
QuickSel:Quick Selectivity Learning
with Mixture Models

Yongjoo Park
1
*, Shucheng Zhong

2
*, Barzan Mozafari

2

University of Illinois at Urbana-Champaign
1

University of Michigan
2

yongjoo@illinois.edu {joezhong,mozafari}@umich.edu

ABSTRACT
Estimating the selectivity of a query is a key step in almost

any cost-based query optimizer. Most of today’s databases

rely on histograms or samples that are periodically refreshed

by re-scanning the data as the underlying data changes. Since

frequent scans are costly, these statistics are often stale and

lead to poor selectivity estimates. As an alternative to scans,

query-driven histograms have been proposed, which refine

the histograms based on the actual selectivities of the ob-

served queries. Unfortunately, these approaches are either

too costly to use in practice—i.e., require an exponential

number of buckets—or quickly lose their advantage as they

observe more queries.

In this paper, we propose a selectivity learning framework,

called QuickSel, which falls into the query-driven paradigm

but does not use histograms. Instead, it builds an internal

model of the underlying data, which can be refined signif-

icantly faster (e.g., only 1.9 milliseconds for 300 queries).

This fast refinement allows QuickSel to continuously learn

from each query and yield increasingly more accurate selec-

tivity estimates over time. Unlike query-driven histograms,

QuickSel relies on a mixture model and a new optimization

algorithm for training its model. Our extensive experiments

on two real-world datasets confirm that, given the same

target accuracy, QuickSel is 34.0×–179.4× faster than state-

of-the-art query-driven histograms, including ISOMER and

STHoles. Further, given the same space budget, QuickSel is

26.8%–91.8% more accurate than periodically-updated his-

tograms and samples, respectively.

∗
These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389727

ACM Reference Format:
Yongjoo Park, Shucheng Zhong, Barzan Mozafari. 2020. QuickSel:

Quick Selectivity Learning with Mixture Models. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New

York, NY, USA, Article 4, 17 pages. https://doi.org/10.1145/3318464.

3389727

1 INTRODUCTION
Estimating the selectivity of a query—the fraction of input

tuples that satisfy the query’s predicate—is a fundamen-

tal component in cost-based query optimization, including

both traditional RDBMSs [2, 3, 7, 9, 83] and modern SQL-on-

Hadoop engines [41, 88]. The estimated selectivities allow

the query optimizer to choose the cheapest access path or

query plan [53, 90].

Today’s databases typically rely on histograms [2, 7, 9] or

samples [83] for their selectivity estimation. These structures

need to be populated in advance by performing costly table

scans. However, as the underlying data changes, they quickly

become stale and highly inaccurate. This is why they need to

be updated periodically, creating additional costly operations

in the database engine (e.g., ANALYZE table).1

To address the shortcoming of scan-based approaches, nu-

merous proposals for query-driven histograms have been

introduced, which continuously correct and refine the his-

tograms based on the actual selectivities observed after run-

ning each query [11, 12, 19, 52, 66, 75, 86, 93, 96]. There

are two approaches to query-driven histograms. The first

approach [11, 12, 19, 66], which we call error-feedback his-
tograms, recursively splits existing buckets (both boundaries

and frequencies) for every distinct query observed, such that

their error is minimized for the latest query. Since the error-

feedback histograms do not minimize the (average) error

across multiple queries, their estimates tend to be much less

accurate.

To achieve a higher accuracy, the second approach is to

compute the bucket frequencies based on the maximum

entropy principle [52, 75, 86, 93]. However, this approach

1
Some database systems [9] automatically update their statistics when the

number of modified tuples exceeds a threshold.

https://doi.org/10.1145/3318464.3389727
https://doi.org/10.1145/3318464.3389727
https://doi.org/10.1145/3318464.3389727

Table 1: The differences between query-driven histograms [52, 74, 75, 86, 93] and our method (QuickSel)

.Query-driven Histograms QuickSel (ours) Our Contribution

Model histograms

(non-overlapping buckets)

mixture models

(overlapping subpopulations)

Employs a new expressive model

→ no exponential growth of complexity

Training maximum entropy
solved by

iterative scaling

min difference from a uniform
distribution
solved analytically

A new optimization objective and its reduction

to quadratic programming (solved analytically)

→ fast training and model refinements

(which is also the state-of-the-art) requires solving an opti-

mization problem, which quickly becomes prohibitive as the

number of observed queries (and hence, number of buckets)

grows. Unfortunately, one cannot simply prune the buckets

in this approach, as it will break the underlying assumptions

of their optimization algorithm (called iterative scaling, see
§2.3 for details). Therefore, they prune the observed queries
instead in order to keep the optimization overhead feasible

in practice. However, this also means discarding data that

could be used for learning a more accurate distribution.

Our Goal We aim to develop a new framework for se-

lectivity estimation that can quickly refine its model after
observing each query, thereby producing increasingly more

accurate estimates over time. We call this new framework

selectivity learning. We particularly focus on designing a

low-overhead method that can scale to a large number of

observed queries without requiring an exponential number

of buckets.

Our Model To overcome the limitations of query-driven

histograms, we use a mixture model [17] to capture the un-

known distribution of the data. A mixture model is a proba-

bilistic model to approximate an arbitrary probability density

function (pdf), say 𝑓 (𝑥), using a combination of simpler pdfs:

𝑓 (𝑥) =
𝑚∑
𝑧=1

ℎ(𝑧) 𝑔𝑧 (𝑥) (1)

where𝑔𝑧 (𝑥) is the 𝑧-th simpler pdf andℎ(𝑧) is its correspond-
ing weight. The subset of the data that follows each of the

simpler pdfs is called a subpopulation. Since the subpopu-
lations are allowed to overlap with one another, a mixture

model is strictly more expressive than histograms. In fact, it

is shown that mixture models can achieve a higher accuracy

than histograms [24], which is confirmed by our empirical

study (§5.5). To the best of our knowledge, we are the first

to propose a mixture model for selectivity estimation.
2

Challenges Using a mixture model for selectivity learn-

ing requires finding optimal parameter values for ℎ(𝑧) and

2
Our mixture model also differs from kernel density estimation [18, 35, 40],

which scans the actual data, rather than analyzing observed queries.

𝑔𝑧 (𝑥); however, this optimization (a.k.a. training) is challeng-

ing for two reasons.

First, the training process aims to find parameters that

maximize the model quality, defined as

∫
𝑄 (𝑓 (𝑥)) 𝑑𝑥 for

some metric of quality𝑄 (e.g., entropy). However, computing

this integral is non-trivial for a mixture model since its sub-

populations may overlap in arbitrary ways. That is, the com-

binations of𝑚 subpopulations can create 2
𝑚
distinct ranges,

each with a potentially different value of 𝑓 (𝑥). As a result,
naïvely computing the quality of a mixture model quickly be-

comes intractable as the number of observed queries grows.

Second, the outer optimization algorithms are often itera-

tive (e.g., iterative scaling, gradient descent), which means

they have to repeatedly evaluate the model quality as they

search for optimal parameter values. Thus, even when the

model quality can be evaluated relatively efficiently, the over-

all training/optimization process can be quite costly.

Our Approach First, to ensure the efficiency of the model

quality evaluation, we propose a new optimization objective.

Specifically, we find the parameter values that minimize the

𝐿2 distance (or equivalently, mean squared error) between
the mixture model and a uniform distribution, rather than

maximizing the entropy of the model (as pursued by previ-

ous work [52, 74, 75, 86, 93]). As described above, directly

computing the quality of a mixture model involves costly

integrations over 2
𝑚
distinct ranges. However, when mini-

mizing the 𝐿2 distance, the 2𝑚 integrals can be reduced to

only𝑚2
multiplications, hence greatly reducing the complex-

ity of the model quality evaluation. Although minimizing

the 𝐿2 distance is much more efficient than maximizing the

entropy, these two objectives are closely related (see our

report [82] for a discussion).

In addition, we adopt a non-conventional variant of mix-

ture models, called a uniform mixture model. While uniform

mixture models have been previously explored in limited

settings (with only a few subpopulations) [26, 36], we find

that they are quite appropriate in our context as they allow

for efficient computations of the 𝐿2 distance. That is, with

this choice, we can evaluate the quality of a model by only

using min, max, and multiplication operations (§3.2). Finally,

our optimization can be expressed as a standard quadratic
program, which still requires an iterative procedure.

Therefore, to avoid the costly iterative optimization, we

also devise an analytic solution that can be computed more

efficiently. Specifically, in addition to the standard reduction

(i.e., moving some of the original constraints to the objective

clause as penalty terms), we completely relax the positivity

constraints for 𝑓 (𝑥), exploiting the fact that they will be

naturally satisfied in the process of approximating the true

distribution of the data. With these modifications, we can

solve for the solution analytically by setting the gradient of

the objective function to zero. This simple transformation

speeds up the training by 1.5×–17.2×. In addition, since our

analytic solution requires a constant number of operations,

the training time is also consistent across different datasets

and workloads.

Using these ideas, we have developed a first prototype

of our selectivity learning proposal, called QuickSel, which

allows for extremely fast model refinements. As summarized

in Table 1, QuickSel differs from—and considerably improves

upon—query-driven histograms [11, 52, 66, 75, 86, 93] in

terms of both modeling and training (see §7 for a detailed

comparison).

Contributions We make the following contributions:

1. We propose the first mixture model-based approach to

selectivity estimation (§3).

2. For training the mixture model, we design a constrained

optimization problem (§4.1).

3. We show that the proposed optimization problem can be

reduced (from an exponentially complex one) to a qua-

dratic program and present further optimization strategies

for solving it (§4.2).

4. We conduct extensive experiments on two real-world

datasets to compare QuickSel’s performance and state-

of-the-art selectivity estimation techniques (§5).

2 PRELIMINARIES
In this section, we first define relevant notations in §2.1 and

then formally define the problem of query-driven selectivity
estimation in §2.2. Next, in §2.3, we discuss the drawbacks

of previous approaches.

2.1 Notations
Table 2 summarizes the notations used throughout this paper.

Set Notations 𝑇 is a relation that consists of 𝑑 real-valued

columns 𝐶1, . . . ,𝐶𝑑 .
3
The range of values in 𝐶𝑖 is [𝑙𝑖 , 𝑢𝑖] and

the cardinality (i.e., row count) of 𝑇 is 𝑁=|𝑇 |. The tuples in
𝑇 are denoted by 𝑥1, . . . , 𝑥𝑁 , where each 𝑥𝑖 is a size-𝑑 vector

that belongs to 𝐵0 = [𝑙1, 𝑢1] × · · ·× [𝑙𝑑 , 𝑢𝑑]. Geometrically, 𝐵0

is the area bounded by a hyperrectangle whose bottom-left

corner is (𝑙1, . . . , 𝑙𝑑) and top-right corner is (𝑢1, . . . , 𝑢𝑑). The
3
Handling integer and categorical columns is discussed in §2.2.

Table 2: Notations.
Symbol Meaning

𝑇 a table (or a relation)

𝐶𝑖 𝑖-th column (or an attribute) of 𝑇 ; 𝑖 = 1, . . . , 𝑑

|𝑇 | the number of tuples in 𝑇

[𝑙𝑖 , 𝑢𝑖] the range of the values in 𝐶𝑖
𝑥 a tuple of 𝑇

𝐵0 the domain of 𝑥 ; [𝑙1, 𝑢1] × · · · × [𝑙𝑑 , 𝑢𝑑]
𝑃𝑖 𝑖-th predicate

𝐵𝑖 hyperrectangle range for the 𝑖-th predicate

|𝐵𝑖 | the size (of the area) of 𝐵𝑖
𝑥 ∈ 𝐵𝑖 𝑥 belongs to 𝐵𝑖 ; thus, satisfies 𝑃𝑖
𝐼 (·) indicator function that returns 1 if its argument is

true and 0 otherwise

𝑠𝑖 the selectivity of 𝑃𝑖 for 𝑇

(𝑃𝑖 , 𝑠𝑖) 𝑖-th observed query

𝑛 the total number of observed queries

𝑓 (𝑥) probability density function of tuple 𝑥 (of 𝑇)

size of 𝐵0 can thus be computed as |𝐵0 |=(𝑢1−𝑙1) × · · ·× (𝑢𝑑 −
𝑙𝑑).

Predicates We use 𝑃𝑖 to denote the (selection) predicate

of the 𝑖-th query on 𝑇 . In this paper, a predicate is a con-

junction
4
of one or more constraints. Each constraint is a

range constraint, which can be one-sided (e.g., 3 ≤ 𝐶1) or

two-sided (e.g., −3 ≤ 𝐶1 ≤ 10). This range can be extended

to also handle equality constraints on categorical data (see

§2.2). Each predicate 𝑃𝑖 is represented by a hyperrectangle

𝐵𝑖 . For example, a constraint “1 ≤ 𝐶1 ≤ 3 AND 2 ≤ 𝐶2” is

represented by a hyperrectangle (1, 3) × (2, 𝑢2), where 𝑢2
is the upper-bound of 𝐶2. We use 𝑃𝑜 to denote an empty

predicate, i.e., one that selects all tuples.

Selectivity The selectivity 𝑠𝑖 of 𝑃𝑖 is defined as the frac-
tion of the rows of 𝑇 that satisfy the predicate. That is,

𝑠𝑖 = (1/𝑁)∑𝑁
𝑘=1

𝐼 (𝑥𝑘 ∈ 𝐵𝑖), where 𝐼 (·) is the indicator func-
tion. A pair (𝑃𝑖 , 𝑠𝑖) is referred to as an observed query.5 With-

out loss of generality, we assume that 𝑛 queries have been

observed for𝑇 and seek to estimate 𝑠𝑛+1. Finally, we use 𝑓 (𝑥)
to denote the joint probability density function of tuple 𝑥

(that has generated tuples of 𝑇).

2.2 Problem Statement
Next, we formally state the problem:

Problem 1 (Query-driven Selectivity Estimation) Con-
sider a set of 𝑛 observed queries (𝑃1, 𝑠1), . . . , (𝑃𝑛, 𝑠𝑛) for 𝑇 . By
definition, we have the following for each 𝑖 = 1, . . . , 𝑛:∫

𝑥 ∈𝐵𝑖

𝑓 (𝑥) 𝑑𝑥 = 𝑠𝑖

4
See §2.2 for a discussion of disjunctions and negations.

5
This pair is also referred to as an assertion by prior work [85].

Then, our goal is to build a model of 𝑓 (𝑥) that can estimate
the selectivity 𝑠𝑛+1 of a new predicate 𝑃𝑛+1.

Initially, before any query is observed, we can conceptually

consider a default query (𝑃0, 1), where all tuples are selected
and hence, the selectivity is 1 (i.e., no predicates).

Discrete and Categorical Values Problem 1 can be ex-

tended to support discrete attributes (e.g., integers, charac-

ters, categorical values) and equality constraints on them, as

follows. Without loss of generality, suppose that 𝐶𝑖 contains

the integers in {1, 2, . . . , 𝑏𝑖 }. To apply the solution to Prob-

lem 1, it suffices to (conceptually) treat these integers as real

values in [1, 𝑏𝑖 + 1] and then convert the original constraints

on the integer values into range constraints, as follows. A

constraint of the form “𝐶𝑖 = 𝑘” will be converted to a range

constraint of the form 𝑘 ≤ 𝐶𝑖 < 𝑘 + 1. Mathematically, this

is equivalent to replacing a probability mass function with a

probability density function defined using dirac delta func-
tions.6 Then, the summation of the original probability mass

function can be converted to the integration of the proba-

bility density function. String data types (e.g., char, varchar)

and their equality constraints can be similarly supported, by

conceptually mapping each string into an integer (preserving

their order) and applying the conversion described above for

the integer data type.

Supported Queries Similar to prior work [11, 19, 52, 66,

74, 75, 86, 93], we support selectivity estimation for predi-

cates with conjunctions, negations, and disjunctions of range

and equality constraints on numeric and categorical columns.

We currently do not support wildcard constraints (e.g., LIKE
’*word*’), EXISTS constraints, or ANY constraints. In prac-

tice, often a fixed selectivity is used for unsupported predi-

cates, e.g., 3.125% in Oracle [83].

To simplify our presentation, we focus on conjunctive

predicates. However, negations and disjunctions can also

be easily supported. This is because our algorithm only re-

quires the ability to compute the intersection size of pairs

of predicates 𝑃𝑖 and 𝑃 𝑗 , which can be done by converting

𝑃𝑖 ∧ 𝑃 𝑗 into a disjunctive normal form and then using the

inclusion-exclusion principle to compute its size.

As in the previous work, we focus our presentation on

predicates on a single relation. However, any selectivity es-

timation technique for a single relation can be applied to

estimating selectivity of a join query whenever the predi-

cates on the individual relations are independent of the join

conditions [7, 41, 90, 98].

6
A dirac delta function 𝛿 (𝑥) outputs ∞ if 𝑥 = 0 and outputs 0 otherwise

while satisfying

∫
𝛿 (𝑥) 𝑑𝑥 = 1.

𝑃1
𝑃2

𝑃3 Split

Figure 1: Bucket creation for query-driven histograms.
𝑃3 is the range of a newpredicate. The existing buckets
(for 𝑃1 and 𝑃2) are split intomultiple buckets. The total
number of buckets may grow exponentially as more
queries are observed.

2.3 Why not Query-driven Histograms
In this section, we briefly describe how query-driven his-

tograms work [11, 19, 52, 66, 75, 86, 93], and then discuss

their limitations, which motivate our work.

HowQuery-driven HistogramsWork To approximate

𝑓 (𝑥) (defined in Problem 1), query-driven histograms adjust

their bucket boundaries and bucket frequencies according

to the queries they observe. Specifically, they first determine

bucket boundaries (bucket creation step), and then compute

their frequencies (training step), as described next.

1. Bucket Creation: Query-driven histograms determine their

bucket boundaries based on the given predicate’s ranges [11,

52, 75, 86, 93]. If the range of a later predicate overlaps

with that of an earlier predicate, they split the bucket(s)

created for the earlier one into two or more buckets in

order to ensure that the buckets do not overlap with one

another. Figure 1 shows an example of this bucket splitting

operation.

2. Training: After creating the buckets, query-driven his-

tograms assign frequencies to those buckets. Earlywork [11,

66] determines bucket frequencies in the process of bucket

creations. That is, when a bucket is split into two or more,

the frequency of the original bucket is also split (or ad-

justed), such that it minimizes the estimation error for the

latest observed query.

However, since this process does not minimize the (av-

erage) error across multiple queries, their estimates are

much less accurate. More recent work [52, 75, 86, 93] has

addressed this limitation by explicitly solving an optimiza-

tion problem based on the maximum entropy principle.

That is, they search for bucket frequencies that maximize

the entropy of the distribution while remaining consistent

with the actual selectivities observed.

Although using the maximum entropy principle will lead

to highly accurate estimates, it still suffers from two key

limitations.

Limitation 1: Exponential Number of Buckets Since

existing buckets may split into multiple ones for each new

observed query, the number of buckets can potentially grow

exponentially as the number of observed queries grows. For

example, in our experiment in §5.5, the number of buck-

ets was 22,370 for 100 observed queries, and 318,936 for

300 observed queries. Unfortunately, the number of buckets

directly affects the training time. Specifically, using itera-
tive scaling—the optimization algorithm used by all previous

work [52, 74, 75, 86, 93]— the cost of each iteration grows

linearly with the number of variables (i.e., the number of

buckets). This means that the cost of each iteration can grow

exponentially with the number of observed queries.

As stated in §1, we address this problem by employing a

mixture model, which can express a probability distribution

more effectively than query-driven histograms. Specifically,

our empirical study in §5.5 shows that—using the same num-

ber of parameters—a mixture model achieves considerably

more accurate estimates than histograms.

Limitation 2: Non-trivial Bucket Merge/Pruning Gi-

ven that query-driven histograms [75, 93] quickly become

infeasible due to their large number of buckets, one might

consider merging or pruning the buckets in an effort to re-

duce their training times. However, merging or pruning the

histogram buckets violates the assumption used by their

optimization algorithms, i.e., iterative scaling. Specifically,

iterative scaling relies on the fact that a bucket is either com-
pletely included in a query’s predicate range or completely
outside of it.

7
That is, no partial overlap is allowed. This

property must hold for each of the 𝑛 predicates. However,

merging some of the buckets will inevitably cause partial

overlaps (between predicate and histogram buckets). For

interested readers, we have included a more detailed expla-

nation of why iterative scaling requires this assumption in

our technical report [82].

3 QUICKSEL: MODEL
This section presents how QuickSel models the population

distribution and estimates the selectivity of a new query.

QuickSel’s model relies on a probabilistic model called amix-
ture model. In §3.1, we describe the mixture model employed

by QuickSel. §3.2 describes how to estimate the selectivity of

a query using the mixture model. §3.3 describes the details

of QuickSel’s mixture model construction.

3.1 Uniform Mixture Model
A mixture model is a probabilistic model that expresses a

(complex) probability density function (of the population) as

a combination of (simpler) probability density functions (of

subpopulations). The population distribution is the one that

7
For example, this property is required for the transition from Equation (6)

to Equation (7) in [75].

generates the tuple 𝑥 of𝑇 . The subpopulations are internally

managed by QuickSel to best approximate 𝑓 (𝑥).

Uniform Mixture Model QuickSel uses a type of mix-

ture model, called the uniform mixture model. The uniform
mixture model represents a population distribution 𝑓 (𝑥) as
a weighted summation of multiple uniform distributions,

𝑔𝑧 (𝑥) for 𝑧 = 1, . . . ,𝑚. Specifically,

𝑓 (𝑥) =
𝑚∑
𝑧=1

ℎ(𝑧) 𝑔𝑧 (𝑥) =
𝑚∑
𝑧=1

𝑤𝑧 𝑔𝑧 (𝑥) (2)

where ℎ(𝑧) is a categorical distribution that determines the

weight of the 𝑧-th subpopulation, and 𝑔𝑧 (𝑥) is the probability
density function (which is a uniform distribution) for the 𝑧-th

subpopulation. The support of ℎ(𝑧) is the integers ranging
from 1 to𝑚; ℎ(𝑧) = 𝑤𝑧 . The support for 𝑔𝑧 (𝑥) is represented
by a hyperrectangle𝐺𝑧 . Since 𝑔𝑧 (𝑥) is a uniform distribution,

𝑔𝑧 (𝑥) = 1/|𝐺𝑧 | if 𝑥 ∈ 𝐺𝑧 and 0 otherwise. The locations of

𝐺𝑧 and the values of𝑤𝑧 are determined in the training stage

(§4). In the remainder of this section (§3), we assume that𝐺𝑧

and𝑤𝑧 are given.

Benefit of Uniform Mixture Model The uniform mix-

ture model was studied early in the statistics community [26,

36]; however, recently, a more complex model called the
Gaussian mixture model has received more attention [17, 84,

110].
8
The Gaussian mixture model uses a Gaussian distribu-

tion for each subpopulation; the smoothness of its probability

density function (thus, differentiable) makes the model more

appealing when gradients need to be computed. Neverthe-

less, we intentionally use the uniform mixture model for

QuickSel due to its computational benefit in the training

process, as we describe below.

As will be presented in §4.2, QuickSel’s training involves

the computations of the intersection size between two sub-

populations, for which the essential operation is evaluating

the following integral:∫
𝑔𝑧1 (𝑥) 𝑔𝑧2 (𝑥) 𝑑𝑥

Evaluating the above expression for multivariate Gaussian

distributions, e.g., 𝑔𝑧1 (𝑥) = exp

(
−𝑥⊤Σ−1𝑥

)
/
√
(2𝜋)𝑑 |Σ|, re-

quires numerical approximations [31, 50], which are either

slow or inaccurate. In contrast, the intersection size between

two hyperrectangles can be exactly computed by simple min,

max, and multiplication operations.

3.2 Selectivity Estimation with UMM
For the uniform mixture model, computing the selectivity of

a predicate 𝑃𝑖 is straightforward:

8
There are other variants of mixture models [15, 78].

Predicate ranges

Generates points

using

predicate ranges

Workload-aware points

Creates ranges

that cover

the points

Subpopulation ranges

(a) Case 1: Highly-overlapping query workloads

Predicate ranges

Generates points

using

predicate ranges

Workload-aware points

Creates ranges

that cover

the points

Subpopulation ranges

(b) Case 2: Scattered query workloads

Figure 2: QuickSel’s subpopulation creation. Due to the property of mixture model (i.e., subpopulations may over-
lap with one another), creating subpopulations is straightforward for diverse query workloads.

∫
𝐵𝑖

𝑓 (𝑥) 𝑑𝑥 =

∫
𝐵𝑖

𝑚∑
𝑧=1

𝑤𝑧 𝑔𝑧 (𝑥) 𝑑𝑥 =

𝑚∑
𝑧=1

𝑤𝑧

∫
𝐵𝑖

𝑔𝑧 (𝑥) 𝑑𝑥

=

𝑚∑
𝑧=1

𝑤𝑧

∫
1

|𝐺𝑧 |
𝐼 (𝑥 ∈ 𝐺𝑧 ∩ 𝐵𝑖) 𝑑𝑥 =

𝑚∑
𝑧=1

𝑤𝑧

|𝐺𝑧 ∩ 𝐵𝑖 |
|𝐺𝑧 |

Recall that both𝐺𝑧 and 𝐵𝑖 are represented by hyperrect-

angles. Thus, their intersection is also a hyperrectangle, and

computing its size is straightforward.

3.3 Subpopulations from Observed Queries
We describe QuickSel’s approach to determining the bound-

aries of 𝐺𝑧 for 𝑧 = 1, . . . ,𝑚. Note that determining 𝐺𝑧 is

orthogonal to the model training process, which we describe

in §4; thus, even if one devises an alternative approach to

creating 𝐺𝑧 , our fast training method is still applicable.

QuickSel creates𝑚 hyperrectangular ranges
9
(for the sup-

ports of its subpopulations) in a way that satisfies the fol-

lowing simple criterion: if more predicates involve a point 𝑥 ,

use a larger number of subpopulations for 𝑥 . Unlike query-

driven histograms, QuickSel can easily pursue this goal by

exploiting the property of a mixture model: the supports of

subpopulations may overlap with one another.

In short, QuickSel generates multiple points (using predi-

cates) that represent the query workloads and create hyper-

rectangles that can sufficiently cover those points. Specifi-

cally, we propose two approaches for this: a sampling-based

one and a clustering-based one. The sampling-based ap-

proach is faster; the clustering-based approach is more accu-

rate. Each of these is described in more detail below.

9
The number𝑚 of subpopulations is set to min(4 · 𝑛, 4000) , by default.

Sampling-based This approach performs the following

operations for creating 𝐺𝑧 for 𝑧 = 1, . . . ,𝑚.

1. Within each predicate range, generate multiple random

points 𝑟 . Generating a large number of random points

increases the consistency; however, QuickSel limits the

number to 10 since having more than 10 points did not

improve accuracy in our preliminary study.

2. Use simple random sampling to reduce the number of

points to 𝑚, which serves as the centers of 𝐺𝑧 for 𝑧 =

1, . . . ,𝑚.

3. The length of the 𝑖-th dimension of𝐺𝑧 is set to twice the

average of the distances (in the same 𝑖-th dimension) to

the 10 nearest-neighbor centers.

Figure 2 illustrates how the subpopulations are created using

both (1) highly-overlapping query workloads and (2) scat-

tered query workloads. In both cases, QuickSel generates

random points to represent the distribution of query work-

loads, which is then used to create 𝐺𝑧 (𝑧 = 1, . . . ,𝑚), i.e., the

supports of subpopulations. This sampling-based approach

is faster, but it does not ensure the coverage of all random

points 𝑟 . In contrast, the following clustering-based approach

ensures that.

Clustering-based The second approach relies on a clus-

tering algorithm for generating hyperrectangles:

1. Do the same as the sampling-based approach.

2. Cluster 𝑟 into𝑚 groups. (We used K-means++.)

3. For each of𝑚 groups, we create the smallest hyperrectan-

gle 𝐺𝑧 that covers all the points belonging to the group.

Note that since each 𝑟 belongs to a cluster and we have cre-

ated a hyperrectangle that fully covers each cluster, the union

of the hyperrectangles covers all 𝑟 . Our experiments primar-

ily use the sampling-based approach due to its efficiency, but

we also compare them empirically in §5.7.

The following section describes how to assign the weights

(i.e., ℎ(𝑧) = 𝑤𝑧) of these subpopulations.

4 QUICKSEL: MODEL TRAINING
This section describes how to compute the weights 𝑤𝑧 of

QuickSel’s subpopulations. For training its model, Quick-

Sel finds the model that maximizes uniformity while being

consistent with the observed queries. In §4.1, we formulate

an optimization problem based on this criteria. Next, §4.2

presents how to solve the problem efficiently.

4.1 Training as Optimization
This section formulates an optimization problem for Quick-

Sel’s training. Let 𝑔0 (𝑥) be the uniform distribution with

support 𝐵0; that is, 𝑔0 (𝑥) = 1/|𝐵0 | if 𝑥 ∈ 𝐵0 and 0 other-

wise. QuickSel aims to find the model 𝑓 (𝑥), such that the

difference between 𝑓 (𝑥) and 𝑔0 (𝑥) is minimized while being

consistent with the observed queries.

There are many metrics that can measure the distance

between two probability density functions 𝑓 (𝑥) and 𝑔0 (𝑥),
such as the earth mover’s distance [89], Kullback-Leibler di-

vergence [62], the mean squared error (MSE), the Hellinger

distance, and more. Among them, QuickSel uses MSE (which

is equivalent to 𝐿2 distance between two distributions) since

it enables the reduction of our originally formulated opti-

mization problem (presented shortly; Problem 2) to a qua-

dratic programming problem, which can be solved efficiently

by many off-the-shelf optimization libraries [1, 4, 5, 14]. Also,

minimizing MSE between 𝑓 (𝑥) and 𝑔0 (𝑥) is closely related

to maximizing the entropy of 𝑓 (𝑥) [52, 75, 86, 93]. See §6 for
the explanation of this relationship.

MSE between 𝑓 (𝑥) and 𝑔0 (𝑥) is defined as follows:

MSE(𝑓 (𝑥), 𝑔0 (𝑥)) =
∫

(𝑓 (𝑥) − 𝑔0 (𝑥))2 𝑑𝑥

Recall that the support for𝑔0 (𝑥) is 𝐵0. Thus, QuickSel obtains

the optimal weights by solving the following problem.

Problem 2 (QuickSel’s Training) QuickSel obtains the op-
timal parameter𝒘 for its model by solving:

argmin

𝒘

∫
𝑥 ∈𝐵0

(
𝑓 (𝑥) − 1

|𝐵0 |

)
2

𝑑𝑥 (3)

such that
∫
𝐵𝑖

𝑓 (𝑥) 𝑑𝑥 = 𝑠𝑖 for 𝑖 = 1, . . . , 𝑛 (4)

𝑓 (𝑥) ≥ 0 (5)

Here, (5) ensures 𝑓 (𝑥) is a proper probability density function.

4.2 Efficient Optimization
We first describe the challenges in solving Problem 2. Then,

we describe how to overcome the challenges.

Challenge Solving Problem 2 in a naïve way is computa-

tionally intractable. For example, consider a mixture model

consisting of (only) two subpopulations represented by 𝐺1

and 𝐺2, respectively. Then,

∫
𝑥 ∈𝐵0

(𝑓 (𝑥) − 𝑔0 (𝑥))2 𝑑𝑥 is:∫
𝑥 ∈𝐺1∩𝐺2

(
𝑤1 +𝑤2

|𝐺1 ∩𝐺2 |
− 𝑔0 (𝑥)

)
2

𝑑𝑥 +
∫
𝑥 ∈𝐺1∩¬𝐺2

(· · ·)2 𝑑𝑥

+
∫
𝑥 ∈¬𝐺1∩𝐺2

(· · ·)2 𝑑𝑥 +
∫
𝑥 ∈¬𝐺1∩¬𝐺2

(
0

|¬𝐺1 ∩ ¬𝐺2 |
− 𝑔0 (𝑥)

)
2

𝑑𝑥

Observe that with this approach, we need four separate inte-

grations only for two subpopulations. In general, the number

of integrations is 𝑂 (2𝑚), which is 𝑂 (2𝑛). Thus, this direct
approach is computationally intractable.

Conversion One: Quadratic Programming Problem 2

can be solved efficiently by exploiting the property of the

distance metric of our choice (i.e., MSE) and the fact that

we use uniform distributions for subpopulations (i.e., UMM).

The following theorem presents the efficient approach.

Theorem 1 The optimization problem in Problem 2 can be
solved by the following quadratic optimization:

argmin

𝒘
𝒘⊤𝑄𝒘 such that 𝐴𝒘 = 𝒔, 𝒘 ≽ 0

where (𝑄)𝑖 𝑗 = |𝐺𝑖∩𝐺 𝑗 | / (|𝐺𝑖 | |𝐺 𝑗 |), and (𝐴)𝑖 𝑗 = |𝐵𝑖∩𝐺 𝑗 | / |𝐺 𝑗 |.
The bendy inequality sign (≽) means that every element of
the vector on the left-hand side is equal to or larger than the
corresponding element of the vector on the right-hand side.

Proof. This theorem can be shown by substituting the

definition of QuickSel’s model (Equation (2)) into the proba-

bility density function 𝑓 (𝑥) in Equation (3). Note that mini-

mizing (𝑓 (𝑥)−𝑔0 (𝑥))2 is equivalent tominimizing 𝑓 (𝑥) (𝑓 (𝑥)−
2𝑔0 (𝑥)), which is also equivalent to minimizing (𝑓 (𝑥))2
since 𝑔0 (𝑥) is constant over 𝐵0 and

∫
𝑓 (𝑥) 𝑑𝑥 = 1.

The integration of (𝑓 (𝑥))2 over 𝐵0 can be converted to a

matrix multiplication, as shown below:∫
(𝑓 (𝑥))2 𝑑𝑥 =

∫ [
𝑚∑
𝑧=1

𝑤𝑧 𝐼 (𝑥 ∈ 𝐺𝑧)
|𝐺𝑧 |

]
2

𝑑𝑥

=

∫ 𝑚∑
𝑖=1

𝑚∑
𝑗=1

𝑤𝑖𝑤 𝑗

|𝐺𝑖 | |𝐺 𝑗 |
𝐼 (𝑥 ∈ 𝐺𝑖) 𝐼 (𝑥 ∈ 𝐺 𝑗) 𝑑𝑥

which can be simplified to

𝑚∑
𝑖=1

𝑚∑
𝑗=1

𝑤𝑖𝑤 𝑗

|𝐺𝑖 | |𝐺 𝑗 |
|𝐺𝑖 ∩𝐺 𝑗 |

=


𝑤1

𝑤2

...

𝑤𝑚


⊤ 

|𝐺1∩𝐺1 |
|𝐺1 | |𝐺1 | · · · |𝐺1∩𝐺𝑚 |

|𝐺1 | |𝐺𝑚 |
...

...
|𝐺𝑚∩𝐺1 |
|𝐺𝑚 | |𝐺1 | · · · |𝐺𝑚∩𝐺𝑚 |

|𝐺𝑚 | |𝐺𝑚 |



𝑤1

𝑤2

...

𝑤𝑚


= 𝒘⊤𝑄𝒘

Second, we express the equality constraints in an alter-

native form. Note that the left-hand side of each equality

constraint, i.e.,

∫
𝐵𝑖
𝑓 (𝑥) 𝑑𝑥 , can be expressed as:∫

𝐵𝑖

𝑓 (𝑥) 𝑑𝑥 =

∫
𝐵𝑖

𝑚∑
𝑗=1

𝑤 𝑗

|𝐺 𝑗 |
𝐼 (𝑥 ∈ 𝐺 𝑗) 𝑑𝑥

=

𝑚∑
𝑗=1

𝑤 𝑗

|𝐺 𝑗 |

∫
𝐵𝑖

𝐼 (𝑥 ∈ 𝐺 𝑗) 𝑑𝑥 =

𝑚∑
𝑗=1

𝑤 𝑗

|𝐺 𝑗 |
|𝐵𝑖 ∩𝐺 𝑗 |

=

[
|𝐵𝑖∩𝐺1 |
|𝐺1 | · · · |𝐵𝑖∩𝐺𝑚 |

|𝐺𝑚 |

] 
𝑤1

...

𝑤𝑚


Then, the equality constraints, i.e.,

∫
𝐵𝑖
𝑓 (𝑥) 𝑑𝑥 = 𝑠𝑖 for 𝑖 =

1, . . . , 𝑛, can be expressed as follows:
|𝐵1∩𝐺1 |
|𝐺1 | · · · |𝐵1∩𝐺𝑚 |

|𝐺𝑚 |
...

. . .
...

|𝐵𝑛∩𝐺1 |
|𝐺1 | · · · |𝐵𝑛∩𝐺𝑚 |

|𝐺𝑚 |



𝑤1

...

𝑤𝑚

 =


𝑠1
...

𝑠𝑚


⇒ 𝐴𝒘 = 𝒔

Finally, 𝒘⊤1 = 1 if and only if

∫
𝑓 (𝑥) = 1, and 𝒘 ≽ 0 for

arbitrary 𝐺𝑧 if and only if

∫
𝑓 (𝑥) ≥ 0. □

The implication of the above theorem is significant: we

could reduce the problem of𝑂 (2𝑛) complexity to the problem

of only 𝑂 (𝑛2) complexity.

Conversion Two: Moving Constraints The quadratic

programming problem in Theorem 1 can be solved efficiently

by most off-the-shelf optimization libraries; however, we can

solve the problem even faster by converting the problem to

an alternative form. We first present the alternative problem,

then discuss it.

Problem 3 (QuickSel’s QP) QuickSel solves this problem al-
ternative to the quadratic programming problem in Theorem 1:

argmin

𝒘
ℓ (𝒘) = 𝒘⊤𝑄𝒘 + 𝜆 ∥𝐴𝒘 − 𝒔∥2

where 𝜆 is a large real value (QuickSel uses 𝜆 = 10
6).

In formulating Problem 3, two types of conversions are

performed: (1) the consistency with the observed queries

(i.e., 𝐴𝒘 = 𝒔) is moved into the optimization objective as a

penalty term, and (2) the positivity of 𝑓 (𝑥) is not explicitly
specified (by 𝒘 ≽ 0). These two types of conversions have

little impact on the solution for two reasons. First, to guar-

antee the consistency, a large penalty (i.e., 𝜆 = 10
6
) is used.

Second, the mixture model 𝑓 (𝑥) is bound to approximate the

true distribution, which is always non-negative. We empiri-

cally examine the advantage of solving Problem 3 (instead

of solving the problem in Theorem 1 directly) in §5.7.

The solution𝒘∗
to Problem 3 can be obtained in a straight-

forward way by setting its gradients of the objective (with

respect to𝒘) equal to 0:

𝜕ℓ (𝒘∗)
𝜕𝒘

= 2𝑄𝒘∗ + 2 𝜆𝐴⊤ (𝐴𝒘∗ − 𝒔) = 0

⇒ 𝒘∗ =
(
𝑄 + 𝜆𝐴⊤𝐴

)−1
𝜆𝐴 𝒔

Observe that𝒘∗
is expressed in a closed form; thus, we can

obtain𝒘∗
analytically instead of using iterative procedures

typically required for general quadratic programming.

5 EXPERIMENT
In this section, we empirically study QuickSel. In summary,

our results show the following:

1. End-to-end comparison against other query-driven
methods:QuickSel was significantly faster (34.0×–179.4×)
for the same accuracy—and produced much more accu-

rate estimates (26.8%–91.8% lower error) for the same time

limit—than previous query-driven methods. (§5.2)

2. Comparison against periodic database scans: For the
same storage size, QuickSel’s selectivity estimates were

77.7% and 91.3%more accurate than scan-based histograms

and sampling, respectively. (§5.3)

3. Impact on PostgreSQL performance: Using QuickSel

for PostgreSQL makes the system 2.25× faster (median)

than the default. (§5.4)

4. Effectiveness ofQuickSel’smixturemodel:QuickSel’s
model produced considerably more accurate estimates

than histograms given the same number of parameters.

(§5.5)

5. Robustness to workload shifts: QuickSel’s accuracy

quickly recovers after sudden workload shifts. (§5.6)

6. Optimization efficiency:QuickSel’s optimizationmethod

(Problem 3) was 1.5×–17.2× faster than solving the stan-

dard quadratic programming. (§5.7)

5.1 Experimental Setup

Methods Our experiments compare QuickSel to six other

selectivity estimation methods.

Query-driven Methods:
1. STHoles [19]: This method creates histogram buckets by

partitioning existing buckets (as in Figure 1). The fre-

quency of an existing bucket is distributed uniformly

among the newly created buckets.

2. ISOMER [93]: This method applies STHoles for histogram

bucket creations, but it computes the optimal frequencies

of the buckets by finding the maximum entropy distri-

bution. Among existing query-driven methods, ISOMER

produced the highest accuracy in our experiments.

3. ISOMER+QP: This method combines ISOMER’s approach

for creating histogram buckets and QuickSel’s quadratic

programming (Problem 3) for computing the optimal bucket

frequencies.

4. QueryModel [13]: This method computes the selectivity

estimate by a weighted average of the selectivities of ob-

served queries. The weights are determined based on the

similarity of the new query and each of the queries ob-

served in the past.

Scan-based Methods:
5. AutoHist: This method creates an equiwidth multidimen-

sional histogram by scanning the data. It also updates its

histogram whenever more than 20% of the data changes

(this is the default settingwith SQL Server’s AUTO_UPDATE_
STATISTICS option [8]).

6. AutoSample: This method relies on a uniform random

sample of data to estimate selectivities. Similar to AutoHist,

AutoSample updates its sample whenever more than 10%

of the data changes.

We have implemented all methods in Java.

Datasets and Query Sets We use two real datasets and

one synthetic dataset in our experiments, as follows:

1. DMV: This dataset contains the vehicle registration records

of New York State [95]. It contains 11,944,194 rows. Here,

the queries ask for the number of valid registrations for

vehicles produced within a certain date range. Answer-

ing these queries involves predicates on three attributes:

model_year, registration_date, and expiration_date.
2. Instacart: This dataset contains the sales records of an

online grocery store [94].We use their orders table, which
contains 3.4 million sales records. Here, the queries ask

for the reorder frequency for orders made during differ-

ent hours of the day. Answering these queries involves

predicates on two attributes: order_hour_of_day and

days_since_prior. (In §5.3, we use more attributes (up

to ten).)

3. Gaussian: We also generated a synthetic dataset using

a bivariate dimensional normal distribution. We varied

this dataset to study our method under workload shifts,

different degrees of correlation between the attributes, and

more. Here, the queries count the number of points that

lie within a randomly generated rectangle.

For each dataset, we measured the estimation quality using

100 test queries not used for training. The ranges for selection

predicates (in queries) were generated randomly within a

feasible region; the ranges of different queries may or may

not overlap.

Environment All our experiments were performed on

m5.4xlarge EC2 instances, with 16-core Intel Xeon 2.5GHz

and 64 GB of memory running Ubuntu 16.04.

Metrics We use the root mean square (RMS) error:

RMS error =

(
1

𝑡

𝑡∑
𝑖=1

(true_sel − est_sel)2
)
1/2

where 𝑡 is the number of test queries. We report the RMS

errors in percentage (by treating both true_sel and est_sel

as percentages).

When reporting training time, we include the time re-

quired for refining a model using an additional observed

query, which itself includes the time to store the query and

run the necessary optimization routines.

5.2 Selectivity Estimation Quality
In this section, we compare the end-to-end selectivity esti-

mation quality of QuickSel versus query-driven histograms.

Specifically, we gradually increased the number of observed

queries provided to each method from 10 to 1,000. For each

number of observed queries, we measured the estimation

error and training time of each method using 100 test queries.

These results are reported in Figure 3. Given the same

number of observed queries, QuickSel’s training was sig-

nificantly faster (Figures 3a and 3d), while still achieving

comparable estimation errors (Figures 3b and 3e). We also

studied the relationship between errors and training times

in Figures 3c and 3f, confirming QuickSel’s superior effi-

ciency (STHoles, ISOMER+QP, and QueryModel are omitted

in these figures due to their poor performance). In summary,

QuickSel was able to quickly learn from a large number of

observed queries (i.e., shorter training time) and produce

highly accurate models.

5.3 Comparison to Scan-based Methods
We also compared QuickSel to two automatically-updating

scan-based methods, AutoHist and AutoSample, which in-

corporate SQL Server’s automatic updating rule into equi-

width multidimensional histograms and samples, respec-

tively. Since both methods incur an up-front cost for ob-

taining their statistics, they should produce relatively more

accurate estimates initially (before seeing new queries). In

10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

Number of Observed Queries

T
i
m
e
(
m
s
)

STHoles ISOMER ISOMER+QP QueryModel QuickSel (ours)

(a) # queries vs. Time (data: DMV)

0 10 20 30 40 50

0%

10%

20%

30%

Time per Query (ms)

R
M
S
E
r
r
o
r

(b) Time vs. Err (data: DMV)

10% 5% 4% 3% 2%

0.1

1

10

100

1000

RMS Error

T
i
m
e
(
m
s
)

ISOMER QuickSel

(c) Error vs. Time (data: DMV)

10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

Number of Observed Queries

T
i
m
e
(
m
s
)

(d) # queries vs. Time (Instacart)

0 10 20 30 40 50

0%

2%

4%

6%

8%

10%

Time per Query (ms)

R
M
S
E
r
r
o
r

(e) Time vs. Err (data: Instacart)

1.5% 1.0% 0.5% 0.4% 0.3%

0.1

1

10

100

1000

10K

RMS Error

T
i
m
e
(
m
s
)

(f) Error vs. Time (data: Instacart)

Figure 3: Comparison between QuickSel and query-driven histograms. The lower, the better. Left: The per-query
overhead of QuickSel was extremely low. Middle: QuickSel was themost accurate for the same time budget. Right:
QuickSel required significantly less time for the same accuracy.

0 200 400 600 800 1000

0%

2%

4%

6%

8%

Query Sequence Number

R
M
S
E
r
r
o
r

AutoHist AutoSample QuickSel

(a) Accuracy under Data Change

Hist Sample QuickSel

1

10

100

1000

T
i
m
e
(
m
s
)

(b) Model Update Time

2 4 6 8 10

0%

10%

20%

30%

40%

50%

60%

Dataset: Instacart

Data Dimension

R
M
S
E
r
r
o
r

1 2 4 6 8 10

0%

20%

40%

60%

80%

100%

Dataset: Gaussian

Data Dimension

R
M
S
E
r
r
o
r

(c) Sensitivity to Data Dimension

Figure 4: QuickSel versus periodically updating scan-based methods (given the same storage size).

contrast, the accuracy of QuickSel’s estimates should quickly

improve as new queries are observed.

To verify this empirically, we first generated a Gaussian
dataset (1 million tuples) with correlation 0. We then in-

serted 200K new tuples generated from a distribution with

a different correlation after processing 200 queries, and re-

peated this process. In other words, after processing the first

100 queries, we inserted new data with correlation 0.1; af-

ter processing the next 100 queries, we inserted new data

with correlation 0.2; and continued this process until a total

of 1000 queries were processed. We performed this process

for each method under comparison. QuickSel adjusted its

model each time after observing 100 queries. AutoHist and

AutoSample updated their statistics after each batch of data

insertion. QuickSel and AutoHist both used 100 parameters

(# of subpopulations for the mixture model and # of buckets

for histograms); AutoSample used a sample of 100 tuples.

Figure 4a shows the error of each method. As expected,

AutoHist produced more accurate estimates initially. How-

ever, as more queries were processed, the error of QuickSel

drastically decreased. In contrast, the errors of AutoSample

and AutoHist did not improve with more queries, as they

only depend on the frequency at which a new scan (or sam-

pling) is performed. After processing only 100 queries (i.e.,

initial update), QuickSel produced more accurate estimates

than both AutoHist and AutoSample. On average (including

the first 100 queries), QuickSel was 71.4% and 89.8% more

accurate than AutoHist and AutoSample, respectively. This

is consistent with the previously reported observations that

query-driven methods yield better accuracy than scan-based

ones [19]. (The reason why query-driven proposals have not

been widely adopted to date is due to their prohibitive cost;

see §7.2).

In addition, Figure 4b compares the update times of the

three methods. By avoiding scans, QuickSel’s query-driven

updates were 525× and 243× faster than AutoHist and Au-

toSample, respectively.

Finally, we studied how the performance of those methods

changed as we increased the data dimension (i.e., the number

of attributes appearing in selection predicates). First, using

the Instacart dataset, we designed each query to target a

0 100 200 300 400 500 600 700 800 900 1,000
0×
1×
2×
3×
4×

Query Number

S
p
e
e
d
u
p

(a) Individual Query Speedup over Postgres Default

Speedup Stat Value

Max 3.47×
Median 2.25×
Average 2.09×
Min 0.98×

(b) Summary of Speedup

Figure 5: QuickSel’s impact on PostgreSQL query performance. We compared (1) PostgreSQL default and (2) Post-
greSQL with QuickSel. The left figure shows individual query speedups (note: the original latencies were between
5.2–9.1 secs). The speedup values around 1× were due to no query plan change despite different estimates. The
right figure summarizes those speedup numbers.

10 20 30 40 50 60 70 80 90 100

0

1000

2000

3000

4000

5000

Number of Observed Queries

N
u
m
b
e
r
o
f

M
o
d
e
l
P
a
r
a
m
s

(a) # of queries vs. # of parameters (data: Instacart)

0 1000 2000 3000 4000

0%

2%

4%

6%

8%

10%

Number of Model Parameters

R
e
l
.
E
r
r
o
r

STHoles

ISOMER

ISOMER+QP

QueryModel

QuickSel (ours)

(b) # of parameters vs. Error (data: Instacart)

Figure 6: Comparison between QuickSel’s model and the models of query-driven histograms. The lower, the bet-
ter, Left: For the same number of observed queries, QuickSel used the least number of model parameters. Right:
QuickSel’s model was more effective in expressing the data distribution, yielding the lowest error.

random subset of dimensions (N/2) as increasing the dimen-

sion N from 2 to 10. In all test cases (Figure 4c left), QuickSel

’s accuracy was consistent, showing its ability to scale to

high-dimensional data. Also in this experiment, QuickSel

performed significantly better than, or comparably to, his-

tograms and sampling. We could also obtain a similar result

using the Gaussian dataset (Figure 4c right). This consistent
performance across different data dimensions is primarily

due to how QuickSel is designed; that is, its estimation only

depends on how much queries overlap with one another.

5.4 Impact on Query Performance
This section examines QuickSel’s impact on query perfor-

mance. That is, we test if QuickSel’s more accurate selectivity

estimates can lead to improved query performance for actual

database systems (i.e., shorter latency).

Tomeasure the actual query latencies, we used PostgreSQL

ver. 10 with a third-party extension, called pg_hint_plan [6].
Using this extension, we enforced our own estimates (for

PostgreSQL’s query optimization) in place of the default

ones. We compared PostgreSQL Default (i.e., no hint) and

QuickSel—to measure the latencies of the following join

query in processing the Instacart dataset:

select count (*)

from S inner join T on S.tid = T.tid

inner join U on T.uid = U.uid

where (range_filter_on_T)

and (range_filter_on_S);

where the joins keys for the tables S, T, and U were in the PK-

FK relationship, as described by the schema (of Instacart).
Figure 5 shows the speedups QuickSel could achieve in

comparison to PostgreSQL Default. Note that QuickSel does

not improve any underlying I/O or computation speed; its

speedups are purely from helping PostgreSQL’s query opti-

mizer choose a more optimal plan based on improved selec-

tivity estimates. Even so, QuickSel could bring 2.25× median

speedup, with 3.47× max speedup. In the worst case, Post-

greSQL with QuickSel was almost identical to PostgreSQL

Default (i.e., 0.98× speedup).

5.5 QuickSel’s Model Effectiveness
In this section, we compare the effectiveness of QuickSel’s

model to that of models used in the previous work. Specif-

ically, the effectiveness is assessed by (1) how the model

size—its number of parameters—grows as the number of ob-

served queries grows, and (2) how quickly its error decreases

as its number of parameters grows.

Figure 6a reports the relationship between the number of

observed queries and the number of model parameters. As

discussed in §2.3, the number of buckets (hence, parameters)

0 50 100 150 200 250 300

0%

1%

2%

3%

4%

Query Sequence Number

R
M
S
E
r
r
o
r Histograms

Sampling

QuickSel

Figure 7: Robustness to suddenworkload shifts, which
occurred at the sequence #100 and at #200. QuickSel’s
error increased temporarily right after each workload
jump, but it reduced soon.

0 200 400 600 800 1,000
0

20

40

60

80

100

Number of Observed Queries

R
u
n
t
i
m
e
(
m
s
)

Standard QP

QuickSel’s QP

Figure 8: QuickSel’s optimization effect.

of ISOMER increased quickly as the number of observed

queries grew. STHoles was able to keep the number of its pa-

rameters small due to its bucket merging technique; however,

this had a negative impact on its accuracy. Here, QuickSel

used the least number of model parameters. For instance,

when 100 queries were observed for DMV, QuickSel had 10×
fewer parameters than STHoles and 56× fewer parameters

than ISOMER.

We also studied the relationship between the number of

model parameters and the error. The lower the error (for the

same number of model parameters), the more effective the

model. Figure 6b shows the result. Given the same number of

model parameters, QuickSel produced significantly more ac-

curate estimates. Equivalently, QuickSel produced the same

quality estimates with much fewer model parameters.

5.6 Robustness to Workload Shifts
In this section, we test QuickSel’s performance under sig-

nificant workload shifts. That is, after observing a certain

number of queries (i.e., 100 queries) around a certain region

of data, the query workload suddenly jumps to a novel region.

This pattern repeats several times.

Figure 7 shows the result. Here, we could observe the

following pattern. QuickSel’s error increased significantly

right after each jump (i.e., at query sequence #100 and at

#200), producing 1.5×-3.6× higher RMS errors compared

to histograms. However, QuickSel’s error dropped quickly,

achieving 12×-378× lower RMS errors than histograms. This

was possible due to QuickSel’s faster adaptation.

2 4 6 8 10

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

Data Dimension

R
M
S
E
r
r
o
r

Sampling-based Clustering-based

(a) Accuracy

2 4 6 8 10

0

5

10

15

20

Data Dimension

O
v
e
r
h
e
a
d
(
m
s
)

(b) Per-query Overhead

Figure 9: Subpopulation generation approaches.
Clustering-based was more accurate, but slower.

5.7 QuickSel Internal Mechanisms
In this section, we empirically study (1) the effect of Quick-

Sel’s optimization (presented in §4.2), and (2) two alternative

mechanisms for generating subpopulations (presented in

§3.3).

Optimization Efficiency To study QuickSel’s optimiza-

tion efficiency, we compared two approaches for solving the

quadratic problem defined in Theorem 1: solving the original

QP without any modifications versus solving our modified

version (Problem 3). We used the cvxopt library for the for-

mer and used jblas (a linear algebra library) for the latter.
Both libraries use multiple cores for parallel processing.

Figure 8 shows the time taken by each optimization ap-

proach. The second approach (Problem 3) was increasingly

more efficient as the number of observed queries grew. For

example, it was 8.36× faster when the number of observed

queries reached 1,000. This is thanks to the modified prob-

lem having an analytical solution, while the original problem

required an iterative gradient descent solution.

Subpopulation Generation We empirically studied the

two subpopulation generation approaches (i.e., the sampling-

based approach and the clustering-based approach, §3.3) in

terms of their scalability to high-dimensional data. Specif-

ically, we compared their estimation accuracies and com-

putational overhead using the Gaussian dataset (with its

dimension set to 2–10).

Figure 9 reports the results. As shown in Figure 9(a), the

clustering-based approach obtained impressive accuracy in

comparison to the sampling-based one. However, as shown in

Figure 9(b), the clustering-based approach produced higher

overhead (i.e., longer training times), which is an example

of the natural tradeoff between cost and accuracy.

6 CONNECTION: MSE AND ENTROPY
The max-entropy query-driven histograms optimize their

parameters (i.e., bucket frequencies) by searching for the

parameter values that maximize the entropy of the distri-

bution 𝑓 (𝑥). We show that this approach is approximately

Table 3: Comparison of selectivity estimation methods

Approach Model Method Key Contributions

Based on
Database
Scans
(Scan-based

Selectivity

Estimation)

Histograms Multi-dim Hist [27, 42, 70] Introduces multidimensional histograms

Muralikrishna [79] Introduces equidepth histograms

Van Gelder [106] Estimates Join selectivity with histograms for important domains

GOH [44] Optimizes single-attribute histograms for joint distribution

Thaper [101] Builds histograms over streaming data

To [102] Builds histograms with entropy as a metric

Sampling Lipton [68] Introduces adaptive sampling for high accuracy

Haas [37] Uses sampling for join selectivity estimation

Riondato [87] Guarantees accuracy relying on the VC-dimension of queries

ML KDE [34, 35, 40] Applies kernel density estimation to selectivity estimation

PGM [32, 92, 104] Uses probabilistic graphical models for selectivity estimation

Neural Net [56, 69] Trains a neural network for selectivity estimation

Based on
Observed
Queries
(Query-

driven

Selectivity

Estimation)

Error-feedback

Histograms

(fast but
less accurate)

ST-histogram [11] Refines the bucket frequencies based on the errors

LEO [96] Identifies incorrect statistics using observed queries

STHoles [19] Proposes a new buckets split mechanism; adopted by ISOMER

SASH [66] Proposes a junction tree model for finding the best set of histograms

QueryModel [13] Avoids modeling the data distribution by using queries directly

Max-Entropy

Histograms

(accurate but
slow)

ISOMER [74, 75, 93] Finds a maximum entropy distribution consistent with observed queries

Kaushik et al. [52] Extends ISOMER for distinct values

Ré et al. [85, 86] Seeks the max entropy distribution based on possible worlds

Mixture Model
(fast & accurate)

QuickSel (Ours) Employs a mixture model for selectivity estimation; develops an efficient training

algorithm for the new model

equivalent to QuickSel’s optimization objective, i.e., minimiz-

ing the mean squared error (MSE) of 𝑓 (𝑥) from a uniform

distribution. The entropy of the probability density function

is defined as −
∫
𝑓 (𝑥) log(𝑓 (𝑥)) 𝑑𝑥 . Thus, maximizing the

entropy is equivalent to minimizing

∫
𝑓 (𝑥) log(𝑓 (𝑥)) 𝑑𝑥 ,

which is related to minimizing MSE as follows:

argmin

∫
𝑓 (𝑥) log(𝑓 (𝑥)) 𝑑𝑥 ≈ argmin

∫
𝑓 (𝑥) (𝑓 (𝑥) − 1) 𝑑𝑥

= argmin

∫
(𝑓 (𝑥))2 𝑑𝑥

since

∫
𝑓 (𝑥) 𝑑𝑥 = 1 by definition. We used the first-order

Taylor expansion to approximate log(𝑥) with 𝑥−1. Note that,
when the constraint

∫
𝑓 (𝑥) 𝑑𝑥 = 1 is considered, 𝑓 (𝑥) =

1/|𝑅0 | is the common solution to both the entropy maximiza-

tion and minimizing MSE.

7 RELATEDWORK
There is extensive work on selectivity estimation due to its

importance for query optimization. In this section, we re-

view both scan-based (§7.1) and query-driven methods (§7.2).

QuickSel belongs to the latter category. We have summarized

the related work in Table 3.

7.1 Database Scan-based Estimation
As explained in §1, we use the term scan-based methods to
refer to techniques that directly inspect the data (or part

of it) for collecting their statistics. These approaches differ

from query-based methods which rely only on the actual

selectivities of the observed queries.

Scan-based Histograms These approaches approximate

the joint distribution by periodically scanning the data. There

has been much work on how to efficiently express the joint

distribution of multidimensional data [23, 25, 27, 33–35, 37,

39, 40, 42–44, 49, 51, 64, 68, 70, 77, 79, 87, 101, 102, 106].

There is also some work on histograms for special types

of data, such as XML [10, 16, 107, 109], spatial data [48, 57–

59, 67, 72, 80, 97, 99, 100, 108, 112, 113], graph [29], string [45–

47, 76]; or for privacy [38, 63, 65].

Sampling Sampling-based methods rely on a sample of

data for estimating its joint distribution [37, 68, 87]. However,

drawing a new random sample requires a table-scan or ran-

dom retrieval of tuples, both of which are costly operations

and hence, are only performed periodically.

Machine Learning Models KDE is a technique that

translates randomly sampled data points into a distribu-

tion [91]. In the context of selectivity estimation, KDE has

been used as an alternative to histograms [34, 35, 40]. Like

mixture models (MM), KDE also expresses a probability den-

sity function as a summation of some basis functions. How-

ever, KDE and MM are fundamentally different. KDE re-

lies on independent and identically distributed samples, and

hence lends itself to scan-based selectivity estimation. In

contrast, MM does not require any sampling and can thus

be used in query-driven selectivity estimation (where sam-

pling is not practical). Similarly, probabilistic graphical mod-

els [32, 92, 104], neural networks [56, 69], and tree-based

ensembles [28] have been used for selectivity estimation.

Unlike histograms, these approaches can capture column

correlations more succinctly. However, applicability of these

models for query-driven selectivity estimation has not been

explored and remains unclear.

More recently, sketching [20] and probe executions [103]

have been proposed, which differ from ours in that they

build their models directly using the data (not query results).

Similar to histograms, using the data requires either peri-

odic updates or higher query processing overhead. QuickSel

avoids both of these shortcomings with its query-driven MM.

7.2 Query-driven Estimation
Query-driven techniques create their histogram buckets adap-

tively according to the queries they observe in the work-

load. These can be further categorized into two techniques

based on how they compute their bucket frequencies: error-

feedback histograms and max-entropy histograms.

Error-feedbackHistograms Error-feedback histograms [11,

13, 19, 54, 55, 66] adjust bucket frequencies in consideration

of the errors made by old bucket frequencies. They differ

in how they create histogram buckets according to the ob-

served queries. For example, STHoles [19] splits existing

buckets with the predicate range of the new query. SASH [66]

uses a space-efficient multidimensional histogram, called

MHIST [27], but determines its bucket frequencies with an

error-feedback mechanism. QueryModel [13] treats the ob-

served queries themselves as conceptual histogram buckets

and determines the distances among those buckets based on

the similarities among the queries’ predicates.

Max-EntropyHistograms Max-entropy histograms [52,

74, 75, 86, 93] find a maximum entropy distribution consis-

tent with the observed queries. Unfortunately, these methods

generally suffer from the exponential growth in their num-

ber of buckets as the number of observed queries grows (as

discussed in §2). QuickSel avoids this problem by relying on

mixture models.

Fitting Parametric Functions Adaptive selectivity esti-

mation [22] fits a parametric function (e.g., linear, polyno-

mial) to the observed queries. This approach is more appli-

cable when we know the data distribution a priori, which is

not assumed by QuickSel.

Self-tuning Databases Query-driven histograms have

also been studied in the context of self-tuning databases [60,

71, 73]. IBM’s LEO [96] corrects errors in any stage of query

execution based on the observed queries. Microsoft’s Au-

toAdmin [12, 21] focuses on automatic physical design, self-

tuning histograms, and monitoring infrastructure. Part of

this effort is ST-histogram [11] and STHoles [19] (see Ta-

ble 3). DBL [81] and IDEA [30] exploit the answers to past

queries for more accurate approximate query processing.

QueryBot 5000 [71] forecasts the future queries, whereas

OtterTune [105] and index [61] use machine learning for

automatic physical design and building secondary indices,

respectively.

8 CONCLUSION AND FUTUREWORK
The prohibitive cost of query-driven selectivity estimation

techniques has greatly limited their adoption by DBMS ven-

dors, which for the most part still rely on scan-based his-

tograms and samples that are periodically updated and are

otherwise stale. In this paper, we proposed a new framework,

called selectivity learning or QuickSel, which learns from ev-

ery query to continuously refine its internal model of the

underlying data, and therefore produce increasingly more ac-

curate selectivity estimates over time. QuickSel differs from

previous query-driven selectivity estimation techniques by

(i) not using histograms and (ii) enabling extremely fast re-

finements using its mixture model. We formally showed that

the training cost of our mixture model can be reduced from

exponential to only quadratic complexity (Theorem 1).

Supporting Complex Joins When modeling the selec-

tivity of join queries, even state-of-the-art modes [28, 56, 111]

take a relatively simple approach: conceptually prejoining

corresponding tables and constructing a joint probability dis-

tribution over each join pattern. We plan to similarly extend

our current formulation of QuickSel to model the selectivity

of general joins.

9 ACKNOWLEDGEMENT
This material is based upon work supported by the National

Science Foundation under Grant No. 1629397 and the Michi-

gan Institute for Data Science (MIDAS) PODS. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

REFERENCES
[1] Apache commons: Optimization. http://commons.apache.org/proper/

commons-math/userguide/optimization.html. [Online; accessed

September-16-2018].

[2] Collecting histogram statistics. https://www.ibm.com/

support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_

collecthistogramstatistics.html. [Online; accessed September-16-

2018].

[3] Histogram-based statistics. https://mariadb.com/kb/en/library/

histogram-based-statistics/. [Online; accessed September-16-2018].

[4] Joptimizer. http://www.joptimizer.com/. [Online; accessed

September-16-2018].

[5] MATLAB: quadprog. https://www.mathworks.com/help/optim/ug/

quadprog.html/. [Online; accessed September-16-2018].

[6] pg_hint_plan 1.1. https://pghintplan.osdn.jp/pg_hint_plan.html. [On-

line; accessed February-13-2020].

[7] Postgresql 9.2.24 documentation. https://www.postgresql.org/docs/9.

2/static/row-estimation-examples.html. [Online; accessed September-

16-2018].

[8] Statistical maintenance functionality (autostats) in sql

server. https://support.microsoft.com/en-us/help/195565/

statistical-maintenance-functionality-autostats-in-sql-server.

[Online; accessed September-16-2018].

[9] Statistics. https://docs.microsoft.com/en-us/sql/relational-databases/

statistics/statistics?view=sql-server-2017. [Online; accessed

September-16-2018].

[10] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. Estimating the

selectivity of xml path expressions for internet scale applications. In

VLDB, 2001.
[11] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: Building

histograms without looking at data. SIGMOD, 1999.
[12] S. Agrawal, N. Bruno, S. Chaudhuri, and V. R. Narasayya. Autoadmin:

Self-tuning database systemstechnology. IEEE Data Eng. Bull., 2006.
[13] C. Anagnostopoulos and P. Triantafillou. Learning to accurately

count with query-driven predictive analytics. In Big Data, 2015.
[14] M. Andersen, J. Dahl, and L. Vandenberghe. Cvxopt: A python pack-

age for convex optimization. 2013.

[15] T. Asparouhov and B. Muthén. Structural equation models and mix-

ture models with continuous nonnormal skewed distributions. Struc-
tural Equation Modeling: A Multidisciplinary Journal, 2016.

[16] S. S. Bhowmick, E. Leonardi, and H. Sun. Efficient evaluation of high-

selective xml twig patterns with parent child edges in tree-unaware

rdbms. In SIGMOD, 2007.
[17] C. M. Bishop. Pattern recognition and machine learning. 2006.
[18] B. Blohsfeld, D. Korus, and B. Seeger. A comparison of selectivity

estimators for range queries on metric attributes. In SIGMOD Record,
1999.

[19] N. Bruno, S. Chaudhuri, and L. Gravano. Stholes: a multidimensional

workload-aware histogram. In SIGMOD, 2001.
[20] W. Cai, M. Balazinska, andD. Suciu. Pessimistic cardinality estimation:

Tighter upper bounds for intermediate join cardinalities. In SIGMOD,
2019.

[21] S. Chaudhuri and V. Narasayya. Self-tuning database systems: a

decade of progress. In PVLDB, 2007.
[22] C. M. Chen and N. Roussopoulos. Adaptive selectivity estimation

using query feedback. In SIGMOD, 1994.
[23] L. Chen and M. T. Ozsu. Multi-scale histograms for answering queries

over time series data. In ICDE, 2004.
[24] Y.-C. Chen. Lecture 6: Density estimation: Histogram and kernel

density estimator. http://faculty.washington.edu/yenchic/18W_425/

Lec6_hist_KDE.pdf. [Online; accessed September-16-2018].

[25] G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine, et al. Synopses

for massive data: Samples, histograms, wavelets, sketches. 2011.

[26] P. F. Craigmile and D. Tirrerington. Parameter estimation for finite

mixtures of uniform distributions. Communications in Statistics-
Theory and Methods, 1997.

[27] A. Deshpande, M. Garofalakis, and R. Rastogi. Independence is good:

Dependency-based histogram synopses for high-dimensional data.

SIGMOD Record, 2001.
[28] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, and S. Chaudhuri.

Selectivity estimation for range predicates using lightweight models.

PVLDB, 2019.
[29] J. Feng, Q. Qian, Y. Liao, G. Li, and N. Ta. Dmt: a flexible and versatile

selectivity estimation approach for graph query. In WAIM, 2005.

[30] A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and T. Kraska. Revis-

iting reuse for approximate query processing. PVLDB, 2017.
[31] A. Genz. Numerical computation of multivariate normal probabilities.

Journal of computational and graphical statistics, 1992.
[32] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using

probabilistic models. In ACM SIGMOD Record, volume 30, pages

461–472. ACM, 2001.

[33] S. Guha, N. Koudas, and D. Srivastava. Fast algorithms for hierarchical

range histogram construction. In PODS, 2002.
[34] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Ap-

proximating multi-dimensional aggregate range queries over real

attributes. In SIGMOD Record, 2000.
[35] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Selectivity

estimators for multidimensional range queries over real attributes.

VLDBJ, 2005.
[36] A. Gupta and T. Miyawaki. On a uniform mixture model. Biometrical

Journal, 1978.
[37] P. J. Haas, J. F. Naughton, and A. N. Swami. On the relative cost of

sampling for join selectivity estimation. In PODS, 1994.
[38] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of

differentially private histograms through consistency. PVLDB, 2010.
[39] Z. He, X. Xu, S. Deng, and B. Dong. K-histograms: An efficient

clustering algorithm for categorical dataset. arXiv preprint cs/0509033,
2005.

[40] M. Heimel, M. Kiefer, and V. Markl. Self-tuning, gpu-accelerated

kernel density models for multidimensional selectivity estimation. In

SIGMOD, 2015.
[41] R. Hu, Z. Wang, W. Fan, and S. Agarwal. Cost based opti-

mizer in apache spark 2.2. https://databricks.com/blog/2017/08/31/

cost-based-optimizer-in-apache-spark-2-2.html, 2018. [Online; ac-

cessed September-16-2018].

[42] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. Cords:

automatic discovery of correlations and soft functional dependencies.

In SIGMOD, 2004.
[43] Z. Istvan, L. Woods, and G. Alonso. Histograms as a side effect of

data movement for big data. In SIGMOD, 2014.
[44] H. Jagadish, H. Jin, B. C. Ooi, and K.-L. Tan. Global optimization of

histograms. SIGMOD Record, 2001.
[45] H. Jagadish, O. Kapitskaia, R. T. Ng, and D. Srivastava. Multi-

dimensional substring selectivity estimation. In VLDB, 1999.
[46] H. Jagadish, O. Kapitskaia, R. T. Ng, and D. Srivastava. One-

dimensional and multi-dimensional substring selectivity estimation.

VLDB, 2000.
[47] H. Jagadish, R. T. Ng, and D. Srivastava. Substring selectivity estima-

tion. In PODS, 1999.
[48] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik,

and T. Suel. Optimal histograms with quality guarantees. In VLDB,
1998.

[49] J. Jestes, K. Yi, and F. Li. Building wavelet histograms on large data

in mapreduce. PVLDB, 2011.

http://commons.apache.org/proper/commons-math/userguide/optimization.html
http://commons.apache.org/proper/commons-math/userguide/optimization.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_collecthistogramstatistics.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_collecthistogramstatistics.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_collecthistogramstatistics.html
https://mariadb.com/kb/en/library/histogram-based-statistics/
https://mariadb.com/kb/en/library/histogram-based-statistics/
http://www.joptimizer.com/
https://www.mathworks.com/help/optim/ug/quadprog.html/
https://www.mathworks.com/help/optim/ug/quadprog.html/
https://pghintplan.osdn.jp/pg_hint_plan.html
https://www.postgresql.org/docs/9.2/static/row-estimation-examples.html
https://www.postgresql.org/docs/9.2/static/row-estimation-examples.html
https://support.microsoft.com/en-us/help/195565/statistical-maintenance-functionality-autostats-in-sql-server
https://support.microsoft.com/en-us/help/195565/statistical-maintenance-functionality-autostats-in-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-2017
http://faculty.washington.edu/yenchic/18W_425/Lec6_hist_KDE.pdf
http://faculty.washington.edu/yenchic/18W_425/Lec6_hist_KDE.pdf
https://databricks.com/blog/2017/08/31/cost-based-optimizer-in-apache-spark-2-2.html
https://databricks.com/blog/2017/08/31/cost-based-optimizer-in-apache-spark-2-2.html

[50] H. Joe. Approximations to multivariate normal rectangle probabilities

based on conditional expectations. Journal of the American Statistical
Association, 1995.

[51] P. Karras and N. Mamoulis. Lattice histograms: a resilient synopsis

structure. In ICDE, 2008.
[52] R. Kaushik and D. Suciu. Consistent histograms in the presence of

distinct value counts. PVLDB, 2009.
[53] M. S. Kester, M. Athanassoulis, and S. Idreos. Access path selection

in main-memory optimized data systems: Should i scan or should i

probe? In SIGMOD, 2017.
[54] A. Khachatryan, E. Müller, C. Stier, and K. Böhm. Sensitivity of self-

tuning histograms: query order affecting accuracy and robustness.

In SSDBM, 2012.

[55] A. Khachatryan, E. Müller, C. Stier, and K. Böhm. Improving accuracy

and robustness of self-tuning histograms by subspace clustering.

TKDE, 2015.
[56] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned

cardinalities: Estimating correlated joins with deep learning. arXiv
preprint arXiv:1809.00677, 2018.

[57] G. Koloniari, Y. Petrakis, E. Pitoura, and T. Tsotsos. Query workload-

aware overlay construction using histograms. In CIKM, 2005.

[58] F. Korn, T. Johnson, and H. Jagadish. Range selectivity estimation for

continuous attributes. In ssdbm, 1999.

[59] N. Koudas, S. Muthukrishnan, and D. Srivastava. Optimal histograms

for hierarchical range queries. In PODS, 2000.
[60] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, A. Kristo, G. Leclerc,

S. Madden, H. Mao, and V. Nathan. Sagedb: A learned database system.

In CIDR, 2019.
[61] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case

for learned index structures. In SIGMOD, 2018.
[62] S. Kullback and R. A. Leibler. On information and sufficiency. The

annals of mathematical statistics, 1951.
[63] Y.-H. Kuo, C.-C. Chiu, D. Kifer, M. Hay, and A. Machanavajjhala. Dif-

ferentially private hierarchical count-of-counts histograms. PVLDB,
2018.

[64] E. Lam and K. Salem. Dynamic histograms for non-stationary updates.

In IDEAS, 2005.
[65] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing

linear counting queries under differential privacy. In PODS, 2010.
[66] L. Lim, M. Wang, and J. S. Vitter. Sash: A self-adaptive histogram set

for dynamically changing workloads. In VLDB, 2003.
[67] X. Lin, Q. Liu, Y. Yuan, and X. Zhou. Multiscale histograms: Sum-

marizing topological relations in large spatial datasets. In VLDB,
2003.

[68] R. J. Lipton, J. F. Naughton, and D. A. Schneider. Practical selectivity
estimation through adaptive sampling. 1990.

[69] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte. Cardinality es-

timation using neural networks. In Proceedings of the 25th Annual
International Conference on Computer Science and Software Engineer-
ing, CASCON ’15, pages 53–59, Riverton, NJ, USA, 2015. IBM Corp.

[70] C. A. Lynch. Selectivity estimation and query optimization in large

databases with highly skewed distribution of column values. In VLDB,
1988.

[71] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo, and G. J.

Gordon. Query-based workload forecasting for self-driving database

management systems. In SIGMOD, 2018.
[72] N. Mamoulis and D. Papadias. Selectivity estimation of complex

spatial queries. In International Symposium on Spatial and Temporal
Databases, pages 155–174, 2001.

[73] R. C. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,

O. Papaemmanouil, and N. Tatbul. Neo: A learned query optimizer.

PVLDB, 2019.

[74] V. Markl, P. J. Haas, M. Kutsch, N. Megiddo, U. Srivastava, and T. M.

Tran. Consistent selectivity estimation via maximum entropy. VLDBJ,
2007.

[75] V.Markl, N.Megiddo,M. Kutsch, T.M. Tran, P. Haas, andU. Srivastava.

Consistently estimating the selectivity of conjuncts of predicates. In

PVLDB, 2005.
[76] A. Mazeika, M. H. Böhlen, N. Koudas, and D. Srivastava. Estimating

the selectivity of approximate string queries. TODS, 2007.
[77] G. Moerkotte, D. DeHaan, N. May, A. Nica, and A. Boehm. Exploiting

ordered dictionaries to efficiently construct histograms with q-error

guarantees in sap hana. In SIGMOD, 2014.
[78] G. Moser, S. H. Lee, B. J. Hayes, M. E. Goddard, N. R. Wray, and P. M.

Visscher. Simultaneous discovery, estimation and prediction analysis

of complex traits using a bayesian mixture model. PLoS genetics, 2015.
[79] M. Muralikrishna and D. J. DeWitt. Equi-depth multidimensional

histograms. In SIGMOD Record, 1988.
[80] T. Neumann and S. Michel. Smooth interpolating histograms with

error guarantees. In British National Conference on Databases, 2008.
[81] Y. Park, A. S. Tajik, M. Cafarella, and B. Mozafari. Database learning:

Toward a database that becomes smarter every time. In SIGMOD,
2017.

[82] Y. Park, S. Zhong, and B. Mozafari. Extended report of QuickSel:

Quick selectivity learning with mixture models. https://arxiv.org/
abs/1812.10568, 2020.

[83] C. Proteau. Guide to performance and tuning: Query perfor-

mance and sampled selectivity. http://www.oracle.com/technetwork/

products/rdb/0403-sampled-selectivity-128646.pdf. [Online; accessed

September-16-2018].

[84] S. Ragothaman, S. Narasimhan, M. G. Basavaraj, and R. Dewar. Unsu-

pervised segmentation of cervical cell images using gaussian mixture

model. In CVPR Workshops, 2016.
[85] C. Ré and D. Suciu. Understanding cardinality estimation using

entropy maximization. In PODS, 2010.
[86] C. Ré and D. Suciu. Understanding cardinality estimation using

entropy maximization. TODS, 2012.
[87] M. Riondato, M. Akdere, U. Çetintemel, S. B. Zdonik, and E. Upfal.

The vc-dimension of sql queries and selectivity estimation through

sampling. In ECML PKDD, 2011.
[88] J. C. Rodríguez. An overview on optimization in apache hive:

Past, present future. https://www.slideshare.net/HadoopSummit/

an-overview-on-optimization-in-apache-hive-past-present-future.

[Online; accessed September-16-2018].

[89] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as

a metric for image retrieval. International journal of computer vision,
2000.

[90] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.

Price. Access path selection in a relational database management

system. In SIGMOD, 1979.
[91] B. W. Silverman. Density estimation for statistics and data analysis.

2018.

[92] J. Spiegel and N. Polyzotis. Graph-based synopses for relational

selectivity estimation. In Proceedings of the 2006 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’06, pages

205–216, New York, NY, USA, 2006. ACM.

[93] U. Srivastava, P. J. Haas, V. Markl, M. Kutsch, and T. M. Tran. Isomer:

Consistent histogram construction using query feedback. In ICDE,
2006.

[94] J. Stanley. 3 million instacart orders, open sourced. https://www.

instacart.com/datasets/grocery-shopping-2017, 2017. [Online; ac-

cessed September-16-2018].

[95] State of New York. Vehicle, snowmobile, and

boat registrations. https://catalog.data.gov/dataset/

https://arxiv.org/abs/1812.10568
https://arxiv.org/abs/1812.10568
http://www.oracle.com/technetwork/products/rdb/0403-sampled-selectivity-128646.pdf
http://www.oracle.com/technetwork/products/rdb/0403-sampled-selectivity-128646.pdf
https://www.slideshare.net/HadoopSummit/an-overview-on-optimization-in-apache-hive-past-present-future
https://www.slideshare.net/HadoopSummit/an-overview-on-optimization-in-apache-hive-past-present-future
https://www.instacart.com/datasets/grocery-shopping-2017
https://www.instacart.com/datasets/grocery-shopping-2017
https://catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations

vehicle-snowmobile-and-boat-registrations, 2018. [Online;

accessed September-16-2018].

[96] M. Stillger, G. M. Lohman, V. Markl, andM. Kandil. Leo-db2’s learning

optimizer. In VLDB, 2001.
[97] J. Sun, Y. Tao, D. Papadias, and G. Kollios. Spatio-temporal join

selectivity. Information Systems, 2006.
[98] A. Swami and K. B. Schiefer. On the estimation of join result sizes.

In EDBT, 1994.
[99] M. Tang and F. Li. Scalable histograms on large probabilistic data. In

KDD, 2014.
[100] Y. Tao, J. Sun, and D. Papadias. Selectivity estimation for predictive

spatio-temporal queries. In ICDE, 2003.
[101] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidimen-

sional histograms. In SIGMOD, 2002.
[102] H. To, K. Chiang, and C. Shahabi. Entropy-based histograms for

selectivity estimation. In CIKM, 2013.

[103] I. Trummer. Exact cardinality query optimization with bounded

execution cost. In SIGMOD, 2019.
[104] K. Tzoumas, A. Deshpande, and C. S. Jensen. Efficiently adapting

graphicalmodels for selectivity estimation. The VLDB Journal, 22(1):3–
27, Feb. 2013.

[105] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic data-

base management system tuning through large-scale machine learn-

ing. In SIGMOD, 2017.
[106] A. Van Gelder. Multiple join size estimation by virtual domains. In

PODS, 1993.
[107] C. Wang, S. Parthasarathy, and R. Jin. A decomposition-based proba-

bilistic framework for estimating the selectivity of xml twig queries.

In EDBT, 2006.
[108] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang. Selectivity

estimation on streaming spatio-textual data using local correlations.

PVLDB, 2014.
[109] Y. Wu, J. M. Patel, and H. Jagadish. Using histograms to estimate

answer sizes for xml queries. Information Systems, 2003.
[110] J. Yang, X. Liao, X. Yuan, P. Llull, D. J. Brady, G. Sapiro, and L. Carin.

Compressive sensing by learning a gaussian mixture model from

measurements. IEEE Transactions on Image Processing, 2015.
[111] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel,

J. M. Hellerstein, S. Krishnan, and I. Stoica. Selectivity estimation

with deep likelihood models. CoRR, abs/1905.04278, 2019.
[112] Q. Zhang and X. Lin. On linear-spline based histograms. InWAIM,

2002.

[113] Q. Zhang and X. Lin. Clustering moving objects for spatio-temporal

selectivity estimation. In Australasian database conference, 2004.

https://catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Problem Statement
	2.3 Why not Query-driven Histograms

	3 QuickSel: Model
	3.1 Uniform Mixture Model
	3.2 Selectivity Estimation with UMM
	3.3 Subpopulations from Observed Queries

	4 QuickSel: Model Training
	4.1 Training as Optimization
	4.2 Efficient Optimization

	5 Experiment
	5.1 Experimental Setup
	5.2 Selectivity Estimation Quality
	5.3 Comparison to Scan-based Methods
	5.4 Impact on Query Performance
	5.5 QuickSel's Model Effectiveness
	5.6 Robustness to Workload Shifts
	5.7 QuickSel Internal Mechanisms

	6 Connection: MSE and Entropy
	7 Related Work
	7.1 Database Scan-based Estimation
	7.2 Query-driven Estimation

	8 Conclusion and Future Work
	9 Acknowledgement
	References

