
Approximate Query Engines:
Commercial Challenges and Research Opportunities

[Keynote]

Barzan Mozafari

University of Michigan, Ann Arbor
mozafari@umich.edu

ABSTRACT
Recent years have witnessed a surge of interest in Approxi-
mate Query Processing (AQP) solutions, both in academia
and the commercial world. In addition to well-known open
problems in this area, there are many new research chal-
lenges that have surfaced as a result of the first interaction of
AQP technology with commercial and real-world customers.
We categorize these into deployment, planning, and inter-
face challenges. At the same time, AQP settings introduce
many interesting opportunities that would not be possible
in a database with precise answers. These opportunities cre-
ate hopes for overcoming some of the major limitations of
traditional database systems. For example, we discuss how
a database can reuse its past work in a generic way, and
become smarter as it answers new queries. Our goal in this
talk is to suggest some of the exciting research directions in
this field that are worth pursuing.

Keywords
Approximation; Analytics; Interactive Response Times

1. INTERACTIVITY: AN ELUSIVE GOAL
Social media, mobile devices, and wireless sensors con-

tinue to create massive volumes of data at unprecedented
rates. Given the abundance of rich datasets, the race for de-
riving instantaneous insight has become the landmark of a
new Gold Rush. Ironically, data analysis tools are now them-
selves the bottlenecks of many data-driven activities. When
faced with sufficiently large datasets, traditional query en-
gines can easily take minutes or hours to answer the simplest
of queries [22]. Even with modest-sized datasets, traditional
engines are easily pushed to their limits when running a large
number of concurrent queries in a shared cluster—a increas-
ingly popular deployment pattern in large organizations.

As a result, query response times are in many cases un-
acceptable to users. For example, in data exploration tasks,
data scientists form an initial hypothesis (e.g., by visualizing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMOD’17 May 14-19, 2017, Chicago, IL, USA
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3056098

the data), consult the data, adjust their hypothesis accord-
ingly, and repeat this process until they discover a satisfac-
tory answer. Slow and costly interactions with data can
therefore severely inhibit their productivity, engagement,
and even creativity.1

While in-memory databases and columnar formats seemed
like an ultimate solution to performance problems a decade
ago, achieving interactive response times has largely remained
an elusive goal. There are many contributing causes, rang-
ing from software inefficiencies (e.g., excessive copying and
serialization overheads in modern applications), to hardware
limitations (e.g., the Memory Wall [15]), to the explosion of
data volumes and the rising number of shared infrastruc-
tures and concurrent applications.

Driven by the growing market for interactive analytics,
database vendors have invested heavily in various optimiza-
tion techniques. These techniques aim at exploiting paral-
lelism, indexing, materialization, better query plans, data
compression, columnar formats, and in-memory and in-situ
processing. While new advances are constantly made in each
of these areas, these techniques are in essence no different
than the mainstream database research on query optimiza-
tion over the past four decades, which has been bound by
three characteristics:

C1 the goal is to efficiently access all tuples relevant to
the current query and avoid tuples that are irrelevant
(e.g., indexing, materialization, compression, caching);

C2 the optimization decision is about choosing the cheap-
est query plan among a set of plans that are all equiv-
alent and correct; and

C3 the work (both I/O and computation) performed for
answering a query is wasted afterwards, i.e., the
answer to a previous query is rarely useful for speeding
up future queries.

Despite its many merits, pursuing this traditional approach
is in many cases unnecessary and even impractical. First,
one can make perfect decisions in many cases without having
perfect answers. This is because query results are only useful
inasmuch as they enable the best decisions, and thus, as long
as our estimates of their results lead us to the same decisions,
computing their precise values is unnecessary. There are nu-
merous examples, such as A/B testing, root-cause analysis,
hypothesis testing, feature selection, and visualization.
1Studies show that, for a human’s interactive engagement,
the computer’s response time must not exceed 2 secs [16].

http://dx.doi.org/10.1145/3035918.3056098

Moreover, as long as we insist on processing all relevant
tuples, all our query optimization techniques are eventually
destined to fail, because of the exponential growth of data
which has already surpassed Moore’s law [30, 32]. It is true
that the set of tuples queried by the user (a.k.a. working
set) is usually much smaller than the entire dataset, e.g.,
most queries might focus on the last week’s worth of data.
However, the data generated each week is also growing at
an exponential rate; thus, even if we know which tuples will
be accessed a priori, keeping them entirely in memory will
eventually be too expensive (even after compression). In
other words, since the price improvement of memory (and
CPU) is lagging exponentially behind the growth rate of
data, our inability to provide interactive response times at
an affordable cost will only increase. Eventually, when the
datasets are sufficiently large, no optimization technique will
be able to provide interactive response times unless we relax
our goal of processing all relevant tuples (C1).

This is the primary reason for the recent surge in Ap-
proximate Query Processing (AQP), which forgoes C1 as a
goal. In AQP, only a small fraction of the relevant tuples
is processed in order to provide fast, approximate answers.
We argue that an AQP engine can also forgo C2 by deliber-
ately pursuing multiple query plans that are not necessarily
equivalent in order to obtain several approximations of the
same quantity. These various estimates can then be carefully
calibrated and combined into a more accurate answer [17].
Interestingly, in an AQP context, one can even overcome the
ultimate limitation of the traditional approach, namely C3.
Instead of wasting the work done for answering each query,
recent results show that an AQP engine can change this
paradigm and reuse much of the previous work based on an
idea called Database Learning [26].

Despite its long history in academic research [34], AQP
has only recently begun to play a role in commercial prod-
ucts. Shortly after the adoption of BlinkDB [9] and G-
OLA [35] by Databricks [1], several other vendors have started
to add AQP features to their query engines. Examples in-
clude Facebook’s Presto [3], Infobright [13], Yahoo’s Druid [2],
SnappyData [4], and more recently, Oracle [33].

2. NEW CHALLENGES
There are long-standing challenges that are well-known in

the AQP literature (e.g., the difficulty of supporting adhoc
joins [7, 14]). However, the first interactions of AQP tech-
nology with commercial and real-world customers [4, 22, 29]
have revealed new challenges that have been previously over-
looked in our academic endeavors. These new challenges can
be categorized into three main categories.

Deployment Challenges — The commercial adoption of
AQP engines is still largely limited by the reluctance of ma-
jor vendors to modify their database internals. However,
every AQP solution to date has required some modification
of an existing database engine. Even when AQP engines
store their samples as relational tables, they still modify the
database internals to compute and control the approxima-
tion error [6, 9, 10, 11, 12, 24, 28]. For example, BlinkDB
and G-OLA rely on overriding the default aggregate imple-
mentations of the database [35] or augmenting each tuple
with Poissonized multiplicities [8].

Moreover, AQP engines return error estimates along their
output tuples. These additional columns are incompatible

with existing BI (Business Intelligence) tools, which assume
standard relational outputs from their data warehouse (e.g.,
Tableau, Oracle BI, GoodData, Sisense, InsightSquared and
Zoho Reports). Consequently, existing users relying on these
BI tools are also reluctant to use an AQP engine unless
(i) it is compatible with their existing BI tool, and (ii) it
can be used as a drop-in replacement for their existing data
warehouse.

One possible approach to overcome this adoption bar-
rier is to design a middleware-based AQP architecture that
does not rely on any internal modifications of the underlying
database. We have started an academic prototype of such a
system, called Verdict [5, 17]. Ensuring the generality and
efficiency of such an approach is itself an interesting area of
new research. To circumvent the compatibility obstacles, we
have also begun to explore the idea of substituting low-level
error estimates with higher-level accuracy contracts [21].

Planning Challenges — Predicting the resource require-
ments and actual latency of database queries has always
been a difficult problem even for traditional engines [19,
18]. However, query optimizers have traditionally relied on
(rough) cost estimates to distinguish between various query
plans, without the need to predict the actual query latencies.
Likewise, online AQP engines do not need to predict query
latencies a priori ; instead; they gradually refine their ap-
proximate answers as they read more data, and stop when-
ever the user is satisfied or their time budget is exhausted.
Unfortunately, this is not an option for offline AQP engines,
which must choose an appropriate sample size among a fixed
number of available samples. Here, if users specify a deadline
for their query, the engine must be able to predict the query’s
latency for different sample sizes quite accurately, e.g., to
choose the largest sample that can be processed within 2
seconds.

Another planning challenge is the lack of an approximation-
aware scheduler in the literature. During execution, an ap-
proximate query is treated the same as an exact one. In
other words, the approximation decision in current systems
is made prior to the scheduling decision. Ideally, approx-
imation requirements must be exposed to the scheduler to
enable dynamic decisions of which tasks to prioritize and
when to stop an execution. Achieving this goal requires an
enhanced scheduler interface to capture the approximation
quality of a query given its partial execution. The scheduler
can then holistically moderate the progress of all (exact and
approximate) queries in the system.

Another planning challenge is that of deciding which sam-
ples to build in advance. In fact, a common criticism of
stratified sampling [9, 10] is its reliance on the prior knowl-
edge of query patterns. However, exploratory workloads
tend to be quite unpredictable in practice. Consequently,
a set of stratified samples that were previously optimal may
quickly become sub-optimal and brittle for future queries.
Here, adapting a robust optimization framework, such as
CliffGuard [20], might be a promising direction. CliffGuard
takes the effect of workload uncertainties into account in or-
der to ensure a graceful degradation of performance when
future workloads deviate from the past.

Finally, there is a need for an approximation-aware code
generation logic. Modern databases rely heavily on vector-
ization and dynamic code generation [23] to remove virtual
function calls, maximize the use of CPU registers, and im-

prove branch predictions. While these techniques are well-
understood for common query operators, the same ideas
must be adjusted to complex AQP operators.

For instance, the computation logic in Poissonized boot-
strap [8] is based on a “tuple stream” model and is hence
not optimized for the modern day multi-core systems. Like-
wise, Java byte codes enjoy significant performance benefits
when the Hotspot JIT compiler turns them into optimized
machine code instructions based on the specific processor in
use (e.g., using SIMD instructions). However, such dynamic
compilations are only triggered for large iteration counts.
These counts can be significantly lower when the AQP en-
gine works on small samples of the data.

Interface Challenges — While a statistician might be
able to use and interpret complex error statistics, a typical
database user or an application developer may find a large
number of error statistics associated with an approximate
answer simply overwhelming. Online AQP engines have ad-
vocated the use of gradually shrinking error bars [12, 35].
However, many users may still find confidence intervals hard
to interpret. While range-based error guarantees are easier
to interpret [27], they also tend to be quite loose in practice.
For visualization tasks, another idea is to define error as the
visual proximity of the approximate results to the original
pixels [25]. SnappyData [22] uses high-level accuracy con-
tracts (HAC) to shield users from low-level error statistics,
offerring them a single-valued error guarantee. Despite all
these efforts, the design of creative user-interfaces for AQP
engines remains an open area of research.

3. NEW OPPORTUNITIES
Once the door to approximation is opened, many inter-

esting optimization opportunities arise that would never be
possible in a traditional database with precise answers.

Database Learning — Traditional databases have limited
opportunities to reuse past query answers. This is because,
unless a query is an exact subset of another, the output of
one cannot be used for answering the other. However, this
limitation does not apply to an AQP engine because of the
following observation: the answer to each query reveals some
fuzzy knowledge about the answers to other queries, even if
each query accesses a different subset of tuples and columns.
This is because the answers to different queries stem from
the same (unknown) underlying distribution that has gener-
ated the entire dataset. In other words, each answer reveals
a piece of information about this underlying but unknown
distribution.

Note that having a concise statistical model of the under-
lying data can have significant performance benefits. In the
ideal case, if we had access to an incredibly precise model of
the underlying data, we would no longer have to access the
data itself. In other words, we could answer queries more
efficiently by analytically evaluating them on our concise
model, which would mean reading and manipulating a few
kilobytes of model parameters rather than terabytes of raw
data. While we may never have a perfect model in practice,
even an imperfect model can be quite useful. Instead of us-
ing the entire dataset (or even a large sample of it), one can
use a small sample of it to quickly produce a rough approx-
imate answer, which can then be calibrated and combined
with the model to obtain a more accurate approximate an-
swer to the query. The more precise our model, the less need

for actual data, the smaller our sample, and consequently,
the faster our response time. In particular, if we could some-
how continuously improve our model—say, by learning a bit
of information from every query and its answer—we should
be able to answer new queries using increasingly smaller por-
tions of data, i.e., become smarter and faster as we process
more queries

This idea is called Database Learning [26], as it is remi-
niscent of the inferential goal of Machine Leaning whereby
past observations are used to improve future predictions.

Active Database Learning — Instead of passively wait-
ing for users to issue queries and then learn, the AQP engine
itself could pro-actively issue queries and learn from them
(e.g., whenever the database is idle). This is akin to the
idea of active learning (AL) in machine learning, whereby
the learner itself participates in deciding which observations
are most beneficial to obtain [31]. There are two main strate-
gies in AL: uncertainty measures seek observations for which
the learner is least certain, while informativeness measures
seek observations that, if obtained, will have the largest im-
pact on the learner’s prediction power for other data points.
In an AQP context, the first strategy would mean explor-
ing tuples/columns that have not been accessed by previous
queries, whereas the second one would entail active querying
of regions that, although accessed by previous queries, are
still worth further exploration given their extreme popular-
ity.

Stochastic Query Planning — Unlike traditional databases
that choose the best query plan from a set of equivalent al-
ternatives, an AQP engine can deliberately pursue multiple
query plans that are not necessarily equivalent. In addi-
tion to executing the original query on a small sample, the
AQP engine can concurrently obtain several other approxi-
mations using column-wise, tuple-wise, and temporal corre-
lations present in the data. When available, one can even
invoke existing regression models to estimate a specific col-
umn’s marginal or conditional distribution given a combina-
tion of other columns. These various estimates can then be
carefully calibrated and combined to produce a single, more
accurate answer. We call this general idea Stochastic Query
Planning [17].

4. ACKNOWLEDGEMENTS
This work is in part supported by National Science Foun-

dation (grants 1544844, 1629397, and 1553169).

5. REFERENCES
[1] Databricks. http://databricks.com/.

[2] Fast, approximate analysis of big data (yahoo’s druid).
http://yahooeng.tumblr.com/post/135390948446/
data-sketches.

[3] Presto: Distributed SQL query engine for big data.
https:
//prestodb.io/docs/current/release/release-0.61.html.

[4] SnappyData Inc. http://snappydata.io.

[5] Verdict. http://verdictdb.org/.

[6] S. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A
fast decision support system using approximate query
answers. In VLDB, 1999.

[7] S. Acharya, P. B. Gibbons, V. Poosala, and

http://databricks.com/
http://yahooeng.tumblr.com/post/135390948446/data-sketches
http://yahooeng.tumblr.com/post/135390948446/data-sketches
https://prestodb.io/docs/current/release/release-0.61.html
https://prestodb.io/docs/current/release/release-0.61.html
http://snappydata.io
http://verdictdb.org/

S. Ramaswamy. Join synopses for approximate query
answering. In SIGMOD, 1999.

[8] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar,
M. Jordan, S. Madden, B. Mozafari, and I. Stoica.
Knowing when you’re wrong: Building fast and
reliable approximate query processing systems. In
SIGMOD, 2014.

[9] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. BlinkDB: queries with
bounded errors and bounded response times on very
large data. In EuroSys, 2013.

[10] S. Chaudhuri, G. Das, and V. Narasayya. Optimized
stratified sampling for approximate query processing.
TODS, 2007.

[11] A. Dobra, C. Jermaine, F. Rusu, and F. Xu.
Turbo-charging estimate convergence in dbo. PVLDB,
2009.

[12] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In SIGMOD, 1997.

[13] Infobright. Infobright approximate query (iaq).
https://infobright.com/introducing-iaq/.

[14] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join:
Online aggregation via random walks. In Proceedings
of the 2016 International Conference on Management
of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016, 2016.

[15] S. A. McKee. Reflections on the memory wall. In
Proceedings of the 1st Conference on Computing
Frontiers, 2004.

[16] R. B. Miller. Response time in man-computer
conversational transactions. In Proceedings of the
December 9-11, 1968, fall joint computer conference,
part I. ACM, 1968.

[17] B. Mozafari. Verdict: A system for stochastic query
planning. In CIDR, Biennial Conference on
Innovative Data Systems, 2015.

[18] B. Mozafari, C. Curino, A. Jindal, and S. Madden.
Performance and resource modeling in
highly-concurrent OLTP workloads. In SIGMOD,
2013.

[19] B. Mozafari, C. Curino, and S. Madden. DBSeer:
Resource and performance prediction for building a
next generation database cloud. In CIDR, 2013.

[20] B. Mozafari, E. Z. Y. Goh, and D. Y. Yoon.
CliffGuard: A principled framework for finding robust
database designs. In SIGMOD, 2015.

[21] B. Mozafari and N. Niu. A handbook for building an
approximate query engine. IEEE Data Eng. Bull.,
2015.

[22] B. Mozafari, J. Ramnarayan, S. Menon, Y. Mahajan,
S. Chakraborty, H. Bhanawat, and K. Bachhav.
Snappydata: A unified cluster for streaming,
transactions, and interactive analytics. In CIDR, 2017.

[23] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. PVLDB, 2011.

[24] N. Pansare, V. R. Borkar, C. Jermaine, and
T. Condie. Online aggregation for large mapreduce
jobs. PVLDB, 4, 2011.

[25] Y. Park, M. Cafarella, and B. Mozafari.
Visualization-aware sampling for very large databases.
ICDE, 2016.

[26] Y. Park, A. S. Tajik, M. Cafarella, and B. Mozafari.
Database Learning: Towards a database that becomes
smarter every time. In SIGMOD, 2017.

[27] N. Potti and J. M. Patel. DAQ: a new paradigm for
approximate query processing. PVLDB, 8, 2015.

[28] C. Qin and F. Rusu. Pf-ola: a high-performance
framework for parallel online aggregation. Distributed
and Parallel Databases, 2013.

[29] J. Ramnarayan, B. Mozafari, S. Menon, S. Wale,
N. Kumar, H. Bhanawat, S. Chakraborty,
Y. Mahajan, R. Mishra, and K. Bachhav. Snappydata:
A hybrid transactional analytical store built on spark.
In SIGMOD, 2016.

[30] E. Russo. Applying moore’s law to data growth.
https://www.datavail.com/blog/
applying-moores-law-data-growth/.

[31] B. Settles. Active learning literature survey. Computer
Sciences Technical Report 1648, University of
Wisconsin–Madison, 2010.

[32] I. Stoica. For big data, mooreâĂŹs law means better
decisions. https://amplab.cs.berkeley.edu/
for-big-data-moores-law-means-better-decisions/.

[33] H. Su, M. Zait, V. Barrière, J. Torres, and A. Menck.
Approximate aggregates in oracle 12c, 2016.

[34] S. Vrbsky, K. Smith, and J. Liu. An object-oriented
semantic data model to support approximate query
processing. In Proceedings of IFIP TC2 Working
Conference on Object-Oriented Database Semantics,
1990.

[35] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and
I. Stoica. G-OLA: Generalized on-line aggregation for
interactive analysis on big data. In SIGMOD, 2015.

https://infobright.com/introducing-iaq/
https://www.datavail.com/blog/applying-moores-law-data-growth/
https://www.datavail.com/blog/applying-moores-law-data-growth/
https://amplab.cs.berkeley.edu/for-big-data-moores-law-means-better-decisions/
https://amplab.cs.berkeley.edu/for-big-data-moores-law-means-better-decisions/

	Interactivity: An Elusive Goal
	New Challenges
	New Opportunities
	Acknowledgements
	References

