
Contention-Aware Lock Scheduling for Transactional
Databases

Boyu Tian Jiamin Huang Barzan Mozafari Grant Schoenebeck
University of Michigan
Ann Arbor, MI, USA

{bytian, jiamin, mozafari, schoeneb}@umich.edu

ABSTRACT
Lock managers are among the most well-studied components
in concurrency control and transactional systems. How-
ever, one question seems to have been generally overlooked:
“when there are multiple lock requests on the same object,
which one(s) should be granted first?”

Nearly all existing systems rely on a FIFO (first in, first
out) strategy to decide which transaction(s) to grant the
lock to. However, in this paper, we show that the choice
of lock scheduling has significant ramifications on the over-
all performance of a transactional system. Despite the large
body of research on job scheduling outside the database con-
text, lock scheduling presents subtle but challenging require-
ments that render existing results on scheduling inapt for
a transactional database. By carefully studying this prob-
lem, we present the concept of contention-aware scheduling,
show the hardness of the problem, and propose novel lock
scheduling algorithms (LDSF and bLDSF), which guarantee
a constant factor approximation of the best scheduling. We
conduct extensive experiments using a popular database on
both TPC-C and a microbenchmark. Compared to FIFO—
the default scheduler in most database systems—our bLDSF
algorithm yields up to 300x speedup in overall transaction
latency. On the other hand, our LDSF algorithm, which
is simpler and achieves comparable performance to bLDSF,
has already been adopted by open-source community, and
chosen as default scheduling strategy in MySQL 8.0.3+.

1. INTRODUCTION
Lock management forms the backbone of concurrency con-

trol in modern software, including many distributed systems
and transactional databases. A lock manager guarantees
both correctness and efficiency of a concurrent application
by solving the data contention problem. For example, be-
fore a transaction accesses a database object, it has to ac-
quire the corresponding lock; if the transaction fails to get
a lock immediately, it is blocked until the system grants it
the lock. This poses a fundamental question: when multiple
transactions are waiting for a lock on the same object, which
should be granted first when the object becomes available?
This question, which we call lock scheduling, has received
surprisingly little attention, despite the large body of work
on concurrency control and locking protocols [15, 43, 7, 65,
18, 38, 47, 51, 22]. In fact, almost all existing DBMSs1.
rely on variants of a basic first-in-first-out (FIFO) strategy,

1The only exceptions are MySQL and MariaDB, which un-
til recently were also using FIFO, but have since adopted

which grants (all) compatible lock requests based on their
arrival time in the queue [2, 3, 4, 5, 6]. In this paper, we
carefully study the problem of lock scheduling and show that
it has significant ramifications on overall performance of a
DBMS.

Related Work — There is a long history of research on
scheduling problems in a general context [24, 40, 66, 67, 61,
39, 33, 59], whereby a set of jobs is to be scheduled on a set
of processors such that a goal function is minimized, e.g.,
the sum of (weighted) completion times [61, 39, 37] or the
variance of the completion or wait times [14, 17, 74, 46, 27].
There is also work on scheduling in a real-time database
context [73, 38, 7, 34, 72], where the goal is to minimize the
total tardiness or the number of transactions missing their
deadlines.

In this paper, we address the problem of lock scheduling in
a transactional context, where jobs are transactions and pro-
cessors are locks, and the scheduling decision is about which
locks to grant to which transactions. However, our transac-
tional context makes this problem quite different than the
well-studied variants of the scheduling problem. First, un-
like generic scheduling problems, where at most one job can
be scheduled on each processor, a lock may be held in either
exclusive or shared modes. The fact that transactions can
sometimes share the same resources (i.e., shared locks) sig-
nificantly complicates the problem (see Section 2.4). More-
over, once a lock is granted to a transaction, the same trans-
action may later request another lock (as opposed to jobs
requesting all of their needed resources upfront). Finally,
in the scheduling literature, the execution time of each job
is assumed to be known upon its arrival [49, 67, 14, 74],
whereas the execution time of a transaction is often unknown
a priori.

Although there are scheduling algorithms designed for
real-time databases [52, 68, 75, 13], they are not applica-
ble in general DBMS context. For example, real-time set-
tings assume that each transaction comes with a deadline,
whereas most database workloads do not have explicit dead-
lines. Instead, most workloads wish to minimize latency or
maximize throughput.

Challenges — Several aspects of lock scheduling make it
a uniquely challenging problem, particularly under the per-
formance considerations of a real-world DBMS.

1. An online problem. At the time of granting a lock
to a transaction we do not know when the lock will be

our Variance-Aware Transaction Scheduling (VATS) algo-
rithm [42] (see Sections 7).

1

released, since the transaction’s execution time will only
be known once it is finished.

2. Dependencies. In a DBMS, there are dependencies
among concurrent transactions when one is waiting for a
lock held by another. In practice, these dependencies can
be quite complex, as each transaction can hold locks on
several objects and several transactions can hold shared
locks on the same object.

3. Non-uniform access patterns. Not all objects in the
database are equally popular. Also, different transaction
types might each have a different access pattern.

4. Multiple locking modes. The possibility of granting
a lock to one writer exclusively or to multiple readers is
a source of great complexity (see Section 2.4).

Contributions — In this paper, to the best of our knowl-
edge, we present the first formal study of lock scheduling
problem with a goal of minimizing transaction latencies in
a DBMS context. Furthermore, we propose a contention-
aware transaction scheduling algorithm, which captures the
contention and the dependencies among concurrent transac-
tions. The key insight is that a transaction blocking many
others should be scheduled earlier. We carefully study the
difficulty and optimality of our algorithm. Most impor-
tantly, we show that our results are not merely theoreti-
cal, but lead to dramatic speedups in a real-world DBMS.
Our ultimate hope is that our results will bring attention
to the significant ramifications of the choice in lock schedul-
ing algorithm on the overall performance of a transactional
system.2 In summary, we make the following contributions:

1. We propose a contention-aware lock scheduling algo-
rithm, called Largest-Dependency-Set-First (LDSF).
We prove that, in the absence of shared locks, LDSF is
optimal in terms of the expected mean latency (The-
orem 2). With shared locks, we prove that LDSF is a
constant factor approximation of the optimal schedul-
ing under certain regularity constraints (Theorem 3).

2. We propose the idea of granting only some of the
shared lock requests on an object (as opposed to grant-
ing them all). We study the difficulty of the scheduling
problem under this setting (Theorem 5), and propose
another algorithm, called bLDSF (batched Largest-
Dependency-Set-First), which improves upon LDSF in
this setting. We prove that bLDSF is also a constant
factor approximation of the optimal scheduling (The-
orem 6).

3. In addition to our theoretical analysis, we use a real-
world DBMS and extensive experiments to empirically
evaluate our algorithms on the TPC-C benchmark,
as well as a microbenchmark. Our results confirm
that, compared to the commonly used FIFO strategy,
LDSF and bLDSF reduce mean transaction latencies
by up to 300x and 290x, respectively. They also in-
crease throughput by up to 6.5x and 5.5x. As a result,
LDSF (which is simpler than bLDSF) has already been
adopted as the default scheduling algorithm in MySQL
[1] as of 8.0.3+.

2 Despite decades of research on all aspects of transaction
processing, the importance of lock scheduling seems to have
gone unnoticed, to the extent that all DBMSs still use FIFO.

2. PROBLEM STATEMENT
In this section, we first describe our problem setting and

define dependency graphs. We then formally state the lock
scheduling problem.

2.1 Background: Locking Protocols
Locks are the most commonly used mechanism for ensur-

ing consistency when a set of shared objects are concurrently
accessed by multiple transactions (or applications). In a
locking system, there are two main types of locks: shared
locks and exclusive locks. Before a transaction can read
an object (e.g., a row), it must first acquire an shared lock
(a.k.a. shared or read lock) on that object. Likewise, before
a transaction can write to or update an object, it must ac-
quire an exclusive lock (a.k.a. write lock) on that object. A
shared lock can be granted on an object as long as no ex-
clusive locks are currently held on that object. However, an
exclusive lock on an object can be granted only if there are
no other locks currently held on that object. We focus on
the strict 2-phase locking (strict 2PL) protocol: once a lock
is granted to a transaction, it is held until that transaction
ends. Once a transaction finishes execution (i.e., it commits
or gets aborted), it releases all its locks.

2.2 Dependency Graph
Given the set T of transactions currently in the system,

and the set O of objects in the database, we define the
dependency graph of the system as an edge-labeled graph
G = (V, E ,L). The vertices of the graph V = T ∪ O con-
sist of the current transactions and objects. The edges of
the graph E ⊆ T ×O ∪O × T describe the locking relation-
ships among the objects and transactions. Specifically, for
transaction t ∈ T and object o ∈ O,

• (t, o) ∈ E if t is waiting for a lock on o;

• (o, t) ∈ E if t already holds a lock on o.

The label L : E → {S,X} indicates the lock type:

• L(t, o) = X if t is waiting for an exclusive lock on o;

• L(t, o) = S if t is waiting for a shared lock on o;

• L(o, t) = X if t already holds an exclusive lock on o;

• L(o, t) = S if t already holds a shared lock on o.

We assume that deadlocks are rare and are handled by an
external process (e.g., a deadlock detection and resolution
module). Thus, for simplicity, we assume that the depen-
dency graph G is always a directed acyclic graph (DAG).

2.3 Lock Scheduling
A lock scheduler makes decisions about which transac-

tions are granted the locks upon one or both of the fol-
lowing events: (i) when a transaction requests a lock, and
(ii) when a lock is released by a transaction.3 Let G be
the set of all possible dependency graphs of the system. A
scheduling algorithm A = (Areq,Arel) is a pair of func-
tions Areq,Arel : G × O × T × {S,X} → 2T . For exam-
ple, when transaction t requests an exclusive lock on ob-
ject o, Areq(G, o, t,X) determines which of the transactions
currently waiting for a lock on o (including t itself) should

3These are the only occasions in which the dependency
graph changes. If a scheduler grants locks at other times,
the same decision could have been made upon the previous
event, i.e., a transaction was unnecessarily blocked. A lock
scheduler is thus an event-driven scheduler.

2

Notation Description

T the set of transactions in the system

O the set of objects in the database

G the dependency graph of the system

V vertices in the dependency graph

E edges in the dependency graph

L labels of the edges indicating the lock type

A a scheduling algorithm

lA(t) the latency of transaction t under A
l̄A(t) the expectation of lA(t)

l̄(A) the expected transaction latency under A

Table 1: Table of Notations.

be granted their requested lock on o, given the dependency
graph G of the system. (Note that the types of locks re-
quested by transactions other than t are captured in G.)
Likewise, when transaction t releases a shared lock on ob-
ject o, Arel(G, o, t, S) determines which of the transactions
currently waiting for a lock on o should be granted their
requested lock, given the dependency graph G. When all
transactions holding a lock on an object o release the lock,
we say that o has become available. When the lock request
of a transaction t is granted, we say that t is scheduled.

Since the execution time of each transaction is typically
unknown in advance, we model their execution time using
a random variable with expectation R. Given a particular
scheduling algorithm A, we define the latency of a transac-
tion t, denoted by lA(t), as its execution time plus the total
time it has been blocked waiting for various locks. Since
lA(t) is a random variable, we denote its expectation as
l̄A(t). We use l̄(A) to denote the expected transaction la-
tency under algorithm A, which is defined as the average of
the expected latencies of all transactions in the system, i.e.,
l̄(A) = 1

|T |
∑

t∈T l̄A(t).

Our goal is to find a lock scheduling algorithm under
which the expected transaction latency is minimized. To
ensure consistency and isolation, in most database systems
Areq simply grants a lock to the requesting transaction only
when (i) no lock is held on the object, or (ii) the currently
held lock and the requested lock are compatible and no
transaction in the queue has an incompatible lock request.
This choice of Areq also ensures that transactions requesting
exclusive locks are not starved. The key challenge in lock
scheduling, then, is choosing an Arel such that the expected
transaction latency is minimized.

2.4 NP-Hardness
Minimizing the expected transaction latency under the

scheduling algorithm is, in general, an NP-hard problem.
Intuitively, the hardness is due to the presence of shared
locks, which cause the system’s dependency graph to be a
DAG, but not necessarily a tree.

Theorem 1. Given a dependency graph G, when a trans-
action t releases a lock (S or X) on object o, it is NP-hard to
determine which pending lock requests to grant, in order to
minimize the expected transaction latency. The result holds
even if all transactions have the same execution time, and
no transaction requests additional locks in the future.4

4All missing proofs can be found in our technical report [70].

o1

t1 t2

X X

Object

Transaction

Transaction holds

a lock on object

Transaction waits

for a lock on object

Figure 1: Transaction t1 holds the most number of locks,
but many of them on unpopular object.

Given the NP-hardness of the problem in general, in the
rest of this paper, we propose algorithms that guarantee a
constant-factor approximation of the optimal scheduling in
terms of the expected transaction latency.

3. CONTENTION-AWARE SCHEDULING
We define contention-aware scheduling as any algorithm

that prioritizes transactions based on their impact on the
overall contention of the system. In this section, we first
study several heuristics for comparing the contribution of
different transactions to the overall contention, and illus-
trate their shortcomings through intuitive examples. We
then propose a particular contention-aware scheduling that
formally quantifies this contribution, and guarantees a constant-
factor approximation of the optimal scheduling when shared
locks are not held by too many transactions. (Later, in Sec-
tion 4, we generalize this algorithm for situations where this
assumption does not hold.)

3.1 Capturing Contention
The degree of contention in a database system is directly

related to the number of transactions concurrently request-
ing conflicting locks on the same objects.

For example, a transaction holding an exclusive lock on a
popular object will naturally block many other transactions
requesting a lock on that same object. If such a transaction
is itself blocked (e.g., waiting for a lock on a different object),
it will negatively affect the latency of many transactions, in-
creasing overall contention in the system. Thus, our goal in
contention-aware scheduling is to determine which transac-
tions have a more important role in reducing the overall
contention in the system, so that they can be given higher
priority when granting a lock. Next, we discuss heuristics
for measuring the priority of a transaction in reducing the
overall contention.

Number of locks held — The simplest criterion for pri-
oritizing transactions is the number of locks they currently
hold. We refer to this heuristic as Most Locks First (MLF).
The intuition is that a transaction with more locks is more
likely to block other transactions in the system. However,
this approach does not account for the popularity of ob-
jects in the system. In other words, a transaction might be
holding many locks but on an unpopular objects, which are
unlikely to be requested by other transactions. Prioritizing
such a transaction will not necessarily reduce contention in
the system. Figure 1 demonstrates an example, where trans-
action t1 holds the most number of locks but on unpopular
objects. It is therefore better to keep t1 waiting and instead
schedule t2 first, which holds fewer but more popular locks.

Number of locks that block other transactions — An
improvement over the previous criterion is to only count

3

o1

t1 t2

t3

X X Object

Transaction

Transaction holds

a lock on object

Transaction waits

for a lock on object

Figure 2: Transaction t2 holds two locks that are waited
on by other transactions. Although only one of t1’s locks
is blocking other transactions, the blocked transaction (i.e.,
t3) is itself blocking three others.

those locks that have at least one transaction waiting on
them. This approach disregards transactions that hold many
locks, but on these locks no other transactions are waiting.
We call this heuristic Most Blocking Locks First (MBLF).
The issue with this criterion is that it treats all blocked
transactions as the same, even if they contribute unequally
to the overall contention. Figure 2 shows an example in
which the scheduler must decide between transactions t1
and t2 when the object o1 becomes available. Here, this cri-
terion would choose t2, which currently holds two locks, each
at least blocking one other transaction. However, although
t1 holds only one blocking lock, it is blocking t3 which itself
is blocking three other transactions. Thus, by scheduling t2
first, t3 and its three subsequent transactions will remain
blocked in the system for a longer period of time than if t1
had been scheduled first.

Depth of the dependency subgraph — A more sophis-
ticated criterion is the depth of a transaction’s dependency
subgraph. For a transaction t, this is defined as the subgraph
of the dependency graph comprised of all vertices that can
reach t (and all edges between such vertices). The depth of
t’s dependency subgraph is characterized by the number of
transactions on the longest path in the subgraph that ends
in t. We refer to this heuristic as Deepest Dependency First
(DDF). Figure 3 shows an example, where the depth of the
dependency subgraph of transaction t1 is 3 while that of
transaction t2 is only 2. Thus, when deciding between t1
and t2 based on this criterion, the exclusive lock on object
o1 should be granted to t1. The idea behind this heuristic is
that a longer path indicates a larger number of transactions
that are sequentially blocked. Thus, to unblock such trans-
actions sooner, the scheduling algorithm must start with a
transaction whose dependency graph is deeper. However,
considering only the depth of this subgraph can limit the
overall degree of concurrency in the system. For example,
in Figure 3, if the exclusive lock on o1 is granted to t1 in-
stead of t2, upon the completion of t1 only one transaction in
its dependency subgraph will be unblocked and can resume
execution. On the other hand, if the lock is granted to t2,
upon its completion two other transactions in its dependency
subgraph will be unblocked, which can run concurrently.

Later, in Section 6.4, we empirically evaluate these heuris-
tics. While none of these heuristics alone is able to guarantee
an optimal lock scheduling strategy, they offer valuable in-
sight in understanding the relationship between scheduling
and overall contention. In particular, the first two heuris-
tics focus on what we call horizontal contention, whereby a
transaction holds locks on many objects directly needed by

o1

t1 t2
1

2

3

X X Object

Transaction

Transaction holds

a lock on object

Transaction waits

for a lock on object

Figure 3: Transaction t1 has a deeper dependency sub-
graph, but granting the lock to t2 will unblock more trans-
actions which can run concurrently.

other transactions. In contrast, the third heuristic focuses
on reducing vertical contention, whereby a chain of depen-
dencies causes a series of transactions to block each other.
Next, we present an algorithm which is capable of resolving
both horizontal and vertical aspects of contention.

3.2 Largest-Dependency-Set-First
In this section, we propose an algorithm, called Largest-

Dependency-Set-First (LDSF), which provides formal guar-
antees on the expected mean latency.

Consider two transactions t1 and t2 in the system. If
there is a path from t1 to t2 in the dependency graph, we
say that t1 is dependent on t2 (i.e., t1 depends on t2’s com-
pletion/abortion for at least one of its required locks). We
define the dependency set of t, denoted by g(t), as the set of
all transactions that are dependent on t (i.e., the set of trans-
actions in t’s dependency subgraph). Our LDSF algorithm
uses the size of the dependency sets of different transactions
to decide which one(s) to schedule first. For example, in
Figure 4, there are five transactions in the dependency set
of transaction t1 (including t1 itself) while there are four
transactions in t2’s dependency set. Thus, in a situation
where both t1 and t2 have requested an exclusive lock on
object o1, LDSF grants the lock to t1 (instead of t2) as soon
as o1 becomes available.

Now, we can formally present our LDSF algorithm. Sup-
pose an object o becomes available (i.e., all previous locks on
o are released), and there are m + n transactions currently
waiting for a lock on o: m transactions ti1, t

i
2, · · · , tim are

requesting a shared lock o, and n transactions tx1 , t
x
2 , · · · , txn

are requesting an exclusive lock on object o. Our LDSF al-
gorithm defines the priority of each transaction txi requesting
an exclusive lock as the size of its dependency set, |g(txi)|.
However, LDSF treats all transactions requesting a shared
lock on o, namely ti1, t

i
2, · · · , tim, as a single transaction—

if LDSF decides to grant a shared lock, it will be granted
to all of them. The priority of the shared lock requests is
thus defined as the size of the union of their dependency
sets,

∣∣⋃m
i=1 g(tii)

∣∣. LDSF then finds the transaction t̂x with

the highest priority among tx1 , t
x
2 , · · · , txn. If t̂x’s priority is

higher than the collective priority of the transactions re-
questing a shared lock, LDSF grants the exclusive lock to
t̂x. Otherwise, a shared lock is granted to all transactions
ti1, t

i
2, · · · , tim. The pseudo-code of the LDSF algorithm is

provided in Algorithm 1.

Analysis — We do not make any assumptions about the fu-
ture behavior of a transaction, as they may request various
locks throughout their lifetime. Furthermore, since we can-
not predict new transactions arriving in the future, in our
analysis, we only consider the transactions that are already

4

o1

t2t1

X X Object

Transaction

Transaction holds

a lock on object

Transaction waits

for a lock on object

Figure 4: Lock scheduling based on the size of the depen-
dency sets.

Input : The dependency graph of the system G = (V, E,L),
transaction t, object o, label L ∈ {X,S}
// meaning t has just released a lock of type L on o

Output: The set of transactions whose requested lock on o
should be granted

1 if there are other transactions still holding a lock on o then
2 return ∅;
3 Obtain the set of transactions waiting for a shared lock on o,

T i ← {ti ∈ V : (ti, o) ∈ E and L(ti, o) = S} =
{ti1, ti2, · · · , tim};

4 Obtain the set of transactions waiting for an exclusive lock
on o, Tx ← {tx ∈ V : (tx, o) ∈ E and L(tx, o) = X} =
{tx1 , tx2 , · · · , txn};

5 Let τ(T i) =
∣∣⋃n

i=1 g(t
i
i)
∣∣;

6 Find a transaction t̂x ∈W s.t. |g(t̂x)| = maxtxi ∈T
x

∣∣g(txi)∣∣;
7 if τ(T i) <

∣∣g(t̂x)∣∣ then
8 return T i;
9 else

10 return {t̂x};
Algorithm 1: Largest-Dependency-Set-First Algorithm

in the system. Since the system does not know the execution
time of a transaction a priori, we model the execution time
of each transaction as a memoryless random variable. That
is, the time a transaction has already spent in execution
does not necessarily reveal any information about the trans-
action’s remaining execution time. We denote the remaining
execution time as a random variable R with expectation R̄.
We also assume that the execution time of a transaction is
not affected by the scheduling.5 Transactions that are sen-
sitive to the actual time (e.g., stop if run before a certain
time 2pm, otherwise run for a long time) are also excluded
from our discussion.

We first study a simplified scenario, in which there are
only exclusive locks in the system (we relax this assumption
in Theorem 3). The following theorem states that LDSF
minimizes the expected latency in this scenario.

Theorem 2. When there are only exclusive locks in the
system, the LDSF algorithm is the optimal scheduling algo-
rithm in terms of the expected latency.

The intuition here is that if a transaction t1 is dependent
on t2, any progress in the execution of t2 can also be consid-
ered as t1’s progress since t1 cannot receive its lock unless t2
finishes execution. Thus, by granting the lock to the trans-
action with the largest dependency set, LDSF allows the
most transactions to make progress toward completion.

However, this does not necessarily hold true with the ex-
istence of shared locks. Even if transaction t1 is dependent

5For example, scheduling causes context switches, which
may affect performance. For simplicity, in our formal anal-
ysis, we assume that their overall effect is not significant.

o1

t1

Object

Transaction

Transaction holds

a lock on object

Transaction waits

for a lock on object

t2 t3 t4

o2

o3

t6t5

Figure 5: The critical objects of t1 are o1 and o2, as they
are locked by transactions t2 and t3. Note that, although
o3 is reachable from t1, it is not a critical object of t1 since
it is locked by transactions that are not currently running,
i.e., t5 and t6 which themselves are waiting for other locks.

on t2, the execution of t2 does not necessarily contribute
to t1’s progress. Specifically, consider the set of all objects
that are reachable from t1 in the dependency graph, but are
locked (shared or exclusively) by currently running transac-
tions. We call these objects the critical objects of t1, and
denote them as C(t1).6 For example, in Figure 5, we have
C(t1) = {o1, o2}. Note that not all transactions that hold
a lock on a critical object of t1 contribute to t1’s progress.
Rather, only the transaction that releases the last lock on
that critical object allows for the progress of t1. In the ex-
ample of Figure 5, the execution of t2 does not necessarily
contribute to the progress of t1, unless t3 releases the lock
earlier than t2.

Nonetheless, if the number of transactions waiting for each
shared lock is bounded, then LDSF is a constant-factor ap-
proximation of the optimal scheduler in terms of the ex-
pected latency.

Theorem 3. Let the maximum number of critical objects
for any transaction in the system be c. Assume that the
number of transactions waiting for shared locks on the same
object is bounded by u. The LDSF algorithm is a (c · u)-
approximation of the optimal scheduling (among strategies
that grant all shared locks simultaneously) in terms of the
expected latency.

4. SPLITTING SHARED LOCKS
In the LDSF algorithm, when a shared lock is granted, it is

granted to all transactions waiting for it. In Section 4.1, we
show why this may not be the best strategy. Then, in Sec-
tion 4.2, we propose a modification to our LDSF algorithm,
called bLDSF, which improves upon LDSF by exploiting the
idea of not granting all shared locks simultaneously.

4.1 The Benefits and Challenges
As noted earlier, when the LDSF algorithm grants a shared

lock, it grants the lock to all transactions waiting for it.
However, this may not be the optimal strategy. In general,
granting a larger number of shared locks on the same object
increases the probability that at least one of them will take
a long time before releasing the lock. Until the last transac-
tion completes and releases its lock, no exclusive locks can
be granted on that object. In other words, the expected du-
ration that the slowest transaction holds a shared lock grows
with the number of transactions sharing the lock. This is the

6Note that the critical objects of a transaction may change
throughout its lifetime.

5

well-known problem of stragglers [21, 26, 29, 60, 76], which is
exacerbated as the number of independent processes grows.

To illustrate this more formally, consider the following
example. Suppose that a set of m transactions, t1, · · · , tm,
are sharing a shared lock. Let Rrem

1 , Rrem
2 , · · · , Rrem

m be a
set of random variables representing the remaining times
of these transactions. Then, the time needed before an
exclusive lock can be granted on the same object is the
remaining time of the the slowest transaction, denoted as
Rrem

max,m = max{Rrem
1 , · · · , Rrem

m }, which itself is a random
variable. Let R̄rem

max,m be the expectation of Rrem
max,m. As long

as the Rrem
i ’s have non-zero variance7 (i.e., σ2

i > 0), R̄rem
max,m

strictly increases with m, as stated next.

Lemma 4. Suppose that Rrem
1 , Rrem

2 , · · · are random vari-
ables with the same range of values. If σ2

k+1 > 0, then
R̄rem

max,k<R̄
rem
max,k+1 for 1 ≤ k < m.

We define the delay factor as f(m) =
R̄rem

max,m

R̄rem
. According

to Lemma 4, f(m) is strictly monotonically increasing with
respect to m. The exact formula for f(m) depends on the
specific distribution of Ri’s. For example, if all the Ri’s are
exponentially distributed (which is a memoryless distribu-
tion) with the same mean R̄, then their CDF is given by

F (x) = 1− e−x/R̄rem

, x > 0. (1)

Then, f(m) can be computed as:

f(m) =

m∑
i=1

1

i
. (2)

For other distributions, the exact form of f(m) will be differ-
ent. However, regardless of the distribution of the latencies,
f(m) is guaranteed to satisfy the following properties:

C1. f(1) = 1;

C2. f(m) < f(m+ 1);

C3. f(m) ≤ m.

The first property is trivial: granting the lock to only one
transaction at a time does not incur any delays. The second
property is based on Lemma 4. The third is based on the
fact that shared a lock between a group of m transactions
cannot be slower than granting the lock to them one after
another and sequentially.

Since granting a shared lock to more transactions can de-
lay the exclusive lock requests, it is conceivable that granting
a shared lock to only a subset of the transactions waiting
for it might reduce the overall latency in the system. In-
tuitively, when many transactions are waiting for the same
shared lock, it would be better to grant the shared lock only
to a few that have a higher priority (i.e., a larger dependency
set), and leave the rest until the next time. This strategy
can therefore reduce the time that other transactions have
to wait for an exclusive lock, as illustrated in Figure 6.

However, lock scheduling in this situation becomes ex-
tremely difficult. When the time the last shared lock is
released depends on (and grows with) the number of trans-
actions, there is no constant-factor approximation strategy,
if we have no prior knowledge of the expected latency of a
set of transactions. We have the following negative result.

7This assumption holds unless all instances of a transaction
type take exactly the same time, which is unlikely.

Object

Transaction

Transaction waits

for a lock on obect
x Dependency set of size x

6 5

t1 t2 t3

11

t4

S S S X

Figure 6: Assume that f(2) = 1.5 and f(3) = 2. If we first
grant a shared lock to all of t1, t2, and t3, all transactions in
t4’s dependency set will wait for at least 2R̄. The total wait
time will be 10R̄. However, if we only grant t1’s lock, then
t4’s lock, and then grant t2’s and t3’s locks together, the
transactions in t4’s dependency set will only wait R̄, while
those in t2’s and t3’s dependency sets will wait 2R̄. Thus,
the total wait time in this case will be only 9R̄.

Theorem 5. Let A¬f be the set of scheduling algorithms
that do not use the knowledge of the delay factor f(k) in
their decisions. For any algorithm A¬f ∈ A¬f , there exists

an algorithm A, such that
w̄(A¬f)

w̄(A)
= ω(1) for some delay

factor f(k).

According to this theorem, any algorithm that does not
rely on knowing the delay factor is not competitive: it per-
forms arbitrarily poor, compared to the optimal scheduling.
Thus, in the next section, we take the delay factor f(k) as
an input, and propose an algorithm that adopts the idea of
granting shared locks only to a subset of the transactions
requesting it. We also discuss the criteria for choosing delay
factors that can yield good performance in practice.

4.2 The bLDSF Algorithm
In this section, we present a simple algorithm, called bLDSF,

which inherits the intuition behind the LDSF algorithm, but
also exploits the idea that a shared lock does not have to be
granted to all transactions waiting for it.

While LDSF measures the progress enabled by different
scheduling decisions, our bLDSF algorithm measures the
speed of progress. If a transaction tx waiting for an exclu-
sive lock is scheduled, |g(tx)| transactions will make progress
over the next R̄ (expected) units of time. Thus, the speed of

progress can be measured as
|g(tx)|
R̄

. On the other hand, by

scheduling a batch of transactions ti1, t
i
2, · · · , tik waiting for

a shared lock together, |
⋃k

i=1 g(tii)| transactions will make
progress over the next f(k) · R̄ units of time. The speed of

progress can then be measured as
|
⋃k

i=1 g(tii)|
f(k)R̄

.

The bLDSF algorithm works as follows. First, it finds the
transaction waiting for an exclusive lock with the largest
dependency set, denoted as t̂x. Denote the size of its de-
pendency set as p =

∣∣g(t̂x)
∣∣. Then, bLDSF finds the batch

of transactions, t̂i1, t̂
i
2, · · · , t̂ik, waiting for a shared lock such

that q =
|
⋃k

i=1 g(t̂ii)|
f(k)

is maximized. If q < p, the system

will make faster progress if t̂x is scheduled first, in which
case bLDSF will grant an exclusive lock to t̂x. Conversely,
if q > p, the system will make faster progress if the batch

of t̂i1, t̂
i
2, · · · , t̂ik is scheduled first, in which case bLDSF will

grant shared locks to t̂i1, t̂
i
2, · · · , t̂ik simultaneously. When

q = p, the speed of progress in the system will be the same
under both scheduling decisions. In this case, bLDSF grants

6

Input : The dependency graph of the system G = (V, E,L),
transaction t, object o, label L ∈ {X,S}
// meaning t has just released a lock of type L on o

Output: The set of transactions whose requested lock on o
should be granted

1 if there are other transactions still holding a lock on o then
2 return ∅;
3 Obtain the set of transactions waiting for a shared lock on o,

T i ← {ti ∈ V : (ti, o) ∈ E and L(ti, o) = S} =
{ti1, ti2, · · · , tim};

4 Obtain the set of transactions waiting for an exclusive lock
on o, Tx ← {tx ∈ V : (tx, o) ∈ E and L(tx, o) = X} =
{tx1 , tx2 , · · · , txn};

5 Let t̂i1, t̂
i
2, · · · , t̂ik be the set of transactions in T i such that

|
⋃k

i=1 g(t̂
i
i)|

f(k)
is maximized ;

6 Let t̂x be the transaction in Tx with the largest dependency
set;

7 if
∣∣g(t̂x)∣∣ · f(k) ≤ ∣∣∣⋃k

i=1 g(t̂
i
i)
∣∣∣ then

8 return {t̂i1, t̂i2, · · · , t̂ik};
9 else

10 return t̂x;
Algorithm 2: The bLDSF Algorithm

shared locks to the batch, in order to increase the overall
degree of concurrency in the system. The pseudocode for
bLDSF is provided in Algorithm 2.

We show that, when the number of transactions waiting
for shared locks on the same object is bounded, the bLDSF
algorithm is a constant factor approximation of the optimal
scheduling algorithm in terms of the expected wait time.

Theorem 6. Let the maximum number of critical objects
for any transaction in the system be c. Assume that the
number of transactions waiting for shared locks on the same
object is bounded by v. Then, given a delay factor of f(k),
the bLDSF algorithm is an h-approximation of the opti-
mal scheduling algorithm in terms of the expected wait time,
where h = cv2 · f(v).

Unlike the LDSF algorithm, bLDSF requires a delay fac-
tor for its analysis. However, since the remaining times of
transactions can be modeled as random variables, the exact
form of the delay factor f(k) will also depend on the distribu-
tion of these random variables. For example, the delay factor
for exponential random variables is f(k) = O(log k) [?], for
geometric random variables is f(k) = O(log k) [?], for Gaus-
sian random variables is f(k) = O(

√
log k) [?], and for power

law random variables with exponent 3 is f(k) =
√
k. In

Section 6.7, we empirically show that bLDSF’s performance
is not sensitive to the specific choice of the delay factor, as
long as it is a sub-linear function that grows monotonically
with k (conditions C1, C2, and C3 from Section 4.1). This is
because when the batch size is small, the difference between
all sub-linear functions is also small. For example, when
b = 10,

√
b ≈ 3.16 and log2(1 + b) ≈ 3.46, leading to similar

scheduling decisions. Even though
√

log2(1 + b) ≈ 1.86 is
smaller than the other two, it can still capture condition C2
quite well.

4.3 Discussion
In our analysis, we have intentionally assumed no addi-

tional information about the transactions. This is because
most DBMS do not (and cannot) predict the transaction’s

future performance. However, an interesting question is
whether a lock scheduling algorithm could use such infor-
mation had they been available. In particular, two types
of information could be beneficial: (1) the transaction’s re-
maining execution time, and (2) its lock access pattern.

If the remaining execution time of a transaction could
be (accurately) estimated, our bLDSF algorithm could take
that into account when maximizing the speed of progress: a
transaction that will take longer, should be given less prior-
ity. The priority of a transaction would then the the size of
its dependency set divided by its estimated execution time.

Likewise, if we knew the lock pattern of a transaction
in advance, the lock scheduler could incorporate that in its
analysis. For example, a transaction performing a scan will
request a large number of locks, and will not make progress
until all its locks are granted. Therefore, an ideal strat-
egy would be one that could grant it all its locks in a short
period, e.g., by not granting it any locks until its priority be-
comes the largest among the inflight transactions. However,
to execute this strategy, we would also need to estimate the
release times of the locks that are currently unavailable.

In certain deployments, the DBMS has visibility into the
application code, and can readily obtain additional informa-
tion about each transaction. For instance, since VoltDB [69]
uses stored procedures, it can easily infer the transaction
type. However, in general, obtaining such information re-
quires substantial changes to today’s DBMSs.First, the DBMS
must have the ability to learn about transaction types as
it observes many instances of them [55]. Second, it must
train predictive (i.e., regression) models of performance for
each transaction type. Fortunately, there has been much
recent progress on incorporating machine learning models
inside database systems [58, 11]. In this paper, we focus
on the more common setting where additional information
is not readily available.8 Developing and evaluating a lock
scheduling algorithm that has access to additional informa-
tion will be an interesting direction for future research.

5. IMPLEMENTATION
We implement our scheduling algorithm in MySQL. Sim-

ilar to all major DBMSs, the default lock scheduling policy
in MySQL was FIFO.9 Specifically, all pending lock requests
on an object are placed in a queue. A lock request is granted
immediately upon its arrival only if one of these two condi-
tions holds: (i) there are no other locks currently held on the
object, or (ii) the requested lock type is compatible with all
the locks currently held on the object, and there are no in-
compatible requests ahead of it waiting in the queue. When-
ever any transaction releases a lock on an object, MySQL’s
scheduler scans the entire queue from the beginning to the
end: it grants any waiting requests if (i) there are no other
locks held on the object, or (ii) the request is compatible
with the remaining locks held on the object. However, as
soon as the scheduler encounters the first lock request that
cannot be granted, it stops scanning the rest of the queue.

One issue in implementing LDSF and bLDSF is that keep-
ing track of the sizes of the dependency sets can be diffi-
cult. Exact calculation would require either (i) searching

8For example, our prior work [42] has shown that there is
little correlation between a transaction’s elapsed time and
its remaining time in the system.
9Now, our LDSF algorithm is the default (MySQL 8.0.3+).

7

2

t15

2

1

t2

t4

t3

x

Object

Transaction with approximate

dependency set size x
Transaction holds

a lock on object

Transaction waits

for a lock on object

Figure 7: The effective size of t1’s dependency set is 5. But
its exact size is only 4.

down the reverse edges in the dependency graph whenever
a scheduling decision is to be made, or (ii) storing the de-
pendency sets for all transactions and updating them each
time any transaction is blocked or a lock is granted. Both
of these options can cause large overheads. Specifically, op-
tion (i) can be slow: in the worse case, finding the size of
the dependency set of a single transaction takes O(|E|+ |V|)
time. Option (ii) incurs a large space overhead: in the worst
case, storing the dependency set for each transaction re-
quires O(V) space. Therefore, in our implementation, we
rely on an approximation of the sizes of the dependency
sets, rather than computing their exact values. When a
transaction t holds no locks that block other transactions,
|g(t)| = 1. Otherwise, let Tt be the set of transactions wait-
ing for an object currently held by transaction t. Then,
|g(t)| ≈

∑
t′∈Tt

|g(t′)| + 1. The reason this method is only

an approximation of |g(t)|, is that the dependency graph is
a DAG (but not necessarily a tree), which means the depen-
dency sets of different transactions may overlap. Figure 7
illustrates an example, where the dependency set of t1 is
{t1, t2, t3, t4} and is therefore of size 4. However, its effec-
tive size is calculated as one plus the sum of the effective
sizes of t2 and t3’s dependency sets, resulting in 5. Note
that the approximation error in this process can quickly ac-
cumulate. This is because when a transaction t gets blocked
for a lock on object o, the sizes of the dependency sets of
all transactions reachable from t will need to be updated by
|g(t)|. This means that transactions appearing on multiple
paths will be updated multiple times. Therefore, to reduce
the approximation error, we keep track of the transactions
that have already been updated during the update process
to ensure that they each get updated only once.

Another implementation issue lies in the difficulty of find-
ing the desired batch of transactions in bLDSF. Calculating
the size of the union of several dependency sets requires de-
tailed information about the elements in each dependency
set, since the dependency sets may not be disjoint (due
to the presence of shared locks). Therefore, we rely on
an approximation in our implementation. Specifically, we
first sort all transactions waiting for a shared lock in the
decreasing order of their dependency set sizes. Then, for
k = 1, 2, · · · , we calculate the q value (see Section 4.2) for
the first k transactions. Here, we approximate the size of the
union of the dependency sets as the sum of their individual
sizes. Let k∗ be the k value that maximizes q. We then take
the first k∗ transactions as our batch, which we consider for
granting a shared lock to.

We show in Section 6 that, despite using these approxi-
mations in our implementation, our algorithms remain quite
effective in practice.

Starvation Avoidance — In MySQL’s implementation of

FIFO, when there is an exclusive lock request in the queue,
it serves as a conceptual barrier: later requests for shared
locks cannot be granted, even if they are compatible with
the currently held locks on the object. This mechanism pre-
vents starvation when using FIFO. In our algorithms, we
prevent starvation of transactions using a similar mecha-
nism: we also place a barrier at the end of the current wait
queue. Lock requests that arrive later are all placed behind
this barrier, and are not considered for scheduling. In other
words, the only requests that are considered are those that
are ahead of the barrier. Once all such requests are granted,
this barrier is lifted, and a new barrier is added to the end of
the current queue, so that those requests previously behind
the barrier are now ahead of it. This mechanism prevents
a transaction with a small dependency set from waiting in-
definitely behind an infinite stream of newly arrived trans-
actions with larger dependency sets.

Space Complexity — Given the approximation methods
mentioned above, both LDSF and bLDSF only require main-
taining the approximate size of dependency set of each trans-
action. Therefore, the overall space overhead of our algo-
rithms is only O(|T |).

Time Complexity — In MySQL, all lock requests on an
object (either granted or not) are stored in a linked list.
Whenever a transaction releases a lock on the object, the
scheduler scans this list for requests that are not granted yet.
For each of these requests the scheduler scans the list again
for requests that have been granted and checks for compat-
ibility. If the request is found compatible with all existing
locks, the request is granted, and the scheduler moves on to
check the compatibility of the next request. Otherwise, the
request is not granted, and the scheduler stops granting any
further requests. Let N is the number of lock requests on
an object (either granted or not). Then, FIFO takes O(N2)
time in the worst case. LDSF and bLDSF both use the same
procedure as FIFO to find compatible requests that are not
granted yet, which takes O(N2) time. For bLDSF, we also
sort all transactions waiting for a shared lock by the size of
their dependency sets, which takes O(N logN) time. Thus,
the time complexity of LDSF and bLDSF is still O(N2).

6. EXPERIMENTS
Our experiments aim to answer several key questions:

• How do our scheduling algorithms (LDSF and bLDSF)
affect the overall throughput of the system?

• How do our algorithms compare against FIFO—the
default policy in almost every major database—and
VATS, which was recently adopted in MySQL, in terms
of reducing average and tail transaction latencies?

• How do our algorithms compare against various heuris-
tics?

• How much overhead do our algorithms incur? Are they
significant or negligible compared to the latency of a
transaction?

• How does the effectiveness of our algorithms vary with
different levels of contention?

• What is the impact of the choice of delay factor on the
effectiveness of bLDSF?

• How effective is the approximation described in Sec-
tion 5 in reducing the overhead? How accurate is it?

8

bLDSF Impr. Over FIFO bLDSF Impr. Over VATS bLDSF VATS FIFO

100 300 500 700 900
of Clients

0

1000

2000

3000

T
h
ro
u
g
h
p
u
t
(t
p
s)

1x

2x

3x

4x

5x

6x

7x

O
u
r
Im

p
ro
v
e
m
e
n
t

Figure 8: Throughput improvement
with bLDSF (TPC-C).

100 300 500 700 900
of Clients

10

100

1000

10000

A
v
g
 T
ra
n
sa
ct
io
n
 L
a
te
n
cy
 (
m
s)

50x

100x

150x

200x

250x

300x

O
u
r
Im

p
ro
v
e
m
e
n
t

Figure 9: Avg. latency improvement
with bLDSF (under the same TPC-C
transactions per second).

100 300 500 700 900
of Clients

101

102

103

104

9
9
%
 L
a
te
n
cy
 (
m
s)

50x

100x

150x

200x

O
u
r
Im

p
ro
v
e
m
e
n
t

Figure 10: Tail latency improvement
w/ bLDSF (under the same number of
TPC-C transactions per second).

In summary, our experiments show the following:

1. By resolving contention much more effectively than FIFO
and VATS, bLDSF improves throughput by up to 6.5x
(by 4.5x on average) over FIFO, and by up to 2x (1.5x
on average) over VATS. (Section 6.2)

2. bLDSF can reduce mean transaction latencies by up to
300x and 80x (30x and 3.5x, on average) compared to
FIFO and VATS, respectively. It also reduces the 99th
percentile latency by up to 190x and 16x, compared to
FIFO and VATS, respectively. (Section 6.3)

3. Both bLDSF and LDSF outperform various heuristics by
2.5x in terms of throughput, and by up to 100x (8x on
avg.) in terms of transaction latency. (Section 6.4)

4. Our algorithms reduce queue length by reducing con-
tention, and thus incur much less overhead than FIFO.
However, their overhead is larger than VATS. (Section 6.5)

5. As the degree of contention rises in the system, bLDSF’s
improvement over both FIFO and VATS increases. (Sec-
tion 6.6)

6. bLDSF is not sensitive to the specific choice of delay fac-
tor, as long as it is chosen to be an increasing and sub-
linear function. (Section 6.7)

7. Our approximation reduces scheduling overhead by up to
80x, while maintains its error within a reasonable range.

6.1 Experimental Setup
Hardware & Software — All experiments were performed
using a 5 GB buffer pool on a Linux server with 16 Intel(R)
Xeon(R) CPU E5-2450 processors and 2.10GHz cores. The
clients were run on a separate machine, submitting transac-
tions to MySQL 5.7 running on the server.

Methodology — We used the OLTP-Bench tool [23] to run
the TPC-C workload. We also modified this tool to run a mi-
crobenchmark (explained below). OLTP-Bench generated
transactions at a specified rate, and client threads issued
these transactions to MySQL. The latency of each transac-
tion was calculated as the time from when it was issued until
it finished. In all experiments, we controlled the number of
transactions issued per second within a safe range to prevent
MySQL from falling into a thrashing regime. We also no-
ticed that the number of deadlocks was negligible compared
to the total number of transactions, across all experiments
and algorithms.

TPC-C workload — We used a 32-warehouse configura-
tion for the TPC-C benchmark. To simulate a system with
different levels of contention, we relied on changing the fol-

lowing two parameters: (i) number of clients, and (ii) num-
ber of submitted transactions per second (a.k.a. through-
put). Each of our client threads issued a new transaction as
soon as its previous transaction finished. Thus, by creating
a specified number of client threads, we effectively controlled
the number of in-flight transactions. To control the system
throughput, we created client threads that issued transac-
tions at a specific rate.

Microbenchmark — We create a microbenchmark for a
more thorough evaluation of our algorithm under different
degrees of contention. Specifically, we created a database
with only one table that had 20,000 records in it. The clients
would send transactions to the server, each comprised of 5
queries. Each query was randomly chosen to be either a “SE-
LECT” query (acquiring a shared lock) or an “UPDATE”
query (acquiring an exclusive lock). The records in the table
were accessed by the queries according to a Zipfian distri-
bution. To generate different levels of contention, we varied
the following two parameters in our microbenchmark:

1. skew of the access pattern (the parameter θ of the Zipfian
distribution)

2. fraction of exclusive locks (probability of “UPDATE” queries).

Baselines — We compared the performance of our bLDSF
algorithm (with f(k)=log2(1 + k) as default) against the
following baselines:

1. First In First Out (FIFO). FIFO is the default sched-
uler in MySQL and nearly all other DBMSs. When an
object becomes available, FIFO grants the lock to the
transaction that has waited the longest.

2. Variance-Aware Transaction Scheduling (VATS).
This is the strategy proposed by Huang et al. [42]. When
an object becomes available, VATS grants the lock to the
eldest transaction in the queue.

3. Largest Dependency Set First (LDSF). This is the
strategy described in Algorithm 1, which is equivalent to
bLDSF with b = inf, and f(k) = 1.

4. Most Locks First (MLF). When an object becomes
available, grant a lock on it to the transaction that holds
the most locks (introduced in Section 3.1).

5. Most Blocking Locks First (MBLF). When an ob-
ject becomes available, grant a lock on it to the transac-
tion that holds the most locks which block at least one
other transaction (introduced in Section 3.1).

6. Deepest Dependency First (DDF). When an object
becomes available, grant a lock on it to the transaction
with the deepest dependency subgraph (Section 3.1).

9

For MLF, MBLF, and DDF, if a shared lock is granted,
all shared locks on that object are granted. For LDSF and
bLDSF, we use the barriers explained in Section 5 to prevent
starvation. For FIFO and VATS, if a shared lock is granted,
they continue to grant shared locks to other transactions
waiting in the queue until they encounter an exclusive lock,
at which point, they stop granting more locks.

6.2 Throughput
We compared the system throughput when using FIFO

and VATS versus bLDSF, given an equal number of clients
(i.e., in-flight transactions). We varied the number of clients
from 100 to 900. The results of this experiment for TPC-C
are presented in Figure 8.

In both cases, the throughput dropped as the number of
clients increased. This is expected, as more transactions in
the system lead to more objects being locked. Thus, when
a transaction requests a lock, it is more likely to be blocked.
In other words, the number of transactions that can make
progress decreases, which leads to a decrease in throughput.

However, the throughput decreased more rapidly when
using FIFO or VATS than bLDSF. For example, when there
were only 100 clients, bLDSF outperformed FIFO by only
1.4x and VATS by 1.1x. However, with 900 clients, bLDSF
achieved 6.5x higher throughput than FIFO and 2x higher
throughput than VATS. As discussed in Section 4.2, bLDSF
always schedules transactions that maximize the speed of
progress in the system. This is why it allows for more trans-
actions to be processed in a certain amount of time.

6.3 Average and Tail Transaction Latency
We compared transaction latencies of FIFO, VATS and

bLDSF under an equal number of transactions per second
(i.e, throughput). We varied the number of clients (and
hence, the number of in-flight transactions) from 100 to
900 for FIFO and VATS, and then ran bLDSF at the same
throughput as VATS, which is higher than the throughput
of FIFO. This means that we compare bLDSF with FIFO
at a higher throughput. The result is shown in Figure 9.
Our bLDSF algorithm dramatically outperformed FIFO by
a factor of up to 300x and VATS by 80x. This outstanding
improvement confirms our Theorems 3 and 6, as our algo-
rithm is designed to minimize average transaction latencies.

We also compared the 99th percentile latencies in the same
experiment, as shown in Figure 10. bLDSF outperformed
FIFO by up to 190x. Interestingly, bLDSF outperformed
VATS too (by up to 16x), even though the latter is specif-
ically designed to reduce tail latencies. This is because, by
reducing average latencies, our algorithm reduces tail laten-
cies too. In other words, when all transactions finish faster
on average, those waiting at the end of the queue will also
wait less, hence reducing the tail latencies.

6.4 Comparison with Other Heuristics
In this section, we report our comparison of both bLDSF

and LDSF algorithms against the heuristic methods intro-
duced in Section 3, i.e., MLF, MBLF, and DDF. Moreover,
we compare our algorithms with VATS too.

First, we compared their throughput given an equal num-
ber of clients. We varied the number of clients from 100
to 900. The results are shown in Figure 11. LDSF and
bLDSF achieve up to 2x and 2.5x improvement over the
other heuristics in terms of throughput, respectively.

We also measured transaction latencies under an equal
number of transactions per second (i.e, throughput). We
varied the number of clients from 100 to 900 for the heuris-
tics, and then ran bLDSF and LDSF at the maximum through-
put achieved by any of the heuristics. For those heuris-
tics which were not able to achieve this throughput, we
compared our algorithms at a higher throughput than they
achieved. The results are shown in Figure 12, indicating that
MLF, MBLF, and DDF outperformed FIFO by about 2.5x
in terms of average latency, while our algorithms achieved up
to 100x improvement over the best heuristics (MBLF with
900 transactions). Furthermore, bLDSF was better than
LDSF by a small margin.

6.5 Scheduling Overhead
We also compared the overhead of our algorithms (LDSF

and bLDSF) against both FIFO and VATS: the overhead of
a scheduling algorithm is the time needed by the algorithm
to decide which lock(s) to grant.

In this experiment, we fixed the number of clients to 100
while varying throughput from 200 to 1000. The result is
shown in Figure 13. We can see that, although all three
algorithms have the same time complexity in terms of the
queue length (Section 5), ours resulted in much less overhead
than FIFO because they led to much shorter queues for the
same throughput. This is because our algorithms effectively
resolve contention, and thus, reduce the number of waiting
transactions in the queue. To illustrate this, we also mea-
sured the average number of waiting transactions whenever
an object becomes available. As shown in Figure 14, this
number was much smaller for LDSF and bLDSF. However,
LDSF and bLDSF did incur a higher overhead than VATS,
despite the fact that the queues were longer under VATS.
This is because VATS requires a much lighter computation,
e.g., it does not require calculating or updating the sizes of
the dependency sets.

6.6 Studying Different Levels of Contention
In this section, we study the impact of different levels

of contention on the effectiveness of our bLDSF algorithm.
Contention in a workload is a result of two factors: (i) skew
in the data access pattern (e.g., popular tuples), and (ii) a
large number of exclusive locks. There is more contention
when the pattern is more skewed, as transactions will re-
quest a lock on the same records more often. Likewise, ex-
clusive lock requests cause more contention, as they cannot
be granted together and result in blocking more transac-
tions. We studied the effectiveness of our algorithm under
different degrees of contention, by varying these two factors
using our microbenchmark:

1. We fixed the fraction of exclusive locks to be 60% of all
lock requests, and varied the θ parameter of the Zipfian
distribution of our access distribution between 0.5 and
0.9 (larger θ, more skew).

2. We fixed the θ parameter to be 0.8, and varied the prob-
ability of an “UPDATE” query in our microbenchmark
between 20% and 100%. The larger this probability, the
larger the fraction of exclusive locks.

First, we ran FIFO using 300 clients, and then ran both
VATS and bLDSF at the same throughput as FIFO. The
results of these experiments are shown in Figures 15 and 16.

Figure 15 shows that when there is no skew, there is no
contention, and thus most queues are either empty or only

10

bLDSF Impr. Over FIFO bLDSF Impr. Over VATS bLDSF LDSF VATS MBLF DDF MLF FIFO

100 300 500 700 900
of Clients

0

500

1000

1500

2000

2500

3000

T
h
ro
u
g
h
p
u
t
(t
p
s)

Figure 11: Maximum throughput un-
der various algorithms (TPC-C).

100 300 500 700 900
of Clients

100

101

102

103

104

A
v
g
 T
ra
n
sa
ct
io
n
 L
a
te
n
cy

 (
m
s)

Figure 12: Transaction latency under
various algorithms (TPC-C).

200 400 600 800 1000
Throughput (tps)

0

2

4

6

8

10

S
ch

e
d
u
lin

g
 O
v
e
rh
e
a
d
 (
µ
s)

Figure 13: Scheduling overhead of var-
ious algorithms (TPC-C).

bLDSF Impr. Over FIFO bLDSF Impr. Over VATS bLDSF LDSF VATS FIFO

200 400 600 800 1000
Throughput (tps)

0.001

0.010

0.100

1.000

10.000

A
v
g
 #

 o
f
W
a
it
in
g
 T
ra
n
sa

ct
io
n
s

Figure 14: Average number of transac-
tions waiting in the queue under various
algorithms (TPC-C).

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Skew of Access Pattern (θ of Zipfian Distribution)

50

100

150

200

250

300

350

400

A
v
g
 T
ra
n
sa
ct
io
n
 L
a
te
n
cy
 (
m
s)

10x

20x

30x

40x

50x

60x

O
u
r
Im

p
ro
v
e
m
e
n
t

Figure 15: Average transaction la-
tency for different degrees of skewness
(microbenchmark).

20% 40% 60% 80% 100%
Contention (% of Exclusive Locks)

10

100

1000

A
v
g
 T
ra
n
sa
ct
io
n
 L
a
te
n
cy
 (
m
s)

0x

20x

40x

60x

80x

100x

O
u
r
Im

p
ro
v
e
m
e
n
t

Figure 16: Average latency for dif-
ferent number of exclusive locks (mi-
crobenchmark).

have a single transaction waiting. Since there is no schedul-
ing decision to be made in this situation, FIFO, VATS and
bLDSF become equivalent and exhibit a similar performance.
However, the gap between bLDSF and the other two algo-
rithms widens, as skew (and thereby contention) increases.
For example, when the data access is highly skewed (θ =
0.9), bLDSF outperforms FIFO by more than 50x and VATS
by 38x. Figure 16 reveals a similar trend: as more exclusive
locks are requested, bLDSF achieves greater improvement.
Specifically, when 20% of the lock requests are exclusive,
bLDSF outperforms FIFO by 20x and VATS by 9x. How-
ever, when all the locks are exclusive, the improvement is
even more dramatic, i.e., 70x over FIFO and 25x over VATS.
Note that, although VATS guarantees optimality when there
are only exclusive locks [42], it fails to account for transac-
tion dependencies in its analysis (see Section 7 for a discus-
sion of the assumptions made in VATS versus bLDSF). In
summary, when there is no contention in the system, there
are no scheduling decisions to be made, and all scheduling
algorithms are equivalent. However, as contention rises, so
does the need for better scheduling decisions, and so does
the gap between bLDSF and other algorithms.

6.7 Choice of Delay Factor
To better understand the impact of delay factors on bLDSF,

we experimented with several functions of different growth
rates, ranging from the lower bound of all functions that
satisfy conditions C1, C2, and C3 (i.e., f(k) = 1) to their
upper bound (i.e., f(k) = k). Specifically, we used each
of the following delay factors in our bLDSF algorithm, and
measured the average transaction latency:

• f1(k) = 1;

• f2(k) =
√

log2(1 + k);

• f3(k) = log2(1 + k);

• f4(k) =
√
k;

• f5(k) = 0.5(1 + k);

• f6(k) = k.

The results are shown in Figure 17. We can see that all sub-
linear functions (i.e., f2, f3, and f4) performed comparably,
and that they performed better than the other functions.
Understandably, f1 did not perform well, as it did not satisfy
condition C2 from Section 4.1. Functions f5 and f6 did not
perform well either, since linear functions over-estimate the
delay. For example, two transactions running concurrently
take less time than if they ran one after another.

6.8 Approximating Sizes of Dependency Sets
In this section, we study the effectiveness of the approx-

imation technique discussed in Section 5. First, we com-
pared the scheduling overhead when computing the depen-
dency set sizes approximately versus exactly. We ran the
bLDSF algorithm with and without the approximation un-
der TPC-C, given an equal number of clients (i.e., in-flight
transactions). We varied the number of clients from 100 to
900. As shown in Figure 18, our approximation reduced the
scheduling overhead by up to 80x.

We also measured the approximation error—the deviation
from the actual sizes of the dependency sets—for varying
ratio of shared locks in the workload. Figure 19 shows the
complementary cumulative distribution function (CCDF) of
the relative error when approximating the sizes of the de-
pendency sets. The error grew with the ratio of shared lock;
this was expected, as shared locks are the cause of error in
our approximation. However, in most cases, the error re-
mained within a reasonable range. Even with 80% shared
locks, we observed a 2-approximation of the exact sizes in
99% of the cases.

7. RELATED WORK

11

100 300 500 700 900
of Clients

0

200

400

600
A
v
g
 T
ra
n
sa
ct
io
n
 L
a
te
n
cy

 (
m
s)

f(x) =1

f(x) =
√
log2 (1+x)

f(x) =log2 (1+x)

f(x) =
√
x

f(x) =0.5(1+x)

f(x) =x

Figure 17: The impact of delay factor
on average latency.

100 300 500 700 900
of Clients

0

1

10

100

1000

S
ch

e
d
u
lin

g
 O

v
e
rh

e
a
d
 (
µ
s) accurate approximate

20x

40x

60x

80x

100x

S
p
e
e
d
u
p

Figure 18: Scheduling overhead with
and without approximation of the sizes
of the dependency sets.

0 20 40 60 80 100
Relative Error (%)

0.0

0.1

0.2

0.3

0.4

0.5

C
C
D
F
o
f
R
e
la
ti
v
e
 E
rr
o
r 20% shared locks

40% shared locks

60% shared locks

80% shared locks

Figure 19: CCDF of the relative error
of the approximation of the sizes of the
dependency sets.

In short, the large body of work on traditional job schedul-
ing is unsuitable in a database context due to the unique
requirements of locking protocols deployed in databases. Al-
though there is some work on lock scheduling for real-time
databases, they aim at supporting explicit deadlines rather
than minimizing the mean latency of transactions.

Job scheduling — Outside the database community, there
has been extensive research on scheduling problems in gen-
eral. Here, the duration (and sometimes the weight and
arrival time) of each task is known a priori, and a typical
goal is to minimize (i) the sum of (weighted) completion
times (SCT) [61, 39, 37], (ii) the latest completion time [20,
32, 64], (iii) the completion time variance (CTV) [14, 17,
74, 46], or even (iv) the waiting time variance (WTV) [27].
The offline SCT problem can be optimally solved using a
Shortest-Weighted-Execution-Time approach, whereby jobs
are scheduled in the non-decreasing order of their ratio of
execution time to weight [67], if they all arrive at the same
time. However, when the jobs arrive at different times, the
scheduling becomes NP-hard [49]. Hall et al. [33, ?] propose
an approximate solution to this problem. A well-known re-
sult shows that an optimal schedule for the CTV and WTV
problems must have the so-called “V-shape property” [14,
17, 74, 46, 27], which means that the job with the greatest
execution time must be scheduled first, followed by a subset
of other jobs in their decreasing order of processing times,
followed by the remaining jobs in their increasing order of
processing times.

None of these results are applicable to our setting, mainly
because of their assumption that each processor/worker can
be used by only one job at a time, whereas in a database
locks can be held both shared and exclusively. Moreover,
they assume the execution time of each job is known, which
is not the case in a database (i.e., the database does not
know when the application/user will commit and release its
locks). Finally, with the exception of [61, 39], prior work on
scheduling either assumes that all tasks are available at the
beginning, or that their arrival time is known. In a database,
however, such information is unavailable.

Dependency-based scheduling — Scheduling tasks with
dependencies among them has been studied for both single
machines [66, 40] and multiprocessors [24, 25, 28, 57]. Here,
each job only needs one processor and once scheduled, it will
not be blocked again. However, in a database, a transaction
can request many locks, and thus, can be blocked even after
it is granted some locks.

Real-time databases (RTDB) — There is some work on
lock scheduling in the context of RTDBs, where transactions
are scheduled to meet a set of user-given deadlines [73, 7, 52,

68, 75, 13, 34, 72, 71, 36, 31, 8, 50, 63, 19, 38]. It is shown
that the First-In-First-Out (FIFO) policy performs poorly in
this setting [31, 7, 8, 50], compared to the Earliest-Deadline-
First policy [52, 68, 75], which is also used in practice [13].

Unfortunately, the work in this area is not applicable to
general-purpose database systems. First, in an RTDB, each
transaction comes with a pre-specified deadline, while in a
general-purpose database such deadlines are not provided.
Second, a key assumption in this line of work is that the exe-
cution time of each transaction is known in advance, whereas
in a general database the execution time of a transaction is
only known once it is finished. Finally, the scheduling goal
in a RTDB is to minimize the total tardiness or the number
of missed deadlines. In other words, as long as a transaction
meets its deadline, they do not care whether it finishes right
before the deadline or much earlier. In contrast, general
databases aim to execute transactions as fast as possible.

Scheduling in existing DBMS — For simplicity and fair-
ness [12], the First-In-First-Out (FIFO) policy and its vari-
ants are the most widely adopted scheduling policies in many
of today’s databases [9], operating systems [16], and com-
munication networks [48]. FIFO is the default lock schedul-
ing policy in MySQL [3], MS SQL Server [6], Postgres [5],
Teradata [4], and DB2 [2]. Despite its popularity, FIFO
does not provide any guarantees in terms of average or per-
centile latencies. Huang et al. [42] propose a scheduling
algorithm, called Variance-Aware Transaction Scheduling
(VATS), which aims at minimizing the variance of trans-
action latencies, and its optimality holds only when there
are no shared locks in the system. In contrast, we focus
on minimizing mean latency, and allow for both shared and
exclusive locks. In short, designing optimal lock scheduling
algorithms for databases has remained an open problem.

Variance-Aware Transaction Scheduling (VATS) —
Our prior work proves the optimality of VATS in terms of
the Lp-norm of transaction latencies [42]. In this paper, we
prove the optimality of bLDSF (in terms of expected la-
tency), but under different assumptions. The optimality of
VATS holds when there are no shared locks. More impor-
tantly, in our analysis of VATS, we have used a simplify-
ing assumption that models the latency of a transaction t
as l(t) = A(t) + U(t) + R · (N(t) + 1), where A(t) is the
age of t (i.e., time since arrival), U(t) is the time between
when t arrives in the current queue until that lock becomes
available, and N(t) is the number of transactions in the cur-
rent queue that will be scheduled before t. However, VATS
does not take into account that U(t) itself is also affected
by the scheduling decision. In this paper, when analyzing
bLDSF, we have been able to remove both assumptions and
hence, prove optimality under a much more realistic set-

12

ting. We consider both shared and exclusive locks, and we
take the dependencies into account, i.e., we account for how
our scheduling decision affects the wait times of other trans-
actions that are waiting for other objects in the system.
In Section 6, we have also empirically shown that bLDSF’s
more realistic assumptions lead to better decisions.

Deadlock resolution — The problem of deadlock resolu-
tion is about deciding which transaction(s) to abort (a.k.a.
victims) in order to resolve a deadlock [62, 35, 53, 41, 30].
Typically, transactions with lower priority are chosen as vic-
tims in order to reduce the abortion cost or the amount of
work wasted. Here, a transaction’s priority can be based on
its age [30, 10], its deadline [44], or the number of locks it
holds [54]. Franaszek et al. [30] empirically show that an
age-based priority improves concurrency, and reduces the
amount of work wasted. Agrawal et al. [10] argue that choos-
ing victims based on their age and the number of currently
held locks leads to fewer rollbacks, compared to (i) choosing
a transaction randomly, or (ii) aborting the most recently
blocked transaction.

These proposals take contention into consideration, but
only for deadlock resolution. In this paper, we focus on lock
scheduling and show that contention-aware scheduling can
yield significant performance improvements in practice.

8. CONCLUSION
We study a fundamental (yet, surprisingly overlooked)

problem: lock scheduling in a database system. Despite the
massive body of work on transactional databases, the aston-
ishing impact of lock scheduling on overall performance of
a transactional system seems to have been largely under-
recognized—to the extent that every DBMS to date has
simply relied on FIFO. To our knowledge, we are the first
to propose the idea of contention-aware lock scheduling,
and present efficient algorithms that are guaranteed to re-
duce mean transaction latencies down to a constant-factor-
approximation of the optimal scheduling. We also empiri-
cally confirm our theoretical analysis by modifying a real-
world DBMS. Our extensive experiments show that our al-
gorithms reduce transaction latencies by up to two orders of
magnitude, while delivering 6.5x higher throughput. More
importantly, our algorithm has already been adopted by
MySQL, and has started to impact real world applications.

13

9. REFERENCES
[1] Contention-aware transaction scheduling arriving in

InnoDB to boost performance.
http://mysqlserverteam.com/
contention-aware-transaction-scheduling-arriving-in-innodb-to-boost-performance/.

[2] Db2 documentation. https://www.ibm.com/support/
knowledgecenter/en/SSEPEK 12.0.0/perf/src/tpc/
db2z lockcontention.html.

[3] Mysql source code.
https://github.com/mysql/mysql-server/blob/5.7/
storage/innobase/lock/lock0lock.cc.

[4] Overview of teradata database locking. http:
//info.teradata.com/HTMLPubs/DB TTU 16 00/
index.html#page/General Reference%
2FB035-1091-160K%2Fmtg1472241438567.html.

[5] Postgres documentation.
https://github.com/postgres/postgres/blob/master/
src/backend/storage/lmgr/README.

[6] Sql server, lock manager, and relaxed fifo.
https://blogs.msdn.microsoft.com/psssql/2009/06/02/
sql-server-lock-manager-and-relaxed-fifo/.

[7] R. Abbott and H. Garcia-Molina. Scheduling real-time
transactions. ACM SIGMOD Record, 1988.

[8] R. K. Abbott and H. Garcia-Molina. Scheduling
real-time transactions: A performance evaluation.
TODS, 1992.

[9] B. Adelberg, B. Kao, and H. Garcia-Molina. Database
support for efficiently maintaining derived data. In
International Conference on Extending Database
Technology, 1996.

[10] R. Agrawal, M. J. Carey, and L. W. McVoy. The
performance of alternative strategies for dealing with
deadlocks in database management systems. IEEE
Transactions on Software Engineering, 1987.

[11] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning
through large-scale machine learning. In Proceedings
of the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pages 1009–1024,
2017.

[12] S. Altmeyer, S. M. Sundharam, and N. Navet. The
case for fifo real-time scheduling. Technical report,
2016.

[13] R. F. Aranha, V. Ganti, S. Narayanan,
C. Muthukrishnan, S. Prasad, and K. Ramamritham.
Implementation of a real-time database system.
Information Systems, 1996.

[14] C. Bector, Y. P. Gupta, and M. C. Gupta. V-shape
property of optimal sequence of jobs about a common
due date on a single machine. Computers & operations
research, 1989.

[15] P. A. Bernstein and N. Goodman. Concurrency
control in distributed database systems. ACM
Computing Surveys, 1981.

[16] D. P. Bovet and M. Cesati. Understanding the Linux
kernel. 2005.

[17] X. Cai. V-shape property for job sequences that
minimize the expected completion time variance.
European Journal of Operational Research, 1996.

[18] M. J. Carey and M. Stonebraker. The performance of
concurrency control algorithms for database

management systems. In VLDB, 1984.

[19] S. Chakravarthy, D.-K. Hong, and T. Johnson.
Real-time transaction scheduling: A framework for
synthesizing static and dynamic factors. Real-Time
Systems, 1998.

[20] B.-C. Choi, S.-H. Yoon, and S.-J. Chung. Minimizing
maximum completion time in a proportionate flow
shop with one machine of different speed. European
Journal of Operational Research, 2007.

[21] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger,
G. Gibson, K. Keeton, and E. P. Xing. Solving the
straggler problem with bounded staleness. In HotOS,
2013.

[22] L. Daynès, O. Gruber, and P. Valduriez. Locking in
oodbms client supporting nested transactions. In Data
Engineering, 1995. Proceedings of the Eleventh
International Conference on, 1995.

[23] D. E. Difallah, A. Pavlo, C. Curino, and
P. Cudre-Mauroux. Oltp-bench: An extensible testbed
for benchmarking relational databases. PVLDB, 2013.

[24] J. Du and J. Y.-T. Leung. Scheduling tree-structured
tasks with restricted execution times. Information
processing letters, 1988.

[25] J. Du and J. Y.-T. Leung. Scheduling tree-structured
tasks on two processors to minimize schedule length.
SIAM journal on discrete mathematics, 1989.

[26] A. C. Dusseau, R. H. Arpaci, and D. E. Culler.
Effective distributed scheduling of parallel workloads.
ACM SIGMETRICS Performance Evaluation Review,
1996.

[27] S. Eilon and I. Chowdhury. Minimising waiting time
variance in the single machine problem. Management
Science, 1977.

[28] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng.
Optimal online scheduling of parallel jobs with
dependencies. In STOC, 1993.

[29] K. B. Ferreira, P. G. Bridges, R. Brightwell, and K. T.
Pedretti. The impact of system design parameters on
application noise sensitivity. Cluster computing, 2013.

[30] P. Franaszek and J. T. Robinson. Limitations of
concurrency in transaction processing. TODS, 1985.

[31] L. George and P. Minet. A fifo worst case analysis for
a hard real-time distributed problem with consistency
constraints. In ICDCS, 1997.

[32] A. Guinet and M. Solomon. Scheduling hybrid
flowshops to minimize maximum tardiness or
maximum completion time. International Journal of
Production Research, 1996.

[33] L. A. Hall, D. B. Shmoys, and J. Wein. Scheduling to
minimize average completion time: Off-line and
on-line algorithms. In SODA, 1996.

[34] J. R. Haritsa, M. J. Canrey, and M. Livny.
Value-based scheduling in real-time database systems.
VLDBJ, 1993.

[35] J. R. Haritsa, M. J. Carey, and M. Livny. Data access
scheduling in firm real-time database systems.
Real-Time Systems, 1992.

[36] J. R. Haritsa, M. Livny, and M. J. Carey. Earliest
deadline scheduling for real-time database systems. In
RTSS, 1991.

[37] C. He, J. Y.-T. Leung, K. Lee, and M. L. Pinedo.

14

http://mysqlserverteam.com/contention-aware-transaction-scheduling-arriving-in-innodb-to-boost-performance/
http://mysqlserverteam.com/contention-aware-transaction-scheduling-arriving-in-innodb-to-boost-performance/
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lockcontention.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lockcontention.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/perf/src/tpc/db2z_lockcontention.html
https://github.com/mysql/mysql-server/blob/5.7/storage/innobase/lock/lock0lock.cc
https://github.com/mysql/mysql-server/blob/5.7/storage/innobase/lock/lock0lock.cc
http://info.teradata.com/HTMLPubs/DB_TTU_16_00/index.html#page/General_Reference%2FB035-1091-160K%2Fmtg1472241438567.html
http://info.teradata.com/HTMLPubs/DB_TTU_16_00/index.html#page/General_Reference%2FB035-1091-160K%2Fmtg1472241438567.html
http://info.teradata.com/HTMLPubs/DB_TTU_16_00/index.html#page/General_Reference%2FB035-1091-160K%2Fmtg1472241438567.html
http://info.teradata.com/HTMLPubs/DB_TTU_16_00/index.html#page/General_Reference%2FB035-1091-160K%2Fmtg1472241438567.html
https://github.com/postgres/postgres/blob/master/src/backend/storage/lmgr/README
https://github.com/postgres/postgres/blob/master/src/backend/storage/lmgr/README
https://blogs.msdn.microsoft.com/psssql/2009/06/02/sql-server-lock-manager-and-relaxed-fifo/
https://blogs.msdn.microsoft.com/psssql/2009/06/02/sql-server-lock-manager-and-relaxed-fifo/

Improved algorithms for single machine scheduling
with release dates and rejections. 4OR, 2016.

[38] D. Hong, T. Johnson, and S. Chakravarthy. Real-time
transaction scheduling: a cost conscious approach.
1993.

[39] J. A. Hoogeveen and A. P. Vestjens. Optimal on-line
algorithms for single-machine scheduling. In
International Conference on Integer Programming and
Combinatorial Optimization, 1996.

[40] W. Horn. Single-machine job sequencing with treelike
precedence ordering and linear delay penalties. SIAM
Journal on Applied Mathematics, 1972.

[41] J. Huang. Real-time transaction processing: design,
implementation, and performance evaluation. PhD
thesis, University of Massachusetts, 1991.

[42] J. Huang, B. Mozafari, G. Schoenebeck, and
T. Wenisch. A top-down approach to achieving
performance predictability in database systems. In
SIGMOD, 2017.

[43] T. Ibaraki, T. Kameda, and N. Katoh. Cautious
transaction schedulers for database concurrency
control. IEEE transactions on software engineering,
1988.

[44] B. Kao and H. Garcia-Molina. An overview of
real-time database systems. In Real Time Computing.
1994.

[45] R. Kohli, R. Krishnamurti, and P. Mirchandani. The
minimum satisfiability problem. SIAM Journal on
Discrete Mathematics, 1994.

[46] A. M. Krieger and M. Raghavachari. V-shape
property for optimal schedules with monotone penalty
functions. Computers & operations research, 1992.

[47] J. Lee and S. H. Son. Performance of concurrency
control algorithms for real-time database systems.,
1996.

[48] J. P. Lehoczky. Scheduling communication networks
carrying real-time traffic. In RTSS, 1998.

[49] J. K. Lenstra, A. R. Kan, and P. Brucker. Complexity
of machine scheduling problems. Annals of discrete
mathematics, 1977.

[50] H. Leontyev and J. H. Anderson. Tardiness bounds for
fifo scheduling on multiprocessors. In Euromicro
Conference on Real-Time Systems, 2007.

[51] Q. Lin, P. Chang, G. Chen, B. C. Ooi, K.-L. Tan, and
Z. Wang. Towards a non-2pc transaction management
in distributed database systems. In Proceedings of the
2016 International Conference on Management of
Data, 2016.

[52] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. JACM, 1973.

[53] P. P. Macri. Deadlock detection and resolution in a
codasyl based data management system. In SIGMOD,
1976.

[54] D. P. Mitchell and M. J. Merritt. A distributed
algorithm for deadlock detection and resolution. In
Proceedings of the third annual ACM symposium on
Principles of distributed computing, 1984.

[55] B. Mozafari, C. Curino, A. Jindal, and S. Madden.
Performance and resource modeling in
highly-concurrent OLTP workloads. In SIGMOD,

2013.

[56] B. Mozafari, J. Ramnarayan, S. Menon, Y. Mahajan,
S. Chakraborty, H. Bhanawat, and K. Bachhav.
Snappydata: A unified cluster for streaming,
transactions, and interactive analytics. In CIDR, 2017.

[57] R. R. Muntz and E. G. Coffman Jr. Preemptive
scheduling of real-time tasks on multiprocessor
systems. JACM, 1970.

[58] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma,
P. Menon, T. C. Mowry, M. Perron, I. Quah,
S. Santurkar, A. Tomasic, S. Toor, D. V. Aken,
Z. Wang, Y. Wu, R. Xian, and T. Zhang. Self-driving
database management systems. In CIDR 2017, 8th
Biennial Conference on Innovative Data Systems
Research, Chaminade, CA, USA, January 8-11, 2017,
Online Proceedings, 2017.

[59] J. Pei, X. Liu, P. M. Pardalos, W. Fan, and S. Yang.
Scheduling deteriorating jobs on a single
serial-batching machine with multiple job types and
sequence-dependent setup times. Annals of Operations
Research, 2017.

[60] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of
the missing supercomputer performance: Achieving
optimal performance on the 8,192 processors of asci q.
In Supercomputing, 2003 ACM/IEEE Conference,
2003.

[61] C. Phillips, C. Stein, and J. Wein. Scheduling jobs
that arrive over time. In Workshop on Algorithms and
Data Structures, 1995.

[62] K. Ramamritham. Real-time databases. Distributed
and parallel databases, 1993.

[63] R. Rastogi, S. Seshadri, P. Bohannon, D. Leinbaugh,
A. Silberschatz, and S. Sudarshan. Improving
predictability of transaction execution times in
real-time databases. Real-Time Systems, 2000.

[64] A. J. Ruiz-Torres and G. Centeno. Scheduling with
flexible resources in parallel workcenters to minimize
maximum completion time. Computers & operations
research, 2007.

[65] L. Sha, R. Rajkumar, and J. P. Lehooczky.
Concurrency control for distributed real-time
databases. SIGMOD Rec., 1988.

[66] J. B. Sidney. Decomposition algorithms for
single-machine sequencing with precedence relations
and deferral costs. Operations Research, 1975.

[67] W. E. Smith. Various optimizers for single-stage
production. Naval Research Logistics Quarterly, 1956.

[68] J. A. Stankovic, M. Spuri, K. Ramamritham, and
G. C. Buttazzo. Deadline scheduling for real-time
systems: EDF and related algorithms. 2012.

[69] M. Stonebraker and A. Weisberg. The voltdb main
memory dbms. IEEE Data Eng. Bull., 36(2):21–27,
2013.

[70] B. Tian, J. Huang, B. Mozafari, and G. Schoenebeck.
Contention-aware lock scheduling for transactional
databases. Technical Report,
https://web.eecs.umich.edu/∼mozafari/php/data/
uploads/lock-schd-report.pdf, 2017.

[71] D. Towsley and S. Panwar. On the optimality of
minimum laxity and earliest deadline scheduling for
real-time multiprocessors. In Workshop on Real Time,

15

https://web.eecs.umich.edu/~mozafari/php/data/uploads/lock-schd-report.pdf
https://web.eecs.umich.edu/~mozafari/php/data/uploads/lock-schd-report.pdf

1990.

[72] S.-M. Tseng, Y.-H. Chin, and W.-P. Yang. Scheduling
real-time transactions with dynamic values: a
performance evaluation. In Workshop on Real-Time
Computing Systems and Applications, 1995.

[73] Ö. Ulusoy and G. G. Belford. Real-time transaction
scheduling in database systems. Information Systems,
1993.

[74] V. Vani and M. Raghavachari. Deterministic and
random single machine sequencing with variance
minimization. Operations Research, 1987.

[75] M. Xiong, Q. Wang, and K. Ramamritham. On
earliest deadline first scheduling for temporal
consistency maintenance. Real-Time Systems, 2008.

[76] R. Zajcew, P. Roy, D. L. Black, C. Peak, P. Guedes,
B. Kemp, J. LoVerso, M. Leibensperger, M. Barnett,
F. Rabii, et al. An osf/1 unix for massively parallel
multicomputers. In USENIX Winter, 1993.

APPENDIX
A. PROOF OF THEOREM 1

Proof. In order to show that this problem is NP -hard,
we reduce the problem from MAX-2-DNF. In this problem,
we are given a disjunctive normal formula ϕ where each
clause has at most 2 literals, and the goal is to output an
assignment which satisfies the maximum number of clauses.
(So each clause will be the AND of two literals). Max-DNF,
which is the same problem as Min-SAT, is known to be NP-
complete [45] even when the number of literals in each clause
is bounded by 2, which is called Max-2-DNF.

Given a disjunctive normal formula ϕ with variable set V
and clause set C, we create a dependency graph G as follows:

• Transactions:

– For each variable v ∈ V , create transactions tv, and
t¬v

– For each clause c ∈ C, create one transaction tc.

• Objects:

– For each variable v ∈ V , create an object ov: tv,
and t¬v are waiting for an exclusive lock on ov.

– For each clause c ∈ C, create an object oc: for each
literal ` in c, t` currently holds a shared lock on oc,
and tc is waiting for an exclusive lock on oc.

Suppose that each transaction takes 1 unit time to finish.
We now prove that an assignment for the DNF problem
that satisfies at least m of the clauses is equivalent to an
algorithm under which the total latency is 3|V |+ 3|C| −m.

Given an assignment that satisfies m clauses, we first
grant the lock to tx such that x is true in the assignment at
time 0, for x ∈ V or ¬x ∈ V . There are |V | such transac-
tions and they will finish at time 1, so the latency for these
transactions is |V |. At time 1, we grant the lock to tx such
that x is false in the assignment, for x ∈ V or ¬x ∈ V .
There are |V | such transactions and they will finish at time
2, so the latency for these transactions is 2|V |. Moreover,
for the clauses c such that all its literals are true, we grant
the lock to tc. There are m such transactions and they will
finish at time 2 as well, so the latency for them is 2m. At
time 2, we grant the lock to all other transactions. There
are |C| −m such transactions and they will finish at time 3,

so the latency for them is 3(|C| −m). Therefore, the total
latency is 3|V |+ 3|C| −m.

On the other hand, if we have a scheduling algorithm
whose total latency is 3|V | + 3|C| − m, the only decisions
made when constructing the schedule are whether to grant
the lock to tv or t¬v for each v ∈ V . Thus, we can construct
an assignment from the schedule. Because the schedule total
latency 3|V |+ 3|C| −m, we know that m of the tc complete
at time 2. But this only happens if the assignment satisfies
the clause c. Therefore, the assignment satisfies m clauses
in ϕ.

B. PROOF OF THEOREM 2
Proof. Let wA(t) be a random variable representing the

total time transaction t will eventually spend in the sys-
tem waiting for various locks, with expectation w̄A(t). In
other words, the latency of transaction t under schedul-
ing algorithm A can be modeled as lA(t) = wA(t) + R.
Thus, minimizing the expected transaction latency under A
is equivalent to minimizing the expected wait time under
A, defined as w̄(A) = 1

|T |
∑

t∈T w̄A(t). Apparently, we have

l̄(A) = w̄(A) + R̄.
For each transaction t ∈ T which is currently waiting for

a lock, let o be an object reachable from t in the dependency
graph that is locked by a running transaction (i.e, a critical
object of t as defined in Section 3.2). Then we say that
t is delayed by object o. Suppose all locks in the system
are exclusive, that is, each lock can be held by at most one
transaction. Then, the dependency graph of the system C,
which is a DAG, becomes a forest (a set of disjoint trees).
Therefore, each transaction is delayed by at most one object.

Given a scheduling algorithm A, let dA(t, o) be the ex-
pected time transaction t is delayed by object o. Then, the
expected wait time of transaction t is given by

w̄A(t) =
∑
o∈O

dA(t, o). (3)

Therefore, the mean wait time by algorithm A is given by

w̄(A) =
1

|T |
∑
t∈T

w̄A(t)

=
1

|T |
∑
t∈T

∑
o∈O

dA(t, o)

=
1

|T |
∑
o∈O

∑
t∈g(o)

dA(t, o), (4)

where g(o) is defined as the set of transactions that can reach
object o in the dependency graph G.

Let dA(o) =
∑

t∈g(o) dA(t, o). Then, the mean expected
wait time is

w̄(A) =
1

|T |
∑
o∈O

dA(o). (5)

Therefore, minimizing d̄A is equivalent to minimizing dA(o)
for each o ∈ O.

For a given object o that has become available, suppose
there are n transactions waiting on it, denoted by t1, t2, · · · , tn.
We also assume that the transactions are sorted in the de-
creasing order of their dependency set sizes, that is:

|g(t1)| ≥ |g(t2)| ≥ · · · ≥ |g(tn)|.

16

Let a1, a2, · · · , an be the expected time that t1, t2, · · · , tn,
respectively, are granted the lock. Assume that the current
time is considered as 0. Since the execution time of a trans-
action is characterized by a memoryless random variable R,
the remaining time of the transaction Rrem has the same
distribution as R. Therefore, its expectation is given by R̄
and {a1, a2, · · · , an} = {0, R̄, · · · , (n− 1)R̄}.

For transaction ti, the time that ti is delayed by object
o is ai. The time that the other transactions in g(ti) are
delayed by o is given by

(|g(ti)| − 1)(ai + R̄),

since these transactions are also delayed by o during the
time ti is being executed.

Thus, the expected time for all transactions to be delayed
by object o is

dA(o) =

n∑
i=1

ai + (|g(ti)| − 1)(ai + R̄).

By the rearrangement inequality, dA(o) is minimized only
when a1 ≤ a2 ≤ · · · ≤ an, which corresponds to our LDSF
algorithm. In this situation, w̄(A) and, thus, l̄(A) are min-
imized as well.

Therefore, the LDSF algorithm results in the minimum
expected latency d̄A of the transactions in the system.

C. PROOF OF THEOREM 3

Proof. Since a lock can be held by multiple transactions,
a transaction can have multiple critical objects. This means
that Equation (1) does not hold anymore.

Assume that a transaction has at most c critical objects,
i.e., each transaction t is delayed by at most c objects. In-
stead of Equation (1), we have

w̄A(t) ≤
∑
o∈O

dA(t, o) ≤ c · w̄A(t). (6)

Let ŵ(A) =
1

|T |
∑

o∈O dA(o). We have the following:

w̄(A) ≤ ŵ(A) ≤ c · w̄(A). (7)

Suppose that f(k) be the delay factor defined in Sec-
tion 4.1. Let w̃(A) be the value of ŵ(A) when all trans-
actions take f(u) time to finish. Then,

w̄(A) ≤ w̃(A ≤ f(u)ŵ(A) ≤ u · ŵ(A). (8)

By the same argument in the proof of Theorem 2, we can
prove that LDSF minimizes w̃(A). Let Â be our LDSF
algorithm, and AOPT be the optimal scheduling algorithm.
Therefore, by Equation (5) and (6),

w̄(Â) ≤ w̃(Â)

≤ w̃(AOPT)

≤ u · ŵ(AOPT)

≤ u · c · w̄(AOPT).

Therefore, l̄(Â) = w̄(Â)+R̄ ≤ c·u·(w̄(AOPT)+R̄) = c·u·
l̄(AOPT), which means that LDSF is a (c ·u)-approximation
of the optimal algorithm in terms of expected latency.

D. PROOF OF LEMMA 4
Proof. Let Fi(x) be the cumulative distribution function

(CDF) of Ri, and Fmax,k(x) be the CDF of Rrem
max,k. Then,

Fmax,k(x) = Πk
i=1Fi(x). (9)

Thus,

R̄rem
max,k+1 =

∫ ∞
0

(1− Fmax,k+1(x))dx

=

∫ ∞
0

(1−Πk+1
i=1 Fi(x))dx

≥
∫ ∞

0

(1−Πk
i=1Fi(x))dx (10)

=

∫ ∞
0

(1− Fmax,k(x))dx

= R̄rem
max,k

as F (x) ∈ [0, 1]. However, since σ2
k+1 > 0, there exists a, b ≥

0 such that for all x ∈ (a, b), we have Fk+1(x) ∈ (0, 1) and
Fi(x) > 0 for i = 1, 2, · · · , k. Thus, the equality in Equation
(8) does not hold. Therefore, R̄rem

max,k+1 > R̄rem
max,k.

E. PROOF OF THEOREM 5
Proof. Given a scheduling algorithm A¬f , consider the

following situation. Suppose that n transactions are wait-
ing for an exclusive lock on object o, each holds another
lock that blocks n1.6 − 1 other transactions. Meanwhile,
m = n3 transactions are waiting for a shared lock on o,
none of which blocks another transaction. Let tm/2 be the
transaction waiting for a shared lock such that half of the
transactions waiting for the shared lock is scheduled before
or together with it, while the other half is scheduled after or

together with it by A¬f . Let tn/2 be the
n

2
-th transaction

waiting for an exclusive lock scheduled by A¬f . Consider
the following two scenarios.

Scenario 1. Suppose that tm/2 is scheduled after tn/2.
Then,

dA¬f (o) ≥ n3

2
· n

2
R̄

=
n4

4
R̄.

Let algorithm A1 be an algorithm that first schedules all the
transactions waiting for the shared lock together. Then,

dA1(o) ≤ n2.6 · (n+ f(n3))R̄.

Suppose that f(k) = 1 for all k. Then,

dA¬f (o)

dA1(o)
=

n4

4(n3.6 + n2.6)

= ω(1).

Therefore,
w̄(A¬f)

w̄(A1)
= ω(1).

Scenario 2. Suppose that tm/2 is scheduled before tn/2.
Then,

dA¬f (o) ≥ n2.6

2
· f
(
n3

2

)
R̄.

17

Let A2 be an algorithm that schedules all the transactions
waiting for the shared lock together after all transactions
waiting for an exclusive lock. Then,

dA2(o) ≤ (n3 + n2.6) · nR̄.

Suppose that f(k) =
√
k. Then,

dA¬f (o)

dA2(o)
=

n4.1

2
√

2(n4 + n3.6)

= ω(1).

Therefore,
w̄(A¬f)

w̄(A2)
= ω(1).

F. PROOF OF THEOREM 6
We define ŵ(A) for scheduling algorithm A as in the proof

of Theorem 3. Also, we consider a batch of transactions
to be scheduled together as a single transaction. We use
the same notation t for the batch as for a transaction for
simplicity. Let aA(t) be the expected time transaction is
granted the lock by scheduling algorithm A, and To be the
set of transactions waiting for a lock on object o. Then,

dA(o) =
∑
t∈To

aA(t) + (|g(t)| − 1)(aA(t) + R̄). (11)

Let Ã be the algorithm performs the same way as bLDSF,
except that it schedules all the transactions waiting for a
shared lock together (like LDSF).

To prove Theorem 6, we first prove the following lemma.

Lemma 7. Ã is minimizes ŵ(A) among all algorithms A
that schedule all the transactions waiting for a shared lock
together.

Proof. Let A1 be a scheduling algorithm that schedules
all the transactions waiting for a shared lock together. Sup-
pose t1 is scheduled before t2 by A1, i.e., aA1(t1) < aA1(t2).
Consider the following scenarios.

Scenario 1. Suppose that t1 and t2 are both transactions
waiting for an exclusive lock on object o and |g(t1)| ≤ |g(t2)|.
Consider algorithm A2 such that A2 schedules t1 when A1

schedules t2, and vice versa; A2 schedules all the other trans-
actions in the same order as A1. Then,

dA1(o)− dA2(o)

=|g(t1)|(aA1(t1)− aA2(t1)) + |g(t2)|(aA1(t2)− aA2(t2))

=|g(t1)|(aA1(t1)− aA1(t2)) + |g(t2)|(aA1(t2)− aA1(t1))

=(|g(t1)| − |g(t2)|)(aA1(t1)− aA1(t2)) ≥ 0

Therefore, ŵ(A1) ≥ ŵ(A2).
Scenario 2. Suppose that t1 is the batch of k transactions

waiting for a shared lock on o, t2 is a transaction waiting
for an exclusive lock on o, and |g(t1)| ≤ |g(t2)|f(k). More-
over, suppose that aA1(t2) = aA1(t1) + f(k)R̄, that is, t2 is
scheduled right after t1. Consider algorithmA3 such thatA3

schedules t1 right after t2 and schedules every other trans-
action the same way as A1. Then, aA3(t1) = aA3(t2) + R̄,

aA3(t2) = aA1(t1). Thus,

dA1(o)− dA3(o)

=|g(t1)|(aA1(t1)− aA3(t1)) + |g(t2)|(aA1(t2)− aA3(t2))

=|g(t1)|(aA3(t2)− aA3(t1)) + |g(t2)|(aA1(t2)− aA1(t1))

=(|g(t2)|f(k)− |g(t1)|)R̄ ≥ 0

Therefore, ŵ(A1) ≥ ŵ(A3).
Scenario 3. Suppose that t1 is a transaction waiting

for an exclusive lock on o, t2 is the batch of k transactions
waiting for a shared lock on o, and |g(t1)|f(k) ≤ |g(t2)|.
Moreover, suppose that aA1(t2) = aA1(t1) + R̄, that is, t2 is
scheduled right after t1. Consider algorithmA4 such thatA4

schedules t1 right after t2 and schedules every other transac-
tion the same way as A1. Then, aA4(t1) = aA3(t2)+f(k)R̄,
aA4(t2) = aA1(t1). Thus,

dA1(o)− dA4(o)

=|g(t1)|(aA1(t1)− aA3(t1)) + |g(t2)|(aA1(t2)− aA3(t2))

=|g(t1)|(aA3(t2)− aA3(t1)) + |g(t2)|(aA1(t2)− aA1(t1))

=|g(t2)| − |g(t1)|f(k) ≥ 0

Therefore, ŵ(A1) ≥ ŵ(A4).

Let Â be the algorithm that minimizes ŵ(A) among all
algorithms that schedule all the transactions waiting for a
shared lock together. Â can be modified according to the
three scenarios mentioned above to bLDSF without increas-
ing ŵ(A). Therefore, bLDSF also minimizes ŵ(A) among
all algorithm A ∈ A.

With the lemma above, we present the proof of Theo-
rem 6.

Let A1 be the bLDSF algorithm, and A2 be an algorithm
described below.

• A2 schedules all transactions waiting for the exclusive
lock in the same order as bLDSF.

• Upon the first time bLDSF schedules a batch of trans-
actions waiting for a shared lock, A2 schedules all trans-
actions waiting for the shared lock.

For all transactions t scheduled before the transactions wait-
ing for a shared lock by A3,

aA1(t) = aA2(t).

For all transactions t scheduled after the transactions wait-
ing for a shared lock by A3,

aA1(t) ≤ vaA2(t).

Thus,

dA1(o) ≤ vdA2(o).

And therefore,

ŵ(A1) ≤ vŵ(A2). (12)

Let A3 be Algorithm Ã described above. Then, A2 and
A3 schedules the transactions waiting for an exclusive lock
in the same order. Thus, for a transaction t waiting for an
exclusive lock,

R̄+ aA2(t) ≤ R̄+ aA3(t) + f(v)R̄

≤ f(v)aA3(t)

≤ v · aA3(t);

18

for a batch of transaction t waiting for a shared lock,

R̄+ aA2(t) ≤ R̄+ aA3(t) + sb · R̄
≤ v · aA3(t).

Therefore, dA2(o) ≤ v · dA3(o), resulting in

ŵ(A2) ≤ v · ŵ(A3) (13)

Let Â be the algorithm that minimizes ŵ(A), and A4 be
an algorithm described below.

• A4 schedules all transactions waiting for the exclusive
lock in the same order as Â.

• Upon the first time Â schedules a batch of transactions
waiting for a shared lock, A4 schedules all the batches
consecutively in the same order as Â.

Then, for a transaction t waiting for an exclusive lock that is
scheduled before the transactions waiting for a shared lock
by A4,

aA4(t) = aÂ(t);

for any other transaction t,

R̄+ aA4(t) ≤ R̄+ aÂ(t) + f(v)R̄

≤ f(v)aA4(t).

Therefore, dA4(o) ≤ f(v) · dÂ(o), resulting in

ŵ(A4) ≤ f(v) · ŵ(Â). (14)

Let A5 be an algorithm described below.

• A5 schedules all transactions waiting for the exclusive
lock in the same order as A4.

• Upon the first timeA4 schedules a batch of transactions
waiting for a shared lock, A5 schedules all transactions
waiting for the shared lock.

Since the time used for multiple batches of transactions to
finish is more than the time used if they are put in a sin-
gle batch, aA5(t) ≤ aA4(t). Therefore, dA5(o) ≤ dA4(o),
resulting in

ŵ(A5) ≤ ŵ(A4). (15)

According to Lemma 7,

ŵ(A3) ≤ ŵ(A5). (16)

Let AOPT be the optimal scheduling algorithm. Then,

ŵ(Â) ≤ ŵ(AOPT). (17)

According to Equation (10), (11), (12), (13), (14), and
(15),

ŵ(A1) ≤ v2 · f(v) · ŵ(AOPT). (18)

Furthermore, according to Equation (5),

w̄(A1) ≤ ŵ(A1)

≤ v2 · f(v) · ŵ(AOPT)

≤ cv2 · f(v) · w̄(AOPT).

Therefore, l̄(A1) ≤ cv2 · f(v) · l̄(AOPT).

G. EXPECTATION OF MAXIMUM OF POWER
LAW RANDOM VARIABLES

For i = 1, 2, · · · k, let Xi be independent power law ran-
dom variables with exponent 3 on the domain [1,∞). Their
CDF is given by

F (x) =

{
0 x < 1,
1− x−2 x ≥ 1.

(19)

Let Xmax be the maximum of these random variables. Then,
the expectation of Xmax is given by

E [Xmax] =

∫ ∞
0

1− F (x)kdx

= 1 +

∫ ∞
1

1− (1− x−2)kdx

= 1 +

∫ ∞
1

1−
k∑

i=0

(
k

i

)
(−1)ix−2idx

= 1 +

k∑
i=1

(
k

i

)
(−1)i+1 1

2i− 1

=

k∑
i=0

(
k

i

)
(−1)i+1 1

2i− 1

=

√
π · Γ(n+ 1)

Γ(n+ 1
2
)

. (20)

The series expansion of Equation (18) at k =∞ is given by

E [Xmax] =
√
πk +

1

8

√
π

k
+ o(

1

k
).

Therefore, E [Xmax] = O(
√
k).

19

	Introduction
	Problem Statement
	Background: Locking Protocols
	Dependency Graph
	Lock Scheduling
	NP-Hardness

	Contention-Aware Scheduling
	Capturing Contention
	Largest-Dependency-Set-First

	Splitting Shared Locks
	The Benefits and Challenges
	The bLDSF Algorithm
	Discussion

	Implementation
	Experiments
	Experimental Setup
	Throughput
	Average and Tail Transaction Latency
	Comparison with Other Heuristics
	Scheduling Overhead
	Studying Different Levels of Contention
	Choice of Delay Factor
	Approximating Sizes of Dependency Sets

	Related Work
	Conclusion
	References
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 4
	Proof of Theorem 5
	Proof of Theorem 6
	Expectation of Maximum of Power Law Random Variables

