
A new collision resistant hash function based on optimum dimensionality
reduction using Walsh-Hadamard transform

Barzan Mozafari and Mohammad Hasan Savoji
Electrical & Computer Engineering Department

Shahid Beheshti University
{mozafari, m-savoji} @sbu.ac.ir

Abstract

Hash functions play the most important role in various
cryptologic applications, ranging from data integrity
checking to digital signatures. Our goal is to introduce a
new hash function using Walsh-Hadamard transform for
achieving dimensionality reduction (compression) with a
regular and one-way distribution. Merkle-Damgard (MD)
transform is applied to this compression function in order
to turn it into a hash function. Our algorithm has a
flexible framework in which some parameters and steps
could be changed according to different needs for more
security or less computation time. Our emphasis is on its
resistance against some variations of birthday attack. We
evaluate collision resistant behavior of this algorithm for
some configurations by calculating the balance factor. As
we will see our balance factor is very close to SHA-1's.
We present some experimental results to determine the
balance factor of this algorithm for several output
lengths. The experiment is done first, by converting the
hash function to a similar one with a lower range size for
an exact evaluation. Moreover, for larger range size, we
use some bits of the output with a fraction of possible
inputs, randomly chosen, to obtain another approximation
of its balance factor. We also analyze avalanche effect of
our proposed function which is another common
measurement for cryptographic hash functions.

1. Introduction

1.1. Background on hash functions

Hash functions play an important role in several
security topics. They could be used both for integrity
checking and for message authentication. After
transferring large amounts of data, it is important to verify
whether it has been forged by an adversary. In insecure
channels like Internet, we need a mechanism to be able to
verify the integrity of a message and also to authenticate
its original sender. These could be achieved by using
cryptographic functions but many objections have been
cited against encryption of the whole message by some
algorithms like DES [1]. Applying cryptographic

functions imposes a heavy computational load and makes
communication much slower. So, other methods like
HMAC are usually applied in which hash functions are
used instead of encryption [2]. Briefly, for authentication
and integrity verification, hash functions have some clear
advantages over encryption functions: faster calculation,
free library codes and no export restrictions.

A hash function h is defined as h=H(M) where M is a
bit string of arbitrary length but it is mapped onto a string
h of fixed length, say n. So we have

n1} {0, 1}* {0,:H → .

1.2. Basic Properties

A hash function usually should have some properties
such as [3]:

1. Hash value is easy to compute: So its computation
is fast and the cost of its hardware
implementation is low.

2. Preimage resistance or One-wayness: for a given y
it is computationally impossible to find a value x
so that h(x)=y.

3. 2-nd preimage resistance or Weak collision
resistance: for a given x and y=h(x) it is
computationally impossible to find a value x’≠x
so that h(x’)=h(x).

4. Collision resistance or Strong collision resistance:
it is computationally impossible to find any two
distinct values x’≠x so that h(x’)=h(x).

We always prefer to achieve the first property as much
as possible. Preimage resistance is important in some
authentication scenarios where we do not send plain
messages with their hash values, so if adversary can
reverse our hash function he will be able to find our
original message. For more details see MAC [4]. 2-nd
preimage is for preventing the adversary from changing
the original message in a way that the hash value remains
unchanged. Last property, strong collision resistance is
usually important in variations of birthday attack,
described below.

1.3. Birthday Attack

Given a hash function h:D→ R , for examining the
birthday attack we choose q points x1,…,xq from D and
calculate yi=h(xi) for i=1,…,q. The success of this attack
is when there exists a pair xi ≠ xj for which yi=yj. There
are several ways for choosing xi points but usually they
are chosen at random. In this attack, an upper bound to
find a collision is r1/2 trials, where r is the range size of h,
namely |R| [4]. But in real hash functions we expect that
collision occurs much earlier than this theoretical worst
case [5]. We will return to birthday attack in Section 4 of
this paper.

1.4. Compression functions

A compression function g is defined as g=G(M) where
M is a bit string of a fixed length, say m, and g is a string
of a smaller length, say n (m>n). These functions are
important because most of well-known hash functions
consist of an underlying compression function and a
method, like MD transform, to combine several outputs of
this fixed-length input function to produce a final hash
value for a variable-size input.

1.5. Fast Walsh Hadamard Transform (FWHT)

Since we use FWHT in our proposed hash function, we
briefly mention its definition here. Walsh-Hadamard
transform is one of the orthogonal transforms which,
because of its simplicity and fast implementation, is
commonly used in coding theory and signal processing
[6]. There are many fast algorithms for computing this
transform like those mentioned in [7]. But, here we use a
bit-reversal in-place algorithm whose pseudo code can be
found in [8]. We refer to this transform by FWHT which
for any k>0 takes 2K integers as coefficients of original
signal and returns the same number of integers as
transformed signal coefficients. For calculating reverse
Walsh-Hadamard transform, we can apply the FWHT
again on the output, and then divide the result by 2K, the
number of coefficients. For a recursive definition of this
transform see [7].

1.6. Our goal

As long as no provably secure and efficient hash
functions are available, dedicated hash functions will play
an important role [9]. It means that there is no ‘theory’ to
design such functions, but a few design criteria should be
met to prevent some known attacks.

For designing such functions we should meet some
design criteria like completeness, nonlinearity,
balancedness and correlation immunity, and the
propagation criterion of degree k. Roughly speaking,
these criterions are as follows [9]:

• Completeness: the output should depend on
all input bits. If a function is not complete, the
output will show specific symmetries.

• Nonlinearity is a desirable property in
cryptography, as linear systems are known to
be very weak. This characteristic is not
robust: namely a small modification to the
function can cause its linearity change to a
high degree.

• Balancedness: In cryptographic applications
it is often very important that the numbers
that each output vector occurs be as much as
possible the same. In this case, the uncertainty
over the value of function f or its entropy is
maximal.

• Correlation immunity: Let f be a hash
function of n bits. Then f is mth order
correlation immune, CI(m) (nm ≤≤1), iff
knowledge of any m input variables gives no
additional information on the output.

• Propagation criteria: This criteria study the
dynamic behavior of a hash function, i.e.,
what happens if the input to the function is
modified. Let f be a function of n bits. Then f
satisfies the propagation criterion of degree
k, PC(k) (nk ≤≤1), if each bits of f(x)
changes with a probability of 1/2 whenever i
(ki ≤≤1) bits of x are complemented. The
strict avalanche criterion or SAC that has
been introduced in [10] is equivalent to
PC(1). And perfect nonlinearity, will be
equivalent to PC(n).

We have assured that our function includes nonlinear
operations and has completeness, good balance, and strict
avalanche criterion or SAC, PC(1) and fast computation
using FWHT.

We describe our FWHT-based hash function in
Section 2. In Section 3, we mention our design strategy in
this new hash function. We first review balance definition
in more detail as an important measurement of regularity
for hash functions in Section 4. Then, we present some
experimental results about collisions and balance factor
on some configurations of our algorithm. Finally, in
Section 5, we conclude and outline the possible further
research on FWHT-based hash functions.

2. Our prototype of a hash function based on
FWHT

2.1. Compression function: gwh

First, we introduce our compression function named
gwh. We then convert it to a hash function, named hwh,
by using MD transform as seen in figure 1. In this figure,
the following symbols are used:

• L is an integer parameter between 8 and 512.
• RF is an integer parameter between 1 and 3.
• D is the input block whose size is 4*L.

The used buffers are listed below:
• H is an L-bit integer.
• IV is the initial vector in our compression

function. It has a size equal to H, namely L
bits.

• T is a (1+log2L)-bit unsigned integer.
• R, R1 and R2 are (log2L)-bit unsigned

integers.
• Z and M are 4*L-bit blocks.

Figure 1: Algorithm of gwh compression function

gwh is used to calculate message digest for string
blocks of size 4*L bits. The produced message digest's
length is L bits. In this algorithm all integers have been
considered unsigned. Moreover, we use RSHL(A,B) to
indicate rotational left shift of A by B bits, in which we
could use the remainder of B to length of A (in bits),
instead of B itself. The main idea of this paper is in steps f
to i. We believe that step j could be easily replaced with
some other operations that convert 4 blocks of L-bits into
one block provided that they amplify the one-wayness of

gwh and also do not decrease gwh's regular distribution
too much. As an example, the impact of using XOR
instead of addition (ADD) in step j is shown in Section 4.

2.2. Hash function: hwh

Now we apply Merkle-Damgaard (MD) transform on
gwh to convert it to a hash function named hwh. To
generate the overall message digest, the input bit string S
is padded to a multiple of 4*L by appending a bit of 1 and
one or more necessary bits of 0. The actual length of S
before padding, in a 4*L-bit representation, forms IV as
first block D(1). After this, S is divided into the 4*L-bit
blocks D(2), D(3),..., D(n). Now according to MD
transform, these blocks are processed in order. Refer to
figure 2 and 3 to see the pseudo code and diagram of this
transform on gwh. The first value of IV is zero. The final
hash value is generated in a L-bit buffer named H with
initial value of H=0.

Figure 2: Pseudo code for hwh hash function

2.3. Suitable values for parameters

Two parameters in figure 1 are L and RF. L is the size
of output in bits. The number of output bits depends on
the needed security threshold for birthday attack or on
other considerations like time performance. One
advantage of this algorithm is the fact that the general
behavior of the hash function remains approximately
unchanged for different values of the L parameter. In
Section 4 we will see that the balances of gwh for several
values of L are almost the same. So we could choose a
suitable value for L and then rely on this prediction that
birthday attack will succeed only after about 2L-1 trials.

By RF we mean Reconstruction Factor. RF is the
number of rightmost coefficients in the transformed signal
which are zeroed before reversing the result of the
transform. Experimental results show that for L=8,
maximum balance or in other words minimum collisions,
is achieved when we choose RF=3 out of 4.

gwh(D,IV) :
a. Let T = Number of transitions of D's binary representation

from 0 to 1 in left to right scan. Since D is a 4*L-bit string,
T is not greater than 2*L and so it has (1+log2L)-bit
representation (clearly, in this case zero and 2*L transitions
will result in the same T).

b. Let R1 = Rightmost log2L bits of D

c. Let R2= Leftmost log2L bits of D

d. Let R = R1 XOR R2

e. Z = D.

f. Calculate FWHT on Z as a sequence of 4 L-bit integers, to

obtain another 4*L block. Since FWHT is in-place,
generated result is also in Z.

g. Reduce the dimensionality of Z by zeroing its rightmost RF

bits.

h. Reconstruct the original signal by calculating in-place

reverse FWHT on Z as a sequence of 4 integers of L bits.
For reverse FWHT, simply apply FWHT on Z, and then
divide each of L-bit integers of its output by a factor of 4.

i. Let M = Z – D. Consider M as a sequence of 4 L-bit

integers named M(0), M(1),M(2) and M(3) in right to left
order.

j. H = IV;

For t = 0 to 3 do
H = H + M(t);
H = RSHL (H , R);
R =RSHL (R , T);

k. Return H.

hwh (S):
D(1) = length of S shown in 4*L bits.
Append necessary 0 bits to S (for padding) to make its length a
multiple of 4*L.
Divide S into blocks D(2),...,D(n)
H = 0;
For t = 1 to n do
 H = gwh(D(t), H);
Return H;

Figure 3: Diagram of applying MD transform on gwh to

convert it to hash function hwh

3. Design Strategy

3.1. Motivation

Almost all existing cryptographic hash functions, like
MD4, MD5 [8, 9] and SHA-family [11] use some steps
which are rounded several times. The iterated steps
usually include expanding, additions, rotational shifts and
other boolean operations like AND, XOR, etc. In our
proposal, we first use a Walsh-Hadamard transform and
then apply a few steps on the difference between
reconstructed and original signals. All orthogonal
transforms result in a regular distribution and permit
carrying out reconstruction with dimensionality reduction
using a smaller number of operations instead of several
high cost iterations. Here WHT is a good candidate for
this purpose because its base functions are formed by 0
and 1 and so the transform is suitable for dealing with
binary input sequences. Also there is a fast
implementation of Walsh-Hadamard transform [8], which
has a running time of (log2n)*(1+12*log2n) in terms of
basic computer operations, for a signal consisting of n
values, each with machine word size. It is also clear that
gwh, and hwh, have completeness property since all input
bits are involved in the final result.

3.2. Dimensionality reduction with a regular
distribution

As can be seen in figure 1, the core of the gwh is based

on the reconstruction of the original input (as a signal) by
applying reverse Walsh-Hadamard transform with a

reduced dimensionality. According to experimental
results (Section 4), we believe that subtracting
reconstructed signal from the original input (M in figure
1) provides us a rather1 regular distribution as well as
random behavior which is usually a good design principle
for hash functions2.

3.3. Non-linear operations

Step j, is just for strengthening the one-wayness

property of gwh by a series of nested rotational shifts of
both coefficients and amounts of their shifts, according to
a signal dependent parameter, namely T. This is because
of the fact that values of T have a non-linear distribution
on possible binary signals. Just a few number of signals
have a very low or very high amount of T (like T=0,1)
but, many other signals have an average value for T, like
T=2*L.

Although this non-linear distribution of T decreases the
reversibility of overall hash function but, also clearly has
an undesirable impact on its regularity, as we will see
more quantitatively in Section 4. Indeed, in hash function
design there is always a trade off between regular
distribution and irreversibility.

3.4. Keyed Parametric Hash by dimensionality
reduction

We can easily change our gwh function to accept a

secret key as well as the input sequence. Using this secret
key, the gwh function decides which coefficients take part
in the reconstruction process. In other words, our hash
function can get two inputs: a message sequence and a
secret key that is already shared between the sender and
the receiver. Therefore, to forge this hash value, the
attacker will have to guess the used secret key first in
order to be able to attack the algorithm. This means a
stronger keyed hash function that has its own benefits and
applications.

4. Security measurements on gwh

In this Section, we analyze the security aspects of gwh

by calculating two common security measurements on our
proposed function: Balance Factor and Strict Avalanche
Criterion (SAC) or PC(1). But first, we briefly introduce
our simple tester software that we have used for
calculating these parameters efficiently. Also we present
the computable measures that we have calculated as the
indicators of balancedness and avalanche effect.

1 For real non-trivial hash functions, this distribution is not - or could not
be - exactly regular. See [5].
2 Randomness is usually a good policy, but not the best. Random
functions are weaker than regular ones against birthday attack.[5]

append padding bits

append length block

gwh

gwh

H
H0=I

xi

preprocessin

H

Hi-1

Original input signal

formatted
input

iterated
processing

compression
function

output

4.1. Tester program

For calculating balance and SAC factors of gwh we
have written an ad-hoc tester application in C language.
This tester is able to generate a given number of a
specified-length array of L-bit elements in 3 different
modes:
1. Fills the array with successive values starting from a

given number up to another given number.
2. Fills the array by random numbers for a specified

number of iteration.
3. Fills the array in one of the above modes and then

produces other numbers each by alternating one
bit of the first numbers.

After generating above big numbers (implemented by
arrays), the tester could do any of following operations:
1. Counts the number of occurrence of any portion of

output bits.
2. Reports the first occurrence of a collision on any

portion of output bits.
3. In the third mode of data production, calculates the

average number of output bits which are changed
after inverting one bit of input.

4.2. Balance factor for hwh

BALANCE MEASURE [5]: Consider the hash
function h:D → R for which we have |D|=d and |R|=r.
Name the elements of range R as R1,…,Rr and define di as
number of input points which are mapped to Ri.

Precisely, di=|{x∈ D where h(x)=Ri}|. The balance of
h is defined as:

++
=

dd
d

r

rh 22

1

2

...
log)(µ

We calculated balance of this algorithm for different
cases, summarized in figure 4. First we chose L=8 and
cover all input space of gwh to find an exact value of
balance for this case. Distribution of hash values for all
possible 232 different inputs over 256 output points is
presented in figure 5. Our tests show that using XOR
instead of addition in step j of gwh algorithm has a bad
impact on the balance of gwh, reducing it from 0.999994
to 0.835881. For comparing distributions of original gwh
and the above variation see figures 5, 6.

Parameters Inputs)(gwhµ
L=8 and RF=3 All possible

232 inputs
0.99999410522

L=8 and RF=3 (In this test
we used XOR instead of
addition in step j. of gwh)

All possible
232 inputs

0.83588135980

L=32 and RF=3 232 random
inputs

0.99999998830
(over first 8 bits of
output)

L=128 216 random
inputs

0.99999999916
(over first 8 bits of
output)

Figure 4: Summarized results for balance of gwh

In the second attempt, we chose L=32 and calculated

the hash values for 232 random inputs with size 128 bits.
In this test we just considered first 8 bits of hash output to
find an approximation of overall balance. Here di is the
frequency of appearing i as the rightmost 8 bits of 232
hash values)2550(≤≤ i , and d=232, r=256.

16000000

16200000

16400000

16600000

16800000

17000000

17200000

17400000

0 18 36 54 72 90 10
8

12
6

14
4

16
2

18
0

19
8

21
6

23
4

25
2

Output points

Fr
eq

ue
nc

y

Figure 5: Frequency of appearing each possible 256

points in a whole covering of input space for L=8 in gwh.

0
20000000

40000000
60000000

80000000

100000000

120000000

140000000
160000000

180000000

0 18 36 54 72 90 10
8

12
6

14
4

16
2

18
0

19
8

21
6

23
4

25
2

Output points

Fr
eq

ue
nc

y

Figure 6: Impact of replacing additions of step j. of

gwh with XORs on the frequency of appearing each
possible 256 points in a whole covering of input space for

L=8.
As the last case, we again limited our balance

estimation only on 8 bits of output for 216 randomly
chosen inputs. The considered 8 bits of output in this case
were in the positions of 0, 17, 50, 67, 85, 100, 118 and
127. Here d=216, r=256.

Although it is shown in [5] that MD transform doesn't
preserve the balance of the underlying compression
function (here gwh), we do not calculate the balance
factor of the final hash function (hwh) because it is
usually expected that the balance of the final hash be not
much less than that of its compression function. By
comparing these to SHA-1's results we see that our
balance is very close3 to its.

4.3. Avalanche effect of gwh

3 According to [5], the balance factor of SHA-1 for 32-bit
inputs on several sub ranges of 8-bit outputs ranges from
0.99999998769 to 0.99999999083.

AVALANCHE EFFECT: For achieving more one-
wayness, there is a mathematical abstraction, called
avalanche effect, which says that an average of one half
of output bits should change when a single input's bit is
changed. More changes in output's bits imply higher
degree of non-linear dependency between input and
output bits. This is one of the desirable properties of a
cryptographic hash function because it shows that hash
values of some neighbor inputs are diffused all over the
output space [12].

Our calculations for amount of avalanche effect in
gwh, for L=8 and L=32 show that, on average, 3.849713
and 15.759494 changes occur respectively in output bits
whenever a single bit of input is changed. In both cases,
the figure is very close to one half of L.

5. Conclusion and further works

As we mentioned in Section 4, some important

measurements, such as balance factor and avalanche
effect, show that gwh, and probably hwh, have a desirable
behavior as a cryptographic hash function. For example, a
balance factor of 0.99999998830 for 8 bits of 32-bit
output size which is very close to – and sometimes better
than - the same measurement for SHA-1 (US standard
Secure Hash Algorithm, the most common universal hash
function). It shows strongly that gwh has a very regular
distribution, and therefore, has a good resistance against
birthday attack. We just need to choose a suitable value
for output size, L, and expect that our hash function can
resist up to 2L-1 steps of birthday attack. It seems that for
currently computational power of super computers, a
value between 160 and 256 suffices for L as output size.

Also experimental data shows that approximately half
of the output bits are altered when a single bit of input is
inverted. This good avalanche effect, PC(1), can
guarantee the one-wayness property of gwh and also hwh,
which in turn causes better resistance of our hash function
against more hash attacks like compression function
attack and chaining attack that we did not consider in this
paper. Our further research will focus on improvement of
hwh as well as gwh, with more attention to other hash
function attacks like differential attacks.

Moreover, we are interested in optimizing our hash
function implementation to make it less costly in
computation time.

10. References

[1] R.C. Merkle, “One Way Hash Functions and DES”,
Advances in Cryptology Proceedings - CRYPTO '89, Vol.
435, 1990, pp. 428.

[2] M. Bellare, R. Canettiy and H. Krawczykz, “Message
Authentication using Hash Functions The HMAC

Construction”, RSA Laboratories' CryptoBytes, Vol. 2,
No. 1, Spring 1996.

[3] A. Menezes, P. Oorschot, and S. Vanstone, Handbook
of Applied Cryptography, CRC Press, 1996.

[4] W. Stallings, Cryptography and network security:
Principles and practices, Prentice Hall, 2003.

[5] M. Bellare and T. Kohno, “Hash Function Balance
and its Impact on Birthday Attacks”, Advances in
Cryptology EUROCRYPT, May 2-6, 2004.

[6] K.G. Beauchamp, Applications of Walsh and related
functions, Academic Press, 1984.

[7] J. Johnson and M. Puschel, “In Search of the Optimal
Walsh-Hadamard Transform”, Proc. ICASSP, 2000.

[8] T.H. Tossavainen, “Fast in-place Walsh-Hadamard
Transform”, Music-DSP Source Code Archive, World
Wide Web, www.musicdsp.org .

[9] Bart Preneel, “Analysis and Design of Cryptographic
Hash Functions”, Ph.D. thesis of Katholieke Universiteit
Leuven, Jan 1993.

[10] A.F. Webster and S.E. Tavares, “On the design of S-
boxes”, Advances in Cryptology, Proc. Crypto’85, LNCS
218, H.C. Williams, Ed., Springer-Verlag, 1985, pp. 523–
534.

[11] NIST/NSA, “Secure Hash Standard (SHS)”, FIPS
180-2, August 2002 (change notice: February 2004).

[12] H. Feistel, Cryptography and Computer Privacy,
Scientific American, 1973, 228(5),pp 15-23.

[13] R.L. Rivest, “The MD4 Message Digest Algorithm”,
Advances in Cryptology,CRYPTO’90, LNCS 537,
Springer-Verlag, pp. 303–311, 1991.

[14] R. Forr´e, “Methods and instruments for designing S-
boxes”, Journal of Cryptology, Vol. 2, No. 3, 1990, pp.
115–130.

[15] K.G. Beauchamp, Walsh Functions and Their
Applications, Academic Press, New York, 1975.

[16] D.Hong, J.Sung, S.Lee, D.Moon and S.Chee, “A
New Dedicated 256-bit Hash Function: FORK-256”,
Cryptographic Hash Workshop, NIST , October 2005.

