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ABSTRACT
There has been much recent interest in on-line data mining. Exist-
ing mining algorithms designed for stored data are either not appli-
cable or not effective on data streams, where real-time response is
often needed and data characteristics change frequently. Therefore,
researchers have been focusing on designing new and improved al-
gorithms for on-line mining tasks, such as classification, clustering,
frequent itemsets mining, pattern matching, etc. Relatively little
attention has been paid to designing DSMSs, which facilitate and
integrate the task of mining data streams—i.e., stream systems that
provide Inductive functionalities analogous to those provided by
Weka and MS OLE DB for stored data. In this paper, we propose
the notion of an Inductive DSMS—a system that besides providing
a rich library of inter-operable functions to support the whole min-
ing process, also supports the essentials of DSMS, including opti-
mization of continuous queries, load shedding, synoptic constructs,
and non-stop computing. Ease-of-use and extensibility are addi-
tional desiderata for the proposed Inductive DSMS. We first review
the many challenges involved in realizing such a system and then
present our approach of extending the Stream Mill DSMS toward
that goal. Our system features (i) a powerful query language where
mining methods are expressed via aggregates for generic streams
and arbitrary windows, (ii) a library of fast and light mining algo-
rithms, and (iii) an architecture that makes it easy to customize and
extend existing mining methods and introduce new ones.

1. INTRODUCTION
Data mining has received much attention in database community
over the last decade [17, 18, 42, 4, 23]. Similarly, research on data
streams has also received considerable interest [8, 30, 7, 20, 41, 6,
19]. On-line data stream mining represents the confluence of these
two research areas and has recently received much attention [12,
18, 13, 43, 16, 23].

This interest is largely due to the growing set of streaming appli-
cations where mining plays a critical role; these include network
traffic monitoring, web click-stream analysis, highway traffic con-
gestion analysis, market basket data mining, credit card fraud de-
tection, etc.
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Introduction of the static data mining algorithms, in 1990s, had
presented the research challenge of how to best support the large
variety of mining algorithms in an integrated manner. An obvi-
ous solution in the case of static data mining was supporting these
algorithms in a DBMS. While the problem drew much interest
from vendors and researchers in mid-90s, effective solutions did not
come quickly. Indeed performing data mining tasks using DBMS-
provided constructs and functions, proved to be exceedingly dif-
ficult1 [38]. Therefore, in their visionary paper [27], Imielinski
and Mannila called for a quantum leap in the functionality and
usability of DBMSs, whereby mining queries can be formulated
with the same ease of use as most usual queries in a relational
DBMS. The notion of Inductive DBMS (IDBMS) was thus born
(a.k.a. the ‘high-road’ approach) [27], which inspired approaches
such as MSQL [26], DMQL [24], and Mine Rule [33]. These ap-
proaches feature SQL-based mining languages to specify the data
to be mined and the kind of patterns to be derived. Although these
proposals have made a number of research contributions, they suf-
fer from two main limitations, generality and performance. For
instance, MSQL and Mine Rule only consider association rule min-
ing.

Therefore, instead of taking the ‘high-road’ approach to inductive
DBs, commercial DBMS vendors have answered users’ demands
by less ambitious approaches that are largely based on the addition
of mining libraries to their DBMSs. For example, DB2 Intelligent
Miner [4], Oracle Data Miner [5], and OLE DB for DM [42]. Also
these libraries are often enhanced with graphical interfaces. How-
ever, all vendor proposed approaches are closed, i.e. provide little
in terms of flexibility, extensibility, and integration with SQL. This
lack of openness represents a significant weakness with respect to
specialized data mining systems, such as Weka [14], which have
gained wide acceptance in the field. Weka is an open source tool
for machine learning and data mining, implemented in Java. The
main advantages of Weka are as follows:

• All algorithms follow standard Java API for extensibility,
• A comprehensive set of data pre-processing (filtering) tools,

and
• Built-in implementation for many learning algorithms for clas-

sification, clustering, and frequent itemsets mining.

Therefore, while static data is managed in DBMSs, it is tradition-
ally mined using a cache-mining approach due to the lack of suit-
able constructs in DBMSs.
1Sarawagi et al [38], attempted to implement frequent itemset min-
ing in DB2 without any extensions. As discussed in the paper, it
was very difficult to implement and the efficiency was worse than
the cache-mining approach.



On-line data stream mining raises many new problems that were
not encountered in static data mining. For instance, changing data
characteristics represent the first such problem, often known as con-
cept shifts/drifts. Since the data is continuously arriving the data
values may experience a change in the distribution, for example the
mean and the variance for a temperature reading may vary as sea-
sons change. Furthermore, the underlying concepts that generate
the data may also change, for example in credit card fraud detec-
tion, the types of frauds may evolve over time. Thus, a classifier
learned over stale credit card transactions may not be accurate in
predicting behavior of current transactions. Therefore, we must
continuously and actively learn the data mining model over the lat-
est training data.

Another problem in on-line mining is the real-time response re-
quirement of data streams, which severely limits the use of complex
mining algorithms requiring multiple passes over the data. In fact,
these applications may sacrifice the accuracy of the mining models
in order to support the real-time constraints. Therefore, these new
problems present two main research challenges.

i. Finding new algorithms that suit the requirements of the on-
line applications.

ii. Building systems that efficiently support such algorithms in
an integrated and extensible manner.

Recent years have seen the emergence of many on-line mining al-
gorithms [12, 18, 13, 43, 16, 23], however many research problems
are still unsolved in this area, e.g. better algorithms for frequent
itemsets mining over sliding windows are still being proposed [34].
On the other hand, the second challenge of investigating systems
that can efficiently support a wide variety of these algorithms, has
not received much research attention. Therefore, this paper pro-
poses an Inductive Data Stream Management System (IDSMS) that
precisely addresses this issue.

There are two alternatives for building such a system that supports
arbitrary on-line mining algorithms over data streams.

i. Extend an existing Data Stream Management System (DSMS)
with on-line mining capability

ii. Extend a cache-mining system such as Weka to handle stream
mining

The second approach advocates extending an existing static data
mining package, such as Weka, to support on-line data mining.
Database users can select this cache-mining approach because the
DBMS essentials, such as recovery, concurrency control, and data
independence, etc. are not requisites to the execution of mining
functions required for data mining applications. Thus, it is sim-
ple for users to provide their own mining functions by either cod-
ing them in a procedural language or by using a mining library.
However, the situation could not be more different for data streams,
where DSMS essentials such as scheduling, response time/memory
optimizations, support for synopses, QoS, non-stop continuous queries,
etc. are required by all applications, including on-line mining ap-
plications. Thus, users would prefer to rely on the system, for these
basic features, rather than having to provide them directly as part of
their applications. Thus, any such on-line mining system will have
to provide all stream related extensions, such as windows, slides,
load shedding, etc. Furthermore, the pull-based architecture ex-
pected by the static data mining packages will have to be changed
to the push-based architecture posed by data streams. Finally, the
complex data mining algorithms supported by these static data min-
ing systems might be of little use, since they are not fast and light

enough to satisfy the real-time response requirements. Thus, the
second approach is not attractive since it requires rebuilding a com-
plete DSMS and yet, does not reduce the effort of implementing
new on-line mining algorithms.

Therefore, we have selected the first approach and extended the
Stream Mill DSMS to support the rich functionality of an Induc-
tive DSMS. While Stream Mill provides a good platform (e.g.,
it supports a very powerful query language), the task remains a
formidable one. To the best of our knowledge on-line data stream
mining has not been attempted previously by other DSMS projects.
Providing a full suite of well-integrated on-line mining functions
represents only the first of these challenges. The second chal-
lenge consists in making these functionsgenerici.e., independent
on the number and types of attributes in the incoming data streams.
Advanced techniques for on-line mining, such as ensemble based
boosting and bagging, also have to be supported generically, i.e.
over arbitrary mining algorithms. The third problem is to sup-
port the efficient computation of these mining functions on dif-
ferent types of windows, including continuous windows, sliding
windows, and tumbles. The fourth challenge is to ensure that the
system remains open and extensible, so that users can modify and
extend it for their own application classes (a property that is lacking
in most commercial systems).

Therefore, the main contributions of this paper are as follows:

• To the best of our knowledge this is the first attempt to design
and implement an Inductive DSMS.

• Efficient and robust techniques have been developed for in-
tegrating key data mining functions into a DSMS. These in-
clude classification and association rule mining.

• Constructs and techniques have been proposed to support
flexible windows andgenericimplementations of the on-line
mining functions. Techniques, such as ensemble-based bag-
ging and boosting, have also been developed to tackle concept-
drifts and shifts [43, 13, 23].

• An open architecture, which enables the declarative speci-
fication and integration of new mining algorithms into the
IDSMS, has been developed and tested.

The organization of this paper is as follows. The next section dis-
cusses related work in the areas of Inductive DBMSs, on-line min-
ing algorithms, and DSMSs. In Section 3, we take Naïve Bayesian
classification as a sample mining task and present the extensions
that are required to support on-line mining in a DSMS. In Section
4, we discuss the support for advanced mining methods in the ex-
tended Stream Mill system. Section 5 and Section 6 present future
work and conclusion, respectively.

2. RELATED WORK
On-line data stream mining has been the focus of many research
efforts. For instance, [12] presents, Moment, a differential algo-
rithm to maintain closed frequent itemsets over continuous win-
dows, whereas [34] proposes, SWIM, an algorithm to maintain fre-
quent itemsets over large sliding windows. Similarly, [43] presents
an ensemble based bagging technique to improve the accuracy of
classifiers in the presence of concept-drifts and shifts. [13] and
[23], present other similar techniques to improve the accuracy of
on-line classifiers. [16] extends a static clustering algorithm, namely
DBScan, to be continuous. Thus, on-line mining algorithms repre-
sent a vibrant area of current research.



On the other hand, DSMSs have also been introduced to support
continuous applications. DSMSs provide in-built support for many
advance techniques, such as buffering, approximate query answer-
ing, sampling, load shedding, scheduling, windows, slides, etc., to
effectively manage data streams. STREAM is one such DSMS that
uses an SQL-like language and focuses on techniques for window
management [7]. Instead of extending SQL, the Aurora/Borealis
project defines query plans via an attractive ‘boxes and arrows’
based graphical interface [19]. The TelegraphCQ [20] project pro-
poses an SQL-like language with extended window constructs, in-
cluding a low-level C/C++-like for-loop, aiming at supporting more
general windows such as backward windows. This paper focuses
on extending the Stream Mill system, which supports the Expres-
sive Stream Language (ESL). ESL’s expressive power is superior
to other data stream query languages, both theoretically [30] and
practically [9].

As discussed in Section 1, Inductive DBMSs have also been the fo-
cus on many research projects. Furthermore, DBMS vendors have
also added mining libraries to their respective DBMSs to provide
integrated support [4, 5, 42].

At the convergence of these three research areas, namely DSMSs,
IDBMSs, and on-line mining algorithms, is the research on systems
that support on-line mining algorithms (i.e. Inductive DSMSs),
which has not been the focus of any research projects. Therefore,
this paper proposes an IDSMS that generically supports data stream
mining algorithms and allows adding new algorithms declaratively.

3. DATA STREAM SYSTEMS AND MINING
Our approach consists in building an IDSMS by integrating effi-
cient stream mining algorithms into the Stream Mill DSMS. To
achieve such an integration, however a number of language and
system extensions need to be added to Stream Mill. We will next
discuss these extensions using Naïve Bayesian Classifier(NBC) as
an example, since (i) it represents a very important classifier fre-
quently used in applications [40], and (ii) unlike other data min-
ing algorithms, it is simple enough to be expressible in standard
SQL [44] and thus provides an excellent vehicle for explanation.

Take for instance the Play-Tennis example of Table 1, where we
want to predict thePlay attribute (‘Yes’ or ‘No’) given a training
set consisting of tuples similar to the ones shown in Table 1.

RID Outlook Temp Humidity Wind Play
1 Sunny Hot High Weak No
2 Sunny Hot High Strong Yes
3 Overcast Hot High Weak Yes
... ... ... ... .. ...

Table 1: The relation PlayTennis
Building a Naïve Bayesian classifier from a table like this (contain-
ing the training tuples) only requires (i) the count of the number
of tuples, (ii) the number of tuples belonging to each class, and
(iii) for each (column, value) pair the number of tuples belonging
to each class. Using the statistics so collected in this descriptive
phase, we can now perform the predictive task of deciding whether
’Yes’ or ’No’ is more probable for a new incoming tuple where all
the attribute values, but the classification, are known.

Genericity. While implementing such a classifier on a table with
a given schema is simple in our IDSMS, we want to implement a

genericNBC—i.e., one that will work on any given table or data
stream with an arbitrary schema. Indeed, Genericity is an important
property supported in systems such as Weka or OLE DB, where
algorithms can be applied on tables with arbitrary schema.

The first step toward achieving this genericity in a DSMS, is ta-
ble verticalization. Thus our training set is verticalized into col-
umn/value pairs whereby the first two tuples in Table 1 are now
represented by the eight tuples shown in Table 2.

RID Column Value Dec
1 1 Sunny No
1 2 Hot No
1 3 High No
1 4 Weak No
2 1 Sunny Yes
2 2 Hot Yes
2 3 High Yes
2 4 Strong Yes
... ... ... ...

Table 2: Verticalized PlayTennis relation

Furthermore, we can convert each attribute to a real value, much
in the same way as Weka, so that the vertical tuples can be passed
to a UDA. Conversion of attributes with type date, int, and real to
real is trivial. For attributes of type string, nominal, and relational
each possible value is assigned an index, which is stored as a real.
Therefore, Weka creates a generic type (real) array for each input
tuple. In the case of Stream Mill we create a similar array, but
instead store it as a table, since Stream Mill is a relational system.
For instance, verticalizing a tuple such as

DataTuple(a INT, b REAL, c INT, d TIMESTAMP)

we get the following tuples.

VerticalTuple(Column INT, Value REAL, TotColumns INT)
VerticalTuple(1, a, 4)
VerticalTuple(2, b, 4)
VerticalTuple(3, c, 4)
VerticalTuple(4, d, 4)

This simple example tuple contains 4 attributes, two integers, one
real, and one timestamp. The resulting vertical tuples always have
three attributes, first attribute is an integer, namely column number,
which is self-explanatory. Second attribute is a real and acts like an
entry in Weka real array. The third and final attribute is the num-
ber of columns in the dataset (mainly required for book-keeping).
While this verticalization can be easily achieved in Stream Mill us-
ing user defined table functions2, for user convenience we extend
Stream Mill with a built-in function calledverticalize, which takes
an arbitrary number of arguments and verticalizes them based on a
given configuration table.

Thus, from this vertical representation, the descriptive part of the
NBC is implemented by simply counting the occurrences of Yes
and No with a statement such as follows:

SELECT ts.Column, ts.Value, t.Dec, count(t.Dec) as Cnt
FROM traningset AS t,

TABLE(verticalize(Outlook, Temp, Humidity, Wind)) AS ts

2User defined functions represent a very useful SQL:2003 con-
struct now supported by most DSMSs, which are similar to DB2
table functions [2, 1]



GROUP BY ts.Col, ts.Value, t.Dec

This query (with small modifications) results in the following de-
scriptor table, where the last attribute, normCnt, is the normalized
count (normalized with respect to the number of tuples with the
same Dec value).

DescriptorTbl(Col: int, Value: int, Dec: int, normCnt: rea l)

Then, the predictive part of the Naïve Bayesian classifier is imple-
mented using the results of the following query:

SELECT t.RID, d.Dec, sum(abs(log(normCnt)))
FROM DescriptorTbl AS d, testingsetAS t,

TABLE(verticalize(Outlook, Temp, Humidity, Wind)) AS ts
WHERE d.Val=ts.ValueAND d.Col=ts.Column

GROUP BY t.RID, d.Dec

For each tuple, the classification with the highest value for the
above sum will be predicted. Thus, a Naïve Bayesian classifier
can be implemented as a set of simple SQL queries.

UDAs. However, the situation is a bit different when either the
training set or the testing set is streaming. Let’s first discuss the
case where the testing set is streaming. In this case, for each incom-
ing testing tuple, we must apply the above query and determine the
best classification. Stream Mill/ESL provides User Defined Ag-
gregates(UDAs) specially for this purpose, i.e. ESL UDAs allow
specifying arbitrary operations to be performed over each arriving
tuple. In general, UDAs provide tremendous power and flexibility
as discussed in [9]3. ESL UDAs consist of two states, INITIALIZE
(executed for the first tuple of the stream) and ITERATE (executed
for each sub-sequent tuple). Furthermore, ESL allows definition
of tables, which are shared by the INITIALIZE and the ITERATE
states, i.e. these tables can store any information needed for subse-
quent execution of ITERATE statements. These shared tables also
make UDAs highly suitable for state-based computations. Thus,
given a statistics tableDescriptorTbl , the UDA of Example 1 per-
forms classification for each tuple.

EXAMPLE 1. Defining Classification Aggregate

AGGREGATE classify(colINT, val CHAR(10), totCols INT) : INT {
TABLE tmp(column INT, valueCHAR(10));
TABLE pred(decINT, tot REAL);
INITIALIZE: ITERATE: {

INSERT INTO tmp VALUES (col, val);
INSERT INTO pred SELECT d.Dec, sum(abs(log(normCnt)))

FROM DescriptorTbl AS d, tmp AS t
WHERE col = totColsAND d.Val=t.value

AND d.Col=t.column
GROUP BY d.Dec;

INSERT INTO RETURN SELECT decFROM pred
WHERE col = totCols

AND tot = (SELECT max(tot) FROM pred);
DELETE FROM tmp WHERE col = totCols;
DELETE FROM pred WHERE col = totCols;

}
}

The UDA of Example 1 buffers the vertical tuples of each original
tuple (INSERT INTO tmp statement), till it receives the last vertical
tuple of an original tuple, signified bycol = totCols. Upon arrival
of the last vertical tuple of an original tuple, it computes the prob-
ability of each possibleDecvalue (INSERT INTO pred statement)
3While we only discuss mining related features and advantages of
UDAs here, [9] presents an in depth discussion of UDAs

and outputs theDec value with the highest probability (INSERT
INTO RETURN statement). This procedure is repeated for each
testing tuple. Both thetmp table and thepred table are emptied af-
ter the computation is completed, i.e. at the end of the ITERATE
statement for the last vertical tuple. This UDA is invoked in the
same way as built-in aggregates are in SQL, as shown below.

SELECT classify(ts.Column, ts.Value, ts.TotColumns)
FROM testingstream as t,

TABLE(verticalize(Outlook, Temp, Humidity, Wind)) AS ts
While the solution proposed above effectively solves the generic-
ity issue, it is prone to performance overhead. Since the ITERATE
statement of the UDA will now be invoked for each vertical tuple;
if a tuple contains a lot of attributes, this overhead can be signifi-
cant (based on our experience with real-world datasets). Therefore,
we extend Stream Mill with a special solution for aggregates that
are written in external programing language. This second solution
consists in creating temporary arrays that are only processed by
objects outside the Stream Mill system, i.e. external functions and
external UDAs. Thus, the Stream Mill system does not have to deal
with array types (a daunting task given that Stream Mill is a rela-
tional DSMS). Thus, a built-in function is provided that takes an
arbitrary number of arguments and creates an array of reals from
it. This array is directly passed to an external UDA programmed
in C/C++ or Java. Thus, the mining algorithm will be implemented
as an external UDA. The main advantage of this second approach
is that it results in an efficient implementation compared to the first
approach.

The first approach suffers from verticalization overhead and has to
process large number of ‘vertical’ tuples. However, the second ap-
proach is only suitable when the algorithm is implemented as an
external UDA. Therefore, the users are likely to use the first verti-
calization approach with natively defined UDAs when they are test-
ing and fine-tuning their algorithms. However, the users will switch
to UDAs written in a lower level language, such as C, and use the
second approach for verticalization, during deployment for better
performance. Therefore, the extended Stream Mill system allows
the user flexibility to choose between declarative (thus simpler) im-
plementation and performance. Indeed, Stream Mill employs the
second technique to implement many built-in mining algorithms,
which can be generically applied over arbitrary data streams.

Windows. Coming back to our Play-Tennis example, let’s now
suppose that the training set is also arriving continuously. In many
on-line mining applications this represents a realistic scenario. For
instance, consider a loan approval application in a bank, where a
loan request is approved or denied based on the customer’s credit
rating, age, income, etc. While many cases can be marked eas-
ily via a classification tool, some cases may require human experts.
Thus, the system may use these human classified examples as train-
ing set to learn new trends and to improve the accuracy. There-
fore, the training model will have to be relearned to adopt to these
changes. In general, in a streaming environment the mining mod-
els should be learned on the latest training dataset to cope with the
changes in the data, a.k.a concept drifts and shifts. In general, the
mining model should be continuously relearned from the training
stream. This requires that the system maintains a mining model
that is based on N most recent training tuples (or tuples that arrived
in past N time units). Therefore, upon arrival of a new tuple, the
oldest tuple is discarded and a new model is learned based on the
most recent N tuples. Thus, ESL UDAs allow a delta maintenance
strategy, where by a tuple can be added/removed from the model.
ESL allows the user to define a special EXPIRE state in the UDA,



which is invoked for each expiring tuple. This allows the user to
take any actions required for an expiring tuple. This method works
very well for Naïve Bayesian classifier, as seen in Example 24.
Example 2, shows thelearn UDA, which collects the statistics re-
quired for the Nä’ive Bayesian classifier, i.e. updates the Descrip-
torTbl table upon arrival/expiration of a tuple. In other words, this
UDA continuously learns the mining model for an NBC. Note, in
this case the learned model is updated at the arrival/expiration of
each tuple. Such windows are called continuous windows, since
the window moves one tuple at a time.

EXAMPLE 2. Defining Windowed Learning Aggregate

WINDOW AGGREGATE learn(col INT, val CHAR(10),
decINT):INT {

INITIALIZE: ITERATE: {
UPDATE DescriptorTbl SET normCnt = normCnt + 1

WHERE Col = col AND Val = val AND Dec = dec;
INSERT INTO DescriptorTbl VALUES (col, val, dec, 1)

WHERE SQLCODE = 0;
}
EXPIRE: {

UPDATE DescriptorTbl SET normCnt = normCnt - 1
WHERE Col = oldest().colAND Val = oldest().val

AND Dec = oldest().dec;
}

}

Such windowed UDAs are invoked in the same way as OLAP ag-
gregates are in SQL:2003, as shown below.

SELECT learn(ts.Column, ts.Value, t.dec)
OVER (ROWS 1000 PRECEDING)

FROM trainingstream AS t,
TABLE(verticalize(Outlook, Temp, Humidity, Wind)) AS ts

While this represents an effective solution to continuously learn
the mining model, it may not work for some classifiers. For in-
stance, maintaining a decision tree classifier differentially, is rather
complex. In such cases another technique can be applied; this tech-
nique consists in learning a new classifier every N number of tuples
(or every hour), maintaining M such recent classifiers, and voting
among these recent classifiers to determine the class label for the
tuples. This strategy can be realized by the ESL query given below.

SELECT learn(T.col, T.val, TS.dec)
OVER (ROWS 999 PRECEDING SLIDE 1000)

FROM trainingstream TS,
TABLE(verticalize(outlook, temp, humidity, wind)) AS T

In ESL such windows can be applied over arbitrary UDAs, not just
built-in aggregates. The OVER clause defines the size of the win-
dow. Whereas the SLIDE clause defines interval of execution, i.e.
the execution of the iterate state is bundled for SLIDE number of
tuples (or for tuples that arrive in SLIDE time, if a time range is
specified for SLIDE). When the slide size and the window size are
the same as in this case, it is called a tumble, since each subsequent
window is disjoint from the previous window. More discussion of
different kinds of windows supported in ESL and their optimiza-
tion can be found in [9]. Thus in this example a new classifier
is learned every 1000 tuples and a few such recent classifiers can
vote to determine the class value for a testing tuple. Therefore,

4Note, we have omitted the normalization of counts in this example
for clarity.

ESL UDAs and windows over UDAs naturally support such ad-
vanced mining queries. However, in some cases it is difficult to
determine the optimal size of the window and the number of classi-
fiers to keep. Indeed, smaller window sizes can lead to over-fitting,
whereas larger window sizes cannot detect concept-drifts/shifts in
a timely manner. Therefore many advanced techniques for improv-
ing the accuracy of classifiers, in the presence of concept-drifts and
shifts, have been proposed, e.g. ensemble based bagging [43] and
boosting [13]. Such advanced methods are generically supported
efficiently in Stream Mill, as discussed in Section 4.

In general, ESL with UDAs can support many mining algorithms
efficiently. Furthermore, windows and slides over arbitrary UDAs
find natural applications in on-line data mining. Additionally, min-
ing algorithms implemented as UDAs can be applied over arbitrary
streams, since these algorithms can be madegenericbased on ver-
ticalization. Finally, ESL UDAs allow the user to easily introduce
new mining algorithms and modify existing ones, since ESL UDAs
can be written declaratively, i.e. in SQL itself. Therefore, ESL with
UDAs provides an ideal platform to perform on-line data stream
mining. Next, we discuss how advanced techniques, such as en-
semble based bagging and other mining algorithms are integrated
in this framework.

4. ON-LINE MINING ALGORITHMS
Many existing on-line mining algorithms are provided as built-in
algorithms in Stream Mill as we discuss next.

4.1 Classification
Classification is the task of predicting certain attribute(s) of testing
tuples based on other attributes of the tuple and a mining model
learned from the training tuples. The assumption is that both the
testing and the training tuples are generated from the same under-
ling process. Classification is also known as supervised learning,
since it requires a training set. NBC represents the simplest clas-
sification algorithm and was discussed in Section 3. Many other
classification algorithms, such as decision tree classifier, k-nearest
neighbor classifier, etc., can be efficiently integrated in the pro-
posed framework. We discuss decision tree classifiers below, since
they are more descriptive compared to NBCs.

4.1.1 Decision Tree Classifier
Decision tree classifier represents another simple type of classi-
fiers. Generating a decision tree classifier however, is a signifi-
cantly more complicated as compared to creating a simple Naïve
Bayesian classifier. The process requires close inspection of data
distribution, which may require multiple passes of the data. There-
fore, it is expensive to continuously learn a decision tree model over
an incoming training stream. Instead a windowed approach is more
suitable, where a new mining model is learned every N number of
tuples, where N is a user defined number. Thus, in the windowed
approach a new decision tree is created for every window of N tu-
ples using the following 3-step procedure, starting at the root node.

1. Compute the entropy of each column (S) using a formula
such as that of Equation 1 [3] – many other formulas can
also be used.

Entropy(S) =

c∑

i=0

pi ∗ log2(pi) (1)

wherepi is the portion of instances in the dataset that take
theith value of the target attribute and c is the number of

possible distinct values the attribute can attain



2. Pick the column with the least entropy (ties broken randomly).
For each distinct value of the chosen column, create a new
node and an edge connecting the current node to the new
node.

3. Recursively invoke this procedure on all new nodes.

Note that the entropy computed in distinct recursive calls is dif-
ferent, since the tuples that qualify at each node are different, i.e.
while computing entropy, only tuples that match partial assign-
ments of ascendant nodes are considered. Also note that the above
algorithm terminates, i) if all ‘qualifying’ tuples at the node are of
the same class or ii) if all columns are already assigned values. In
this case, the algorithm makes a probabilistic decision based on the
‘qualifying’ tuples. A decision tree generated in this manner can be
stored in tables such as the following. These tables store traversal
edges and leaf nodes, respectively.

TABLE traverse(src_nodeINT, column INT,
valueCHAR(10), dest_nodeINT)

TABLE accept_node(nodeINT, classValueINT)

The evaluation of such a decision tree also presents an interesting
problem, since it is a graph traversal problem. This traversal is
performed via a recursive UDA that that starts at the root node and
traverses the tree based on the testing tuple values. Eventually, a
leaf node is reached, which stores the classification (accept_node
table above). This indeed is a very elegant solution as shown in
[21].

Note that the approach presented above is a constrained version of
the decision tree classifier. The decision tree presented above only
handles equality-splits, i.e. less than and greater than based splits
are not handled. However, in general a more flexible approach is
required, which can be achieved as follows. First modify the tra-
verse table as follows, where the comparison attribute describes the
operator (=,≤,≥, <, >) that needs to be satisfied in order to follow
the edge.

TABLE traverse(src_nodeINT, column INT,
valueCHAR(10), dest_nodeINT, comparisonINT)

Furthermore, the entropy calculation needs to consider this new
paradigm. The reader is referred to [29], which discusses how to
calculate entropy for continuous variables. Finally, the recursive
UDA that traverses the decision tree also needs to be modified to
account for this change.

4.1.2 Concept-Drifts and Shifts
One of the core issues in on-line data mining is considered to be
the change in the underlying data due to gradual or sudden concept
changes of the external environment [15]. As discussed before,
there are two types of changes that need to be considered, change
in the data distribution and change in the underlying concepts that
generate the data. In general, these changing data characteristics
prohibit the use of existing static data mining algorithms. A simple
solution, which is used in many current approaches, is to decay the
weight of data tuples as they get old. As tuples get old their weight
approaches 0 and they are discarded. However this simple approach
creates the following dilemma, if the weight decay rate is low, old
concepts are present during classification, thus the accuracy is re-
duced. If the decay rate is high, the classifier over-fits the latest set
of training tuples. The problem has been studied in detail by [43,
13, 23] and ensemble based bagging and boosting are proposed to
improve the accuracy of classifiers over data streams. These tech-
niques effectively and efficiently cope with concept-shifts and drifts

as shown in [43, 13, 23]. It is imperative that such techniques are
supported in an on-line mining system to achieve higher accuracy
in on-line mining. Stream Mill system generically supports both of
these extensions as discussed next.

Ensemble Based Weighted Bagging:The ensemble based weighted
bagging approach was proposed in [43]. The approach is applica-
ble in the setting described earlier, i.e. when there are two parallel
streams, a training stream and a testing stream and both of these
streams are generated by the same underlying concepts. The ap-
proach divides incoming training data stream into blocks of data
(called tumbling windows) and learns a new classifier for each win-
dow. Learning can be performed using any arbitrary classifier, such
as NBC or decision tree classifier (called the base classifier). Thus,
we have an ensemble of learned classifiers, one for each recent
training window. The approach uses the latest training window to
determine the accuracy of existing classifiers on the currently ar-
riving testing data. Thus, each pre-existing classifier is assigned
a weight proportional to its accuracy on the most recent training
window. The newly arriving testing tuples are first classified using
each of the classifiers from the ensemble. Then, a weighted vot-
ing scheme is employed to determine the final classification of the
tuple. Figure 1 shows this process in detail.

Figure 1: Generalized Weighted Bagging

As shown in Figure 1, the training stream is fed to a UDA, named
‘Classifier Building’, which learns the next classifier to be stored
with other classifiers. The training stream is also sent to a ‘Classifi-
cation’ UDA that predicts the classification of each tuple using each
classifier in the ensemble. These predictions are then used to assign
weights (based on accuracy) to the ensemble classifiers for the next
set of testing tuples. The testing stream is fed to a ‘Classification
Task’ UDA that predicts classification for each tuple based on each
classifier in the ensemble. These predictions are then combined us-
ing weighted voting. Figure 1 also provides insights into how this
ensemble based classification can be generalized for different clas-
sification algorithms. The general flow of data tuples, both train-
ing and testing, does not depend on the particular classification al-
gorithm. In fact, only the boxes labeled ‘classifier building’ and
‘classification task’ are dependent on the particular classifier used.
Thus, any classification algorithm that provides implementation for
these two ‘boxes’ can be used as a base classifier for the weighted
bagging approach. Of course, the ‘boxes’ should follow the API
expected by the adjoining boxes. In Stream Mill, the boxes simply
represent UDAs implemented in ESL or an external programming
language. In general, built-in and arbitrary user defined classifi-
cation algorithms can take advantage of weighted bagging without
having to reimplement the technique. Thus, Stream Mill supports
generic implementation of ensemble based weighted bagging.

Adaptive Boosting: Boosting in context of data stream classifi-
cation was introduced in [13]. The assumption of two parallel



streams, one for training and one for testing, is also applicable here.
As before the training stream is partitioned into tumbling windows
and an ensemble of classifiers are generated. However, instead of
assigning weights to the classifiers, a tuple boosting mechanism is
used. A training tuple is first classified using the ensemble of clas-
sifiers. These classifications are combined using a simple voting
scheme (e.g. average). If the overall classification of the training
tuple is wrong, then the tuple is weighted highly during new clas-
sifier generation. Finally, the testing tuples are classified using the
ensemble of classifiers and a simple voting scheme determines the
eventual classification. According to experiments shown in [13],
adaptive boosting handles concept-drifts and shifts more elegantly,
i.e. the accuracy of the classifiers recovers more quickly with re-
spect to concept-drifts and shifts, as compared to ensemble based
bagging. As shown in Figure 2, training tuples are first predicted
using the ensemble of classifiers. These predictions are combined
using a simple voting mechanism. If the resulting combined predic-
tion is incorrect, a higher weight is assigned to this tuple, so that the
new classifier will increase the probability of correctly classifying
this tuple. The testing tuples are predicted using the ensemble of
classifiers and these predictions are combined using simple voting.

Figure 2: Generalized Boosting

Similar observation to one made before for weighted bagging, can
be made here. Again only two boxes labeled ‘Classification Task’
and ‘Classifier Building’ are classifier specific. Thus, the same data
flow model can be used to enable boosting on any arbitrary classi-
fication algorithm. Thus, Stream Mill generically and effectively
supports such advanced techniques over data streams.

Furthermore, the extensibility provided by the Stream Mill system
leaves room for implementation of other such techniques. For in-
stance, [23], proposes a similar technique for handling concept-
drifts and shifts. The technique again generates an ensemble of
classifiers and augments training and testing tuples with predictions
from previous classifiers. These predictions help the new classifier
achieve better accuracy. Like ensemble based bagging and boost-
ing, this technique can also be implemented as a generic built-in
method is Stream Mill.

4.2 Association Rules
Association rule mining of data streams is required in many ap-
plications, including IP traffic monitoring and on-line recommen-
dation systems. However, among the core mining methods, this
presents one of the hardest research problems because of the dif-
ficulty of finding fast & light algorithms for determining frequent
itemsets in an incoming stream of transactions [28]. Traditional
algorithms for static data are no longer feasible here, because of
the massive amount of data, the real-time requirements, bursty ar-
rivals, and even more importantly concept shifts/drifts. To address
this difficult problem we have developed a new mining algorithm

called SWIM [34], that provides better performance than state-of-
the-art algorithms [11, 31, 12] by optimizing incremental compu-
tation over sliding windows. SWIM has been implemented as a
built-in UDA in our system, in ways that fully preserve the abil-
ity of the end-user to specialize (and optimize) its application by
specifying which items and patterns should be included/excluded
(in addition to support, confidence, and window size). Next, we
briefly review this incremental mining algorithm.

4.2.1 SWIM (Sliding Window Incremental Miner)
SWIM [34] exploits the well-knownfp-tree [25] data structure,
which allows a compact representation of transactions. SWIM splits
the window into several slides and then for each slideS, inserts the
transactions in a separatefp-tree. Then, it computes the frequent
itemsets in this small slide using any of existing static-data frequent
miners (e.g. FP-growth [25]). These frequent itemsets for slideS

are shown asσα(S) in the pseudo code, Figure 3, whereα is the
given minimum support. Since slides are mined separately and the
occurrence of each pattern should be counted over all slides (to de-
termine the total frequency), counting becomes a major bottleneck
of the algorithm. The counting in SWIM is thus performed using
a separate fast algorithm, which is based onconditional counting
(=verification), called verifier. The verifier internally uses another
fp-tree to store the patterns that need to be counted. This latter
tree is called a Pattern Tree (PT ). Then, counting is performed via
conditionalizing both the pattern tree and thefp-treeof the slide in
parallel. More details can be found in [34].

For Each New SlideS

1: For each patternp ∈ PT

updatep.freq overS
2: MineS to computeσα(S)
3: For each existing patternp ∈ σα(S) ∩ PT

rememberS as the last slide in whichp is frequent
4: For each new patternp ∈ σα(S)\PT

PT ← PT ∪ {p}
rememberS as the first slide in whichp is frequent
create auxiliary array forp and start monitoring it

For Each Expiring Slide S

5: For each patternp ∈ PT

updatep.freq, if S has been counted in
updatep.aux_array, if applicable
reportp as delayed, if frequent but not reported

at query time
deletep.aux_array, if p has existed since arrival ofS
deletep, if p no longer frequent in any of the current slides

Figure 3: SWIM pseudo code.

In the next section, we explain why and how the SWIM algorithm is
provided as a built-in implementation in the extended Stream Mill
system, and we discuss some of its features.

4.2.2 Built-in Support of SWIM
SWIM follows the standard windowed aggregates, by specifying
computation for the EXPIRE and the ITERATE state. Further-
more, it is implemented in C/C++ for performance reasons; this
takes advantage of the external UDAs supported by ESL [9]. Be-
sides having a fast and built-in frequent itemsets algorithm, this has
the following advantages.

Benefits. As discussed in [10], an inductive DBMS must be able
to optimize the computation of frequent patterns and rules by tak-



ing advantage of the constraint specified by the user in the mining
query, and special constructs and techniques were thus proposed
to achieve that [10]. Since the extended Stream Mill system al-
lows UDAs to access the user’s post processing constraints (i.e.,
the HAVING clause) while they are running, these UDAs can ex-
ploit those constraints to optimize execution. Indeed, the built-in
SWIM algorithm, utilizes these constraints to achieve better per-
formance through better tuning.

In addition to constraints studied in [10], user can also specify the
window size and the slide size. The set of the constraints that the
built-in SWIM UDA can extract (and exploit) are discussed next.

• Including/Excluding Items. User may only ask for certain
items to be included in (or excluded from) the mining pro-
cess. In case of inclusion, such items will be the only ones
that are considered in the conditionalization of the givenfp-
treeandPT , resulting in much smaller trees and better per-
formance. For the exclusion instead, SWIM does the con-
verse.
• Including/Excluding Patterns. User may even specify a set of

interesting patterns (or association rules) as the only ones that
she wants to monitor (or not monitor) over the data stream
(for example, when they are permanently validated/rejected
by an analyst). Such constraints can also be easily enforced
and exploited by appropriately marking the corresponding
nodes of the pattern treePT with a never-remove(or never-
add) flag.
• Window/Slide size. As for any other query written in ESL,

the window size and slide size can be easily recognized by
the query processor and be passed down to the UDA (here,
SWIM algorithm) so that it adjusts its internal data structures
accordingly.
• Report frequency. Instead of reporting all frequent patterns

(or association rules) over the entire window, for each arrival
or expiration of a slide, we only report new patterns or the
expired ones (called delta reporting). Thus, the user himself
does not have to determine the new/expired patterns by com-
paring the algorithm’s output against the current ones. By
extracting the frequency report from the user’s query, SWIM
can also be adjusted for further performance improvement by
having larger slide size.

In Example 3, the query asks for continuously reporting of the
new association rules and expired ones over a window worth of
1000, 000 tuples (transactions made in an on-line store), every time
that it slides by10, 000 tuples. Interesting and/or uninteresting pat-
terns are also given by the user in two relational tables namedIn-
terestingPatternsandAvoidPatterns, respectively. The user in this
example has asked only for the rules whose antecedent (left hand
side) is among the set of interesting patterns and whose conse-
quent (right hand side) is not among avoided patterns. Also the
left-side of the rule should contain ‘iPOD’. As described above,
all these given constraints can be extracted and exploited in the
SWIM algorithm transparently from the user, to achieve better opti-
mization. The built-in swim UDA is calledAssociationRulesand it
returns a 4-tuples (RuleLeftVARCHAR , RuleRightVARCHAR ,
supportREAL , confidenceREAL ), where RuleLeft and RuleRight
are formed by appending the single items of the corresponding rule
together, in an ascending order.

EXAMPLE 3. An ESL query with a set of constraints for fre-
quent patterns.
SELECT AssociationRules(T.Tid)

OVER (ROWS 1000000PRECEDING SLIDE 10000)
FROM Transactions T, Items I
WHERE I.Name = ‘iPOD’
HAVING support >= 0.01AND confidence >= 0.03

AND RuleLeft IN (SELECT * FROM InterestingPatterns)
AND RuleRight NOT IN (SELECT * FROM AvoidPatterns)
AND CONTAINS(I.Id, RuleLeft);

As noted by previous research projects [10], this filtering is impor-
tant from both the user and the system perspective. The user is
likely to take full advantage of this feature, by specifying the post
filtering conditions in theHAVINGclause, since she does not want
to receive a long list of uninteresting patterns. Of course, the UDA
must be written to take advantage of these post conditions to con-
strain the search for uninteresting frequent patterns and improve its
performance. Thus, while the DSMS is not responsible for these
algorithm specific optimizations, since it passes the information in
theHAVINGclause to the UDA, the UDA can exploit them. There-
fore, users can add new data mining algorithms as UDAs and take
advantage of this feature to optimize execution without requiring
any modifications to the Stream Mill compiler. This approach as-
sures user-extensibility of the system—since, users can add new
mining algorithms to the library, each with its method-specific op-
timizations, without touching the system internals.

4.3 Other Mining Algorithms
In addition to the classifiers, classifier ensembles, association rules,
we are now building into the extended Stream Mill, a DM library
with several key DM methods and improvements, such as cluster-
ing and sequential pattern detection discussed next.

4.3.1 On-line Clustering
The extended Stream Mill currently supports window versions of
DBScan [17] and K-means [22]. Density-based clustering over
tumbling windows is performed using DBScan [17] algorithm. The
basic DBScan algorithm takes two parameters; neighborhood ra-
dius (eps) and number of required neighbors (minPts). Points within
theepsdistance of a particular point are considered its neighbors;
distance can be a user defined function that gives some measure
of dissimilarity between the points and follows standard distance
function properties, such as non-negativity, reflexivity, symmetry,
and triangle inequality. If a point has more thanminPtsneighbors
then it is eligible to create (or participate in) a cluster. Given these
two parameters the DBScan algorithm works as follows: pick an
arbitrary pointp and find its neighbors. Ifp has more thanminPts
neighbors then form a cluster and call DBScan on all its neigh-
bors recursively. Ifp does not have more thanminPtsneighbors
then move to other un-clustered points in the database. This can
be viewed as a depth first search. Comparing the cluster results
between successive windows provides an effective way to monitor
trends and concept shifts and drifts [32].

The other option for on-line clustering is continuous clustering.
The IncDBScan algorithm proposed in [16] modifies the original
DBScan algorithm to perform this continuous clustering. The basic
observation in IncDBScan is that the clustering assignments only
change if number of neighbors of a point change from (< minPts)
to (≥ minPts) or the other way around. Based on this observation
IncDBScan proposes re-clustering only the required set of data tu-
ples on tuple arrival and expiration. The algorithm is a simple ex-
tension of the DBScan algorithm, but performs much better than
re-clustering all tuples on arrival/expiration of each new/old tuple.
The EXPIRE state supported in ESL UDAs represents the perfect



tool to perform this delta maintenance. An ESL UDA implement-
ing this algorithm can also be found at [21].

4.3.2 Sequence Detection
Sequence queries represent a very useful time-series analysis tool.
They are useful in many practical on-line applications, such as
click stream analysis, stock market data analysis, etc. A few se-
quence query languages have also been proposed to express such
queries. For instance, SEQ [39], srql [36] SQL-LPP+ [35], and
SQL-TS [37]. The SQL-TS language is based on allowing the
use of Kleene-closure expressions in theFROM clause of its query.
SQL-TS achieved unsurpassed levels of expressive power and op-
timizability [37].

An example sequence query, given a click stream such as the fol-
lowing, would be to find a user that went from an advertisement
page to a product description page and then navigated to the prod-
uct purchase page, a sequence of events signified by PageTypes
‘ad’, ‘pd’, and ‘pp’, respectively.

SELECT Y.PageNO, Z.ClickTime
FROM Sessions

PARTITION BY SessNo
ORDER BY ClickTime
AS (X, Y, Z)

WHERE X.PageType = ‘ad’AND Y.PageType = ‘pd’
AND Z.PageType = ‘pp’

Such a query is very hard to write, and inefficient to execute, using
SQL, whereas it is naturally specified in the efficiently executable
SQL-TS. As demand for sequence pattern queries has grown in
both database and data stream applications, SQL standard exten-
sions are being proposed by collaborating DBMS and DSMS com-
panies [45]. In most respects (syntax, semantics, and optimiza-
tion) the standards are based on SQL-TS. A first implementation
of SQL-TS is currently supported in the extended Stream Mill. We
are now improving and extending it to support the proposed SQL
standards [45].

As our reader might have observed, the success of SQL-TS also un-
derscore that the UDA-based extensibility of the extended Stream
Mill is not without limitations: SQL-TS and then new SQL stan-
dard suggest that some new language constructs are needed to deal
effectively with special application domains. However, our expe-
rience shows that this is more of an exception than a rule. Finally
our implementation of SQL-TS relied on mapping its sequence-
oriented constructs into special UDAs. While the intuitive appeal
of the original constructs was lost, this confirmed the basic gener-
ality of UDAs in terms of expressive power.

5. HIGH-LEVEL MINING LANGUAGE
In addition to the extensions and improvements previously described,
the main focus of our future work will be to improve usability and
friendliness of the system for more casual users. Indeed, while ex-
pert users would like to implement new mining algorithms or mod-
ify existing ones naïve users would find an approach such as OLE
DB for DM [42] more suitable for their needs (or at least for their
level of computing sophistication).

OLE DB for DM allows writing data mining queries in an intu-
itive language. Thus, we propose that the Stream Mill system
should support a higher level language similar to OLE DB for DM.
The system can internally translate such OLE DB for DM min-
ing queries to equivalent ESL queries that call suitable aggregates.

For instance, let’s consider the definition and training of a Naïve
Bayesian classifier in OLE DB for DM, given in Example 4. This
example works on the well-known Iris dataset, which has 4 real
attributes, SL, SW, PL, and PW, and a class attribute. The class at-
tribute can take one of three values (setosa, versicolor, or verginica).

EXAMPLE 4. Naïve Bayesian Classifier in OLE DB for DM

STREAM iris(id INT, SL REAL, SW REAL,
PL REAL, PW REAL, classINT);

/* Create a mining model */
CREATE MINING MODEL NaïveBayesianFlower (idINT KEY,

SL REAL CONTINUOUS, SW REAL CONTINUOUS,
PL REAL CONTINUOUS, PW REAL CONTINUOUS,
classINT DISCRETE PREDICT)

USING Microsoft_Naive_Bayes;
/* Training the model */

INSERT INTO NaiveBayesianFlower (id, SL, SW, PL, PW, isSetosa)
openquery (‘SELECT id, SL, SW, PL, PW, isSetosa

FROM TrainFlowers’);

While the queries in Example 4 are succinct and intuitive, similar
queries in ESL are not as intuitive. Therefore, we propose that
given the OLE DB for DM statements for Example 4, the sys-
tem should automatically translate them to ESL statements. For
instance, the name of the mining model, NaiveBayesianFlower, is
analogous to the name of the table, which stores the mining model.
Similarly, the name of the mining algorithm, Microsoft_Naive_Bayes,
is analogous to the name of the UDA that should be invoked to
learn the mining model. Furthermore, the user can specify addi-
tional parameters for the UDA after theusingclause, which is also
consistent with OLE DB for DM. In general, mapping user queries,
written in OLE DB for DM or other high-level mining language, to
ESL queries is relatively straightforward. Furthermore, this exten-
sion greatly improves the usability of the system.

6. CONCLUSION
While DSMS and data stream mining algorithms have provided
separate foci for many research projects, Inductive DSMS, which
require a synergetic integration of their technologies, have received
little attention until now. In this paper, we first showed that this is
an important research topic that deserves much attention and poses
interesting technical challenges. Then, we presented our approach
based on extending the Stream Mill DSMS to support complex
stream mining algorithms. Stream Mill provides a natural platform
for adding the new inductive functionality, since its query language,
ESL, provides (i) extensibility via user-defined aggregates and (ii)
powerful window facilities for both built-in and user-defined ag-
gregates. However, difficult technical challenges had to be solved
to turn it into an Inductive DSMS. The first is the selection and
careful implementation of mining algorithms that are fast and light
enough to be used in continuous queries with real-time response.
The second issue is how to support these algorithms generically—
to assure that they can be used on streams with arbitrary schema.
Another difficult design challenge is how to make the system open
and extensible—to ensure that new mining algorithms can be eas-
ily introduced (or existing ones modified) by users working in the
declarative framework provided by our DSMS. Finally, a high-level
mining language is also being designed for our system: this will fa-
cilitate the intuitive invocation of mining methods.
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