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Abstract 
 

Hash functions play the most important role in various 
cryptologic applications, ranging from data integrity 
checking to digital signatures. Our goal is to introduce a 
new hash function using Walsh-Hadamard transform for 
achieving dimensionality reduction (compression) with a 
regular and one-way distribution. Merkle-Damgard (MD) 
transform is applied to this compression function in order 
to turn it into a hash function. Our algorithm has a 
flexible framework in which some parameters and steps 
could be changed according to different needs for more 
security or less computation time. Our emphasis is on its 
resistance against some variations of birthday attack. We 
evaluate collision resistant behavior of this algorithm for 
some configurations by calculating the balance factor. As 
we will see our balance factor is very close to SHA-1's. 
We present some experimental results to determine the 
balance factor of this algorithm for several output 
lengths. The experiment is done first, by converting the 
hash function to a similar one with a lower range size for 
an exact evaluation. Moreover, for larger range size, we 
use some bits of the output with a fraction of possible 
inputs, randomly chosen, to obtain another approximation 
of its balance factor. We also analyze avalanche effect of 
our proposed function which is another common 
measurement for cryptographic hash functions. 
 
1. Introduction 
 
1.1. Background on hash functions 
 

Hash functions play an important role in several 
security topics. They could be used both for integrity 
checking and for message authentication. After 
transferring large amounts of data, it is important to verify 
whether it has been forged by an adversary. In insecure 
channels like Internet, we need a mechanism to be able to 
verify the integrity of a message and also to authenticate 
its original sender. These could be achieved by using 
cryptographic functions but many objections have been 
cited against encryption of the whole message by some 
algorithms like DES [1]. Applying cryptographic 

functions imposes a heavy computational load and makes 
communication much slower. So, other methods like 
HMAC are usually applied in which hash functions are 
used instead of encryption [2]. Briefly, for authentication 
and integrity verification, hash functions have some clear 
advantages over encryption functions:  faster calculation, 
free library codes and no export restrictions. 

A hash function h is defined as h=H(M) where M is a 
bit string of arbitrary length but it is mapped onto a string 
h of fixed length, say n. So we have 

n1} {0, 1}* {0,:H → . 
 

1.2. Basic Properties 
 

A hash function usually should have some properties 
such as [3]: 

1. Hash value is easy to compute: So its computation 
is fast and the cost of its hardware 
implementation is low. 

2. Preimage resistance or One-wayness: for a given y 
it is computationally impossible to find a value x 
so that h(x)=y. 

3. 2-nd preimage resistance or Weak collision 
resistance: for a given x and y=h(x) it is 
computationally impossible to find a value x’≠x 
so that h(x’)=h(x). 

4. Collision resistance or Strong collision resistance: 
it is computationally impossible to find any two 
distinct values x’≠x so that h(x’)=h(x). 

We always prefer to achieve the first property as much 
as possible. Preimage resistance is important in some 
authentication scenarios where we do not send plain 
messages with their hash values, so if adversary can 
reverse our hash function he will be able to find our 
original message. For more details see MAC [4]. 2-nd 
preimage is for preventing the adversary from changing 
the original message in a way that the hash value remains 
unchanged. Last property, strong collision resistance is 
usually important in variations of birthday attack, 
described below. 

 
1.3. Birthday Attack 
 



Given a hash function h:D→ R , for examining the 
birthday attack we choose q points x1,…,xq from D and 
calculate yi=h(xi) for i=1,…,q. The success of this attack 
is when there exists a pair xi ≠ xj for which yi=yj. There 
are several ways for choosing xi points but usually they 
are chosen at random. In this attack, an upper bound to 
find a collision is r1/2 trials, where r is the range size of h, 
namely |R| [4]. But in real hash functions we expect that 
collision occurs much earlier than this theoretical worst 
case [5]. We will return to birthday attack in Section 4 of 
this paper. 

 
1.4. Compression functions 
 

A compression function g is defined as g=G(M) where 
M is a bit string of a fixed length, say m, and g is a string 
of a smaller length, say n (m>n). These functions are 
important because most of well-known hash functions 
consist of an underlying compression function and a 
method, like MD transform, to combine several outputs of 
this fixed-length input function to produce a final hash 
value for a variable-size input. 
 
1.5. Fast Walsh Hadamard Transform (FWHT) 
 

Since we use FWHT in our proposed hash function, we 
briefly mention its definition here. Walsh-Hadamard 
transform is one of the orthogonal transforms which, 
because of its simplicity and fast implementation, is 
commonly used in coding theory and signal processing 
[6]. There are many fast algorithms for computing this 
transform like those mentioned in [7]. But, here we use a 
bit-reversal in-place algorithm whose pseudo code can be 
found in [8]. We refer to this transform by FWHT which 
for any k>0 takes 2K integers as coefficients of original 
signal and returns the same number of integers as 
transformed signal coefficients. For calculating reverse 
Walsh-Hadamard transform, we can apply the FWHT 
again on the output, and then divide the result by 2K, the 
number of coefficients. For a recursive definition of this 
transform see [7]. 

 
1.6. Our goal 
 

As long as no provably secure and efficient hash 
functions are available, dedicated hash functions will play 
an important role [9]. It means that there is no ‘theory’ to 
design such functions, but a few design criteria should be 
met to prevent some known attacks. 

For designing such functions we should meet some 
design criteria like completeness, nonlinearity, 
balancedness and correlation immunity, and the 
propagation criterion of degree k. Roughly speaking, 
these criterions are as follows [9]: 

• Completeness: the output should depend on 
all input bits. If a function is not complete, the 
output will show specific symmetries. 

• Nonlinearity is a desirable property in 
cryptography, as linear systems are known to 
be very weak. This characteristic is not 
robust: namely a small modification to the 
function can cause its linearity change to a 
high degree. 

• Balancedness: In cryptographic applications 
it is often very important that the numbers 
that each output vector occurs be as much as 
possible the same. In this case, the uncertainty 
over the value of function f or its entropy is 
maximal. 

• Correlation immunity: Let f be a hash 
function of n bits. Then f is mth order 
correlation immune, CI(m) ( nm ≤≤1 ), iff 
knowledge of any m input variables gives no 
additional information on the output. 

• Propagation criteria: This criteria study the 
dynamic behavior of a hash function, i.e., 
what happens if the input to the function is 
modified. Let f be a function of n bits. Then f 
satisfies the propagation criterion of degree 
k, PC(k) ( nk ≤≤1 ), if each bits of f(x) 
changes with a probability of 1/2 whenever i 
( ki ≤≤1 ) bits of x are complemented. The 
strict avalanche criterion or SAC that has 
been introduced in [10] is equivalent to 
PC(1). And perfect nonlinearity, will be 
equivalent to PC(n). 

We have assured that our function includes nonlinear 
operations and has completeness, good balance, and strict 
avalanche criterion or SAC, PC(1) and fast computation 
using FWHT. 

We describe our FWHT-based hash function in 
Section 2. In Section 3, we mention our design strategy in 
this new hash function. We first review balance definition 
in more detail as an important measurement of regularity 
for hash functions in Section 4. Then, we present some 
experimental results about collisions and balance factor 
on some configurations of our algorithm. Finally, in 
Section 5, we conclude and outline the possible further 
research on FWHT-based hash functions. 

 
2. Our prototype of a hash function based on 
FWHT 
 
2.1. Compression function: gwh 
 

First, we introduce our compression function named 
gwh. We then convert it to a hash function, named hwh, 
by using MD transform as seen in figure 1. In this figure, 
the following symbols are used:  



• L is an integer parameter between 8 and 512. 
• RF is an integer parameter between 1 and 3. 
• D is the input block whose size is 4*L. 

The used buffers are listed below: 
• H is an L-bit integer. 
• IV is the initial vector in our compression 

function. It has a size equal to H, namely L 
bits. 

• T is a (1+log2L)-bit unsigned integer. 
• R, R1 and R2 are (log2L)-bit unsigned 

integers. 
• Z and M are 4*L-bit blocks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Algorithm of gwh compression function 

gwh is used to calculate message digest for string 
blocks of size 4*L bits. The produced message digest's 
length is L bits. In this algorithm all integers have been 
considered unsigned. Moreover, we use RSHL(A,B) to 
indicate rotational left shift of A by B bits, in which we 
could use the remainder of B to length of A (in bits), 
instead of B itself. The main idea of this paper is in steps f 
to i. We believe that step j could be easily replaced with 
some other operations that convert 4 blocks of L-bits into 
one block provided that they amplify the one-wayness of 

gwh and also do not decrease gwh's regular distribution 
too much. As an example, the impact of using XOR 
instead of addition (ADD) in step j is shown in Section 4. 
 
2.2. Hash function: hwh 
 

Now we apply Merkle-Damgaard (MD) transform on 
gwh to convert it to a hash function named hwh. To 
generate the overall message digest, the input bit string S 
is padded to a multiple of 4*L by appending a bit of 1 and 
one or more necessary bits of 0. The actual length of S 
before padding, in a 4*L-bit representation, forms IV as 
first block D(1). After this, S is divided into the 4*L-bit 
blocks D(2), D(3),..., D(n).  Now according to MD 
transform, these blocks are processed in order. Refer to 
figure 2 and 3 to see the pseudo code and diagram of this 
transform on gwh. The first value of IV is zero. The final 
hash value is generated in a L-bit buffer named H with 
initial value of H=0. 

 
Figure 2: Pseudo code for hwh hash function 

 
2.3. Suitable values for parameters 
 

Two parameters in figure 1 are L and RF. L is the size 
of output in bits. The number of output bits depends on 
the needed security threshold for birthday attack or on 
other considerations like time performance. One 
advantage of this algorithm is the fact that the general 
behavior of the hash function remains approximately 
unchanged for different values of the L parameter. In 
Section 4 we will see that the balances of gwh for several 
values of L are almost the same. So we could choose a 
suitable value for L and then rely on this prediction that 
birthday attack will succeed only after about 2L-1 trials.  

By RF we mean Reconstruction Factor. RF is the 
number of rightmost coefficients in the transformed signal 
which are zeroed before reversing the result of the 
transform. Experimental results show that for L=8, 
maximum balance or in other words minimum collisions, 
is achieved when we choose RF=3 out of 4. 
 

gwh(D,IV) : 
a. Let T = Number of transitions of D's binary representation 

from 0 to 1 in left to right scan. Since D is a 4*L-bit string, 
T is not greater than 2*L and so it has (1+log2L)-bit 
representation (clearly, in this case zero and 2*L transitions 
will result in the same T). 

 
b. Let R1 = Rightmost log2L bits of D 

 
c. Let R2= Leftmost log2L bits of D 
 
d. Let R = R1 XOR R2 
 
e. Z = D. 
 
f. Calculate FWHT on Z as a sequence of 4 L-bit integers, to 

obtain another 4*L block. Since FWHT is in-place, 
generated result is also in Z. 

 
g. Reduce the dimensionality of Z by zeroing its rightmost RF 

bits. 
 
h. Reconstruct the original signal by calculating in-place 

reverse FWHT on Z as a sequence of 4 integers of L bits. 
For reverse FWHT, simply apply FWHT on Z, and then 
divide each of L-bit integers of its output by a factor of 4. 

 
i. Let M = Z – D. Consider M as a sequence of 4 L-bit 

integers named M(0), M(1),M(2) and M(3) in right to left 
order. 

 
j. H = IV; 

For t = 0 to 3 do 
H = H + M(t); 
H = RSHL ( H , R ); 
R =RSHL ( R , T ); 

 
k. Return H. 

hwh (S): 
D(1) = length of S shown in 4*L bits. 
Append necessary 0 bits to S (for padding) to make its length a 
multiple of 4*L. 
Divide S into blocks D(2),...,D(n) 
H = 0; 
For t = 1 to n do 
 H = gwh(D(t), H); 
Return H; 



 
Figure 3: Diagram of applying MD transform on gwh to 

convert it to hash function hwh 

3. Design Strategy 
 
3.1. Motivation 
 

Almost all existing cryptographic hash functions, like 
MD4, MD5 [8, 9] and SHA-family [11] use some steps 
which are rounded several times. The iterated steps 
usually include expanding, additions, rotational shifts and 
other boolean operations like AND, XOR, etc. In our 
proposal, we first use a Walsh-Hadamard transform and 
then apply a few steps on the difference between 
reconstructed and original signals. All orthogonal 
transforms result in a regular distribution and permit 
carrying out reconstruction with dimensionality reduction 
using a smaller number of operations instead of several 
high cost iterations. Here WHT is a good candidate for 
this purpose because its base functions are formed by 0 
and 1 and so the transform is suitable for dealing with 
binary input sequences. Also there is a fast 
implementation of Walsh-Hadamard transform [8], which 
has a running time of (log2n)*(1+12*log2n) in terms of 
basic computer operations, for a signal consisting of n 
values, each with machine word size. It is also clear that 
gwh, and hwh, have completeness property since all input 
bits are involved in the final result. 
 
3.2. Dimensionality reduction with a regular 
distribution 

 
As can be seen in figure 1, the core of the gwh is based 

on the reconstruction of the original input (as a signal) by 
applying reverse Walsh-Hadamard transform with a 

reduced dimensionality. According to experimental 
results (Section 4), we believe that subtracting 
reconstructed signal from the original input (M in figure 
1) provides us a rather1 regular distribution as well as 
random behavior which is usually a good design principle 
for hash functions2. 
 
3.3. Non-linear operations 

 
Step j, is just for strengthening the one-wayness 

property of gwh by a series of nested rotational shifts of 
both coefficients and amounts of their shifts, according to 
a signal dependent parameter, namely T. This is because 
of the fact that values of T have a non-linear distribution 
on possible binary signals. Just a few number of signals 
have a very low or very high amount of T (like T=0,1) 
but, many other signals have an average value for T, like 
T=2*L.  

Although this non-linear distribution of T decreases the 
reversibility of overall hash function but, also clearly has 
an undesirable impact on its regularity, as we will see 
more quantitatively in Section 4. Indeed, in hash function 
design there is always a trade off between regular 
distribution and irreversibility. 

 
3.4. Keyed Parametric Hash by dimensionality 
reduction 

 
We can easily change our gwh function to accept a 

secret key as well as the input sequence. Using this secret 
key, the gwh function decides which coefficients take part 
in the reconstruction process. In other words, our hash 
function can get two inputs: a message sequence and a 
secret key that is already shared between the sender and 
the receiver. Therefore, to forge this hash value, the 
attacker will have to guess the used secret key first in 
order to be able to attack the algorithm. This means a 
stronger keyed hash function that has its own benefits and 
applications. 
  
4. Security measurements on gwh 

 
In this Section, we analyze the security aspects of gwh 

by calculating two common security measurements on our 
proposed function: Balance Factor and Strict Avalanche 
Criterion (SAC) or PC(1). But first, we briefly introduce 
our simple tester software that we have used for 
calculating these parameters efficiently. Also we present 
the computable measures that we have calculated as the 
indicators of balancedness and avalanche effect. 
 

                                                
1 For real non-trivial hash functions, this distribution is not - or could not 
be - exactly regular. See [5]. 
2 Randomness is usually a good policy, but not the best. Random 
functions are weaker than regular ones against birthday attack.[5] 
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4.1. Tester program 
 

For calculating balance and SAC factors of gwh we 
have written an ad-hoc tester application in C language. 
This tester is able to generate a given number of a 
specified-length array of L-bit elements in 3 different 
modes: 
1. Fills the array with successive values starting from a 

given number up to another given number. 
2. Fills the array by random numbers for a specified 

number of iteration. 
3. Fills the array in one of the above modes and then 

produces other numbers each by alternating one 
bit of the first numbers. 

After generating above big numbers (implemented by 
arrays), the tester could do any of following operations: 
1. Counts the number of occurrence of any portion of 

output bits. 
2. Reports the first occurrence of a collision on any 

portion of output bits. 
3. In the third mode of data production, calculates the 

average number of output bits which are changed 
after inverting one bit of input. 

 
4.2. Balance factor for hwh 
 

BALANCE MEASURE [5]: Consider the hash 
function h:D → R for which we have |D|=d and |R|=r. 
Name the elements of range R as R1,…,Rr and define di as 
number of input points which are mapped to Ri. 

Precisely, di=|{x∈ D where h(x)=Ri}|. The balance of 
h is defined as: 
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We calculated balance of this algorithm for different 
cases, summarized in figure 4. First we chose L=8 and 
cover all input space of gwh to find an exact value of 
balance for this case. Distribution of hash values for all 
possible 232 different inputs over 256 output points is 
presented in figure 5. Our tests show that using XOR 
instead of addition in step j of gwh algorithm has a bad 
impact on the balance of gwh, reducing it from 0.999994 
to 0.835881. For comparing distributions of original gwh 
and the above variation see figures 5, 6. 

Parameters Inputs )( gwhµ  
L=8 and RF=3 All possible 

232 inputs 
0.99999410522 

L=8 and RF=3 (In this test 
we used XOR instead of 
addition in step j. of gwh) 

All possible 
232 inputs 

0.83588135980 

L=32 and RF=3 232 random 
inputs 

0.99999998830 
(over first 8 bits of 
output) 

L=128 216 random 
inputs 

0.99999999916 
(over first 8 bits of 
output) 

Figure 4: Summarized results for balance of gwh 
 
In the second attempt, we chose L=32 and calculated 

the hash values for 232 random inputs with size 128 bits. 
In this test we just considered first 8 bits of hash output to 
find an approximation of overall balance. Here di is the 
frequency of appearing i as the rightmost 8 bits of 232 
hash values )2550( ≤≤ i , and d=232, r=256. 
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Figure 5: Frequency of appearing each possible 256 

points in a whole covering of input space for L=8 in gwh. 
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Figure 6: Impact of replacing additions of step j. of 

gwh with XORs on the frequency of appearing each 
possible 256 points in a whole covering of input space for 

L=8. 
As the last case, we again limited our balance 

estimation only on 8 bits of output for 216 randomly 
chosen inputs. The considered 8 bits of output in this case 
were in the positions of 0, 17, 50, 67, 85, 100, 118 and 
127. Here d=216, r=256. 

Although it is shown in [5] that MD transform doesn't 
preserve the balance of the underlying compression 
function (here gwh), we do not calculate the balance 
factor of the final hash function (hwh) because it is 
usually expected that the balance of the final hash be not 
much less than that of its compression function. By 
comparing these to SHA-1's results we see that our 
balance is very close3 to its. 
 
4.3. Avalanche effect of gwh 
 

                                                
3 According to [5], the balance factor of SHA-1 for 32-bit 
inputs on several sub ranges of 8-bit outputs ranges from 
0.99999998769 to 0.99999999083. 



AVALANCHE EFFECT: For achieving more one-
wayness, there is a mathematical abstraction, called 
avalanche effect, which says that an average of one half 
of output bits should change when a single input's bit is 
changed. More changes in output's bits imply higher 
degree of non-linear dependency between input and 
output bits. This is one of the desirable properties of a 
cryptographic hash function because it shows that hash 
values of some neighbor inputs are diffused all over the 
output space [12]. 

Our calculations for amount of avalanche effect in 
gwh, for L=8 and L=32 show that, on average, 3.849713 
and 15.759494 changes occur respectively in output bits 
whenever a single bit of input is changed. In both cases, 
the figure is very close to one half of L. 

 
5. Conclusion and further works 

 
As we mentioned in Section 4, some important 

measurements, such as balance factor and avalanche 
effect, show that gwh, and probably hwh, have a desirable 
behavior as a cryptographic hash function. For example, a 
balance factor of 0.99999998830 for 8 bits of 32-bit 
output size which is very close to – and sometimes better 
than - the same measurement for SHA-1 (US standard 
Secure Hash Algorithm, the most common universal hash 
function). It shows strongly that gwh has a very regular 
distribution, and therefore, has a good resistance against 
birthday attack. We just need to choose a suitable value 
for output size, L, and expect that our hash function can 
resist up to 2L-1 steps of birthday attack. It seems that for 
currently computational power of super computers, a 
value between 160 and 256 suffices for L as output size. 

Also experimental data shows that approximately half 
of the output bits are altered when a single bit of input is 
inverted. This good avalanche effect, PC(1), can 
guarantee the one-wayness property of gwh and also hwh, 
which in turn causes better resistance of our hash function 
against more hash attacks like compression function 
attack and chaining attack that we did not consider in this 
paper. Our further research will focus on improvement of 
hwh as well as gwh, with more attention to other hash 
function attacks like differential attacks. 

Moreover, we are interested in optimizing our hash 
function implementation to make it less costly in 
computation time. 
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