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ABSTRACT

Walsh-Hadamard transform (WHT) has many applications
in digital signal processing including bioinformatics.
While there are efficient algorithms for implementing this
transform such as Fast WHT (FWHT), performing WHT
continuously on a sliding window over a long sequence
is time consuming. As it is not reasonable to compute a
separate WHT upon arrival of every new sample, another
implementation named running WHT (RWHT) has been
introduced in [1] which needs to have some update vec-
tors pre-calculated. In this paper we report on an efficient
recursive algorithm to find these vectors. Also we propose
an easy-to-compute explicit formula for computing coef-
ficients of these update vectors in a computation time in-
dependent of the vector size. A proof of the formula and
a comparison between the proposed recursive algorithm
and an algorithm based on the formula are also given.

1. INTRODUCTION

Many computations in signal processing can be formu-
lated using linear algebra to allow finding alternative algo-
rithms. Such mathematical formulae can be translated into
efficient programs whose optimizations become a search
problem in the space of formulae representing the desired
computation. Some research foci such as SPIRAL project
[2] utilize these formulations to automatically implement
and optimize fast signal transforms. The simpler the for-
mula is, the more efficient implementation is possible, es-
pecially when we can find an explicit formula instead of a
recursive method.

Several researches have been carried out on finding ef-
ficient algorithms for computing WHT and optimizing its
implementation in different situations. While traditional
FWHT implementation, like in [3], is a good choice for
usual applications, there are some other interests to re-
formulate the implementation algorithms, e.g. [2] and
[4] utilize parallel implementations to achieve faster trans-
forms, or [5] finds the optimal implementation of WHT
using its definition in terms of Tensor products. Also [6]
analyzes WHT in the benefit of cache memory utiliza-
tion. Although there are general attempts like [7] for ef-
ficiently transposing large matrices in the memory to con-
vert ‘strided’ data access to sequential, still memory and

running time considerations arise when we encounter a
large volume of input data or a large number of iterations.

One of these important cases where we need a spe-
cialized algorithm is when we have a large input sequence
X = {. . . , xi+1, xi, xi−1, . . .} and need to compute WHT
on a sliding window of N samples such as in power spec-
trum analysis of DNA sequences [8].

Consider a sliding window of size 2n over the above
large data stream for which we are interested to perform
a running WHT. If the left edge of our sliding window
is currently on the c’th term (xc), it means that we have
already computed WHT on the previous sub-sequence,
namely {xc, xc−1, . . . , xc−2n+1} and now by moving the
window leftward we want to drop the rightmost term
xc−2n+1 and include xc+1 term instead, in the next calcu-
lation of WHT. The straightforward method in which we
calculate WHT for each window independently no longer
is efficient because each term is involved in our calcula-
tions more than once (2n times for every term). So in this
case it is clearly unreasonable to still use the usual algo-
rithms, like FWHT.

Reference [1] introduced a special algorithm for such
applications where only the two leftmost and rightmost
terms are changed in each iterative execution of WHT.
This algorithm is called Running WHT (RWHT). After
a few definitions we briefly review RWHT proposed by
[1] and bring our more explicit and detailed formulation
which we then mathematically prove. Thereafter we show
some improvements in the calculation of the update vec-
tors that reduce the time and memory utilization by a con-
stant factor of 1/16. We propose also an explicit direct
formula to find every entry of an arbitrary-size update vec-
tor in a constant time by a very easy-to-compute efficient
expression. Finally we include some practical time com-
parisons between these implementations.

2. WHT AND RUNNING WHT (RWHT)

2.1. Our denotations

To apply WHT on a 2n-size vector X and obtain a 2n-
size transformed vector Y we use 2n × 2n Walsh ma-
trix Wn which is defined recursively as follows: W1 =[

1 1
1 −1

]
and for n > 1, Wn =

[
Wn−1 Wn−1

Wn−1 −Wn−1

]
.



In order to transform X we have, Y = X · Wn. This
formula is the formal definition of WHT which is rarely
used in practice directly. Since WHT is performed on vec-
tors with sizes of a power of 2, for simplicity we denote
any 2n-element vector by an index n, e.g. Xn. Also we
define Xn,c, Wn and Yn,c as:
Xn,c = [xc, xc−1, . . . , xc−2n+1]1×2n ,Yn,c = Xn,c · Wn

Therefore our objective is to calculate Yn,c+1, by having
Yn,c , with the minimum computation cost. FWHT is usu-
ally applied when the data is transformed as a whole block
whilst RWHT is used on a sliding window over a large
data sequence. In section 5, we will briefly mention the
running time and complexity of these algorithms. First,
we review the RWHT algorithm introduced by [1].

2.2. Running WHT (RWHT)

When our window slides over the input sequence by one
sample, we do not need to perform another WHT on the
new window. The WHT of the new window can be ob-
tained by adding the updating vector to a reordered ver-
sion of the previously transformed vector. Using our de-
notation, it is proposed by Deng that for n > 1, we have

Theorem 1.

Yn,c+1 = Γ(Yn,c) + Un,c (I)

where Γ() (that reorders a vector) will be defined in defi-
nition 1.

Definition 1. Γ is an easy-to-compute substitutive trans-
form on a 1 × 2k matrix (vector) for k > 1, that is de-
fined recursively. For k = 2, we define Γ([a, b, c, d]) =
[a,−b, d,−c]. For k > 2 we define recursively Γ(Yn) =
[Γ(Y 1

n ) Γ(Y 2
n )] where Y 1

n and Y 2
n are first and second

halves of Yn, e.g.
Γ([0, 1, 2, 3, 4, 5, 6, 7]) = [0,−1, 3,−2, 4,−5, 7,−6].

Lemma 1. Γ(A) + Γ(B) = Γ(A + B)

The proof is trivial according to definition 1.

Definition 2. For n = 2, according to [1] it is defined that
U2,c = [∆,∆,∆,∆] where ∆ = xc+1 − xc−3. Now for
n > 2, we can calculate recursively Un,c by the following
formula:

Un,c = [Un−1,c+Un−1,c−2n−1 Un−1,c−Un−1,c−2n−1 ]
(II)

Notice that Un,c is a matrix of size 1× 2n but the size
of Un−1,c is 1 × 2n−1. Although [1] has not presented
a proof for (I), but by having Γ() transform and U matrix
clearly defined, and using our accurate notation, we can
mathematically prove formula (I). A proof for n = 2, 3
can be found in [1], but here we give a complete mathe-
matical proof for every n > 1 using a similar idea. No-
tice that by using relation (II) it is fairly straightforward
to write a recursive program in order to find Un,c for an
arbitrary n. Remember that c is a parameter that changes
during sliding WHT computations.

Proof of Theorem (1). To prove (I) we use mathematical
induction on n. Refer to [1] for the base case of n = 2.
Supposing that (I) holds for every n < k, we prove it for
n = k. Let’s show two halves of Yk,c+1 by Y 1

k,c+1 and
Y 2

k,c+1, namely: Yk,c+1 = [Y 1
k,c+1 Y 2

k,c+1]

Yk,c+1 = Xk,c+1 · Wk

= [Xk−1,c+1 X
k−1,c−2k−1+1]·

2
4 Wk−1 Wk−1

Wk−1 −Wk−1

3
5

Hence,

Y 1
k,c+1 = Xk−1,c+1 · Wk−1 + Xk−1,c−2k−1+1 · Wk−1

Y 2
k,c+1 = Xk−1,c+1 · Wk−1 − Xk−1,c−2k−1+1 · Wk−1

Using our induction assumption for n = k − 1:

Y 1
k,c+1 = Xk−1,c+1 · Wk−1 + Xk−1,c−2k−1+1 · Wk−1

= Γ(Yk−1,c) + Uk−1,c + Γ(Yk−1,c−2k−1)
+ Uk−1,c−2k−1

= Γ(Xk−1,c · Wk−1) + Γ(Xk−1,c−2k−1 · Wk−1)
+ Uk−1,c + Uk−1,c−2k−1

And similarly

Y 2
k,c+1 = Γ(Xk−1,c · Wk−1) − Γ(Xk−1,c−2k−1 · Wk−1)

+ Uk−1,c − Uk−1,c−2k−1

Therefore, according to lemma 1 and formula (II),

Yk,c+1 = Γ([Xk−1,c Xk−1,c−2k−1 ] ·
[

Wk−1 Wk−1

Wk−1 −Wk−1

]
)

+ Uk,c

= Γ(Xk,c · Wk) + Uk,c = Γ(Yk,c) + Uk,c

3. EFFICIENT IMPLEMENTATION OF RWHT

According to (I), we have to find Un,c for any desired n.
So our purpose in this paper, is to present a general method
to pre-calculate Un,c for any arbitrary value of n by an ef-
ficient implementation. In order to use recursive formula
(II) more efficiently, it is not difficult to show that the fol-
lowing lemmas hold for Un,c. They can all be proved fol-
lowing an induction similar to the proof of theorem 1.

Lemma 2. Each row of Un,c is in the form of:

u1,j =
c−2n+1∑
i=c+1

aj
i · xi for 0 ≤ j ≤ 2n − 1 (III)

where aj
i ∈ {−2,−1, 0, 1, 2} are constants and indepen-

dent of c. Therefore in each step of the window sliding
we can compute WHT for the window starting at c only by
multiplying aj

i s by the corresponding consecutive terms as
predicted in formula (I).

Lemma 3. In every column of Un,c we have aj
c+k = 0

where (k mod 4) �= 1, e.g. ∀j : aj
c = aj

c−1 = aj
c−2 =



0. So to maintain the sum of (III) it is sufficient to only
compute and maintain aj

i s for i = c + 1, c− 3, c− 7, · · · .
In this way we save 3/4 of the computations and memory
needed in calculating relation (II).

Lemma 4. The row coefficients (aj
i ) have the same value

in the groups of 4-consecutive rows. Namely,
∀i, 0 ≤ k ≤ 2n−2 − 1 : a4k

i = a4k+1
i = a4k+2

i = a4k+3
i .

Therefore it is sufficient to calculate and maintain the co-
efficients of only 1/4 of the rows. So far, using lemma 3
and lemma 4, we have decreased the computations and
memory needs of relation (II) down to 1/16 of their previ-
ous values.

4. AN EXPLICIT AND DIRECT FORMULA FOR
UPDATING VECTORS

According to the above lemmas, the matrix consisting of
aj

i s of Un,c, called Rn, can be shown as follows:

Rn =

2
66664

a0
0 0 0 0 a0

4 . . . a0
2n

...
...

...
...

...
. . .

...
a2n−1
0 0 0 0 a2n−1

4 . . . a2n−1
2n

3
77775

2n×(2n+1)

Note that Rn is expressed in a transposed form for
convenience, i.e. the first row of Rn contains aj

i s of the
first column of Un,c (Un,c has 2n columns and 2n+1 (aj

i )s
in each column). Now by eliminating duplicated rows in
Rn and those zero entries mentioned in lemmas 3 and 4
for conciseness, we obtain a 2n−2 × (2n−2 + 1) matrix,
called Tn−2. In order to reconstruct Rn from Tn−2 we
can use the following relation:

Rn[i, j] =




0 for (j mod 4) =1,2,3

Rn[i − (i mod 4), j] for (i mod 4) =1,2,3

Tn−2[i/4, j/4] otherwise

This relation implies that by having a direct formula for
Tn[i, j], we will have Rn[i, j] and Un,c[1, j] consequently.
Now we propose an explicit direct formula for Tn[i, j]
as given below. Notice that although its definition looks
complicated it is very efficient and easy-to-compute in-
deed, in terms of needed primary binary operations. We
will mention intuitively how this formula is obtained later
on.

For 0 ≤ i < 2n, 0 ≤ j ≤ 2n we can prove:

Tn[i, j] =




If n = 0 : (−1)j

If j = 0 : 1
If j = 2n : S(i)
If (i&(2P (j)+1 − 1)) < 2P (j) :

(−1)W ((i&j)>>(P (j)+1)) · (1 + S(i&(2P (j)+1 − 1)))
If (i&(2P (j)+1 − 1)) ≥ 2P (j) :

(−1)W ((i&j)>>(P (j)+1)) · (1 − S(i&(2P (j)+1 − 1)))

(IV)
here P (x), W (x) and S(x) have simple and easy-to-

compute definitions.

Definition 3. For x ≥ 0, P (x) is the maximum power of
2 which divides x, e.g. P (20) = 2 and P (7) = 0. W (x)
is the number of (1)s in the binary representation of x, e.g.
W (0) = 0 and W (10) = 2. Finally S(x) = (−1)W (x)+1.
By & and >> we mean respectively ‘Binary AND’ and
‘Binary shift to right’ on the operand’s unsigned binary
representation, e.g. 10&5 = 15 , 17 >> 1 = 8.

The origin of (IV) is easier to explain by considering
the intuitive diagram in figure 1 which shows how Tn+1 is
constructed from Tn recursively. This diagram is a result
of (II) and lemmas 2,3 and 4.

Fig. 1. Tn+1 is constructed from Tn by the above method
where 0’th column always consists of 1. B is the last col-
umn of Tn and A is the rest sub-matrix of Tn. 2n’th col-
umn of Tn+1 has 2 halves, one is B + 1 and the other
equals to B − 1.

The correctness of (IV) for n = 0 or j = 0 is trivial by
studying the appendix and figure 1 together. The special
case of j = 2n which equals to S(x) = (−1)W (x)+1 is
correct because of the definition of W (x) while the num-
ber of 1s in the binary representation of x indicates the
number of times when x’th row falls in the second half of
the matrix in the recursive operation and therefore is mul-
tiplied by a (−1) factor. In other cases, recursive calcula-
tion of Tn[i, j] generally continues until j falls on the mid-
dle column where we can have its value in term of S(x)
which is the value of the element of the last column in the
x’th row. The comparison between (i&(2P (j)+1−1)) and
2P (j) determines whether the row falls over or below the
middle row (Refer to figure 1) when the column falls on
the middle column. This comparison decides which of the
last two relations in (IV) must be used.

5. COMPARISON AND CONCLUSION

It has been proved [1] that the RWHT requires at least
3/4 × 2n less operations than FWHT where the size of
the input vector (window) is 2n. While the utilization of
WHT on large data sequences via RWHT is of interest,
having an easy-to-implement and efficient algorithm for
pre-calculation of update vectors is a necessity. Now we
briefly consider the time-complexity of both recursive and
direct formulae for calculating Un,c.

Having the straightforward recursive relation (II) we
can compute Un,c simply by starting from U2,c and con-



tinue up to n. In this case, the total complexity will be:

k=n∑
k=3

(22k + 2k) = (4n+1 − 1)/3 + 2n+1 − 29 for n > 2.

By exploiting the improvements suggested by lemmas
2 , 3 and 4 the overall computation time will decrease
down to (2n+1 − 8)/16 . Obviously these improvements
are more considerable for large window sizes. Using the
direct formula (IV), the implementation is easier to op-
timize. This is because the computations in (IV) can be
efficiently implemented only by using binary SHIFTs and
ANDs, since the base of exponents are 1,−1 or 2, they
can be seen as some shifts in binary representation. Fi-
nally, the time complexity of calculating Tn[i, j] is O(1)
for every n, i and j. Therefore, the computation of Un,c

which is reduced to computation of Tn−2 (through Rn)
needs (22n−4 + 2n−2) units of (bit-wise) simple opera-
tions. Note that we can find Rn from Tn−2 on the fly
because of their simple relation.

Although asymptotically analyzing the time complex-
ity for both recursive and direct formula results in a O(4n)
complexity, clearly the direct formula is easier to com-
pute and needs less memory and stack size to implement.
We have also compared recursive algorithm with the direct
formula, in practice, by executing two efficient programs
under the same conditions. The practical results for differ-
ent update vector sizes are provided (in milliseconds) in
table 1. While it can be seen that the direct formula again
has much less running time in practice, its more impor-
tant advantage is in not being limited by the vector size.
In fact, there’s a limitation on the vector size for recur-
sive version because of its memory requirements while in
explicit formula there’s no need for memory as we can
calculate each term independently and store it in external
memory.

Vector Size Recursive Vec-
tor Update

Direct Vector
Update

1024 359 1
2048 375 16
4096 438 78
8192 609 312

Table 1. Execution time comparison (in milliseconds) be-
tween recursive and direct algorithms for calculating up-
date vectors of RWHT
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A. APPENDIX

In this section we bring the first values of Un,c, Rn and Tn

to make the context easier to be comprehended. Remem-
ber that Tn is constructed from Rn+2 and vice versa. Also
Un,c and Rn which both are 1-row matrices are shown in
a 1-column format here for convenience. For n = 2:

U2,c =




xc+1 − xc−3

xc+1 − xc−3

xc+1 − xc−3

xc+1 − xc−3


 , R2 =




1 0 0 0 −1
1 0 0 0 −1
1 0 0 0 −1
1 0 0 0 −1




and so T0 = [1 − 1]. For n = 3:

U3,c =




xc+1 − xc−7

xc+1 − xc−7

xc+1 − xc−7

xc+1 − xc−7

xc+1 − 2xc−3 + xc−7

xc+1 − 2xc−3 + xc−7

xc+1 − 2xc−3 + xc−7

xc+1 − 2xc−3 + xc−7




R3 =




1 0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0 −1
1 0 0 0 −2 0 0 0 1
1 0 0 0 −2 0 0 0 1
1 0 0 0 −2 0 0 0 1
1 0 0 0 −2 0 0 0 1




and so T1 =
[

1 0 −1
1 −2 1

]
.


