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ABSTRACT
While much of the research on transaction processing has fo-
cused on improving overall performance in terms of through-
put and mean latency, surprisingly less attention has been
given to performance predictability: how often individual
transactions exhibit execution latency far from the mean.
Performance predictability is increasingly important when
transactions lie on the critical path of latency-sensitive ap-
plications, enterprise software, or interactive web services.

In this paper, we focus on understanding and mitigating
the sources of performance unpredictability in today’s trans-
actional databases. We conduct the first quantitative study
of major sources of variance in MySQL, Postgres (two of
the largest and most popular open-source products on the
market), and VoltDB (a non-conventional database). We
carry out our study with a tool called TProfiler that, given
the source code of a database system and programmer an-
notations indicating the start and end of a transaction, is
able to identify the dominant sources of variance in trans-
action latency. Based on our findings, we investigate al-
ternative algorithms, implementations, and tuning strate-
gies to reduce latency variance without compromising mean
latency or throughput. Most notably, we propose a new
lock scheduling algorithm, called Variance-Aware Transac-
tion Scheduling (VATS), and a lazy buffer pool replacement
policy. In particular, our modified MySQL exhibits signif-
icantly lower variance and 99th percentile latencies by up
to 5.6× and 6.3×, respectively. Our proposal has been wel-
comed by the open-source community, and our VATS algo-
rithm has already been adopted as of MySQL’s 5.7.17 release
(and been made the default scheduling policy in MariaDB).

1. INTRODUCTION
Transactional databases are a mission-critical component

of enterprise software for efficient storage and manipula-
tion of data. A significant portion of database research
on transaction processing has focused on improving over-
all performance and scalability, for example, by developing
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new techniques for concurrency control, query optimization,
indexing, and other sophisticated ideas. These strategies,
however, have been vetted primarily in terms of their ef-
fect on the average performance of the database, such as its
throughput and mean transaction latency. In other words,
the focus has been on average performance and running more
and faster transactions overall.

While peak transaction processing throughput is clearly
important, the predictability of performance—the dispar-
ity between average and high-percentile tail latencies—has
emerged as an equally important metric in situations where
individual transaction latencies are mission-critical or affect
end-user experience. Examples include database-backed web
services or database clouds with service-level agreements.1

However, performance predictability has often been over-
looked by traditional efforts that focus on throughput and
mean latency. In fact, some optimization strategies (e.g.,
asynchronous logging and group commit [41, 63]), have de-
liberately improved throughput at the expense of penalizing
latency for some transactions. In other cases, developers
have not even vetted the impact of their design and im-
plementation decisions on performance predictability. For
example, while the contribution of database components to
mean latency has been studied [39], an analogous study to
identify the sources of latency variance is missing. As such,
today’s complex DBMSs might have overlooked alternative
design decisions that could deliver the same or comparable
average performance, but at a significantly lower variance.

At the fine time-scale of individual transactions, the per-
formance of existing databases is incredibly unpredictable,
with orders of magnitude gaps between mean and high per-
centile latencies2 (see Appendix C.1). Two approaches can
be taken to achieve performance predictability.

Bottom-up vs. Top-down Approach — In a bottom-
up approach, one could aim to build an entirely new DBMS
from scratch that is specifically designed to be predictable [34,
65]. Despite their merits, these proposals have not had wide-
spread adoption for transaction processing. One reason is
that users are often reluctant to completely abandon well-
established and matured DBMSs in exchange for academic
prototypes. Another reason, however, is that these propos-

1In this paper, we do not target real-time applications,
which require hard (rather than statistical) guarantees, e.g.,
airplane control systems.
2While some of this variance is inherent and due to some
transactions doing more work than others, our study reveals
that dominant sources of variance are often a performance
pathology and avoidable (see Section 2 for the distinction).
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als promise higher throughput or predictability by sacrificing
mean latency (e.g., by always using scan-only plans [65]).
Despite their success in long-running analytics [58], such
tradeoffs are less appealing to transactional and latency-
critical applications. Instead, an ideal solution is one that
delivers the same mean latency and throughput as existing
solutions, but with much lower variance. Adopting such so-
lutions, especially if compatible with existing DBMSs, would
be a “no-brainer” for most users (see Section 9).

Thus, in this paper, we advocate a top-down approach,
wherein we identify and mitigate the performance patholo-
gies that lead to variance in existing, widely used transac-
tion processing systems—an approach that can have more
immediate impact on real-world deployments. As such, we
address some of today’s popular DBMSs in an attempt to
understand their major sources of variance and seek design
alternatives for overcoming variance-inducing performance
pathologies. For the same reason, we also restrict ourselves
to solutions that reduce variance without sacrificing mean la-
tency or throughput. In addition to the immediate benefits
to massive user-bases of these products, the insight gained
in this process can inform future bottom-up attempts at de-
signing new databases.

Challenges — A top-down approach, however, comes with
its own challenges. Gaining performance insight into any
software system as complex as a DBMS requires effective
profiling tools. Unfortunately, existing profilers can only
study a system in terms of its average performance, e.g., by
breaking down overall run time into the average latency of
individual functions. As we will show in this paper, quanti-
fying the contribution of individual functions to overall vari-
ance is much more challenging. Moreover, latency variance
of each function is only important to the performance profile
insomuch as it affects transaction latencies. For example, it
may not matter if a background I/O operation exhibits large
variance in execution time, as long as the user-perceived la-
tency of a transaction is unaffected.

Why Now? — It is both critical and timely to system-
atically study and manage performance variance of trans-
actional databases for several reasons. First, advancements
in hardware parallelism and better transaction processing
techniques have enabled microsecond latencies and millions
of concurrent transactions [21, 47, 73]. As mean perfor-
mance improves, the impact of performance perturbations
(e.g., due to a slow I/O request) relative to the latency of a
transaction grows. Second, an increasing number of DBaaS
providers guarantee service level agreements (SLAs), which
if violated,—even for a subset of transactions—result in fi-
nancial penalties [2, 4, 53, 54]. Finally, modern DBMSs
have become some of the most complex software systems.
As such, subtle interactions of complex code paths lead to
vexing performance anomalies.

Our Solution — We systematically study the sources of
variance in the call graphs of three complex transaction
processing systems. To facilitate these studies, we use a
profiling tool called TProfiler that, given the source code
of a database management system and a minimal effort to
annotate the start and ends of transactions, can identify
dominant sources of latency variance. 3 To minimize the

3TProfiler is open source: https://web.eecs.umich.edu/
tprofiler/

overhead of collecting fine-grain performance measurements,
TProfiler runs in multiple iterations, each time instrumenting
a carefully selected subset of functions invoked during trans-
action processing. By analyzing these measurements across
thread interleavings, TProfiler aggregates latency across all
functions contributing to a transaction. TProfiler reports
variance results using a representation we call a variance
tree, which enables the developer to reason about the rela-
tionship between overall latency variance and the variances
and covariances of individual culprit functions.

We use TProfiler to analyze the codebases of three open-
source database systems with drastically different designs:
MySQL (a thread-per-connection model), Postgres (a process-
per-connection model), and VoltDB (an event-based sever
model). VoltDB is a more modern engine, while MySQL
and Postgres are two of the most commonly-used databases
today (millions of active users), each having a massive and
complex codebase (e.g., MySQL has 1.5M lines of code and
30K functions). Finally, based on TProfiler’s findings, we
propose both generic and DBMS-specific strategies for re-
ducing performance variance.

Contributions — We make the following contributions:

1. We analyze variance in the MySQL codebase and discover
that varying delays due to lock scheduling are a dominant
source of latency variance. We further identify the LRU
policy as another cause of variance in memory-intensive
workloads. We also analyze the Postgres and VoltDB code-
bases, finding various delays in logging and work queues
as their top causes of latency variance, respectively (Sec-
tion 4).4

2. Almost all DBMSs grant locks on a first-come-first-served
basis, which is identified by TProfiler as a major cause of
variance. We thus propose a variance-aware transaction
scheduling (VATS) algorithm, as a general technique for
reducing variance. By minimizing the Lp norm, VATS si-
multaneously reduces mean, variance, and high percentiles
of transaction latencies. We prove that, without any prior
knowledge of transactions’ remaining times, VATS is the
optimal strategy (Section 5).

3. We also propose DBMS-specific variance reduction strate-
gies, including a lazy LRU update policy for MySQL that
significantly reduces contention, and variance-aware tun-
ing guidelines for database administrators (Section 6).

4. Through extensive experiments on five different bench-
marks, we confirm that our techniques make these DBMSs
significantly more predictable (and even faster) without
compromising throughput, with 2.9x, 2.8x, and 1.5x lower
mean, variance, and 99th percentile latencies, respectively.
(and up to 6.3x, 5.6x, and 2.0x, respectively.) (Section 7).
In the case of MySQL, a highly popular DBMS, our find-
ings have already been adopted (Section 9).

2. BACKGROUND
In this section, we briefly discuss the scope of our work.

4While some of these findings may not seem surprising, the
value of TProfiler is in quantifying their impact on overall
variance and narrowing our search to a handful of functions
in a massive codebase with millions of functions. For exam-
ple, while there are 100’s of functions that incur wait times,
only a few specific instances contribute to overall variance.
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Defining Predictability — There are different mathemat-
ical notions for capturing performance predictability. One
could minimize latency variance or seek to impose bounds
on high percentile latencies (e.g., limiting 99th percentile la-
tency). Statisticians have also used the ratio of standard
deviation to mean (a.k.a coefficient of variation) as a stan-
dardized measure of dispersion for a distribution.

Since in this paper we target statistical (rather than hard)
guarantees, we focus on identifying the sources of latency
variance (and thereby standard deviation). Minimizing vari-
ance also serves as a surrogate for reducing high-percentile
latencies [66]. Hence, our techniques reduce both latency
variance and 99th percentile latency (see Section 7).

Desirable Solutions — Simply padding all latencies with
a large wait time would trivially reduce variance but would
also increase mean latency, and, thus, it would have little
practical value. While long-running queries and OLAP ap-
plications might tolerate an increase in mean latency in ex-
change for predictability or higher throughput [16, 17, 35, 58,
59, 65], the same tradeoff is less appealing to many latency-
critical OLTP applications.5 Thus, in this paper we restrict
ourselves to ideal solutions, i.e., those that reduce variance
without negatively impacting mean latency or throughput.
In fact, not only do our findings reduce variance, but they
also reduce mean latency and coefficient of variation (see
Section 7). Such solutions are much more desirable in prac-
tice. For example, some of this paper’s findings have been
already adopted (and even made a default policy) by some
of the largest open-source communities (Section 9).

Inherent versus Avoidable Variance — It is important
to note that performance variance is sometimes inherent and
cannot be avoided. For example, processing a transaction
that updates 10 tables inherently involves more work than
one that updates only one table.6 Avoidable sources of vari-
ance are those that are not caused by varying amounts of
work requested by the user, but are rather due to inter-
nal artifacts of the DBMS itself, such as scheduling choices,
contention, I/O, or other performance pathologies in the
source code. For example, two transactions requesting sim-
ilar amounts of work, but experiencing different latencies,
indicate a performance anomaly that might be avoidable.

3. TPROFILER
Although existing tracing tools (e.g., DTrace [37]) can

provide performance insights for transaction systems, these
tools are poorly suited for identifying the root causes of per-
formance variation. Existing tracing frameworks are typ-
ically oriented towards aggregating and reporting perfor-
mance results in terms of the call graph of an application.
A seemingly intuitive approach to analyze and summarize
performance variation might be to record and report the
standard deviation or high quantile latencies of individual
functions in the call graph. We find this approach dissatis-
fying for two reasons. First, conventional profiling tools are
oblivious of the notion of a transaction, which is fundamen-
tal to the way transaction processing experts wish to reason

5This is perhaps why, despite the success of scan-only query
plans in OLAP [25, 58], similar proposals [65] have not had
widespread adoption in transaction processing.
6In prior work, we have studied the variance of performance
caused by external factors (such as changes in the workload
environment) and strategies for mitigating them [51, 52].

about performance. As noted earlier, some variance is inher-
ent and is correlated to the particular transaction type. By
making transactions explicitly visible to the tracing infras-
tructure, it is possible to isolate and reason about inherent
vs. avoidable variance. Second, because of the nature of how
variance mathematically aggregates, the variance of a par-
ent function is always strictly greater than the variance of
its children. Hence, the highest-variance functions always lie
at the roots of the call hierarchy. However, these functions
are typically the least informative in discovering root causes
of performance pathologies. Rather than operate solely on
variance, TProfiler instead ranks functions using a score func-
tion that considers both variance and depth within the call
hierarchy when deciding which functions to highlight as the
likely root causes of performance variability.

A further key shortcoming of fine-grain performance anal-
ysis tools is that they often incur significant instrumenta-
tion overheads that slow the database system, sometimes by
substantial factors. Significant slowdowns are problematic
because they may alter the relative latencies of application
behaviors (for example, slowing the relative performance of
a memory-intensive code sequence as compared to a system
call or lock acquisition). As such, the variance profile ob-
served in an instrumented execution may differ materially
from the profile that arises when the database runs at full
performance.

3.1 Overview
To study an application with TProfiler, the developer per-

forms an iterative refinement procedure consisting of three
repeating steps: automatic source code instrumentation, on-
line trace collection, and offline variance analysis. In each
iteration of this flow, a subset of an application’s call graph
is instrumented to collect the contribution of each function
to transaction latency and variance. We instrument only a
subset of the call graph at a time to limit instrumentation
overhead; instrumenting every function distorts the latency
profile such that it is not representative of unprofiled exe-
cution. TProfiler outputs a profile that identifies the top-k
highest scoring functions that account for transaction vari-
ance (we discuss the scoring function below). The developer
then examines this profile to determine if the highlighted
functions are sufficiently detailed to identify key sources of
variance. If not (i.e., the highlighted functions are too high
in the call hierarchy to be informative), the programmer in-
dicates functions for which she wishes the variance to be fur-
ther decomposed. The children of these functions are then
added to the list of functions to be profiled, and the source
code is automatically re-instrumented to monitor this new
set of functions to collect a new profile. In our experience,
this cycle must be repeated a handful of times (perhaps as
much as ten) to construct the most informative profile.

TProfiler requires the programmer to manually demarcate
the start and end of transactions, using a simple API. We
perform this step manually because it is not clear how an
automated tool can deduce a semantic notion like “transac-
tion start” from arbitrary code. However, in all three of the
transaction processing systems we study, it is quite easy for a
programmer to do so. The programmer must indicate where
a transaction begins and where a transaction completes. In
MySQL and Postrgres, transaction execution corresponds to
the invocation of a single function that is the root of a large
call hierarchy. In VoltDB, transactions do not correspond



Figure 1: A call graph and its corresponding variance tree
(here, bodyA represents the time spent in the body of A).

to threads or function invocations on a one-to-one basis, as
VoltDB uses a task-concurrent execution model. Instead,
in VoltDB, we instrument when a thread begins and ends
an interval of execution on behalf of a particular transac-
tion, based on a transaction id associated with a task. The
remainder of the analysis concatenates these execution in-
tervals. A transaction begins at the first interval labelled by
its transaction id and ends at the last. Whereas these simple
annotations are sufficient for the transaction processing sys-
tems studied here, they are insufficient to profile arbitrary
concurrent programs, where multiple threads may concur-
rently execute on behalf of a single logical unit of work and
labelled intervals may overlap. We have generalized our pro-
filing and instrumentation approach to analyze the critical
path in applications with such overlaps in related work [42].

3.2 Characterizing Execution Variance
TProfiler analyzes performance variance by comparing the

duration of particular function invocations in a transaction
across other invocations of the same function in different
transactions. TProfiler uses an abstraction we have devel-
oped, the variance tree, to reason about the relationship
between latency variance in the call hierarchy rooted at a
particular function invocation. TProfiler subdivides and at-
tributes execution time across the call graph, similar to con-
ventional profiles from tools like gprof [36]. Using these fine-
grain latency measurements, TProfiler then calculates the
variance and covariance of each component of the call graph
across the many invocations to identify functions that con-
tribute the most variability.

Figure 1 (up) depicts a sample call graph comprising a
function A invoking two children B and C, and includes the
execution time in the body of A. We deconstruct and repre-
sent the variance of the call graph using expression 1. Fig-
ure 1 (bottom) shows a corresponding visualization of the
variances and covariances in a variance tree.

V ar(

n∑
i=1

Xi) =

n∑
i=1

V ar(Xi) + 2
∑
1≤i

∑
≤j≤n

Cov(Xi, Xj) (1)

The variance tree allows TProfiler to quickly identify sub-
trees that do not contribute to latency variability, as their
variance is (relative to other nodes) small. These sub-trees
do not require any further scrutiny, and there is no need to
further instrument the call stack in these sub-trees to break
down variance. Identifying the root causes of large variance,

however, is not so trivial. As noted previously, the variance
of a parent node is always larger than any of its children, so
simply identifying the nodes with the highest variance is not
useful for diagnosing pathologies. Moreover, some variance
is inherent, due to variation in the work per transaction;
such variance is not an indication of a mitigable pathology.
High covariance across pairs of functions can be an indicator
of a correlation between the amount of work performed by
such functions.

Instead, we use the variance tree to identify functions (or
co-varying function pairs) that (1) account for a substantial
fraction of overall latency variance and (2) are informative,
i.e., analyzing them reveals insight about why variance oc-
curs. To unify terminology, we refer to the variance of a
function or covariance of a function pair as a factor.

Identifying factors that account for a large fraction of their
parents’ variance is straightforward. What is more compli-
cated is how to identify functions that are informative. Our
intuition is that functions deeper in the call graph imple-
ment more specific functionality, and hence are more likely
to reveal the root cause of latency variance. TProfiler ranks
factors using a score function that considers both the mag-
nitude of variance attributed to the factor and its relative
position in the call graph. For functions called from multiple
sites, TProfiler aggregates the variance/covariance across all
call sites. TProfiler assigns each function a height based on
the maximum depth of the call tree beneath it (for covari-
ance of two functions, the larger height is used). We use a
specificity metric that is a decreasing function of the height
of a factor φ:

specificity(φ) = (height(call graph)− height(φ))2 (2)

where height(call graph) is the height of the root of the call
graph, and height(φ) is the height of the factor. Here, we
use square to give specificity a higher weight.

TProfiler uses a score function that jointly considers speci-
ficity and variance:

score(φ) = specificity(φ)
∑
i

V (φi) (3)

where V (φi) represents variance or covariance of a specific
call site of a factor within the call graph. TProfiler then
selects the top-k factors of the tree based on their scores.

4. CASE STUDIES
In this section, we conduct a case study of MySQL and

Postgres (as popular open-source DBMSs) to identify their
main causes of latency variance, and defer a similar study
of VoltDB to Appendix A.

4.1 Latency Variance in MySQL
In this section, we use TProfiler to analyze the source code

of MySQL 5.6.23 and characterize the main sources of vari-
ance therein. Here, we only report our findings using the
TPC-C benchmark. However, in Section 7 we evaluate our
techniques using five different benchmarks with various de-
grees of complexity and contention.

Setup — We use the OLTP-Bench [32] framework to run
the TPC-C workload under two configurations. First, we
study a 128-warehouse configuration with a 30 GB buffer
pool on a system with 2 Intel(R) Xeon(R) CPU E5-2450



Config Function Name Percentage of
Overall Variance

128-WH os_event_wait [A] 37.5%
128-WH os_event_wait [B] 21.7%
128-WH row_ins_clust_index_entry_low 9.3%
2-WH buf_pool_mutex_enter 32.92%
2-WH img_btr_cur_search_to_nth_level 8.3%
2-WH fil_flush 5%

Table 1: Key sources of variance in MySQL.

processors and 2.10GHz cores. Second, we study a reduced-
scale 2-warehouse configuration with a 128M buffer pool on a
machine with 2 Intel Xeon E5-1670v2 2.5GHz virtual CPUs.
The reduced-scale configuration exaggerates buffer pool con-
tention, revealing latency sources that may arise in work-
loads with a working set significantly larger than the avail-
able memory. We refer to these configurations as 128-WH
and 2-WH, respectively. In both cases, we use a separate
machine to issue client requests to the MySQL server.

Summary — Table 1 summarizes the key variance sources
in MySQL identified by TProfiler. Whereas MySQL has one
of the most complex code bases with over 1.5M lines of code
and 30K functions, TProfiler narrows down our search by
automatically identifying a handful of functions that con-
tribute the most to the overall transaction variance. This
demonstrates TProfiler’s value: one only needs to manually
inspect these few functions to understand whether their ex-
ecution time variance is inherent or is caused by a perfor-
mance pathology that can be mitigated or avoided. Next,
we explain the role of each function found by TProfiler.

os event wait() — MySQL uses its own cross-platform
API for synchronization; os_event_wait is one of the cen-
tral functions in this abstraction layer. The implementa-
tion of os_event_wait yields little insight into why the trans-
action has to wait. We thus examine the context for the
two most significant call sites invoking os_event_wait (referred
to as A and B in Table 1). Both call sites occur within
lock_wait_suspend_thread, a function used to put a thread to
sleep when its associated transaction requests a lock on a
record that cannot be granted due to a conflict. These two
specific call sites correspond to locks acquired during select
and update statements, respectively.

This implies that variability of wait time for contended
locks is the largest source of variance in MySQL. Motivated
by this finding, we later propose a variance-aware transac-
tion scheduling in Section 5, which seeks to minimize vari-
ance of wait times by optimizing the order in which locks
are granted to waiting threads.

row ins clust index entry low() — This function inserts
a new record into a clustered index. TProfiler reports that
none of this function’s children exhibit significant variance,
but the main variance arises in the body of the function itself
due to varying code paths taken based on the state of the
index prior to the insert. The variance here is thus inherent
to the index mutation, not a performance pathology.

buf pool mutex enter() — This function is called by other
functions when they access the buffer pool. This function
is called from various sites, but the call most responsible
for its variance occurs in buf_page_make_young, which moves a
page to the head of the LRU list. InnoDB uses this list to
maintain the order of buffer page replacements based on a

Function Name Percentage of Overall Variance
LWLockAcquireOrWait 76.8%

ReleasePredicateLocks 6%

Table 2: Key sources of variance in Postgres.

variant of the least recently used algorithm. Upon certain
types of accesses, a page is moved to the head of the LRU list.
Threads must acquire a lock before modifying the list. That
lock is acquired in buf_pool_mutex_enter. The variance in this
function reflects varying wait times, while other threads are
reordering the LRU list. In Section 6.1, we propose a strategy
for mitigating this problem.

btr cur search to nth level() — This function traverses
an index tree level by level to place a tree cursor at a given
level, and then it leaves a shared or exclusive lock on the cur-
sor page. Its runtime, thus, varies with the depth to which
the tree must be traversed. The variance here is inherent to
the index traversal, not a performance pathology.

fil flush() — MySQL uses fil_flush to flush redo logs gen-
erated by a transaction. When the operating systems uses
disk buffering, the latency variance of disk I/O is exposed
in fil_flush (rather than the write system calls). The vari-
ance here is inherent to the I/O, but might be mitigated by
logging to faster I/O devices, e.g., [18, 56, 67].

4.2 Latency Variance in Postgres
In this section, we use TProfiler to analyze the source code

of Postgres 9.6—another popular DBMS. For Postgres, we
use the same setup as in Section 4.1. Here, we use TPC-C
with 32-warehouses and a 30 GB buffer pool. Table 2 shows
the top two functions in the Postgres source code identified
by TProfiler as the main sources of variance (the top source
dominates, accounting for 76.8%).

LWLockAcquireOrWait() — Postgres uses write-ahead
logging for atomicity and durability; before a transaction
commits, all its redo logs must be flushed to disk. To ensure
that only one transaction is flushing redo logs at a time,
each transaction calls the LWLockAcquireOrWait function to ac-
quire a single global lock, called WALWriteLock, before writing
its logs. The latency variance in LWLockAcquireOrWait is due
to varying wait times to acquire this lock. A natural so-
lution is to either reduce contention on this global lock, or
to allow multiple transactions to flush simultaneously. The
former may be attempted by accelerating I/O (e.g., tuning
the I/O block size or placing the logs on NVRAM [18, 67]
or SSD [28, 60]), whereas the latter can be attempted by a
variety of parallel logging schemes (e.g., [14, 15, 69]). Both
strategies have proven effective in improving throughput and
mean latencies [18, 67]. However, TProfiler’s findings, re-
garding LWLockAcquireOrWait’s contribution to the overall la-
tency variance, call for vetting these strategies in terms of
improving predictability as well. We study some of these
ideas for Postgres in Sections 6.2 and 7.4.

ReleasePredicateLocks() — Postgres uses predicate lock-
ing to avoid phantom problems (read conflicting with later
inserts). As a transaction accesses rows in the database,
locks are acquired to prevent other transactions from insert-
ing new rows into its selected range. Upon commit, all its
predicate locks are released by calling ReleasePredicateLocks.
The execution time of this function varies with the number
and type of conflicts discovered during this release phase.



Since ReleasePredicateLocks accounts for only 6% of overall
variance, we do not pursue it further.

5. VARIANCE-AWARE TRANSACTION
SCHEDULING

According to TProfiler’s findings from Section 4, lock wait
times account for a significant portion of overall latency vari-
ance (over 59.2% in case of MySQL). Hence, in this section
we propose a lock scheduling algorithm that can dramati-
cally reduce latency variance.

5.1 Problem Setting
Traditional databases often rely on variants of 2-phase

locking (2-PL) for concurrency control [1, 5, 7]. Conceptu-
ally, each database object b has its own queue Qb. When a
transaction T requests a lock on b, the lock is immediately
granted if (i) no other locks are currently held on b by other
transactions, or (ii) the current locks on b are compatible
with the requested lock type and there are no other transac-
tions currently waiting in Qb.

7 When a lock on b cannot be
granted immediately, transaction T is suspended and placed
in Qb until its lock can be granted. In general, each trans-
action may wait in multiple queues during its lifetime, and
each queue may contain multiple transactions waiting in it.
Let Qb = {T1, · · · , Tn} denote the transactions currently
waiting to be granted a lock on b.

Whenever all the currently held locks on b are released,
the lock scheduling (a.k.a. transaction scheduling) problem
is the decision regarding which transaction(s) in Qb must
be granted the lock next. The transaction scheduler might
choose one of the exclusive (e.g., write) requests, or choose
one or more of the inclusive ones.

The default transaction scheduling in many databases (in-
cluding MySQL [9] and Postgres [12] among others) is the
First-Come-First-Served (FCFS) algorithm. In FCFS, when-
ever the lock on b becomes available, the transaction which
has arrived in Qb the earliest, say Te, is granted the lock.
Additionally, all the other transactions in Qb whose requests
are compatible with that of Te are also granted a lock. In
other words, Te is selected based on the amount of time it
has spent in the current queue (not in the system). Fair-
ness and simplicity have contributed to FCFS’s popularity.
However, FCFS does not even minimize mean latency, let
alone latency variance.

Challenge of unpredictable remaining times — A key
challenge in transaction scheduling is the lack of prior knowl-
edge regarding a transaction’s remaining time. In other
words, when a transaction arrives in Qb, the system is only
aware of its age (i.e., elapsed since its birth), but does not
know when it will finish and release its locks once it is
granted a lock on b. For example, it may need to wait on
a few other locks before it can proceed to completion. In
fact, our studies reveal that there is very little correlation
between a transaction’s age and its overall latency in prac-
tice (Appendix C.2). Thus, any scheduling strategy must
account for the fact that remaining times are unknown and
hard to estimate.

A Convex Loss Function — As discussed in Section 2, our
ultimate goal is to reduce latency variance and tail latencies.

7To prevent the writes from starving, new read requests may
not be granted if there are write requests ahead of them.

However, solely minimizing variance as a loss function may
lead to undesirable side effects. For example, a scheduling
algorithm that deliberately adds a large delay to every com-
pleted transaction (before allowing it to leave the system)
will have a near-zero variance. However, it will also sig-
nificantly increase mean latency, and is, hence, impractical.
To exclude such algorithms, a more effective loss function is
the so-called Lp norm, which if minimized, will indirectly re-
duce both mean and variance (and, thereby, tail) latencies.
When n transactions finish with latencies 〈l1, · · · , ln〉, their
Lp norm (denoted as ||.||p) is defined as

Lp = ||〈l1, · · · , ln〉||p = (

n∑
i=1

|li|p)1/p (4)

where p ≥ 1 is a real-valued number. The larger the p
value, the more we penalize deviations of the li values from
the mean. For example, as p→∞, Lp norm approaches the
max value of the list. A typical value of p in practice is 2.
However, our results in this section hold for all p ≥ 1 values.

5.2 Our VATS Algorithm
Let A(T ) denote the age of transaction T when it arrives

at a queue Qb. Qb is the set of transactions waiting to be
granted a lock on b. We define the history Hb of an object b
to be the schedule of prior (and current) transactions holding
a lock on b. In the following, we drop b from our notation
for convenience. Let F be some advice about the future
(our algorithm will not make use of such advice, but we will
compare our algorithm to other algorithms that may).

A scheduler S = (Sf , Sa) is a set of two functions: Sf , Sa :
H × Q × F → 2Q. When the lock becomes available, the
function Sf determines which transactions from Q should
be granted a lock. Sf cannot grant two exclusive locks on b
simultaneously. When a new transaction arrives at Q, the
function Sa decides which transactions should be granted
a lock. When other locks are currently held, Sa can only
choose from transactions acquiring inclusive locks compati-
bile with the currently held locks.

Let R(T ) be a random variable indicating T ’s remaining
time once it is granted a lock on b. Finally, let a menu M
be a sequence of transactions, where each transaction has
an age and an arrival time at the queue. This will define a
problem instance.

We define the p-performance of a schedule S on a menu
M to be the expected Lp norm of the vector of transaction
completion times of S on M .

Our Algorithm — Given a menu, we aim to design a sched-
uler that minimizes the expected p-performance. To this
end, we define our scheduler as SV ATS=(SV ATS

f , SV ATS
a )

where:

• SV ATS
f grants the lock to the eldest transaction, i.e.,

one with the largest age.

• SV ATS
a never grants any locks.

In general, optimal scheduling is an NP -complete prob-
lem when the R(T ) values are known [57]. Additionally,
the online problem of scheduling even on one processor is
impossible to do with a competitive ratio of O(1).8

8That is, for every scheduler S, there exists a menu M where
the optimal offline algorithm performs ω(1) better than S.



Interestingly, and counter-intuitively, we show that opti-
mal scheduling becomes easier when the remaining times are
not known! Specifically, we avoid the above negative results
by assuming that R(T ) values are i.i.d. random variables
drawn from some (unknown) distribution D.9

We now show that our VATS algorithm performs opti-
mally, even against algorithms that know the distribution
D (i.e., algorithms that receive F = D as an advice). Note
that VATS does not use or need any distributional informa-
tion or advice on future. Interestingly, this holds even if the
menu and distribution are chosen adversarially.

Theorem 1. Fix any menu M , p ≥ 1, and distribution D
with finite expected Lp norm. Let the R(T )s be i.i.d random
variables drawn from D. Then the p-performance of VATS
is optimal against all schedulers, even those that are given
D as advice about the future.

Proof. Assume for the sake of contradiction that there
exists a menu M of ` transactions T1, T2, . . . , T`, where a
schedule S has p-performance better than SV ATS . We will
transform S into SV ATS by a series of ` transformations:
S = S0 → S1 → S2 → · · · → S` = SV ATS . We will show
after each transformation that the performance of the sched-
ule improves. This yields a contradiction to the assumption
that the p-performance of S was better than that of SV ATS .

In the kth transformation, we modify Sk−1 so that if ever
Sk−1 schedules a transaction Tk′ 6= Tk when Tk is the eldest
transaction in the queue, then Sk will transpose the order
of Tk and T ′k, but otherwise run identically to Sk−1.

Note that S` = SV ATS , because S` will run the eldest
transaction, no matter which one it is.

Let TSk−1,1, TSk−1,2, . . . , TSk−1,` and TSk,1, TSk,2, . . . , TSk,`

be the order of transactions scheduled in Sk−1 and Sk respec-
tively. Note that these may be random variables, in that the
ith transaction scheduled might depend on the randomness
of the scheduler, as well as the time that previous trans-
actions held onto the lock. Let US(T ) be the time it takes
between when T arrives and when the lock is first free under
schedule S. Let WS(T ) be the set of transactions scheduled
while T is in the queue (including T ) under schedule S.

To compare the performance of Sk−1 and Sk, we create a
coupling between two different drawings D1 and D2 of the
R(·)s so that for all i, RD1(TSk−1,i) = RD2(TSk,i). First
note that there is no dependency problem here because (by
induction on i) under this coupling, TSk−1,i and TSk,i will
be scheduled at the same time. Also, since the R(·)s are all
drawn i.i.d, this is a valid coupling, which is to say that D1

and D2 are (marginally) drawn from the same distribution.
Note that the performance of Sk−1 and Sk are respectively,

∫
D1

(∑
i

|A[TSk−1,i] + USk−1(TSk−1,i)

+
∑

Tj∈WSk−1
(TSk−1,i)

R(Tj)|p


1/p

9To be more precise, what happens after transactions are
granted a lock may depend on our schedule itself, as similar
transactions could interact in the future on other queues.
For simplicity, in this discussion we ignore this complication.

and∫
D2

∑
i

|A[TSk,i] + USk (TSk,i) +
∑

Tj∈WSk
(TSk,i)

R(Tj)|p
1/p

To show that the first is greater than the second, we fix
some realization of D1. Using our coupling, this gives us a
realization of D2. We will show that no matter what the
realization is we have:∑

i

|A[TSk−1,i] + USk−1(TSk−1,i) +
∑

Tj∈WSk−1
(TSk−1,i)

R(Tj)|p

<
∑
i

|A[TSk,i] + USk (TSk,i) +
∑

Tj∈WSk
(TSk,i)

R(Tj)|p

Note that the summands are identical except, possibly, for
the terms of Tk and Tk′ . Let Wk = WSk−1(Tk)∩WSk (Tk) be
the transactions scheduled while Tk is in the queue in both
schedules. Define Wk′ analogously. Let W ′ be the trans-
actions scheduled between k and k′. Then, WSk−1(Tk) =
Wk ∪ {Tk′} ∪W ′, WSk−1(Tk′) = Wk′ , WSk (Tk) = Wk, and
WSk (Tk′) = Wk′ ∪ {Tk′} ∪W ′.

The rearrangement inequality states that if x1, x2, y are all
nonnegative numbers then |x1 + y|p + |x2|p ≤ |x1|p + |x2 +
y|p if and only if x1 ≤ x2. We apply the rearrangement
inequality where:

x1 = A(Tk′) + USk−1(Tk′) +
∑

Tj∈Wk′

RD1(Tj)

x2 = A(Tk) + USk−1(Tk) +
∑

Tj∈Wk

RD2(Tj)

y = RD1(Tk′) +
∑

Tj∈W ′
R(Tj) = RD2(Tk) +

∑
Tj∈W ′

R(Tj).

The age of Tk′ when it is scheduled in Sk−1 is x1−RD1(Tk′),
and the age of Tk when Tk′ is scheduled in Sk−1 is x2 −
RD2(Tk). Since, at the time Tk′ is scheduled in Sk−1, Tk

is older than Tk′ , and since RD1(Tk′) = RD2(Tk), we have
that x1 < x2.

The theorem follows by noting that in the Sk−1 schedule,
the Tk′ term is x1 and the Tk term is x2 +y; while in the Sk

schedule, the Tk′ term is x1 + y and the Tk term is x2.

In practice, we observe that R(T ) has a near-zero correla-
tion with A(T ) (Appendix C.2). Thus, the I.I.D. assumption
of Theorem 1 seems plausible. Interestingly, even if the vari-
ance of the execution times were 0 (i.e., a correlation of -1),
our theorem would be even more true, as not only would
VATS gain by avoiding losses from old transactions, but it
would also gain because such transactions would complete
and release their locks faster.

In our implementation, we slightly modify VATS such that
it grants as many locks as possible if a lock does not conflict
with any of the locks in front of it in the queue (including
both the granted locks and the ones still waiting), which
is preserved in an eldest-first order, as a means to improve
performance. We evaluate VATS in Section 7.2.

6. ADDITIONAL STRATEGIES
Based on our findings from Section 4, we present further

strategies for improving performance predictability. Unlike



Inputs : p: the page to be moved to start of the LRU list;
b: the buffer pool

1 buf_pool_mutex_enter(b);
2 buf_LRU_make_block_young(b, p);
3 buf_pool_mutex_exit(b);
Algorithm 1: How the LRU list is updated in MySQL

our VATS algorithm which is a generic way of reducing vari-
ance in wait times, our techniques in this section are specific
to MySQL, Postgres, and VoltDB. We use these techniques
to illustrate TProfiler’s effectiveness in localizing the sources
of variance in a massive and complex codebase (e.g., MySQL
or Postgres). TProfiler enables us to drastically reduce over-
all variance with minimal modification (ranging from chang-
ing tuning parameters to a few hundred lines of code) by ex-
amining only a handful of functions out of tens of thousands
(see Section 7).

6.1 Lazy LRU Update (LLU)
As noted in Section 4.1, the lock on the LRU list is a main

source of variance in MySQL when the working set exceeds
the buffer pool size. Algorithm 1 shows how the LRU list
is updated in MySQL. First, a mutex is acquired by calling
buf_pool_mutex_enter, and then the page is moved to the head
of the list by calling buf_page_make_young.

For better cache performance, MySQL does not imple-
ment the strict LRU policy. Instead, it splits the LRU list
into two sublists, young and old. Replacement victims are
selected from the old list, which by default contains 3/8 of
the oldest pages. When a page is accessed, if it is currently
in the old list, it is moved to the head of the young list, and
the tail of the young list is placed at the head of the old
list. To avoid frequent re-ordering of the list, MySQL does
not maintain precise LRU ordering within the young list.
However, when the working set exceeds 5/8 of the buffer
pool, old pages are accessed frequently, and the lock on the
LRU list becomes a bottleneck. Our idea is to further relax
the precision of LRU tracking to avoid this contention, as
described next.

To avoid excessive delays, our proposed algorithm, Lazy
LRU Update (LLU), limits the time that buf_pool_mutex_enter

waits for the lock. Specifically, we replace the mutex with a
spin lock to control the wait time. When the buffer pool is
sufficiently large, this lock is typically uncontended, and the
overhead of a spin lock remains minimal. However, if a wait-
ing thread cannot acquire the lock within 0.01ms, we aban-
don the attempt to update the global list and instead add
the page to a thread-local backlog of deferred LRU updates,
l. Later, when buf_pool_mutex_enter successfully acquires the
lock for a different page, we first process the pages in l (after
confirming that they have not been evicted) before moving
the page that triggered the reordering.

6.2 Parallel Logging
As revealed by TProfiler in Section 4.2, over 70% of latency

variance in Postgres is due to the variation of wait times in
redo log flush operations. This leads us to another strategy
for improving predictability: parallel logging, so that when
a log file is unavailable, a transaction can write to other log
files instead of having to wait. While there are sophisticated
parallel logging schemes [14, 15, 69], we implement a sim-
ple variant that allows Postgres to use two hard disks for
storing two sets of redo logs. A transaction only waits when

neither of these sets is available, in which case it waits for
the one with fewer waiters. Though parallel logging is well-
studied for improving mean latencies, we vet its effectiveness
in reducing latency variance in Section 7.4.

6.3 Variance-Aware Tuning
In many cases, the behavior of the culprit function iden-

tified by TProfiler can be controlled through external tun-
ing parameters of the DBMS. Specifically, (i) in MySQL,
buf_pool_mutex_enter() leads us to buffer pool size while fil_flush()

leads us to innodb_flush_log_at_trx_commit parameter, (ii) in
Postgres, LWLockAcquireOrWait() leads us to I/O block size, and
(iii) in VoltDB, the queuing delay leads us to the number
of worker threads. Interested readers are referred to Ap-
pendix B for discussion and empirical study of these param-
eters’ impact on latency variance.

7. EXPERIMENTS
Our experiments aim to answer three key questions: (1)

How effective are our techniques (VATS, LLU, parallel log-
ging, and variance-aware tuning) in reducing tail latency and
latency variance? (2) Does our reduction of latency variance
come at the cost of sacrificing mean latency or throughput?
(3) How effective and efficient is TProfiler compared to other
profiling alternatives? In summary, our results indicate that:

• For contended workloads (TPC-C, SEATS, and TATP),
our VATS algorithm makes the DBMS significantly more
predictable (and even faster) without compromising through-
put, with up to 6.3x, 5.6x, and 2.0x lower mean, variance,
and 99th percentile latencies, respectively. As expected,
for non-contended workloads (Epinions and YCSB), the
choice of scheduling algorithm is immaterial. (Section 7.2)

• Our Lazy LRU Update algorithm makes MySQL faster and
more predictable, with 1.4x, 1.2x, and 1.2x lower mean,
variance, and 99th percentile latencies, respectively. (Sec-
tion 7.3)

• Parallel logging improves both predictability and overall
performance of Postgres, with 1.8x, 1.3x, and 2.4x lower
mean, variance, and 99th percentile latencies, respectively.
Also, variance-aware tuning can eliminate up to 88.3% of
the overall latency variance. (Sections 7.4 and 7.5)

• TProfiler’s profiling overhead is an order of magnitude lower
than that of DTrace, and its factor selection algorithm re-
duces the number of required runs by several orders of
magnitude compared to a näıve strategy. (Section 7.6)

These results are summarized in Table 3. We have also in-
cluded additional experiments in Appendix C, showing that
existing DBMSs are highly unpredictable even when run-
ning the same transactions (C.1) and there is no correlation
between a transaction’s remaining time and its age (C.2).

7.1 Experimental Setup
The hardware and software used for our experiments in

this section are the same as Section 4. For fairness, we
used the same throughput of 500 transactions per second
across all workloads and algorithms. Also, to rule out the
effect of external load changes on latency variance, we used
the OLTP-Bench [32] tool to sustain a constant through-
put throughout the experiment, and measured mean, vari-
ance, and 99th percentile latencies for each algorithm and



System Name of the Original Modification Modified Ratio of overall Ratio of overall Ratio of overall
Identified Function contribution to lines of code latency variances 99th latencies mean latencies

overall variance or config (Orig. / Modified) (Orig. / Modif.) (Orig. / Modif.)
MySQL os_event_wait 59.2% replace FCFS 189 5.6x 2.0x 6.3x

with VATS
MySQL buf_pool_mutex_enter 32.92% replace mutex 46 1.6x 1.4x 1.1x

with spin lock
MySQL fil_flush 5% parameter tuning 2 1.4x 1.2x 1.2x
Postgres LWLockAcquireOrWait 76.8% parallel logging 355 1.8x 1.3x 2.4x
VoltDB [waiting in queue] 99.9% add # of worker threads 1 2.6x 1.4x 5.7x

Table 3: Impact of modifying each of the functions identified by TProfiler. The last 3 columns compare end-to-end transaction
latencies before and after each modification. For example, modifying os_event_wait eliminates more than 82% of MySQL’s total
latency variance, i.e., the ratio of the transaction variance of original MySQL to modified MySQL is 1/(1−0.82)=5.56.
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Figure 2: Effect of different scheduling algorithms on
MySQL performance. For example, replacing FCFS with
VATS makes MySQL 6.3x faster and 5.6x lower in variance.

workload. In addition to TPC-C, we also used the following
workloads for a more extensive evaluation:

• SEATS [62]: This benchmark is a simulation of an
airline ticketing system where customers search flights and
make online reservations. In our experiments, we used a
scale factor of 50, leading to a highly contended workload.

• TATP [68]: TATP models a typical caller location sys-
tem used by tele-communication providers. For TATP, we
used a scale factor of 10, making it a contended workload
(but not as contended as TPC-C).

• Epinions [48]: Epinions simulates a customer review
website where users interact and write reviews for various
products. We used a scale factor of 500 in our experiments.
This workload has a very low contention.

• YCSB [30]: YCSB is a set of micro-benchmarks simu-
lating data management applications that have simple work-
loads but require high scalability. The scale factor used was
1200, causing little or no contention.

Given that varying lock wait times are a major problem
for MySQL, we evaluate VATS using MySQL. We evaluate
LLU and parallel logging using MySQL and Postgres, re-
spectively. Finally, we study variance-aware tuning for all
three: MySQL, Postgres and VoltDB. When results are sim-
ilar across all workloads, we only report numbers for TPC-C
as a representative workload.

7.2 Studying Different Scheduling Algorithms
We compare VATS to two other scheduling algorithms:

• First Come First Served (FCFS): This is the default
scheduling in many DBMSs (including MySQL & Postgres).

• Randomized Scheduling (RS): Similar to VATS, ex-
cept that transactions are sorted according to a random or-
der rather than by age.

The results are shown in Figure 2 for TPC-C (see Ta-
ble 4 for other workloads). In summary, FCFS is the least
efficient scheduling algorithm for all three contended work-

Workload Mean Latency Variance 99th Percentile

C
o
n
te

n
d

ed TPCC 6.3x 5.6x 2.0x

SEATS 1.1x 1.3x 1.1x

TATP 1.2x 1.6x 1.3x

Avg 2.9x 2.8x 1.5x

N
o

C
o
n
te

n
ti

o
n

Epinions 1.4x 2.6x 1.0x

YCSB 1.0x 1.1x 1.1x

Table 4: Comparing VATS with MySQL’s original (FCFS)
lock scheduling in terms of overall transaction latency.

loads. For example, for TATP, even a random scheduling
(RS) improves upon FCFS by 25% in terms of latency vari-
ance. However, the randomness of RS can also be harm-
ful. For SEATS, RS performs about 2 orders of magnitude
worse than other algorithms (results omitted for space). The
choice of lock scheduling algorithm does not make a differ-
ence for YCSB simply because it does not have any lock
contention. In case of Epinions, the improvement is due to
the fact that we place newly-granted locks at the head of
the list, and thus the time for traversing the list is reduced
(MySQL uses a global hash table where each bucket is a
linked list storing some of the lock objects).

We have summarized VATS’s improvement over FCFS in
Table 4 for all workloads. Our VATS algorithm is consis-
tently superior for contended workloads and comparable to
no-contention ones. Most notably, VATS eliminates 84.1% of
the entire latency variance of MySQL for TPC-C. In other
words, replacing FCFS with VATS makes MySQL’s latency
variance 6.3x lower. On average, this number is 2.9x for all
contended workloads, and 2.4x over all five workloads.

7.3 Lazy LRU Update Algorithm
In this section, we evaluate our Lazy LRU Update (LLU)

algorithm. We produce a memory-contended workload using
the same 2-WH configuration from Section 4.1. As shown
in Figure 3(left), LLU yields a more predictable (and even
slightly faster) MySQL with 1.1x, 1.6x, and 1.4x lower mean,
variance, and 99th percentile latencies. This improvement
is because LLU avoids extremely long waits, delaying the
re-ordering of buffer pages until the overhead is fairly low.
This reduces the contention on the LRU data structure for
memory-contended workloads.

7.4 Parallel Logging
As discussed in Section 6.2, we implement a parallel log-

ging scheme for Postgres. As shown in Figure 4(left), this
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Figure 3: Effect of LLU, buffer pool size (in % of the entire database size), and log flush policy on MySQL (TPC-C).

significantly reduces mean, variance, and 99th percentile la-
tencies, lowering them by 2.4x, 1.8x, and 1.3x, respectively.

7.5 Variance-Aware Tuning
In Section 6.3, we identified several tuning parameters in

MySQL, Postgres, and VoltDB that affect latency variance.
We first investigate the buffer pool size for MySQL and

TPC-C, as shown in Figure 3(center). We set the buffer
pool size to 33%, 66%, and 100% of the overall database size,
and report their relative performance compared to 33%. As
expected, a larger buffer pool retains more data in mem-
ory, thus effectively reducing the number of page evictions,
the number of I/O operations, and the degree of contention
within the buffer pool. Consequently, the larger the buffer
pool, the lower the mean, variance, and 99th percentile la-
tencies. Ideally, a buffer pool as large as the entire database
is recommended for both better average performance and
greater predictability. However, depending on the working
set size, a smaller buffer pool might be economically more
appealing, while producing comparable results.

Second, we investigate MySQL’s log flushing policies, as
shown in Figure 3(right). The results indicate that defer-
ring both write and flush operations to a log flusher thread
minimizes transaction variances. This is not surprising: ea-
gerly flushing logs prior to commit places highly variable disk
write latencies on the transaction execution path. However,
lazy flushing may lose forward progress (committed trans-
actions) in the event of a crash.

In Postgres, another strategy for reducing the variance of
redo log flushes is to accelerate the I/O operations by tuning
an appropriate block size (see Section 6.3), which is by de-
fault 8 KB. Figure 4(right) shows that increasing the block
size can reduce variance, but only to a certain extent. A
larger block can reduce the number of write operations per
transaction, but when it becomes so large that the generated
log records only occupy a small portion of a block, the trans-
action still has to write the whole block. In such cases, the
disadvantage of writing more data than needed outweighs
the advantage of fewer writes.

Finally, we explore the effect of number of worker threads
on VoltDB’s performance. In a nutshell, adjusting this pa-
rameter in VoltDB can eliminate 60.9% of the total latency
variance, i.e., lower it by 2.6x (see Appendix A for details).

7.6 Evaluation of TProfiler
In previous sections, we validated TProfiler’s effectiveness

by showing that our algorithmic and tuning changes, which
were informed by TProfiler’s findings, indeed reduce latency
variance. In this section, we evaluate (i) TProfiler’s perfor-
mance overhead in measuring the execution time variance
of a function, and (ii) its efficiency in narrowing down the
search for main sources of variance.
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Figure 4: Effect of parallel logging and redo log block size
on Postgres (TPC-C).

Figure 5: (Left) Profiling overhead of TProfiler vs. DTrace.
(Right) Number of runs needed for the profiler to identify
the main sources of variance.

TProfiler vs. DTrace — By instrumenting a DBMS code,
TProfiler incurs a performance overhead. To quantify this
overhead, we vary the number of children functions that
need to be instrumented from 1 to 100, and measure both
the relative drop of throughput and the relative increase in
average latency. The results are shown in Figure 5(left).
As a baseline, we also report the same types of overhead
using DTrace, a programmable profiler for troubleshooting
arbitrary software. Similar to TProfiler, one can use DTrace
to measure the execution time of a parent function and its
children, and then compute variances using eq. (1).

DTrace’s key advantage is that, unlike TProfiler, it instru-
ments the binary code and does not need the source code.
However, this flexibility comes at a cost in the performance
of the profiling code. As shown in Figure 5(left), DTrace’s
overhead (on both latency and throughput) is significantly
higher than TProfiler, and grows rapidly with the number
of traced children, whereas TProfiler’s overhead stays be-
low 6%. This is expected as DTrace must use heavy-weight
mechanisms to inject generalized instrumentation code at
run-time, while TProfiler inserts minimal profiling code prior
to compilation of the source.

TProfiler vs. Näıve Profiling — We also compare against
a näıve profiling strategy, which is similar to TProfiler, except
that it decomposes every factor rather than only a few im-
portant ones. In total, there are 2× 1015 nodes in MySQL’s
static call graph, 4.5×1014 of which are leaves. A näıve pro-
filer has to break down every non-leaf, and thus the number



of runs needed is extremely large. TProfiler’s selection strat-
egy needs significantly fewer runs to locate the main sources
of variance, as confirmed in Figure 5(right).

8. RELATED WORK
Predictable Query Plans — There has been some pio-
neering work on enriching query optimizers to account for
parameter uncertainties (caused by cardinality and cost es-
timates) when choosing a query plan [26, 29].

Florescu and Kossman [34] have taken the opposite direc-
tion by arguing for a radical DBMS redesign. They propose
a new tiered architecture for web applications, where con-
sistency maintenance is moved from DBMS to application
layer. Others have advocated the use of table scans for all
queries [19, 40, 58, 59, 65], or simply restricted themselves
to query plans with a bounded worst-case [16, 17]. Although
many of these techniques share scans and joins across multi-
ple queries, and use always-on operators to reduce execution
time [19, 25, 35, 40, 58, 65], they still have a negative im-
pact on average latency. As such, these solutions are more
appropriate for long-running decision support queries than
transaction processing. Thus, while successfully adopted
by OLAP vendors [25, 58], these proposals have not had
widespread adoption by major OLTP vendors, as foregoing
low latency to achieve predictability is an unattractive trade-
off for many latency-critical and transactional applications
(see ‘Desirable Solutions’ in Section 2).

Instead of requiring richer statistics or dismissing tradi-
tional query optimizers altogether, we take a top-down ap-
proach (see Section 1 for the distinction) by carefully study-
ing the entire source code of existing database systems to
quantify and mitigate their root causes of performance vari-
ance. Moreover, we seek practical solutions that reduce vari-
ance without sacrificing mean latency, a decision that has
helped the real-world adoption of our proposal (Section 9).

Real-Time Databases — Once an active area of research
in the 1990s, real-time databases (RTDBs) [13, 43, 55] sought
real-time performance guarantees by (i) requiring each trans-
action to provide its own deadline, and (ii) minimizing dead-
line violations by restricting themselves to mechanisms that
bounded worst case execution times. In contrast, we study
predictability in the context of today’s conventional best-
effort transaction processing systems, where sacrificing through-
put or mean latency to obtain hard bounds on execution
time may not be an appealing trade-off.

Variance-Aware Job Scheduling — Outside a database
context, theoretical literature has examined the problem of
scheduling general tasks to minimize completion time vari-
ance (CTV) and waiting time variance (WTV). These for-
mulations assume a set of jobs with known processing times
and seek a schedule that minimizes the variance of their
completion or wait times. While CTV and WTV problems
are both NP-complete [22, 44], there are several heuris-
tics [27, 33, 70], dynamic programming solutions [31, 45],
and polynomial-time approximations [46]. These techniques
assume an offline setting, and thus do not apply to our trans-
action scheduling problem, since the remaining and arrival
time of transactions are unknown in practice. In contrast,
our VATS algorithm does not require such knowledge.

Profiling Literature — There is a large body of work
on profiling techniques [23, 36, 38, 61, 64]. In a nutshell,

TProfiler is the first profiler to systematically break down
the contribution of individual functions to the overall la-
tency variance and, with minimal help from programmers,
distinguish execution times that are relevant to transaction
latencies.

Performance Diagnosis and Prediction — There are
several tools that help users diagnose performance anoma-
lies or reproduce intermittent bugs, either by monitoring
fine-grained, low-level OS events [24] or by collecting statis-
tics from the application and the OS for post-mortem anal-
ysis [20, 72]. In contrast, we focus on finding the internal
causes of performance variance by instrumenting the appli-
cation code and relying on the mathematical definition of
variance to narrow its search space.

Instead of profiling transactions, there is also some work
on passively predicting the performance of transactions us-
ing machine learning techniques [49, 50, 71]. By reducing
the performance variance, our work should ultimately make
performance predictions easier.

9. REAL-WORLD ADOPTION
After observing the considerable impact of our small mod-

ifications on performance predictability (Table 3), we de-
cided to share these results with the open-source community.
In particular, our VATS algorithm was quickly adopted by
MySQL distributions, and has even been made a default pol-
icy by MariaDB [3]. These MySQL distributions comprise
over 2M+ installations around the world.

Meanwhile, the issue with LRU mutex contention found
by TProfiler was independently identified by the MySQL
community and addressed by multi-threaded flushing [8, 11]
and other techniques [6, 10]. While their solution differs
from our LLU technique, they still confirm the validity of
TProfiler’s finding regarding the cause of the performance
pathology.

10. CONCLUSION
We presented a novel profiler, called TProfiler, for identi-

fying the major sources of latency variance in a semantical
interval of a software system. By breaking down the vari-
ance of latency into variances and covariances of functions
in the source code, and accounting for thread interleavings,
TProfiler makes it possible to calculate the contribution of
each function to the overall variance. Using TProfiler, we
analyzed the codebases of three complex database systems,
leading us to small modifications that significantly reduced
performance variance in these popular databases.
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APPENDIX
A. CASE STUDY: VOLTDB

We also used TProfiler on VoltDB’s source code to iden-
tify its major sources of variance. VoltDB is an event-based
system in which transactions are wrapped up as stored pro-
cedure invocations. Each event needs to wait in a queue
before a worker thread is available to process it. TProfiler
reports that almost 99.9% of latency variance in VoltDB is
due to the variance in the waiting time of these events in
different queues. This finding leads to the number of worker
threads as a tuning parameter to control the queue size. As
shown in Figure 7, adjusting this parameter in VoltDB can
eliminate 60.9% of the total latency variance, reducing it by
2.6x.

B. VARIANCE-AWARE TUNING
As mentioned in Section 6.3, the behavior of some of the

functions identified by TProfiler can be influenced through
external tuning parameters of the DBMS.

First, from our investigation of buf_pool_mutex_enter (Sec-
tion 4), we learned that buffer pool capacity (relative to the
database working set) substantially impacts variance (and,
of course, mean latency). Hence, we sweep buffer pool ca-
pacity from 33% to 100% of the overall database size and
measure the impact on transaction variance.

Second, we learned that MySQL’s policy regarding log
flushing has a noticeable influence on transaction variance
(Section 4). MySQL’s use of buffered I/O for redo logs in-
volves two steps: a write system call, and a flush system call.
MySQL offers three policies that can be chosen through the
innodb_flush_log_at_trx_commit parameter:

• Eager flush: This requires that redo logs are written and
flushed by the transaction worker thread before committing
the transactions.

• Lazy flush: Under this setting, redo logs are written
by the transaction worker thread, but flush operations are
deferred to a separate log flusher thread, which invokes the
flush system call roughly once per second. Transactions may
commit before their logs are flushed.

• Lazy Write: Under this setting, redo logs are prepared
but not written by the transaction worker thread. Both
writing and flushing the log are deferred to a log flusher
thread which performs these operations once per second.
Transactions may commit before their logs are written.

Note that both lazy flush and lazy write risk losing for-
ward progress in the event of a crash; transactions executed
in the previous second may be reported as committed to
the user, but may be unrecoverable because their redo logs
never became durable. Nevertheless, in contexts where for-
ward progress loss can be tolerated, employing lazy flushing
and writes can substantially improve the latency and pre-
dictability of transaction execution.

We also observed that much of the latency variance in
Postgres is due to varying wait times of transactions when
flushing their redo logs (Section 4.2). This I/O operation

http://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
http://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
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Figure 6: Mean, standard deviation, and 99th percentile latencies in MySQL (left), Postgres (center), and VoltDB (right).
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VoltDB’s performance (2 is the default value).
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Figure 8: Correlation between a transaction’s age and its
remaining time for different transaction types (TPC-C).

can be accelerated by tuning Postgres’s block size parameter,
which is 8KB by default. (Another solution is to use parallel
logging; see Section 6.2.)

Finally, TProfiler reveals that queuing delay is the single
reason for latency variance in VoltDB. Therefore, to reduce
the queue size, one can increase the number of VoltDB’s
worker threads (see Section A).

C. ADDITIONAL EXPERIMENTS

C.1 Performance Variance in Existing DBMSs
To quantify the extent of performance variance in out-of-

the-box DBMSs, we measured their mean, standard devia-
tion, and 99th percentile latencies for TPC-C using the same
setup as Section 4. As shown in Figure 6, all three engines
exhibited incredible degrees of performance disparity; the
standard deviation was twice the mean (1.7x for MySQL,
1.9x for Postgres, and 3.3x for VoltDB) and the 99th per-
centile was an order of magnitude greater than the mean
(7.5x for MySQL, 11.0x for Postgres, and 6.1x for VoltDB).

To rule out the inherent effect of running different trans-
action types in TPC-C on overall variance, we modified our
workload to only issue New Order transactions. We even
modified the New Order transactions to always issue a fixed
number of queries (as opposed to a random number between
25 and 65, which is their default setting). However, even un-
der this pure workload running at a constant rate, the ratios
of standard deviation and 99th percentile to mean latencies
remained similar.

C.2 Correlaction of Transaction Age and Re-
maining Time

One might imagine that the larger a transaction age, the
smaller its remaining time. Interestingly, this is not the case
in practice due to the intertwined nature of contended trans-
actions. Figure 8 shows the correlation between a trans-
action’s age and its remaining time at the moment when
scheduling decisions are made. As shown in Figure 8, the
correlation of these two values is quite small regardless of
the transaction type, indicating the difficulty in predicting
the remaining time of a transaction given its age.
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