
S

SnappyData

Barzan Mozafari
University of Michigan, Ann Arbor, MI, USA

Introduction

An increasing number of enterprise applications,
particularly those in financial trading and IoT
(Internet of Things), produce mixed workloads
with all of the following: (1) continuous
stream processing, (2) online transaction
processing (OLTP), and (3) online analytical
processing (OLAP). These applications need to
simultaneously consume high-velocity streams
to trigger real-time alerts, ingest them into a
write-optimized transactional store, and perform
analytics to derive deep insight quickly. Despite
a flurry of data management solutions designed
for one or two of these tasks, there is no single
solution that is apt for all three.

SQL-on-Hadoop solutions (e.g., Hive,
Impala/Kudu and SparkSQL) use OLAP-style
optimizations and columnar formats to run
OLAP queries over massive volumes of static
data. While apt for batch processing, these
systems are not designed as real-time operational

This article is based on Mozafari et al. (2017), authored by
Barzan Mozafari, Jags Ramnarayan, Sudhir Menon, Yo-
gesh Mahajan, Soubhik Chakraborty, Hemant Bhanawat,
Kishor Bachhav

databases, as they lack the ability to mutate data
with transactional consistency, to use indexing
for efficient point accesses, or to handle high-
concurrency and bursty workloads.

Hybrid transaction/analytical processing
(HTAP) systems, such as MemSQL, support both
OLTP and OLAP queries by storing data in dual
formats (row and columns) but need to be used
alongside an external streaming engine (e.g.,
Storm (Toshniwal et al. 2014), Kafka, Confluent)
to support stream processing. They also lack
approximation features required for interactive-
speed analytics or visualization workloads (Park
et al. 2016).

Finally, there are numerous academic (Chan-
drasekaran et al. 2003; Mozafari et al. 2012;
Thakkar et al. 2011) and commercial (Apache
Samza; Toshniwal et al. 2014; TIBCO; Akidau
et al. 2013) solutions for stream and event
processing. Although some stream processors
provide some form of state management or
transactions (e.g., Samza (Apache Samza),
Liquid (Fernandez et al. 2015), S-Store (Meehan
et al. 2015)), they only allow simple queries on
streams. However, more complex analytics, such
as joining a stream with a large history table,
need the same optimizations used in an OLAP
engine (Liarou et al. 2012; Braun et al. 2015;
Thakkar et al. 2011). For example, streams in
IoT are continuously ingested and correlated
with large historical data. Trill (Chandramouli
et al. 2014) supports diverse analytics on
streams and columnar data but lacks transactions.

© Springer International Publishing AG, part of Springer Nature 2018
S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,
https://doi.org/10.1007/978-3-319-63962-8_258-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63962-8_1&domain=pdf
https://doi.org/10.1007/978-3-319-63962-8_258-1


2 SnappyData

DataFlow (Akidau et al. 2015) focuses on logical
abstractions rather than a unified query engine.

Consequently, the demand for mixed work-
loads has resulted in several composite data ar-
chitectures, exemplified in the “lambda” archi-
tecture, which requires multiple solutions to be
stitched together – a difficult exercise that is time-
consuming and expensive.

In capital markets, for example, a real-time
market surveillance application has to ingest
trade streams at very high rates and detect
abusive trading patterns (e.g., insider trading).
This requires correlating large volumes of data
by joining a stream with (1) historical records,
(2) other streams, and (3) financial reference
data which can change throughout the trading
day. A triggered alert could in turn result in
additional analytical queries, which will need
to run on both ingested and historical data. In
this scenario, trades arrive on a message bus
(e.g., Tibco, IBM MQ, Kafka) and are processed by
a stream processor (e.g., Storm) or a homegrown
application, while the state is written to a key-
value store (e.g., Cassandra) or an in-memory
data grid (e.g., GemFire). This data is also stored
in HDFS and analyzed periodically using a SQL-
on-Hadoop or a traditional OLAP engine.

These heterogeneous workflows, although far
too common in practice, have several drawbacks
(D1–D4):

D1. Increased complexity and total cost of
ownership: The use of incompatible and au-
tonomous systems significantly increases their to-
tal cost of ownership. Developers have to master
disparate APIs, data models, and tuning options
for multiple products. Once in production, op-
erational management is also a nightmare. To
diagnose the root cause of a problem, highly paid
experts spend hours to correlate error logs across
different products.

D2. Lower performance: Performing analyt-
ics necessitates data movement between multi-
ple non-colocated clusters, resulting in several
network hops and multiple copies of data. Data
may also need to be transformed when faced with
incompatible data models (e.g., turning Cass-

andra’s ColumnFamilies into Storm’s domain ob-
jects).

D3. Wasted resources: Duplication of data
across different products wastes network
bandwidth (due to increased data shuffling), CPU
cycles, and memory.

D4. Consistency challenges: The lack of a sin-
gle data governance model makes it harder to
reason about consistency semantics. For instance,
a lineage-based recovery in Spark Streaming may
replay data from the last checkpoint and ingest
it into an external transactional store. With no
common knowledge of lineage and the lack of
distributed transactions across these two systems,
ensuring exactly once semantics is often left
as an exercise for the application (Exactly-once
processing with trident).

Challenges

SnappyData’s goal is to reduce complexity and
improve performance by offering streaming,
transaction processing, and interactive analytics
in a single cluster (Ramnarayan et al. 2016).
Realizing this goal involves overcoming several
challenges. The first challenge is the drastically
different data structures and query processing
paradigms that are optimal for each type of
workload. For example, column stores are
optimal for analytics, transactions need write-
optimized row-stores, and infinite streams are
best handled by sketches and windowed data
structures. Likewise, while analytics thrive with
batch processing, transactions rely on point
lookups/updates, and streaming engines use
delta/incremental query processing. Marrying
these conflicting mechanisms in a single system
is challenging, as is abstracting away this
heterogeneity from programmers.

Another challenge is the difference in expec-
tations of high availability (HA) across differ-
ent workloads. Scheduling and resource provi-
sioning are also harder in a mixed workload of
streaming jobs, long-running analytics, and short-
lived transactions. Finally, achieving interactive



SnappyData 3

S

analytics becomes nontrivial when deriving in-
sight requires joining a stream against large his-
torical data (Makin’ Bacon and the Three Main
Classes of IoT Analytics).

Approach Overview
To support mixed workloads, SnappyData care-
fully fuses Apache Spark, as a computational en-
gine, with Apache GemFire, as a transactional store.

Through a common set of abstractions, Spark
allows programmers to tackle a confluence of dif-
ferent paradigms (e.g., streaming, machine learn-
ing, SQL analytics). Spark’s core abstraction, a
Resilient Distributed Dataset (RDD), provides
fault tolerance by efficiently storing the lineage
of all transformations instead of the data. The
data itself is partitioned across nodes and if any
partition is lost, it can be reconstructed using its
lineage. The benefit of this approach is twofold:
avoiding replication over the network and higher
throughput by operating on data as a batch. While
this approach provides efficiency and fault toler-
ance, it also requires that an RDD be immutable.
In other words, Spark is simply designed as a
computational framework and therefore (i) does
not have its own storage engine and (ii) does not
support mutability semantics. (Although Indexe-
dRDD (Indexedrdd for apache spark) offers an
updatable key-value store (Indexedrdd for apache
spark), it does not support colocation for high-
rate ingestions or distributed transactions. It is
also unsuitable for HA, as it relies on disk-based
checkpoints for fault tolerance.)

On the other hand, Apache GemFire (Apache
Geode) (a.k.a. Geode) is one of the most widely
adopted in-memory data grids in the industry,
which manages records in a partitioned row-
oriented store with synchronous replication. It en-
sures consistency by integrating a dynamic group
membership service and a distributed transaction
service. GemFire allows for indexing and both
fine-grained and batched data updates. Updates
can be reliably enqueued and asynchronously
written back out to an external database. In-
memory data can also be persisted to disk using
append-only logging with offline compaction for
fast disk writes (Apache Geode).

Best of two worlds – To combine the best of
both worlds, SnappyData seamlessly integrates
Spark and GemFire runtimes, adopting Spark as the
programming model with extensions to support
mutability and HA (high availability) through
GemFire’s replication and fine-grained updates.
This marriage, however, poses several nontrivial
challenges. For instance, when ingesting a
stream, SnappyData processes the incoming stream
as a batch, avoids replication, and replays from
the source on a failure. To avoid a tuple-at-a-time
replication, the processed state can be written to
the store in batches. Recovery from failure will
thus be limited to the time needed to replay a
single batch.

Architecture

Figure 1 depicts SnappyData’s core components
(the original components from Spark and GemFire

are highlighted).
SnappyData’s hybrid storage layer is primarily

in-memory and can manage data in row, col-
umn, or probabilistic stores. SnappyData’s column
format is derived from Spark’s RDD implemen-
tation. SnappyData’s row-oriented tables extend
GemFire’s table and thus support indexing and
fast reads/writes on indexed keys. In addition to
these “exact” stores, SnappyData can also summa-
rize data in probabilistic data structures, such as
stratified samples and other forms of synopses.
SnappyData’s query engine has built-in support for
approximate query processing (AQP), which can
exploit these probabilistic structures. This allows
applications to trade accuracy for interactive-
speed analytics on streams or massive datasets.

SnappyData supports two programming mod-
els – SQL (by extending SparkSQL dialect) and
Spark’s API. Thus, one can perceive SnappyData

as a SQL database that uses Spark’s API as
its language for stored procedures. Stream pro-
cessing in SnappyData is primarily through Spark

Streaming, but it is modified to run in situ with
SnappyData’s store.

SQL queries are federated between Spark’s
Catalyst and GemFire’s OLTP engine. An
initial query plan determines if the query is a



4 SnappyData

SnappyData, Fig. 1
SnappyData’s core
components

low-latency operation (e.g., a key-based lookup)
or a high-latency one (scans/aggregations).
SnappyData avoids scheduling overheads for
OLTP operations by immediately routing them to
appropriate data partitions.

To support replica consistency, fast point
updates, and instantaneous detection of failure
conditions in the cluster, SnappyData relies on
GemFire’s P2P (peer-to-peer) cluster membership
service (Apache Geode). Transactions follow
a two-phase commit protocol using GemFire’s
Paxos implementation to ensure consensus and
view consistency across the cluster.

A Unified API

Spark offers a rich procedural API for querying
and transforming disparate data formats (e.g.,
JSON, Java Objects, CSV). Likewise, to retain
a consistent programming style, SnappyData of-
fers its mutability functionalities as extensions
of SparkSQL’s dialect and its DataFrame API.
These extensions are backward compatible, i.e.,
applications that do not use them observe Spark’s
original semantics.

A DataFrame in Spark is a distributed
collection of data organized into named
columns. A DataFrame can be accessed from
a SQLContext, which itself is obtained from
a SparkContext (a SparkContext is
a connection to Spark’s cluster). Likewise,
much of SnappyData’s API is offered through

1 // Create a SnappyContext from a SparkContext
2 val spContext = new org.apache.spark.

SparkContext(conf)
3 val snpContext = org.apache.spark.sql.

SnappyContext (spContext)
4

5 // Create a column table using SQL
6 snpContext.sql("CREATE TABLE MyTable (id int,

data string) using column")
7

8 // Append contents of a DataFrame into
the table

9 someDataDF.write.insertInto("MyTable");
10

11 // Access the table as a DataFrame
12 val myDataFrame: DataFrame = snpContext.

table("MyTable")
13 println(s"Number of rows in MyTable = ${

myDataFrame.count()}")

Listing .1 Working with DataFrames in SnappyData

SnappyContext, which is an extension of
SQLContext. Listing .1 is an example of using
SnappyContext.

Stream processing often involves maintain-
ing counters or more complex multidimensional
summaries. As a result, stream processors to-
day are either used alongside a scale-out in-
memory key-value store (e.g., Storm with Redis

or Cassandra) or come with their own basic form
of state management (e.g., Samza, Liquid (Fer-
nandez et al. 2015)). These patterns are often
implemented in the application code using simple
get/put APIs. While these solutions scale well,
most users tend to modify their search patterns



SnappyData 5

S

and trigger rules quite often. These modifications
require expensive code changes and lead to brittle
and hard-to-maintain applications.

In contrast, SQL-based stream processors
offer a higher-level abstraction to work with
streams but primarily depend on row-oriented
stores (e.g., IBM; TIBCO; Meehan et al. (2015))
and are thus limited in supporting complex
analytics. To support continuous queries with
scans, aggregations, top-K queries, and joins
with historical and reference data, some of the
same optimizations found in OLAP engines must
be incorporated in the streaming engine (Liarou
et al. 2012). Thus, SnappyData extends Spark

Streaming to allow declaring and querying
streams in SQL. More importantly, SnappyData

provides OLAP-style optimizations to enable
scalable stream analytics, including columnar
formats, approximate query processing, and co-
partitioning (SnappyData 2016).

Hybrid Store: Row and Column Tables

Tables can be partitioned or replicated and are
primarily managed in memory with one or more
consistent replicas. The data can be managed in
Java heap memory or off-heap. Partitioned tables
are always partitioned horizontally across the
cluster. For large clusters, SnappyData allows data
servers to belong to one or more logical groups,
called “server groups.” The storage format can be
“row” (either partitioned or replicated tables) or
“column” (only supported for partitioned tables)
format. Row tables incur a higher in-memory
footprint but are well suited to random updates
and point lookups, especially with in-memory
indexes. Column tables manage column data in
contiguous blocks and are compressed using dic-
tionary, run-length, or bit encoding (Xin and
Rosen).

SnappyData extends Spark’s column store to
support mutability. Updating row tables is trivial.
When records are written to column tables, they
first arrive in a delta row buffer that is capable
of high write rates and then age into a columnar
form. The delta row buffer is merely a partitioned
row table that uses the same partitioning strategy

as its base column table. This buffer table is
backed by a conflating queue that periodically
empties itself as a new batch into the column
table. Here, conflation means that consecutive
updates to the same record result in only the
final state getting transferred to the column store.
For example, inserted/updated records followed
by deletes are removed from the queue. The
delta row buffer itself uses copy-on-write seman-
tics to ensure that concurrent application updates
do not cause inconsistency (Abadi et al. 2013).
SnappyData extends Spark’s Catalyst optimizer to
merge the delta row buffer during query execu-
tion.

Probabilistic Store
Achieving interactive response time is challeng-
ing when running complex analytics on streams,
e.g., joining a stream with a large table (Mozafari
and Zaniolo 2010). Even OLAP queries on
stored datasets can take tens of seconds to
complete if they require a distributed shuffling
of records or if hundreds of concurrent queries
run in the cluster (Agarwal et al. 2012). In such
cases, SnappyData’s storage engine is capable
of using probabilistic structures to dramatically
reduce the volume of input data and provide
approximate but extremely fast answers. In this
regard, SnappyData can be seen as the first full-
fledged commercial AQP engine (see Mozafari
(2017) for why the adoption of AQP has not
previously slowed). SnappyData’s probabilistic
structures include uniform samples, stratified
samples, and sketches (Mozafari and Niu 2015).
Unlike VerdictDB (Park et al. 2018; He et al.
2018) and Database Learning (Park et al.
2017), which are agnostic of the underlying
query engine, SnappyData’s probabilistic store is
tightly integrated into its query processing logic.
SnappyData’s approach is also different from other
AQP engines (Zeng et al. 2014a; Agarwal et al.
2012; Zeng et al. 2014b), in the way that it creates
and maintains these structures efficiently and
in a distributed manner. However, given these
structures, SnappyData uses off-the-shelf error
estimation techniques (Agarwal et al. 2014).
SnappyData’s sample selection and maintenance
strategies are discussed next.



6 SnappyData

Sample selection – Unlike uniform samples,
choosing which stratified samples to build is a
nontrivial problem. The key question is which
sets of columns to build a stratified sample on.
Prior work has used skewness, popularity, and
storage cost as the criteria for choosing column
sets (Agarwal et al. 2012, 2013). SnappyData ex-
tends these criteria as follows: for any declared
or foreign-key join, the join key is included in
a stratified sample in at least one of the par-
ticipating relations (tables or streams). However,
SnappyData never includes a table’s primary key in
its stratified sample(s). Furthermore, SnappyData

uses an open-source tool, called WorkloadMiner,
which automatically analyzes past query logs
and reports a rich set of statistics (CliffGuard).
These statistics guide SnappyData’s users through
the sample selection process. WorkloadMiner is
integrated into CliffGuard. CliffGuard guarantees
a robust physical design (e.g., set of samples),
which remains optimal even if future queries
deviate from past ones (Mozafari et al. 2015).

Once a set of samples is chosen, the challenge
is how to update them, which is a key differ-
entiator between SnappyData and previous AQP
systems that use stratified samples (Chaudhuri
et al. 2007; Agarwal et al. 2013; Zeng et al. 2015).

Sample maintenance – Previous AQP engines
that use offline sampling update and maintain
their samples periodically using a single scan
of the entire data (Mozafari and Niu 2015).
This strategy is not suitable for SnappyData with
streams and mutable tables for two reasons. First,
maintaining per-stratum statistics across different
nodes in the cluster is a complex process.
Second, updating a sample in a streaming fashion
requires maintaining a reservoir (Vitter et al.
1985; Al-Kateb and Lee 2010), which means the
sample must either fit in memory or be evicted
to disk. Keeping samples entirely in memory
is impractical for infinite streams unless the
sampling rate is perpetually decreased. Likewise,
disk-based reservoirs are inefficient as they
require retrieving and removing individual tuples
from disk as new tuples are sampled.

To solve these problems, SnappyData always
includes timestamp as an additional column in

every stratified sample. Uniform samples are
treated as a special case with only one stratified
column, i.e., timestamp. As new tuples arrive in a
stream, a new batch (in row format) is created for
maintaining a sample of each observed value
of the stratified columns. Whenever a batch
size exceeds a certain threshold (1M tuples by
default), it is evicted and archived to disk (in a
columnar format), and a new batch is started for
that stratum.

Treating each micro-batch as an independent
stratified sample has several benefits. First, this
allows SnappyData to adaptively adjust the sam-
pling rate for each micro-batch without the need
for internode communications in the cluster. Sec-
ond, once a micro-batch is completed, its tuples
never need to be removed or replaced, and there-
fore they can be safely stored in a compressed
columnar format and even archived to disk. Only
the latest micro-batch needs to be in-memory and
in row format. Finally, each micro-batch can be
routed to a single node, reducing the need for
network shuffles.

State Sharing
SnappyData hosts GemFire’s tables in the executor
nodes as either partitioned or replicated tables.
When partitioned, the individual buckets are pre-
sented as Spark RDD partitions, and their access
is therefore parallelized. This is similar to the way
that any external data source is accessed in Spark,
except that the common operators are optimized
in SnappyData. For example, by keeping each par-
tition in columnar format, SnappyData avoids ad-
ditional copying and serialization and speeds up
scan and aggregation operators. SnappyData can
also colocate tables by exposing an appropriate
partitioner to Spark.

Native Spark applications can register any
DataFrame as a temporary table. In addition to
being visible to the Spark application, such a
table is also registered in SnappyData’s catalog –
a shared service that makes tables visible across
Spark and GemFire. This allows remote clients
connecting through ODBC/JDBC to run SQL
queries on Spark’s temporary tables as well as
tables in GemFire.



SnappyData 7

S

In streaming scenarios, the data can be
sourced into any table from parent stream RDDs
(DStream), which themselves could source
events from an external queue, such as Kafka.
To minimize shuffling, SnappyData tables can
preserve the partitioning scheme used by their
parent RDDs. For example, a Kafka queue
listening on Telco CDRs (call detail records)
can be partitioned on subscriberID so
that Spark’s DStream and the SnappyData table
ingesting these records will be partitioned on the
same key.

Locality-Aware Partition Design
A major challenge in horizontally partitioned
distributed databases is to restrict the number of
nodes involved in order to minimize (i) shuffling
during query execution and (ii) distributed
locks (Helland 2007; Zamanian et al. 2015).
In addition to network costs, shuffling can also
cause CPU bottlenecks by incurring excessive
copying (between kernel and user space) and
serialization costs (Ousterhout et al. 2015). To
reduce the need for shuffling and distributed
locks, SnappyData’s data model promotes two
fundamental ideas:

1. Co-partitioning with shared keys – A com-
mon technique in data placement is to take
the application’s access patterns into account.
SnappyData pursues a similar strategy: since
joins require a shared key, it co-partitions re-
lated tables on the join key. SnappyData’s query
engine can then optimize its query execution
by localizing joins and pruning unnecessary
partitions.

2. Locality through replication – Star schemas
are quite prevalent, wherein a few ever-
growing fact tables are related to several
dimension tables. Since dimension tables are
relatively small and change less often, schema
designers can ask SnappyData to replicate
these tables. SnappyData particularly uses these
replicated tables to optimize joins.

Dynamic rebalancing of data – When access
is non-uniformly distributed across the keys, a

load imbalance occurs where a few servers end
up performing most of the work. For instance,
when tracking users’ browsing behavior on a
website, a few popular pages will dominate the
rest. SnappyData provides metrics on which nodes
are being accessed heavily and also provides
administrative APIs that can be used to move
“hot buckets” of data to a different node. If the
imbalance is a memory usage imbalance, admin
APIs can be used to trigger a rebalance which
is a non blocking operation that moves buckets
of data to less loaded nodes in the background
and restores memory balance. Used effectively,
rebalancing prevents hotspots from developing in
the system and avoid performance bottlenecks.

Hybrid Cluster Manager

Spark applications run as independent processes
in the cluster, coordinated by the application’s
main program, called the driver program. Spark

applications connect to cluster managers (YARN
or Mesos) to acquire executor nodes. While
Spark’s approach is appropriate for long-running
tasks, as an operational database, SnappyData’s
cluster manager must meet additional re-
quirements, such as high concurrency, high
availability, and consistency.

High Availability
To ensure high availability (HA), SnappyData

needs to detect faults and be able to recover from
them instantly.

Failure detection – Spark uses heartbeat com-
munications with a central master process to
determine the fate of the workers. Since Spark

does not use a consensus-based mechanism for
failure detection, it risks shutting down the entire
cluster due to master failures. However, as an
always-on operational database, SnappyData needs
to detect failures faster and more reliably. For
faster detection, SnappyData relies on UDP neigh-
bor ping and TCP ack timeout during normal data
communications. To establish a new, consistent
view of the cluster membership, SnappyData relies
on GemFire’s weighted quorum-based detection



8 SnappyData

algorithm (Apache Geode). Once GemFire estab-
lishes that a member has indeed failed, it ensures
that a consistent view of the cluster is applied to
all members, including the Spark master, driver,
and data nodes.

Failure recovery – Recovery in Spark is based
on logging the transformations used to build an
RDD (i.e., its lineage) rather than the actual
data. If a partition of an RDD is lost, Spark

has sufficient information to recompute just that
partition (Zaharia et al. 2012). Spark can also
checkpoint RDDs to stable storage to shorten
the lineage, thereby shortening the recovery time.
The decision of when to checkpoint, however, is
left to the user. GemFire, on the other hand, relies
on replication for instantaneous recovery but at
the cost of lower throughput. SnappyData merges
these recovery mechanisms as follows:

1. Fine-grained updates issued by transactions
avoid the use of Spark’s lineage altogether and
instead use GemFire’s eager replication for fast
recovery.

2. Batched and streaming micro-batch opera-
tions are still recovered by RDD’s lineage,
but instead of HDFS, SnappyData writes
their checkpoints to GemFire’s in-memory
storage, which itself relies on a fast P2P
(peer-to-peer) replication for recovery. Also,
SnappyData’s intimate knowledge of the load
on the storage layer, the data size, and the
cost of recomputing a lost partition allows
for automating the choice of checkpoint
intervals based on an application’s tolerance
for recovery time.

Hybrid Scheduler and Provisioning
Thousands of concurrent clients can simulta-
neously connect to a SnappyData cluster. To
support this degree of concurrency, SnappyData

categorizes incoming requests as low- and high-
latency operations. By default, SnappyData treats a
job as a low-latency operation unless it accesses
a columnar table. However, applications can
also explicitly label their latency sensitivity.
SnappyData allows low-latency operations to
bypass Spark’s scheduler and directly operate

on the data. High-latency operations are
passed through Spark’s fair scheduler. However,
among the low-latency operations, SnappyData

still relies on a simple FIFO policy (other
systems, such as MariaDB or MySQL, use
more sophisticated algorithms for transaction
scheduling, e.g., VATS (Huang et al. 2017) or
MySQL’s CATS (Tian et al. 2018)). For low-
latency operations, SnappyData attempts to reuse
their executors to maximize their data locality
(in-process). For high-latency jobs, SnappyData

dynamically expands their compute resources
while retaining the nodes caching their data.

Consistency Model
SnappyData relies on GemFire for its consistency
model. GemFire supports “read committed” and
“repeatable read” transaction isolation levels us-
ing a variant of the Paxos algorithm (Gray and
Lamport 2006). Transactions detect write-write
conflicts and assume that writers rarely conflict.
When write locks cannot be obtained, transac-
tions abort without blocking (Apache Geode).

SnappyData extends Spark’s SparkContext
and SQLContext to add mutability semantics.
SnappyData gives each SQL connection its own
SQLContext in Spark to allow applications to
start, commit, and abort transactions.

While any RDD obtained by a Spark program
observes a consistent view of the database, multi-
ple programs can observe different views when
transactions interleave. An MVCC mechanism
(based on GemFire’s internal row versions) can be
used to deliver a single snapshot view to the entire
application.

In streaming applications, upon faults, Spark

recovers lost RDDs from their lineage. This
means that some subset of the data will be
replayed. To cope with such cases, SnappyData

ensures the exactly once semantics at the
storage layer so that multiple write attempts
are idempotent, hence relieving developers of
having to ensure this in their own applications.
SnappyData achieves this goal by placing the
entire flow as a single transactional unit of
work, whereby the source (e.g., a Kafka queue)
is acknowledged only when the micro-batch is
entirely consumed and the application state is



SnappyData 9

S

successfully updated. This ensures automatic
rollback of incomplete transactions.

Conclusion

SnappyData is a unified platform for real-time
operational analytics, which supports OLTP,
OLAP, and stream analytics in a single integrated
solution. SnappyData’s approach is a deep
integration of a computational engine for high-
throughput analytics (Spark) with a scale-out in-
memory transactional store (GemFire). SnappyData
extends SparkSQL and Spark Streaming APIs
with mutability semantics and offers various
optimizations to enable colocated processing
of streams and stored datasets. SnappyData

has integrated approximate query processing
for enabling real-time operational analytics
over large (stored or streaming) data. Overall,
SnappyData’s goal is to yield a significantly lower
TCO for mixed workloads compared to using
disparate products that are managed, deployed,
and monitored separately.

References

Apache Geode. http://geode.incubator.apache.org/
Apache Samza. http://samza.apache.org/
CliffGuard. A general framework for robust and efficient

database optimization. http://www.cliffguard.org
Exactly-once processing with trident – the fake truth.

https://www.alooma.com/blog/trident-exactly-once
IBM. InfoSphere BigInsights. http://tinyurl.com/ouphdss
Indexedrdd for apache spark. https://github.com/amplab/

spark-indexedrdd
Makin’ Bacon and the Three Main Classes of IoT Analyt-

ics. http://tinyurl.com/zlc6den
TIBCO. StreamBase. http://www.streambase.com/
SnappyData (2016) Streaming, transactions, and inter-

active analytics in a unified engine. http://web.eecs.
umich.edu/~mozafari/php/data/uploads/snappy.pdf

Abadi D et al (2013) The design and implementation
of modern column-oriented database systems. Found
Trends Databases 5(3):197–280

Agarwal S, Panda A, Mozafari B, Iyer AP, Madden S,
Stoica I (2012) Blink and it’s done: interactive queries
on very large data. In: PVLDB

Agarwal S, Mozafari B, Panda A, Milner H, Madden S,
Stoica I (2013) BlinkDB: queries with bounded errors
and bounded response times on very large data. In:
EuroSys

Agarwal S, Milner H, Kleiner A, Talwalkar A, Jordan M,
Madden S, Mozafari B, Stoica I (2014) Knowing when
you’re wrong: building fast and reliable approximate
query processing systems. In: SIGMOD

Akidau T et al (2013) MillWheel: fault-tolerant stream
processing at internet scale. In: PVLDB

Akidau T et al (2015) The dataflow model: a practical
approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data process-
ing. In: PVLDB

Al-Kateb M, Lee BS (2010) Stratified reservoir sampling
over heterogeneous data streams. In: SSDBM

Barber R, Huras M, Lohman G, Mohan C, Mueller R,
Özcan F, Pirahesh H, Raman V, Sidle R, Sidorkin O
et al (2016) Wildfire: concurrent blazing data ingest
and analytics. In: SIGMOD

Braun L et al (2015) Analytics in motion: high perfor-
mance event-processing and real-time analytics in the
same database. In: SIGMOD

Chandramouli B et al (2014) Trill: a high-performance
incremental query processor for diverse analytics. In:
PVLDB

Chandrasekaran S et al (2003) TelegraphCQ: continuous
dataflow processing. In: SIGMOD

Chaudhuri S, Das G, Narasayya V (2007) Optimized
stratified sampling for approximate query processing.
ACM Trans Database Syst 32(2):9

Fernandez RC et al (2015) Liquid: unifying nearline and
offline big data integration. In: CIDR

Gray J, Lamport L (2006) Consensus on transaction com-
mit. ACM Trans Database Syst 31(1):133–160

He W, Park Y, Hanafi I, Yatvitskiy J, Mozafari B
(2018) Demonstration of VerdictDB, the platform-
independent AQP system. In: SIGMOD

Helland P (2007) Life beyond distributed transactions: an
apostate’s opinion. In: CIDR

Huang J, Mozafari B, Schoenebeck G, Wenisch T (2017)
A top-down approach to achieving performance pre-
dictability in database systems. In: SIGMOD

Liarou E et al (2012) Monetdb/datacell: online analytics
in a streaming column-store. In: PVLDB

Meehan J et al (2015) S-store: streaming meets transaction
processing. In: PVLDB

Mozafari B (2017) Approximate query engines: com-
mercial challenges and research opportunities. In: SIG-
MOD

Mozafari B, Zaniolo C (2010) Optimal load shedding with
aggregates and mining queries. In: ICDE

Mozafari B, Niu N (2015) A handbook for building
an approximate query engine. IEEE Data Eng Bull
38(3):3–29

Mozafari B, Zeng K, Zaniolo C (2012) High-performance
complex event processing over xml streams. In: SIG-
MOD

Mozafari B, Ye Goh EZ, Yoon DY (2015) CliffGuard:
a principled framework for finding robust database
designs. In: SIGMOD

Mozafari B, Ramnarayan J, Menon S, Mahajan Y,
Chakraborty S, Bhanawat H, Bachhav K (2017) Snap-
pyData: a unified cluster for streaming, transactions,
and interactive analytics. In: CIDR

http://geode.incubator.apache.org/
http://samza.apache.org/
http://www.cliffguard.org
https://www.alooma.com/blog/trident-exactly-once
http://tinyurl.com/ouphdss
https://github.com/amplab/spark-indexedrdd
https://github.com/amplab/spark-indexedrdd
http://tinyurl.com/zlc6den
http://www.streambase.com/
http://web.eecs.umich.edu/~mozafari/php/data/uploads/snappy.pdf
http://web.eecs.umich.edu/~mozafari/php/data/uploads/snappy.pdf


10 SnappyData

Ousterhout K et al (2015) Making sense of performance
in data analytics frameworks. In: NSDI

Park Y, Cafarella M, Mozafari B (2016) Visualization-
aware sampling for very large databases. In: ICDE

Park Y, Tajik AS, Cafarella M, Mozafari B (2017)
Database learning: towards a database that becomes
smarter every time. In: SIGMOD

Park Y, Mozafari B, Sorenson J, Wang J (2018) Ver-
dictDB: universalizing approximate query processing.
In: SIGMOD

Ramnarayan J, Mozafari B, Menon S, Wale S, Kumar N,
Bhanawat H, Chakraborty S, Mahajan Y, Mishra R,
Bachhav K (2016) SnappyData: a hybrid transactional
analytical store built on spark. In: SIGMOD

Thakkar H, Laptev N, Mousavi H, Mozafari B, Russo V,
Zaniolo C (2011) SMM: a data stream management
system for knowledge discovery. In: ICDE

Tian B, Huang J, Mozafari B, Schoenebeck G, Wenisch T
(2018) Contention-aware lock scheduling for transac-
tional databases. In: PVLDB

Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel
JM, Kulkarni S, Jackson J, Gade K, Fu M, Donham J,
Bhagat N, Mittal S, Ryaboy D (2014) Storm@twitter.
In: SIGMOD

Vitter JS (1985) Random sampling with a reservoir. ACM
Trans Math Softw 11(1):37–57

Xin R, Rosen J. Project Tungsten: bringing Spark closer
to bare metal. http://tinyurl.com/mzw7hew

Zaharia M, Chowdhury M, Das T, Dave A, Ma J, Mc-
Cauley M, Franklin MJ, Shenker S, Stoica I (2012) Re-
silient distributed datasets: a fault-tolerant abstraction
for in-memory cluster computing. In: NSDI

Zamanian E, Binnig C, Salama A (2015) Locality-aware
partitioning in parallel database systems. In: SIGMOD

Zeng K, Gao S, Gu J, Mozafari B, Zaniolo C (2014a)
ABS: a system for scalable approximate queries with
accuracy guarantees. In: SIGMOD

Zeng K, Gao S, Mozafari B, Zaniolo C (2014b) The ana-
lytical bootstrap: a new method for fast error estimation
in approximate query processing. In: SIGMOD

Zeng K, Agarwal S, Dave A, Armbrust M, Stoica I (2015)
G-OLA: generalized on-line aggregation for interactive
analysis on big data. In: SIGMOD

http://tinyurl.com/mzw7hew

	SnappyData
	Introduction
	Challenges
	Approach Overview

	Architecture
	A Unified API
	Hybrid Store: Row and Column Tables
	Probabilistic Store
	State Sharing
	Locality-Aware Partition Design

	Hybrid Cluster Manager
	High Availability
	Hybrid Scheduler and Provisioning
	Consistency Model

	Conclusion
	References
	References




