

that relies solely on human-provided labels will eventually su�er

from scalability issues when facedwithweb-scale datasets and prob-

lems (e.g., daily tweets or images).�is is because labeling each item

by humans can cost several cents and take several minutes. For in-

stance, given the example of Figure 1, even if we �lter out tweets that

do not contain “iPad”, there could still be millions of tweets with

“iPad” that require sentiment labels (‘positive’ or ‘non-positive’).

To enable crowd-sourced databases to scale up to large datasets,

we advocate combining humans and machine learning algorithms

(e.g., classi�ers), where (i) the crowd labels items that are either in-

herently di�cult for the algorithm, or if labeled, will form the best
training data for the algorithm, and (ii) the (trained) algorithm is
used to label the remaining items much more quickly and cheaply.

In this paper, we focus on labeling algorithms (classi�ers) that assign
one of several discrete values to each item, as opposed to predicting

numeric values (i.e., regression), or �nding missing items [33], leav-

ing these other settings for future work.

Speci�cally, given a large, unlabeled dataset (say, millions of im-

ages) and a classi�er that can attach a label to each unlabeled item

(a�er su�cient training), our goal is to determine which questions
to ask the crowd in order to (1) achieve the best training data and

overall accuracy, given time or budget constraints, or (2) minimize

the number of questions, given a desired level of accuracy.

Our problem is closely related to the classical problem of active
learning (AL), where the objective is to select statistically optimal
training data [11]. However, in order for an AL algorithm to be a

practical optimization strategy for labeling tasks in a crowd-sourced

database, it must satisfy a number of systems challenges and criteria
that have not been a focal concern in traditional AL literature, as

described next.

1.1 Design Criteria
An AL algorithm must meet the following criteria to be used as

the default optimization strategy in a crowd-sourced database:

1. Generality. Our system must come with a few built-in AL
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algorithms that are applicable to arbitrary classi�cation and labeling

tasks, as crowd-sourced systems are used in a wide range of di�erent

domains. In Figure 1, for example, one query involves sentiment

analysis while another seeks images containing a dog. Clearly, these

tasks require drastically di�erent classi�ers. Although our system

will allow expert users to provide their own custom-designedAL for

their classi�cation algorithm, most users may only have a classi�er.

�us, to support general queries, our AL algorithm should make

minimal or no assumptions about the classi�ers that users provide

for their labeling tasks.

2. Black-box treatment of the classi�er. Many AL algorithms
that provide theoretical guarantees need to access andmodify the in-
ternal logic of the given classi�er (e.g., adding constraints to the clas-

si�er’s internal loss-minimization step [5]). Such modi�cations are

acceptable in theoretical settings but not in real-world applications,

as state-of-the-art classi�ers used in science and industry are rarely

a straightforward implementation of textbook algorithms. Rather,

these �nely-tuned classi�ers typically use thousands of lines of code

to implementmany intertwined steps (e.g., data cleaning, feature se-

lection, parameter tuning, heuristics, etc.). In some cases, moreover,

these codebases use proprietary libraries that cannot be modi�ed.

�us, to make our crowd-sourcing system useful to a wide range of

practitioners and scientists (who are not necessarily machine learn-

ing experts), we need an AL algorithm that treats the classi�er as a

black-box, i.e., does not modify the internals of the classi�er.

3. Batching.Many (theoretical) AL algorithms are designed for
online (a.k.a. streaming) scenarios in which items are revealed one
at a time.�is means that the AL algorithm decides whether to re-
quest a label for the current item, and if so, awaits the label before

proceeding to the next item. While these settings are theoretically

attractive, they are unrealistic in practice. First, we o�en have access

to a large pool of unlabeled data to choose from (not just the next

item), which should allow us to make better choices. Second, on-

line AL settings typically perform an (expensive) analysis for each

item [5, 6, 12], rendering them computationally prohibitive. �us,

for e�ciency and practicality, the AL algorithmmust support batch-
ing,1 so that (i) the analysis is done only once for each batch of multi-
ple items, and (ii) items are sent to the crowd in batches (to be labeled
in parallel).

4. Parallelism. We aim to achieve human-scalability (i.e., ask-
ing the crowd fewer questions) through AL. However, we are also

concerned with machine-scalability, because AL o�en involves re-
peatedly training a classi�er and can thus be computationally ex-

pensive. While AL has been historically applied to small datasets,

increasingly massive datasets (such as those motivating this paper)

pose new computational challenges.�us, a design criterion in our

system is that our AL algorithm must be amenable to parallel exe-

cution on modern many-core processors and distributed clusters.

5. Noise management. AL has traditionally dealt with expert-
provided labels that are o�en taken as ground truth (notable excep-

tions are agnostic AL approaches [12]). In contrast, crowd-provided

labels are subject to a greater degree of noise, e.g., innocent errors,

typos, lack of domain knowledge, and even deliberate spamming.

AL has a rich literature inmachine learning [31]. However, the fo-

cus has been largely theoretical, with concepts from learning theory

used to establish bounds on sample complexity but leaving a signif-

icant gap between theory and practice. Rather than aiming at such

theoretical bounds, this paper focuses on a set of practical design

1
Batch support is challenging because AL usually involves case-
analysis for di�erent combinations of labels and items.�ese com-
binations grow exponentially with the number of items in the batch,
unlessmost of the analysis can be shared among di�erent cases.

criteria and provides sound heuristics for the AL problem; the ori-

gin of these criteria is in real-world and systems considerations (in

particular, issues of scale and ease-of-use).

In this paper, we design the the �rst AL algorithms that meet all
the aforementioned requirements, which to the best of our knowl-

edge no existing AL algorithm has completely satis�ed. For exam-

ple, existing AL algorithms that are general [5, 6, 12] do not support

batching or parallelism and o�en require modi�cations to the clas-

si�er. (See Section 7 for a detailed literature review.)�us, our pro-

posal paves the way towards a scalable and generic crowd-sourcing

system that can be used by a wide range of practitioners.

1.2 Our Contributions
Our main contributions are two AL algorithms, called MinEx-

pError andUncertainty, along with a noise-management technique,
called partitioning-based allocation (PBA).�eUncertainty algorithm
requests labels for the items that the classi�er ismost uncertain about.
We also design a more sophisticated algorithm, called MinExpEr-

ror, that combines the current quality (say, accuracy) of the classi-

�er with its uncertainty in a mathematically sound way, in order to

choose the best questions to ask. Uncertainty is faster than Min-

ExpError, but it also has lower overall accuracy, especially in the

upfront scenario, i.e., where we request all labels in a single batch.
We also study the iterative scenario, i.e., where we request labels in
multiple batches and re�ne our decisions a�er receiving each batch.

A major novelty of our AL algorithms is in their use of bootstrap

theory,
2
which yields several key advantages. First, bootstrap can

deliver consistent estimates for a large class of estimators,
3
making

our AL algorithms general and applicable to nearly any classi�ca-

tion task. Second, bootstrap-based estimates can be obtained while

treating the classi�er as a complete black-box. Finally, the required

bootstrap computations can be performed independently from each

other, hence allowing for an embarrassingly parallel execution.

OnceMinExpError orUncertainty decideswhich items to send to

the crowd, dealing with the inherent noise in crowd-provided labels

is the next challenge. A common practice is to use redundancy, i.e.,
to ask each question tomultiple workers. However, instead of apply-

ing the same degree of redundancy to all items, we have developed a

novel technique based on integer linear programming, called PBA,

which dynamically partitions the unlabeled items based on their de-

gree of di�culty for the crowd and determines the required degree

of redundancy for each partition.

�us, with a careful use of bootstrap theory aswell as our batching

and noise-management techniques, our AL algorithms meet all our
requirements for building a practical crowd-sourced system, namely

generality, scalability (batching andparallelism), and ease-of-use (black-

box view and automatic noise-management).

We have evaluated the e�ectiveness of our algorithms on 18 real-

world datasets (3 crowd-sourced using Amazon Mechanical Turk,

and 15 well-known datasets from the UCI KDD repository). Ex-

periments show that our AL algorithms achieve the same quality as

several existing approaches while signi�cantly reducing the number

of questions asked of the crowd. Speci�cally, on average, we reduce

the number of questions asked by:

● 100× (7×) in the upfront (iterative) scenario, compared to pas-
sive learning, and

2
A short background on bootstrap theory is provided in Section 3.1.
3
Formally, this class includes any function that is Hadamard dif-
ferentiable, including M-estimators (which include most machine
learning algorithms and maximum likelihood estimators [22]).
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● 44× (4.5×) in the upfront (iterative) scenario, compared to
IWAL [2, 5, 6] which is the state-of-the-art general-purpose

AL algorithm.

Interestingly, we also �nd that our algorithms (which are general-

purpose) are still competitive with, and sometimes even superior

to, some of the state-of-the-art domain-speci�c (i.e., less general)

AL techniques. For example, our algorithms ask:

● 7× fewer questions than CrowdER [37] and an order of mag-
nitude fewer than CVHull [4], which are among the most re-

cent AL algorithms for entity resolution in database literature,

● 2–8× fewer questions thanBootstrap-LV [29] andMarginDis-
tance [34], and

● 5–7× fewer questions for SVM classi�ers than AL techniques
that are speci�cally designed for SVM [34].

2. OVERVIEW OF APPROACH
Our approach in this paper is as follows. �e user provides (i) a

pool of unlabeled items (possibly with some labeled items as initial

training data), (ii) a classi�er (or “learner”) that improves withmore

and better training data, and a speci�cation as to whether learning

should be upfront or iterative, and (iii) a budget or goal, in terms of
time, quality, or cost (and a pricing scheme for paying the crowd).

Our system can operate in two di�erent scenarios, upfront or iter-
ative, to train the classi�er and label the items (Section 2.2). Our pro-
posed AL algorithms, Uncertainty and MinExpError, can be used

in either scenario (Section 3). Acquiring labels from a crowd raises

interesting issues, such as how best to employ redundancy to min-

imize error, and how many questions to ask the crowd (Sections 4

and 5). Finally, we empirically evaluate our algorithms (Section 6).

2.1 Active Learning Notation
An active learning algorithm is typically composed of (i) a ranker
R, (ii) a selection strategy S , and (iii) a budget allocation strategy
Γ. �e ranker R takes as input a classi�cation algorithm4 θ, a set
of labeled items L, and a set of unlabeled items U , and returns as
output an “e�ectiveness” score w i for each unlabeled item u i ∈ U .
Our proposed algorithms in Section 3 are essentially ranking algo-

rithms that produce these scores. A selection strategy then uses the

scores returned from the ranker to choose a subset U ′ ⊆ U which
will be sent for human labeling. For instance, one selection strategy

is picking the top k items with the largest (or smallest) scores, where
k is determined by the budget or quality requirements. In this pa-
per, we use weighted sampling to choose k unlabeled items, where
the probability of choosing each item is proportional to its score. Fi-

nally, once U ′
is chosen, a budget allocation strategy Γ decides how

to best acquire labels for all the items in U ′
: Γ(U ′

, B) for �nding
the most accurate labels given a �xed budget B, or Γ(U ′

,Q) for the
cheapest labels given a minimum quality requirement Q. For in-
stance, to reduce the crowd noise, a common strategy is to ask each

question to multiple labelers and take the majority vote. In Section

4, we introduce our Partitioning Based Allocation (PBA) algorithm,
which will be our choice of Γ in this paper.

2.2 Active Learning Scenarios
�is section describes how learning works in the upfront and the

iterative scenarios. Suppose we are given a budget B for asking ques-
tions (e.g., in terms of money or time) or a quality requirement Q
4
For ease of presentation, in this paper we assume binary classi�ca-

tion (i.e., {0, 1}), but our work applies to arbitrary classi�ers.

Upfront Active Learning (B or Q, L0 ,U , θ ,R,S , Γ)
Input: B is the total budget (money, time, or number of questions),

Q is the quality requirement (e.g., minimum accuracy, F1-measure),
L0 is the initial labeled data,
U is the unlabeled data,
θ is a classi�cation algorithm to (imperfectly) label the data,
R is a ranker that gives “e�ectiveness” scores to unlabeled items,

S is a selection strategy (specifying which items should be labeled

by the crowd, given their e�ectiveness scores).

Γ is a budget allocation strategy for acquiring labels from the crowd

Output: L is the labeled version of U
1: W ←R(θ , L0 ,U) //w i ∈W is the e�ectiveness score for u i ∈ U
2: Choose U ′

⊆ U based on S(U ,W) such that U ′ can be labeled with
3: budget B or θL0(U −U ′

) satis�es Q
4: ML← θL0(U −U ′

) //train θ on L0 to automatically label U −U ′
5: Immediately displayML to the user //Early query results
6: CL ← Γ(U ′ , B or Q) //Ask (and wait for) the crowd to label U ′
7: L ← CL ∪ML //combine crowd and machine provided labels
Return L

Figure 2: �e upfront scenario in active learning.

Iterative Active Learning (B or Q, L0 ,U , θ ,R,S , Γ)
Input: Same as those in Figure 2)
Output: L is the labeled version of U
1: CL ← ∅ // labeled data acquired from the crowd
2: L ← θL0(U) //train θ on L0 & invoke it to label U
3: While our budget B is not exhausted or L’s quality does not meet Q:
4: W ←R(θ , L0 ∪ CL,U) //w i ∈W is the e�ective score for u i ∈ U
5: Choose U ′

⊆ U based on S(U ,W) (subject to B or Q)
6: L′ ← Γ(U ′ , B or Q) //Ask (and wait for) the crowd to label U ′
7: CL ← CL ∪ L′, U ← U −U ′ //remove crowd labels from U
8: L ← CL ∪ θL0∪CL(U) //train θ on L0 ∪ CL to label remaining U
Return L

Figure 3: �e iterative scenario in active learning.

(e.g., accuracy or F1-measure
5
) that our classi�er must achieve.�e

choice of the scenario depends on user’s preference and needs.

Figure 2 is the pseudocode of the upfront scenario. In this sce-
nario, the ranker computes e�ectiveness scores solely based on the

initial labeled data
6
, L0 . �en, a subset U ′ ⊆ U is chosen and sent

to the crowd (based on S and, B or Q). While waiting for the crowd
to label U ′

(based on Γ and, B or Q), we train our classi�er θ on
L0 to label the remaining items, namely U − U ′

, and immediately

send their labels back to the user. Once crowd-provided labels ar-

rive, they are also sent to the user. �us, the �nal result consists of

the union of these two labeled sets.

Figure 3 shows the pseudocode of the iterative scenario. In this
scenario, we ask for labels in several iterations. We ask the crowd

to label a few items, adding those labels to the existing training set,

and retrain.�en, we choose a new set of unlabeled items and iterate

until we have exhausted our budget B or met our quality goal Q. At
each iteration, our allocation strategy (Γ) seeks the cheapest or most

accurate labels for the chosen items (U ′
), then our ranker uses the

original training data L0 as well as the crowd labels CL collected
thus far to decide how to score the remaining unlabeled items.

Note that the upfront scenario is not an iterative scenario with a
single iteration, because the former does not use the crowd-sourced

labels in training the classi�er. �is di�erence is important as dif-

ferent applications may call for di�erent scenarios. When early an-

swers are strictly preferred, say in an interactive search interface, the

upfront scenario can immediately feed users with model-provided

labels until the crowd’s answers arrive for the remaining items.�e

5
F1-measure is the harmonic mean of precision and recall and is
frequently used to assess the quality of a classi�er.
6
In the absence of initially labeled data, we can �rst spend part of
the budget to label a small, random sample of the data.
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upfront scenario is also preferred when the project has a stringent

accuracy requirement that only gold data (here, L0) be used for train-
ing the classi�er, say to avoid the potential noise of crowd labels in

the training phase. In contrast, the iterative scenario is computa-

tionally slower, as it has to repeatedly retrain a classi�er and wait for

crowd-sourced labels. However, it can adaptively adjust its scores

in each iteration, thus achieving a smaller error for the same bud-

get than the upfront one.�is is because the upfront scenario must

choose all the items it wants labeled at once, based only on a limited

set of initial labels.

3. RANKING ALGORITHMS
�is paper proposes two novel AL algorithms, Uncertainty and

MinExpError. AL algorithms consist of (i) a rankerR that assigns
scores to unlabeled items, (ii) a selection strategy S that uses these
scores to choose which items to label, and (iii) a budget allocation

strategy Γ to decide how to acquire crowd labels for those chosen
items. As explained in Section 2.1, our AL algorithms use weighted

sampling and PBA (introduced in Section 4) as their selection and

budget allocation strategies, respectively.�us, for simplicity, we use

Uncertainty and MinExpError to refer to our AL algorithms as well

as their corresponding rankers. Both rankers can be used in either

upfront or iterative scenarios. Section 3.1 provides brief background
on nonparametric bootstrap theory, which we use in our rankers.

Our rankers are introduced in Sections 3.2 and 3.3.

3.1 Background: Nonparametric Bootstrap
Our ranking algorithms rely on nonparametric bootstrap (or sim-

ply the bootstrap) to assess the bene�t of acquiring labels for dif-
ferent unlabeled items. Bootstrap [15] is a powerful statistical tech-

nique traditionally designed for estimating the uncertainty of esti-

mators. Consider an estimator θ (say, a classi�er) that can be learned
from data L (say, some training data) to estimate some value of in-
terest for a data point u (say, the class label of u). �is estimated
value, denoted as θL(u), is a point-estimate (i.e., a single value), and
hence, reveals little information about how this value would change

if we used a di�erent data L′. �is information is critical as most
real-world datasets are noisy, subject-to-change, or incomplete. For

example, in our active learning context, missing data means that we

can only access part of our training data.�us, L should be treated a
random variable drawn from some (unknown) underlying distribu-

tionD. Consequently, statisticians are o�en interested inmeasuring
distributional information about θL(u), such as variance, bias, etc.
Ideally, one could measure such statistics by (i) drawing many new

datasets, say L1 ,⋯, Lk for some large k, from the same distribution
D that generated the original L,7 (ii) computing θL1(u),⋯, θLk (u),
and �nally (iii) inducing a distribution for θ(u) based on the ob-
served values of θL i (u). We call this true distribution Dθ(u) or
simply D(u)when θ is understood. Figure 4(a) illustrates this com-
putation. For example, when θ is a binary classi�er,D(u) is simply a
histogramwith two bins (0 and 1), where the value of the i’th bin for
i ∈ {0, 1} is Pr[θL(u) = i] when L is drawn from D. Given D(u),
any distributional information (e.g., variance) can be obtained.

Unfortunately, in practice the underlying distribution D is o�en
unknown, and hence, direct computation of D(u) using the pro-
cedure of Figure 4(a) is impossible. �is is where bootstrap [15]

becomes useful. �e main idea of bootstrap is simple: treat L as
a proxy for its underlying distribution D. In other words, instead
of drawing L i ’s directly from D, generate new datasets S1 ,⋯, Sk by
resampling from L itself. Each S i is called a (bootstrap) replicate or
7
A common assumption in nonparametric bootstrap is that L and
L i datasets are independently and identically drawn (I.I.D.) fromD.

simply a bootstrap. Each S i is generated by drawing n = ∣L∣ I.I.D.
samples with replacement from L, and hence, some elements of L
might be repeated or missing in S i . Note that all bootstraps have
the same cardinality as L, i.e. ∣S i ∣ = ∣L∣ for all i. By computing θ on
these bootstraps, namely θS1(u),⋯, θSk (u), we can create an em-
pirical distribution D̂(u).�is is the bootstrap computation, which
is visualized in Figure 4(b).

�e theory of bootstrap guarantees that for a large class of esti-

mators θ and su�ciently large k, we can use D̂(u) as a consistent
approximation of D(u). �e intuition is that, by resampling from
L, we emulate the original distribution D that generated L. Here,
it is su�cient (but not necessary) that θ be relatively smooth (i.e.,
Hadamard di�erentiable [15]) which holds for a large class of ma-

chine learning algorithms [22] such as M-estimators, themselves
including maximum likelihood estimators and most classi�cation

techniques. In our experiments (Section 6), k=100 or even 10 have
yielded reasonable accuracy (k can also be tuned automatically; see [15]).
Both of our AL algorithms use bootstrap to estimate the classi-

�er’s uncertainty in its predictions (say, to stop asking the crowd

once we are con�dent enough). Employing bootstrap has several

key advantages. First, as noted, bootstrap delivers consistent es-

timates for a large class of estimators, making our AL algorithms

general and applicable to nearly any classi�cation algorithm.
8
Sec-

ond, the bootstrap computation uses a “plug-in” principle; that is,

we simply need to invoke our estimator θ with S i instead of L.�us,
we can treat θ (here, our classi�er) as a complete black-box since
its internal implementation does not need to be modi�ed. Finally,

individual bootstrap computations θS1(u),⋯, θSk (u) are indepen-
dent from each other, and hence can be executed in parallel. �is

embarrassingly parallel execution model enables scalability by tak-

ing full advantage of modern many-core and distributed systems.

�us, by exploiting powerful theoretical results fromclassical non-

parametric statistics, we can estimate the uncertainty of complex es-

timators and also scale up the computation to large volumes of data.

Aside from Provost et al. [29] (which is limited to probabilistic clas-

si�ers and is less e�ective than our algorithms; see Sections 6 and 7),

no one has exploited the power of bootstrap in AL, perhaps due to

bootstrap’s computational overhead. However, with recent advances

in speeding up bootstrap computation [20, 38, 39] and increases in

RAM sizes and the number of CPU cores, bootstrap is now a com-

putationally viable approach, motivating our use of it in this paper.

3.2 Uncertainty Algorithm
Our Uncertainty algorithm aims to ask the crowd the questions

that are hardest for the classi�er. Speci�cally, we (i) �nd out how

uncertain (or certain) our given classi�er θ is in its label predictions
for di�erent unlabeled items, and (ii) ask the crowd to label items

for which the classi�er is least certain.�e intuition is that, themore

uncertain the classi�er, the more likely it will mislabel the item.

While focusing on uncertain items is one of the oldest ideas in

AL literature [11], previous proposals either (i) require a probabilis-
tic classi�er that produces highly accurate class probabilities along
with its label predictions [29, 35], or (ii) are limited to a particular

classi�er. For example, for probabilistic classi�ers, the class distri-

bution’s entropy is a common measure of uncertainty [40]. While

entropy-based AL can be e�ective in many situations [36, 40], in

many other situations, when the classi�ers do not produce accurate

probabilities, entropy does not guarantee an unbiased estimate of

the uncertainty (see Section 6.3). Other heuristics, such as the dis-

tance from the separator, are also used as a measure of uncertainty

8
�e only known exceptions are lasso classi�ers (i.e., L1 regulariza-
tion). Interestingly, even for lasso classi�ers, there is a modi�ed ver-
sion of bootstrap that can produce consistent estimates [10].
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(a) Ideal computation of D(u) (b) Bootstrap computation

Figure 4: Bootstrap approximation D̂(u) of true distribution D(u).
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Figure 5: (a) Fully labeled dataset, (b) initial labels, (c) asking hardest
questions, and (d) asking questions with high impact.

(e.g., SVM classi�ers [34, 36]). However, these heuristics cannot be

applied to arbitrary classi�ers. In contrast, our Uncertainty algo-

rithm applies to both probabilistic and non-probabilistic classi�ers,

and is also guaranteed by bootstrap theory to produce unbiased esti-

mates. (In Section 6, we also empirically show that our algorithm is

more e�ective.) Next, we describe how Uncertainty uses bootstrap

to estimate the classi�er’s uncertainty.

Let l be the predicted label for item u when we train θ on our la-
beled data L, i.e., θL(u) = l . As explained in Section 3.1, L is o�en
a random variable, and hence, θL(u) has a distribution (and vari-
ance). Weuse the variance of θ in its prediction, namelyVar[θL(u)],
as our formal notion ofuncertainty. Our intuition behind this choice
is as follows. Awell-established result fromKohavi andWolpert [21]

has shown that the classi�cation error for item u, say eu , can be de-
composed into a sum of three terms:

eu = Var[θL(u)] + bias2[θL(u)] + σ 2(u)

where bias[.] is the bias of the classi�er and σ 2(u) is a noise term.9
Our ultimate goal in AL is to reduce the sum of eu for all u. �e
σ 2(u) is an error inherent to the data collection process, and thus
cannot be eliminated through AL. �us, requesting labels for u’s
that have a large variance, indirectly reduces eu for u’s that have a
large classi�cation error. Hence, our Uncertainty algorithm assigns

Var[θL(u)] as the score for each unlabeled item u, to ensure that
items with larger variance are sent to the crowd for labels. �us, in

Uncertainty algorithm, our goal is to measure Var[θL(u)].
Since the underlying distribution of the training data (D in Fig-

ure 4) is unknown to us, we use bootstrap. In other words, we boot-

strap our current set of labeled data L, say k times, to obtain k di�er-
ent classi�ers that are then invoked to generate labels for each item

u, as shown in Figure 4(b). �e output of these classi�ers form an
empirical distribution D̂(u) that approximates the true distribution
of θL(u). We can then estimate Var[θL(u)] using D̂(u) which is
guaranteed, by bootstrap theory [15], to quickly converge to the true

value of Var[θL(u)] as we increase k.
Let S i denote the i’th bootstrap, and θS i (u) = l iu be the prediction

of our classi�er foruwhen trained on this bootstrap. De�ne X(u) ∶=
∑k

i=1 l
i
u/k, i.e., the fraction of classi�ers in Figure 4(b) that predict a

label of 1 for u. Since l iu ∈ {0, 1}, the uncertainty score for instance
u is given by its variance, which can be computed as:

Uncertainty(u) = Var[θL(u)] = X(u)(1 − X(u)) (1)

We evaluate our Uncertainty algorithm in Section 6.

3.3 MinExpError Algorithm
Consider the toy dataset of Figure 5(a). Initially, only a few labels

(+ or −) are revealed to us, as shown in Figure 5(b). With these
initial labels we train a classi�er, say a linear separator (shown as a

solid line).

�e intuition behind Uncertainty is that, by requesting labels for

the most uncertain items (here being those closer to the separator),
9
Squared bias bias2[θL(u)] is de�ned as [ f (u) − E[θL(u)]]2 ,
where f (u)=E[lu ∣u], i.e., expected value of true label given u [21].

the crowd essentially handles items that are hardest (or ambiguous)
for the classi�er. However, this might not always be the best strat-

egy. By acquiring a label for the item closest to the separator and

training a new classi�er, as shown in Figure 5(c), our overall accu-

racy does not change much: despite acquiring a new label, the new

classi�er still misclassi�es three of the items at the lower-le� cor-

ner of Figure 5(c). �is observation shows that labeling items with

most uncertainty (i.e., asking the hardest questions) may not have

the largest impact on the classi�er’s prediction power for other data
points. In other words, an alternative strategy would be to acquire

human labels for items that, if their labels di�er from what the cur-

rent classi�er thinks, would have a huge impact on the classi�er’s fu-

ture decisions. In Figure 5(d), the lower-le� points exemplify such

items, which we refer to as having the potential for largest impact on
the classi�er’s accuracy.

Note that we cannot completely ignore uncertainty and choose

items based only on their potential impact on the classi�er. When
the classi�er is highly con�dent of its predicted label, nomatter how

much impact an opposite label could have on the classi�er, acquir-

ing a label for that item wastes resources because the crowd label

will most likely agree with that of the classi�er anyway. �us, our

MinExpError algorithm combines these two strategies in a mathe-

matically sound way, described next.

Let l = θL(u) be the current classi�er’s predicted label for u. If
we magically knew that l was the correct label, we could simply add
⟨u, l⟩ to L and retrain the classi�er. Let eright be this new classi�er’s
error. On the other hand, if we somehow knew that l was the in-
correct label, we would instead add ⟨u, 1 − l⟩ to L and retrain the
classi�er accordingly. Let ewrong denote the error of this new classi-
�er. �e problem is that (i) we do not know what the true label is,

and (ii) we do not know the classi�er’s error in either case.

Solving (ii) is relatively easy: in each case we assume those labels

and use cross validation on L to estimate both errors, say êright and
êwrong . To solve problem (i), we can again use bootstrap to estimate
the probability of our prediction l being correct (or incorrect), say
p(u) ∶= Pr[l = lu ∣u], where lu isu’s true label. Sincewe donot know
lu (or its distribution), we bootstrap L to train k di�erent classi�ers
(following Figure 4’s notation). Let l1 ,⋯, lk be the labels predicted
by these classi�ers for u.�en, p(u) can be approximated as

p̂(u) = ∑
k
i=1 1(l i = l)

k
(2)

Here, 1(c) is the decision functionwhich is 1 when condition c holds
and is zero otherwise. Intuitively, equation (2) says that the proba-

bility of the classi�er’s prediction being correct can be estimated by

the fraction of classi�ers that agree on that prediction, if those clas-
si�ers are each trained on a bootstrap of the training set L.
Our MinExpError algorithm aims to compute the classi�er’s ex-

pected error if we use the classi�er itself to label each item, and ask

the crowd to label those items for which this expected error is larger.

�is way, the overall expected error will be minimized. To com-

pute the classi�er’s expected error, we can average over di�erent la-

5



bel choices:

MinExpError(u) = p̂(u)êright + (1 − p̂(u))êwrong (3)

We can break down equation (3) as:

MinExpError(u) = êwrong − p̂(u)(êwrong − êright) (4)

Assume that êwrong − êright ≥ 0 (an analogous decomposition is
possible when it is negative). Eq. (4) tells us that if the question is too

hard (small p̂(u)), we may still ask for a crowd label to avoid a high
risk of misclassi�cation on u. On the other hand, we may want to
ask a question for which our model is fairly con�dent (large p̂(u)),
but having its true label can still make a big di�erence in classifying

other items (êwrong is too large).�is means that, however unlikely,
if our classi�er happens to be wrong, we will have a higher overall

error if we do not ask for the true label of u.�us, ourMinExpError
scores naturally combine both the di�culty of the question and how

much knowing its answer can improve our classi�er.

3.4 Complexity and Scalability
Besides its generality, a major bene�t of bootstrap is that each

replicate can be shipped to a di�erent node, enabling parallel train-

ing. �e time complexity of each iteration of Uncertainty is O(k ⋅
T(∣U ∣)), where ∣U ∣ is the number of unlabeled items in that iter-
ation, T(.) is the classi�er’s training time (e.g., this is O(∣U ∣3) for
SVM), and k is the number of bootstraps. �us, we only need k
nodes to achieve the same run-time as training a single classi�er.

MinExpError is more expensive than Uncertainty as it requires

a case analysis for each unlabeled item. For each iteration, its time

complexity isO((k+∣U ∣)⋅T(∣U ∣)). Since unlabeled items can be in-
dependently analyzed, the algorithm is still parallelizable. However,

MinExpError requires more nodes (i.e., O(∣U ∣) nodes) to achieve
the same performance as Uncertainty. �is additional overhead is

justi�ed in the upfront scenario, given MinExpError’s superior per-

formance on a limited set of initially labeled data (see Section 6).

4. HANDLING CROWD UNCERTAINTY
Crowd-provided labels are subject to a great degree of uncertainty:

humans may make innocent (or deliberate errors), or give incorrect

answers to ambiguous questions. �is section proposes an algo-

rithm called Partitioning Based Allocation (PBA) that reduces this
uncertainty by strategically allocating di�erent degrees of redun-

dancy to di�erent subgroups of the unlabeled items. PBA is our

proposed instantiation of Γ in the upfront and iterative scenarios

(Figures 2 and 3) which given a �xed budget Bmaximizes the labels’
accuracy, or given a required accuracy, minimizes cost.

Optimizing Redundancy for Subgroups. Most previous AL ap-
proaches assume that labels are provided by domain experts and

thus perfectly correct (see Section 7). In contrast, incorrect labels are

common in a crowd database— an issue conventionally handled by

using redundancy, e.g., asking each question tomultipleworkers and
combining their answers for the best overall result. Standard tech-

niques, such as asking for multiple answers and using majority vote

or the techniques of Dawid and Skene (DS) [13] can improve answer

quality when the crowd is mostly correct, but will not help much if

users do not converge to the right answer or converge too slowly.

In our experience, crowd workers can be quite imprecise for certain

classi�cation tasks. For example, we removed the labels from 1000

tweets with hand-labeled (“gold data”) sentiment (dataset details in

Section 6.1.3), and asked AmazonMechanical Turk workers to label

them again, then measured the workers’ agreement. We used dif-

ferent redundancy ratios (1, 3, 5) and di�erent voting schemes (ma-

jority and DS), then computed the crowd’s ability to agree with the

hand-produced labels.�e results are shown in Table 1.

Voting Scheme Majority Vote Dawid&Skene

1 worker/label 67% 51%
3 workers/label 70% 69%
5 workers/label 70% 70%

Table 1:�e e�ect of redundancy (using bothmajority voting andDawid
and Skene voting) on the accuracy of crowd labels.

In this case, increasing redundancy from 3 to 5 labels does not

signi�cantly increase the crowd’s accuracy. Secondly, we have no-

ticed that crowd accuracy varies for di�erent subgroups of the un-

labeled data. For example, in a di�erent experiment, we asked Me-

chanical Turk workers to label facial expressions in the CMU Facial

Expression dataset,
10
and measured agreement with hand-supplied

labels. �is dataset consists of 585 head-shots of 20 users, each in

32 di�erent combinations of head positions (straight, le�, right, and

up), sunglasses (with and without), and facial expressions (neutral,

happy, sad, and angry).�e crowd’s accuracywas signi�cantlyworse

when the faces were looking up versus other positions:

Facial orientation Avg. accuracy
straight 0.6335%
le� 0.6216%
right 0.6049%
up 0.4805%

Similar patterns appear in several other datasets, where crowd ac-

curacy is considerably lower for certain subgroups. To exploit these

two observations, we developed our PBA algorithm, which com-

putes the optimal number of questions to ask about each subgroup

by estimating the probability pg withwhich the crowd correctly clas-

si�es items of a given subgroup g, and then solves an integer lin-
ear program (ILP) to choose the optimal number of questions (i.e.,

degree of redundancy) for labeling each item from that subgroup,

given these probabilities.

Before introducing our algorithm, we make the following obser-

vation. Using majority voting to combine an odd number of an-

swers, say 2v + 1, for an unlabeled item u with a true label l , the
probability of the crowd’s combined answer l∗ being correct is the
probability that at most v or fewer workers get the answer wrong.
Denoting this probability with Pg ,(2v+1), we have:

Pg ,(2v+1) = Pr(l = l∗∣2v + 1 votes) =
v

∑
i=0

(2v + 1
i

) ⋅ p2v+1−ig ⋅ (1 − pg)i (5)

where pg is the probability that a crowd worker will correctly label

an item in group g.
Next, we describe our PBA algorithm, which partitions the items

into subgroups and optimally allocates the budget to di�erent sub-

groups by computing the optimal number of votes per item, Vg , for

each subgroup g. PBA consists of three steps:
Step 1. Partition the dataset into G subgroups. �is can be done

either by partitioning on some low-cardinality �eld that is already

present in the dataset to be labeled (for example, in an image recog-

nition dataset, we might partition by photographer ID or the time

of day when the picture was shot), or by using an unsupervised clus-

tering algorithm such as k-means. For instance, in the CMU facial
10
http://kdd.ics.uci.edu/databases/faces/faces.data.html
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expression dataset, we partitioned the images based on user IDs,

leading to G = 20 subgroups, each with roughly 32 images.
Step 2. Randomly pick n0>1 di�erent data items from each sub-

group, and obtain v0 labels for each one of them. Estimate pg for

each subgroup g, either by choosing data items for which the label
is known and computing the fraction of labels that are correct, or by

taking the majority vote for each of the n0 items, assuming it is cor-
rect, and then computing the fraction of labels that agree with the

majority vote. For example, for the CMU dataset, we asked for v0 =
9 labels for n0 = 2 random images11 from each subgroup, and hand-
labeled those n0∗G = 40 images to estimate pg for g = 1, . . . , 20.

Step 3. Solve an ILP to �nd the optimal Vg for every group g. We
use bg to denote the budget allocated to subgroup g, and create a
binary indicator variable xgb whose value is 1 i� subgroup g is al-
located a budget of b. Also, let fg be the number of items that our
learner has chosen to label from subgroup g. Our ILP formulation
depends on the user’s goal:

Goal 1. Suppose we are given a budget B (in terms of the number
of questions) and our goal is to acquire the most accurate labels for

the items requested by the learner. We can then formulate an ILP to

minimize the following objective function:

G

∑
g=1

bmax

∑
b=1

xgb ⋅ (1 − Pg ,b) ⋅ fg (6)

where bmax
is the maximum number of votes that we are willing to

ask per item.�is goal function captures the expected weighted er-

ror of the crowd, i.e., it has a lower value when we allocate a larger

budget (xgb=1 for a large b when Pg>0.5) to subgroups whose ques-
tions are harder for the crowd (Pg ,b is small) or the learner has cho-

sen more items from that group ( fg is large). �is optimization is
subject to the following constraints:

∀1 ≤ g ≤ G ,
bmax

∑
b=1

xgb = 1 (7)

G

∑
g=1

bmax

∑
b=1

xgb ⋅ b ⋅ fg ≤ B − v0 ⋅ n0 ⋅G (8)

Here, constraint (7) ensures that we pick exactly one b value for
each subgroup and (8) ensures that we stay within our labeling bud-

get (we subtract the initial cost of estimating pg ’s from B).
Goal 2. If we are given a minimum required accuracy Q, and our

goal is to minimize the total number of questions asked, we turn (8)

into a goal and (6) into a constraint, i.e., minimizing∑G
g=1∑bmax

b=1 xgb ⋅
b ⋅ fg while ensuring that∑G

g=1∑bmax

b=1 xgb ⋅ (1 − Pg ,b) ⋅ fg ≤ 1 − Q.
Note that one could further improve the pg estimates and the ex-

pected error estimate in (6) by incorporating the past accuracy of

individual workers. We leave such extensions to future work. We

evaluate PBA in Section 6.2.

5. OPTIMIZING FOR THE CROWD
�e previous section described our algorithm for handling noisy

labels. In practice, other optimization questions arise. In Section

5.1, we address how to decide when our accuracy is “good enough”.

Given that a crowd can label multiple items in parallel, in Section

5.2 we discuss the e�ect of batch size (number of simultaneous ques-

tions) on our learning performance.

11
Larger v0 and n0 (and accounting for each worker’s accuracy) yield
more reliable pg estimates. Here, we use a small budget to show that
even with a rough estimate we can improve on uniform allocations.
We study the e�ect of n0 on PBA performance in our report [26].

5.1 When To Stop Asking
As mentioned in Section 2.2, users may either provide a �xed

budget B or a minimum quality requirement Q (e.g., F1-measure).
Given a �xed budget, we can ask questions until the budget is ex-

hausted. However, to achieve a quality levelQ, wemust estimate the
current error of the trained classi�er.�e easiest way to do this is to

measure the trained classi�er’s ability to classify the gold data accu-

rately, according to the desired qualitymetric. We can then continue

to ask questions until a speci�c accuracy on the gold data is achieved

(or until the rate of improvement of accuracy levels o�).

In the absence of (su�cient) gold data, we adopt the standard k-
fold cross validation technique, randomly partitioning the crowd-
labeled data into test and training sets, and measuring the ability of

a model learned on training data to predict test values. We repeat

this procedure k times and take the average as an overall assessment
of the model’s quality. Section 6.2 shows that this method provides

more reliable estimates of the model’s current quality than relying

on a small amount of gold data.

5.2 Effect of Batch Sizes
At each iteration of the iterative scenario, we must choose a sub-

set of the unlabeled items according to their e�ectiveness scores, and

send it to the crowd for labeling. We call this subset a “batch” (de-

noted as U ′
in Line 5 of Figure 3). An interesting question is how to

set this batch size, say β.
Intuitively, a smaller β increases opportunities to improve the AL

algorithm’s e�ectiveness by incorporating previously requested la-

bels before deciding which labels to request next. For instance, best

results are achieved when β=1. However, larger batch sizes reduce
the overall run-time substantially by (i) allowing several workers to

label items in parallel, and (ii) reducing the number of iterations.

�is is con�rmed by our experiments in Section 6.2, which show

that the impact of increasing β on the e�ectiveness of our algorithms
is less dramatic than its impact on the overall run-time.�us, to �nd

the optimal β, a reasonable choice is to start from a smaller batch
size and continuously increase it (say, double it) until the run-time

becomes reasonable, or the quality metric falls below the minimum

requirement. For a detailed discussion, refer to [26].

6. EXPERIMENTAL RESULTS
�is section evaluates the e�ectiveness of ourAL algorithms com-

pared to the state-of-the-art AL strategies, in terms of speed, cost,

and accuracy with which they can label a dataset.

Overviewof theResults. Overall, our experiments show the follow-
ing: (i) our AL algorithms require several orders ofmagnitude fewer

questions to achieve the same quality than the random baseline,

and substantially fewer questions (4.5×–44×) than the best general-
purpose AL algorithm (IWAL [2, 5, 6]), (ii) our MinExpError al-

gorithm works better than Uncertainty in the upfront setting, but

the two are comparable in the iterative setting, (iii) Uncertainty has

a much lower computational overhead than MinExpError, and (iv)

surprisingly, even though our AL algorithms are generic and widely

applicable, they still perform comparably to and sometimes much

better than AL algorithms designed for speci�c tasks, e.g., 7× fewer
questions than CrowdER [37] and an order of magnitude fewer than

CVHull [4] (two of the most recent AL algorithms for entity reso-

lution), competitive results to Brew et al [9], and also 2–8× fewer
questions than less general AL algorithms (Bootstrap-LV [29] and

MarginDistance [34]).

Experimental Setup. All algorithms were tested on a Linux server
with dual-quad core Intel Xeon 2.4 GHz processors and 24GB of

RAM.�roughout this section, unless stated otherwise, we repeated
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each experiment 20 times and reported the average result, every task

cost 1¢, and the size of the initial training and the batch size were

0.03% and 10% of the unlabeled set, respectively.

MethodsCompared.Weran experiments on the following learning
algorithms in both the upfront and iterative scenarios:

1. Uncertainty: Our method from Section 3.2.
2. MinExpError: Our method from Section 3.3.
3. IWAL: A popular AL algorithm [6] that follows Importance

Weighted Active Learning [5], recently extended with batching [2].

4. Bootstrap-LV: Another bootstrap-basedAL that uses themodel’s
class probability estimates tomeasure uncertainty [29].�ismethod

only works for probabilistic classi�ers (e.g., we exclude this in our

experiments with SVMs).

5. CrowdER: One of the most recent AL techniques speci�cally
designed for entity resolution tasks [37].

6. CVHull: Another state-of-the-art AL speci�cally designed for
entity resolution [4]. We found several other entity resolution algo-

rithms [3, 30] to be less e�ective than [4] and thus omit those from

our comparisons here. (For details see [26].)

7. MarginDistance: AnAL algorithm speci�cally designed for SVM
classi�ers, which picks items that are closer to the margin [34].

8. Entropy: A commonAL strategy [31] that picks items forwhich
the entropy of di�erent class probabilities is higher, i.e., the more

uncertain the classi�er, themore similar the probabilities of di�erent

classes, and the higher the entropy.

9. Brew et al. [9]: a domain-speci�c AL designed for sentiment
analysis, which uses clustering to select an appropriate subset of ar-

ticles (or tweets) to be tagged by users.

10. Baseline: A passive learner that randomly selects unlabeled
items to send to the crowd.

In the plots, we prepend the scenario name to the algorithm names,

e.g., UpfrontMinExpError or IterativeBaseline. We have repeated

our experiments with di�erent classi�ers as the underlying learner,

including SVM, Naı̈ve-Bayes classi�er, neural networks, and deci-

sion trees. For lack of space, we only report each experiment for

one type of classi�er. When unspeci�ed, we used linear SVM.

Evaluation Metrics. AL algorithms are usually evaluated based on
their learning curve, which plots the qualitymeasure of interest (e.g.,
accuracy or F1-measure) as a function of the number of data items

that are labeled [31]. To compare di�erent learning curves quantita-

tively, the following metrics are typically used:

1. Area under curve (AUC) of the learning curve.

2. AUCLOG, which is the AUC of the learning curve when the

X-axis is in log-scale.

3. Questions saved, which is the ratio of number of questions

asked by an active learner to those asked by the baseline to achieve

the same quality.

Higher AUCs indicate that the learner achieves a higher quality

for the same cost/number of questions. Due to the diminishing-

return of learning curves, the average quality improvement is usu-

ally in the 0–16% range.
AUCLOG favors algorithms that improve the metric of interest

early on (e.g., with few examples). Due to the logarithm, the im-

provement of this measure is typically in the 0–6% range.
To compute question savings, we average over all the quality levels

that are achievable by both AL and baseline curves. For competent

active learners, this measure should (greatly) exceed 1, as a ratio < 1
indicates a performance worse than that of the random baseline.

6.1 Crowd-sourced Datasets
We experiment with several datasets labeled using Amazon Me-

chanical Turk. In this section, we report the performance of our

algorithms on each of them.

6.1.1 Entity Resolution
Entity resolution (ER) involves �nding di�erent records that refer

to the same entity, and is an essential step in data integration/cleaning

[3, 4, 25, 30, 37]. Humans are typicallymore accurate at ER than clas-

si�ers, but also slower and more expensive [37].

Weused theProduct (http://dbs.uni-leipzig.de/file/Abt-Buy.

zip) dataset, which contains product attributes (name, description,

and price) of items listed on the abt.com and buy.comwebsites.
�e task is to detect pairs of items that are identical but listed un-

der di�erent descriptions on the two websites (e.g., “iPhone White

16 GB” vs “Apple 16GBWhite iPhone 4”). We used the same dataset

as [37], where the crowd was asked to label 8315 pairs of items as

either identical or non-identical. �is dataset consists of 12% iden-
tical pairs and 88% non-identical pairs. In this dataset, each pair
has been labeled by 3 di�erent workers, with an average accuracy

of 89% and an F1-measure of 56%. We also used the same classi�er
used in [37], namely a linear SVMwhere each pair of items is repre-

sented by their Levenshtein and Cosine similarities. When trained

on 3% of the data, this classi�er has an average accuracy of 80% and
an F1-measure of 40%. Figure 8 shows the results of using di�erent
AL algorithms. As expected, while all methods eventually improve

with more questions, their overall F1-measures improve at di�erent

rates. MarginDistance, MinExpError, and CrowdER are all com-

parable, while Uncertainty improves much more quickly than the

others. Here, Uncertainty can identify the items about which the

model has themost uncertainty and get the crowd to label those ear-

lier on. Interestingly, IWAL, which is a generic state-of-the-art AL,

performs extremely poorly in practice. CVHull performs equally

poorly, as it internally relies on IWAL as its AL subroutine. �is

suggests opportunities for extending CVHull to rely on other AL al-

gorithms in future work.

�is result is highly encouraging: even thoughCrowdERandCVHull

are recent AL algorithms highly specialized for improving the re-
call (and indirectly, F1-measure) of ER, our general-purpose AL al-
gorithms are still quite competitive. In fact, Uncertainty uses 6.6×
fewer questions than CrowdER and an order of magnitude fewer

questions than CVHull to achieve the same F1-measure.

6.1.2 Image Search
Vision-related problems also utilize crowd-sourcing heavily, e.g.,

in tagging pictures, �nding objects, and identifying bounding boxes [35].

All of our vision experiments employed a relatively simple classi�er

where the PHOW features (a variant of dense SIFT descriptors com-

monly used in vision tasks [8]) of a set of images are �rst extracted

as a bag of words, and then a linear SVM is used for their classi�-

cation. Even though this is not the state-of-the-art image detection

algorithm, we show that our AL algorithms still greatly reduce the

cost of many challenging vision tasks.

Gender Detection. We used the faces from Caltech101 dataset [16]
and manually labeled each image with its gender (266 males, 169

females) as our ground truth. We also gathered crowd labels by ask-

ing the gender of each image from 5 di�erent workers. We started by

training themodel on a random set of 11% of the data. In Figure 6, we
show the accuracy of the crowd, the accuracy of our machine learn-

ing model, and the overall accuracy of the model plus crowd data.

For instance, when a fraction x of the labels were obtained from the
crowd, the other 1 − x labels were determined from the model, and
thus, the overall accuracy was x ∗ ac + (1 − x) ∗ am , where ac and
am are the crowd and model’s accuracy, respectively. As in our en-
tity resolution experiments, our algorithms improve the quality of

the labels provided by the crowd, i.e., by asking questions for which
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Figure 6:�e object detection task (detecting the gender of the person in an image): accuracy of the (a) crowd,
(b) model, (c) overall.
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Figure 7: Image search task:
whether a scene contains a human.

the crowd tends to be more reliable. Here, though, the crowd pro-

duces higher overall quality than in the entity resolution case and

therefore its accuracy is improved only from 98.5% to 100%. Figure 6
shows that both MinExpError and Uncertainty perform well in the

upfront scenario, respectively improving the baseline accuracy by

4% and 2% on average, and improving its AUCLOG by 2-3%. Here,
due to the upfront scenario, MinExpError saves themost number of

questions.�e baseline has to ask 4.7× (3.7×) more questions than
MinExpError (Uncertainty) to achieve the same accuracy. Again,

although speci�cally designed for SVM, MarginDistance achieves

little improvement over the baseline.

Image Search.We again mixed 50 human faces and 50 background
images from Caltech101 [16]. Because di�erentiating human faces

from background clutter is easy for humans, we used the crowd la-

bels as ground truth in this experiment. Figure 7 shows the upfront

scenario with an initial set of 10 labeled images, where both Uncer-

tainty and MinExpError li� the baseline’s F1-measure by 16%, while
MarginDistance provides a li� of 13%. All three algorithms increase
the baseline’s AUCLOGby 5-6%. Note that the baseline’s F1-measure
degrades slightly as it reaches higher budgets, since the baseline is

forced to give answers to hard-to-classify questions, while the AL al-

gorithms avoid such questions, leaving them to the last batch (which

is answered by the crowd).

6.1.3 Sentiment Analysis
Microblogging sites such as Twitter provide rich datasets for sen-

timent analysis [27], where analysts can ask questions such as “how

many of the tweets containing ‘iPhone’ have a positive or negative

sentiment?” Training accurate classi�ers requires su�cient accu-

rately labeled data, andwithmillions of daily tweets, it is too costly to

ask the crowd to label all of them. In this experiment, we show that

our AL algorithms, with as few as 1K-3K crowd-labeled tweets, can

achieve very high accuracy and F1-measure on a corpus of 10K-100K

unlabeled tweets. We randomly chose these tweets from an online

corpus
12
that provides ground truth labels for the tweets, with equal

numbers of positive- and negative-sentiment tweets. We obtained

crowd labels (positive, negative, neutral, or vague/unknown) for each
tweet from 3 di�erent workers. Figure 9 shows the results for using

1K initially labeled tweets with the 10K dataset in the iterative set-

ting. �e results con�rm that the iterative scenario is best handled

by our Uncertainty algorithm, which even improves on the Brew et

al. algorithm [9], which is a domain-speci�c AL designed for senti-

ment analysis. Here, the Uncertainty, MinExpError, and Brew et al.

algorithms improve the average F1-measure of the baseline model

by 9%, 4% and 4%, respectively. Also, Uncertainty increases baseline’s
AUCLOG by 4%. In comparison to the baseline, Uncertainty, Min-
ExpError, and Brew et al. reduce the number of questions by factors

of 5.38×, 1.76×, and 4.87×, respectively. Again, the savings are ex-
pectedly modest compared to the upfront scenario, where savings

are between 27–46× (see [26] for details of the upfront experiments
with the 100K corpus).

12
http://twittersentiment.appspot.com

6.2 PBA and other Crowd Optimizations
In this section, we present results for our crowd-speci�c opti-

mizations described in Section 5.

PBAAlgorithm:We�rst report experiments on thePBA algorithm.
Recall that this algorithm partitions the items into subgroups and

optimally allocates the budget amongst them. In the CMU facial

expressions dataset, the crowd had a particularly hard time telling

the facial expression of certain individuals, so we created subgroups

based on the user column of the dataset, and asked the crowd to
label the expression on each face. Choosing v0 = 9, bmax = 9,
and n0 = 2, we compared PBA against a uniform budget alloca-
tion scheme, where the same number of questions are asked about

all items uniformly, as done in previous research (see Section 7).�e

results are shown in Figure 10. Here, the X axis shows the normal-

ized budget, e.g., a value of 2 means the budget was twice the total

number of unlabeled items.�e Y axis shows the overall (classi�ca-

tion) error of the crowd using majority voting under di�erent allo-

cations. Here, the solid lines show the actual error achieved under

both strategies, while the blue and green dotted lines show our esti-

mates of their performance before running the algorithms. Figure 10

shows that although our estimates of the actual error are not highly

accurate, since we only use them to solve an ILP that would favor

harder subgroups, our PBA algorithm (solid green) still reduces the
overall crowd error by about 10% (from 45% to 35%). We also show
how PBA would perform if it had an oracle that provided access to
exact values of Pg ,b (red line).

k-Fold Cross Validation for Estimating Accuracy: We use k-fold
cross validation to estimate the current quality of ourmodel (details

in [26]). Figure 11 shows our estimated F1-measure for an SVM clas-

si�er on UCI’s cancer dataset. Our estimates are reasonably close to

the true F1 values, especially as more labels are obtained from the

crowd. �is suggests that k-fold cross validation allows us to e�ec-

tively estimate current model accuracy, and to stop acquiring more

data once model accuracy has reached a reasonable level.

�e E�ect of Batch Size: We now study the e�ect of batch size on
result quality, based on the observations in Section 5.2.�e e�ect is

typicallymoderate (and o�en linear), as shown in Figure 12. Herewe

show that the F1-measure gains can be in the 8–10% range (see Sec-
tion 5.2). However, larger batch sizes reduce runtime substantially,

as Figure 13 shows. Here, going from batch size 1 to 200 signi�cantly

reduces the time to train amodel, by about two orders of magnitude

(from 1000’s of seconds to 10’s of seconds).

6.3 UCI Classification Datasets
In Section 6.1, we validated our algorithms on crowd-sourced datasets.

�is section also compares our algorithms on datasets from theUCI

KDD [1], where labels are provided by experts; that is, ground truth

and crowd labels are the same.�us, by excluding the e�ect of noisy

labels, we can compare di�erent AL strategies in isolation. We have

chosen 15 well-known datasets, as shown in Figures 14 and 15. To

avoid bias, we have avoided any dataset-speci�c tuning or prepro-
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Figure 8: Comparison of di�erent AL algo-
rithms for entity resolution: the overall F1-
measure in the iterative scenario.

Figure 9: Sentiment analysis task: F1-measure
of the model for 10K tweets.
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Figure 10: �e crowd’s noise under di�erent
budget allocation schemes.
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cross validation.
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Figure 12: E�ect of batch size on our algo-
rithms’ F1-measure (vehicle dataset, w/ a budget
of 400 questions).
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Figure 13: E�ect of batch size on our algo-
rithms’ processing times (vehicle dataset, w/ a
budget of 400 questions).

cessing steps, and applied the same classi�er with the same settings

to all datasets. In each case, we experimented with 10 di�erent bud-

gets of 10%, 20%,⋯, 100% (of total number of labels), each repeated
10 times, and reported the average. Also, to compute the F1-measure

for datasetswithmore than 2 classes, we have either grouped all non-

majority classes into a single class, or arbitrarily partitioned all the

classes into two new ones (details in [26]).

Here, besides the random baseline, we compare Uncertainty and

MinExpError against four other AL techniques, namely IWAL,

MarginDistance, Bootstrap-LV, and Entropy. IWAL is as general

as our algorithms, MarginDistance only applies to SVM classi�ca-

tion, and Bootstrap-LV and Entropy are only applicable to proba-

bilistic classi�ers. For all methods (except for MarginDistance) we

used MATLAB’s decision trees as the classi�er, with its default pa-

rameters except for the following: no pruning, no leaf merging, and

a ‘minparent’ of 1 (impure nodes with 1 or more items can be split).

Figures 14 and 15 show the reduction in the number of questions

under both upfront and iterative settings for Entropy, Bootstrap-LV,

Uncertainty, andMinExpError, while Table 2 shows the averageAU-

CLOG, F1, and reduction in the number of questions asked across

all 15 datasets for all AL methods.�e two �gures omit detailed re-

sults for MarginDistance and IWAL, as they performed poorly (as

indicated in Table 2). We report all the measures of di�erent AL al-

gorithms in terms of their performance improvement relative to the

baseline (so higher numbers are better). For instance, consider Fig-

ure 14. On the yeast dataset, MinExpError reduces the number of
questions asked by 84×, whileUncertainty andBootstrap-LV reduce
it by about 38× and Entropy does not improve the baseline.
In summary, these results are consistent with those observed with

crowd-sourced datasets. In the upfront setting,MinExpError signif-

icantly outperforms other AL techniques, with over 104× savings in
the total number of questions on average. MinExpError also im-

proves the AUCLOG and average F1-measure of the baseline on

average by 5% and 15%, respectively. A�er MinExpError, the Un-
certainty and Bootstrap-LV are most e�ective, producing 55-69×
savings, improving the AUCLOG by 3%, and li�ing the average F1-
measure by 11-12%. Bootstrap-LV performs well here, which we ex-
pect is due to its use of bootstrap (similar to our algorithms). How-

ever, recall that Bootstrap-LV only works for probabilistic classi�ers

(e.g., decision trees). Here, MarginDistance is only moderately ef-

fective, providing around 13× savings. Finally, the least e�ective al-
gorithms are IWAL and Entropy, which perform quite poorly across

almost all datasets. IWAL uses learning theory to establish worst-

case bounds on sample complexity (based on VC-dimensions), but

these bounds are known to leave a signi�cant gap between theory

and practice, as seen here. Entropy relies on the classi�er’s own class

probability estimates [31], and thus can be quite ine�ective when

these estimates are highly inaccurate. To con�rm this, we used boot-

strap to estimate the class probabilities more accurately (similarly to

ourUncertainty algorithm), and then computed the entropy of these

estimates.�e modi�ed version, denoted as Uncertainty (Entropy),

is signi�cantly more e�ective than the baseline (73×), which shows
that our idea of using bootstrap in AL not only achieves general-

ity (beyond probabilistic classi�ers) but can also improve traditional

AL strategies by providing more accurate probability estimates.

For the iterative scenario, Uncertainty actually works better than

MinExpError, with an average saving of 7×over the baseline in ques-
tions asked and an increase in AUCLOG and average F1-measure by

1% and 3%, respectively. Note that savings are generally more mod-
est than in the upfront case because the baseline receivesmuchmore

labeled data in the iterative setting and therefore, its average perfor-

mance is much higher, leaving less room for improvement. How-

ever, given the comparable (and even slightly better) performance

of Uncertainty compared to MinExpError in the iterative scenario,

Uncertainty becomes a preferable choice here due to its considerably

smaller processing overhead (see Section 6.4).
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Figure 14: �e ratio of the num. of questions asked by the random base-
line to those asked by di�erent AL algorithms in the Upfront scenario.

Figure 15: �e ratio of the num. of questions asked by the random base-
line to those asked by di�erent AL algorithms in the Iterative scenario.

6.4 Run-time, Scalability, and Monetary Cost
To measure algorithm runtime, we experimented with multiple

datasets. Here, we only report the results for the vehicle dataset.

Figure 13 shows that training runtimes range from a few seconds

to about 5, 000 seconds and depend heavily on batch size, which

determines how many times the model is re-trained.

We also studied the e�ect of parallelism on our algorithms’ run-

times. Here, we compared di�erent AL algorithms in the upfront

scenario on Twitter dataset (10K tweets) as we enabled cores on a
multicore machine.�e results are shown in Figure 16. For Uncer-

tainty, the run-time only improves until we have as many cores as

we have bootstrap replicas (here, 10). A�er that, improvement is

marginal. In contrast, MinExpError scales extremely well, achiev-

ing nearly linear speedup because it re-trains the classi�er once for

every training point.

Finally, we perform a monetary comparison between our AL al-

gorithms and two di�erent baselines. Figure 17 shows the combined

Upfront
Method AUCLOG(F1) Avg(Q’s Saved) Avg(F1)

Uncertainty 1.03x 55.14x 1.11x

MinExpError 1.05x 104.52x 1.15x

IWAL 1.05x 2.34x 1.07x

MarginDistance 1.00x 12.97x 1.05x

Bootstrap-LV 1.03x 69.31x 1.12x

Entropy 1.00x 1.05x 1.00x

Uncertainty (Entropy) 1.03x 72.92x 1.13x

Iterative
Method AUCLOG(F1) Avg(Q’s Saved) Avg(F1)

Uncertainty 1.01x 6.99x 1.03x

MinExpError 1.01x 6.95x 1.03x

IWAL 1.01x 1.53x 1.01x

MarginDistance 1.01x 1.47x 1.00x

Bootstrap-LV 1.01x 4.19x 1.03x

Entropy 1.01x 1.46x 1.01x

Uncertainty (Entropy) 1.01x 1.48x 1.00x

Table 2: Average improvement in AUCLOG, Questions Saved, and Av-
erage F1, across all 15 UCI datasets, by di�erent AL algorithms.

monetary cost (crowd+machines) of achieving di�erent levels of qual-

ity (i.e., the Model’s F1-measure for Twitter dataset from Section

6.1.3).�e crowd cost is (0.01+0.005)*3 per labeled item, which in-

cludes 3× redundancy andAmazon’s commission.�emachine cost
for the baseline (passive learner) only consists of training a classi-

�er while for our algorithms we have also included the computation

of the AL scores. To compute the machine cost, we measured the

running time in core-hours using c3.8xlarge instances of Amazon

EC2 cloud, which is currently $1.68/hour.�e overall cost is clearly

dominated by crowd cost, which is why our AL learners can achieve

the same quality with a much lower cost (since they ask much fewer

questions to the crowd). We also compared against a second base-

line where all the items are labeled by the crowd (i.e., no classi�ers).

As expected, this ‘Crowd Only’ approach is signi�cantly more ex-

pensive than our AL algorithms. Figure 18 shows that the crowd can

label all the items for $363 with an accuracy of 88.1–89.8%, while we
can easily achieve a close accuracy of 87.9%with only $36 (for label-
ing 807 items and spending less than $0.00014 on machine compu-

tation). �is order of magnitude in saved dollars will only become

more dramatic over time, as we expect machine costs to continue

dropping according to Moore’s law, while human worker costs will

presumably remain the same or even increase.

7. RELATED WORK
Crowd-sourced Databases. �ese systems [17, 19, 24, 25, 33] use

optimization techniques to reduce the number of unnecessary ques-
tions asked to humans (e.g., number of pair-wise comparisons in a

join or sort query). However, the crowd must still provide at least

as many labels as there are unlabeled items directly requested by the

user. It is simply unfeasible to label millions of items in this fash-

ion. To scale up to large datasets, we use machine learning to avoid

obtaining crowd labels for a signi�cant portion of the data.

Active Learning. AL has a rich literature in machine learning (see
[31]). However, to the best of our knowledge, no existing AL algo-

rithm satis�es all of the desiderata required for a practical crowd-
sourced system, namely generality, black-box approach, batching,

parallelism, and label-noisemanagement. For example,manyAL al-

gorithms are designed for a speci�c classi�er (e.g., neural networks [11],

SVM [34], or probabilistic classi�ers [23]) or a speci�c domain (e.g.,

entity resolution [3, 4, 30, 37], vision [35], or medical imaging [18]).

However, our algorithms work for arbitrary classi�ers and do not

require any domain knowledge. Surprisingly, we are also compet-

itive with (and sometimes even superior to) these domain-speci�c

algorithms. E.g., we compared against MarginDistance [34], Crow-

dER [37], CVHull [4], and Brew et al. [9].

�e popular IWAL algorithm [5] is generic (except for hinge-loss

classi�ers such as SVM), but does not support batching or paral-

lelism, and requires adding new constraints to the classi�er’s inter-

nal loss-minimization step. In fact, most AL proposals that pro-

vide theoretical guarantees (i) are not black-box, as they need to

know and shrink the classi�er’s hypothesis space at each step, and
(ii) do not support batching, as they rely on IID-based analysis. No-

table exceptions are [12] and its IWAL variant [6]; they are black-

box but do not support batching or parallelism. Bootstrap-LV [29]

and ParaActive [2] support parallelism and batching, but both [2,

6] are based on VC-dimension bounds [7], which are known to be

too loose in practice. �ey cause the model to request many more

labels than needed, leading to negligible savings over passive learn-

ing (as shown in Section 6). Bootstrap-LV also uses bootstrap, but

unlike our algorithms, it is not general. Noisy labelers are handled

in [14, 24, 28, 32], but [24, 28, 32] assume the same quality for all la-

belers and [14] assumes that each labeler’s quality is the same across

all items. Moreover, in Section 6, we empirically showed that our
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Figure 16: E�ect of parallelism on processing
time: 100K tweets.

Figure 17: �e combined monetary cost of
the crowd andmachines for Twitter dataset.

Figure 18: �e monetary cost of AL vs. using
the crowd for all labels.

algorithms are superior to generic AL algorithms (IWAL +ParaAc-

tive [2, 5, 6] and Bootstrap-LV [29]).

8. CONCLUSIONS
In this paper, we proposed two AL algorithms, Uncertainty and

MinExpError, to enable crowd-sourced databases to scale up to large

datasets. To broaden their applicability to di�erent classi�cation

tasks, we designed these algorithms based on the theory of non-

parametric bootstrap and evaluated them in two di�erent settings.

In the upfront setting, we ask all questions to the crowd in one go. In
the iterative setting, the questions are adaptively picked and added
to the labeled pool. �en, we retrain the model and repeat this

process. While iterative retraining is more expensive, it also has

a higher chance of learning a better model. Additionally, we pro-

posed algorithms for choosing the number of questions to ask dif-

ferent crowd-workers, based on the characteristics of the data being

labeled. We also studied the e�ect of batching on the overall run-

time and quality of ourAL algorithms. Our results, on three datasets

collected with Amazon’s Mechanical Turk, and on 15 datasets from

the UCI KDD archive, show that our algorithms make substantially

fewer label requests than state-of-the-art AL techniques. We believe

that these algorithms will prove to be immensely useful in crowd-

sourced database systems.
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