
SMM: a Data Stream Management System for

Knowledge Discovery

Hetal Thakkar #, Nikolay Laptev $, Hamid Mousavi $, Barzan Mozafari $, Vincenzo Russo &, Carlo Zaniolo $

Google Inc.
$ Computer Science Department, UCLA

& ICAR/CNR

{hthakkar,nlaptev,hmousavi,barzan,russo,zaniolo}@cs.ucla.edu

Abstract—The problem of supporting data mining applications
proved to be difficult for database management systems and
it is now proving to be very challenging for data stream
management systems (DSMSs), where the limitations of SQL
are made even more severe by the requirements of continuous
queries. The major technical advances that achieved separately
on DSMSs and on data stream mining algorithms have failed
to converge and produce powerful data stream mining systems.
Such systems, however, are essential since the traditional pull-
based approach of cache mining is no longer applicable, and
the push-based computing mode of data streams and their
bursty traffic complicate application development. For instance,
to write mining applications with quality of service (QoS) levels
approaching those of DSMSs, a mining analyst would have to
contend with many arduous tasks, such as support for data
buffering, complex storage and retrieval methods, scheduling,
fault-tolerance, synopsis-management, load shedding, and query
optimization. Our Stream Mill Miner (SMM) system solves these
problems by providing a data stream mining workbench that
combines the ease of specifying high-level mining tasks, as in
Weka, with the performance and QoS guarantees of a DSMS.
This is accomplished in three main steps. The first is an open
and extensible DSMS architecture where KDD queries can be
easily expressed as user-defined aggregates (UDAs)—our system
combines that with the efficiency of synoptic data structures
and mining-aware load shedding and optimizations. The second
key component of SMM is its integrated library of fast mining
algorithms that are light enough to be effective on data streams.
The third advanced feature of SMM is a Mining Model Definition
Language (MMDL) that allows users to define the flow of mining
tasks, integrated with a simple box&arrow GUI, to shield the
mining analyst from the complexities of lower-level queries. SMM
is the first DSMS capable of online mining and this paper
describes its architecture, design, and performance on mining
queries.

I. INTRODUCTION

Problem statement. Data Stream Management Systems

(DSMSs) represent a vibrant area of current research, focusing

on supporting continuous queries over massive and bursty

data streams, while providing quality of service (QoS) guar-

antees. The development of major research prototypes [17],

[20], [6] and commercial systems by high-tech startups [39],

[12], underscores the progress achieved by DSMSs and their

enabling technology. However, DSMSs remain very limited

in their ability to handle complex applications, such as data

stream mining. To the best of our knowledge, no commercial

DSMS or research prototype supports on-line data stream

mining, in spite of its growing importance in an assortment

of applications that include: network traffic monitoring, in-

trusion detection, web click-stream analysis, highway traffic

congestion management, credit card fraud detection, and many

others [42]. In fact the importance of on-line knowledge

discovery has created much interest among data mining re-

searchers, who have proposed fast and light mining algorithms,

whereby massive data streams can be mined with real-time re-

sponse [10], [16], [11], [43], [15], [21]. However, the progress

on algorithms has not provided robust and efficient computing

environmenst on which to deploy such algorithms with QoS

guarantees. However, for a successful deployment on massive

data streams, on-line mining queries require the robustness,

efficiency, and reliability provided by DSMSs, via technical

advances that include the ability to manage queues, synoptic

structures (such as windows), scheduling strategies, and load

shedding protocols. Therefore, in this paper we address this

critical problem, for which, neither DSMS researchers nor data

stream mining researchers have provided any solution so far.

Problem significance. The success of KDD systems, such as

Weka [13], over stored data illustrates that users much prefer

to work with a KDD workbench that allows them to focus

on high-level mining tasks rather than having to deal with

the complexities involved in implementing these tasks or even

customizing existing ones. The need for a workbench such as

Weka becomes even more critical in the context of mining

data streams, since they require a considerably more complex

computational environment than stored data. In fact, even a

simple mining task, such as on-line classification, normally

requires the concurrent execution of several tasks, including

(i) data cleaning, (ii) training, and (iii) prediction, whereas

for stored data, the users can perform these tasks leisurely

in successive steps. Thus, KDD researchers and practitioners

tackling a data stream mining problem would much prefer to

concentrate on the data mining task at hand and rely on the

DSMS for handling the underlying complexities and delivering

the required QoS.

Historical challenges. For all the benefits that can be

achieved by extending a DSMS to support a data stream

mining environment, this objective poses research challenges

so significant that the system proposed in this paper, namely

the Stream Mill Miner (SMM) is the first system that claims

to have achieved it. The crux of the problem is that most

DSMSs use SQL-based continuous query languages and thus

face similar issues to those faced by database vendors, who

in mid-90s tried to introduce static data mining algorithms in

DBMSs. While the objective of extending SQL and DBMSs

with OLAP primitives was achieved with relative ease (and

great financial returns), supporting data mining tasks using

DBMS-provided constructs and functions, proved to be ex-

ceedingly difficult for SQL-based relational DBMSs, due to

the expressive power limitations of sql [30]; moreover, the

well-known study presented in [38] proved that OR-DBMSs

do not fare much better either1.

Therefore, in their visionary paper [29], Imielinski and

Mannila called for a quantum leap in the functionality and

usability of DBMSs, whereby (i) mining queries can be

formulated with the same ease of use as other queries in

relational DBMSs, and (ii) query optimizers generate efficient

execution plans for these declarative mining queries. The

notion of Inductive DBMS (IDBMS) [29] was thus born,

which inspired approaches such as MSQL [28], DMQL [26],

and Mine Rule [33]. However, these proposals suffer from

limited generality and performance. For instance, MSQL and

Mine Rule only support association rule mining. Therefore,

DBMS vendors have responded to users’ demands by less

ambitious approaches that are largely based on addition of

mining libraries to their DBMSs; examples include the Oracle

Data Miner [2], Microsoft’s OLE DB for DM [40], and the

now discontinued IBM DB2 Intelligent Miner [1].

Question of extensibility. While some of these systems

provide unique features, including user friendly graphical

interfaces, and support for mining models [40], they also

suffer from many limitations. In particular they are closed

systems that provide little in terms of user extensibility, and

their vendor-specific features are not part of SQL standards.

Thus, these proprietary systems are at a disadvantage with

respect to Weka [13], an open system, that in addition to

a comprehensive set of machine learning methods, supports

extensibility through a standard Java API. Thus, while Weka

is designed for mining stored data, it outlines a level of

functionality, extensibility, and usability that we would like

to provide in our workbench for data stream mining.

Contributions. Several ideas leading to SMM were first

outlined at a data stream workshop [42], where we investigated

the idea of supporting on-line classification in a DSMS. In

this paper, we discuss the integration of the complete mining

process, using a novel mining language, called MMDL, which

allows the users to define new mining methods and work-

flows. SMM also supports the rendering and usage of these

methods and work-flows by an attractive box&arrow GUI,

which greatly enhances the usability of the system. Thus,

starting with an SQL-based continuous query language, SMM

implements a full-fledged on-line mining system that is ex-

tensible, and supports (a) a rich library of mining methods,

(b) definition of new mining models and work-flows, (c) a

1Sarawagi et al. [38], attempted to implement frequent itemset mining in
DB2 without extending DB2. As discussed in the paper, this proved very
difficult to implement and the performance was worse than that obtained with
the cache-mining approach.

mining-aware optimization and load shedding API to enhance

the efficiency and deliver the guaranteed QoS and, (d) a user-

friendly GUI. The main research contributions of SMM are as

follows:

1) SMM overcomes the expressive power limitations of

SQL via powerful UDAs, and extends its DSMS

kernel into an on-line mining workbench with full-

functionality. The resulting language is called Contin-

uous Stream Language (CSL).

2) SMM integrates a rich library of data stream mining

algorithms that (a) are fast and light as required for

online mining, (b) dovetail with the constructs and

mechanisms (windows, slides, etc.) efficiently supported

by SMM, and (c) are generic, i.e., they apply to data

streams with different number of columns and attribute

types.

3) SMM is the first DSMS that provides load shedding

even for User-Defined Aggregates. In fact, using our

declarative syntax and our simple load shedding API,

all mining tasks can benefit from a mining-aware load

shedding engine that further improves the quality of

mining results

4) Finally, SMM supports complete, end-to-end mining

process specified as a continuous mining work-flow. The

analysts can freely define them using the Mining Model

Definition Language (MMDL) proposed in this paper or

a GUI. Users can invoke these mining algorithms via a

simple and uniform syntax.

Paper organization. In this paper, we illustrate the tech-

niques and architecture of SMM via a succession of case

studies focusing on the integration of key mining methods

for classification, association, and ensemble-based learners.

These examples illustrate: (i) how to use the basic SQL-based

constructs of SMM to support mining tasks, (ii) how to define

new mining tasks and models to enrich the mining library

of the system, and (iii) how existing, off-the-shelf mining

algorithms, such as C4.5 decision trees, SWIM[35], etc., can

be imported into SMM .

The rest of this paper is organized as follows. Section II

describes the SQL extensions required for expressing complex

mining algorithms. In Section III, we discuss ensemble based

methods, MMDL, and the integration of mining algorithms as

work-flows. In Section V, we use MMDL constructs to model

the complete mining process for association rule mining. Sec-

tion VI studies the performance of the proposed framework.

Section VII covers further extensions that we have successfully

developed on top of SMM , followed by the related work and

conclusion.

II. CONTINUOUS MINING IN SQL

The difficulty that SQL-based systems encounter in express-

ing and efficiently supporting complex data mining algorithms,

such as Apriori, is well known and documented [38]. But

intertwined with this expressive power problem, we find 2

other issues when mining data streams, (i) genericity and (ii)

support for non-blocking queries. To illustrate these additional

issues we use the example of Naive Bayesian Classification

(NBC), which is among the very few data mining tasks that

can be expressed in SQL.

Let us consider the situation where we want to train a

classifier on the minexample of Table I.

TABLE I
A MINI TRAINING SET FROM THE PLAYTENNIS EXAMPLE

TrainTbl Outlook Temp Humidity Wind Dec

Sunny Hot High Weak No
Sunny Hot High Strong Yes
Overcast Hot High Weak Yes

In order to predict the Dec value (decision to play or not) of

a new tuple X = �x1, . . . , xn�, the NBC classifier compares

the probabilities of the possible values C for column Dec using

Equation 1 (obtained assuming independent probabilities).

p(C|X) =
p(x1|C) × . . . × p(xn|C)

p(X)
× p(C) (1)

To derive the prediction C with max probability, we only

need to count the number of training tuples for (i) each C

value, and (ii) each (xi, C) value pair. However, since training
tables can have hundreds of columns, applying the SQL count

aggregate on each column is cumbersome, and inefficient since

it requires many passes through the data. Moreover, we want

to write generic NBC queries, i.e., queries that work on tables

with arbitrary number of columns, as needed for inclusion in

a mining library. A simple answer to these requirements is

illustrated by Table II and Table III. The first table, namely

DescrptrTbl, summarizes the counts of the various occurrences

that will be used in the prediction. Conceptually, we can think

of the DescrptrTbl as the classifier that we have learnt.

Table III instead outlines a simple intermediate represen-

tation that can be used to compute Table II from Table I

in a generic fashion. Thus, we use verticalization to write

generic algorithms that can be applied to streams indepen-

dent of their schema. Genericity is required in any data

mining workbench: for instance Weka represents data as

an array of doubles (a kind of verticalization) to enable

generic algorithms. SMM provides a built-in table function

TABLE II
THE DescrptrTbl FOR TrainTbl

DescrptrTbl Col Val Dec Total

1 Sunny No 1
1 Sunny Yes 1
1 Overcast Yes 1
2 Hot No 1
2 Hot Yes 2
3 High No 1
3 High Yes 2
4 Weak No 1
4 Weak Yes 1
4 Strong Yes 1
5 All No 1
5 All Yes 2

TABLE III
VERTICALIZED VIEW OF TrainTbl

TrainTbl Col Val Dec

1 Sunny No
2 Hot No
3 High No
4 Weak No
5 All No
1 Sunny Yes
2 Hot Yes
3 High Yes
4 Strong Yes
5 All Yes
1 Overcast yes
2 Hot yes
3 High yes
4 Weak yes
5 All Yes

called verticalize to produce a view representing Table II

as shown in Example 1. For instance, if presented with the

tuple �Sunny, Hot, High, Weak, All�, verticalize would return
the tuples: �1, Sunny�, �2, Hot�, �3, High�, �4, Weak�, and �5,
All�. Thus once the input table is conceptualized in this

column-oriented representation, we can proceed with the count

of the ‘Yes’ and ‘No,’ grouped by the (Col,Val) pair, as shown

in Example 2. Also observe that the total counts of ‘Yes’ and

‘No,’ is realized by simply using an additional ‘All’ column in

verticalize. We note that columns that are not required for the

mining process can be projected out first, before verticalization,

to avoid any overhead associated with it.

Example 1: Column Oriented view over TrainTbl
CREATE VIEW ColumnView
SELECT ts.Col, ts.Val, t.Dec
FROM PlayTennis as t,
TABLE(verticalize(Outlook, Temp, Humidity, Wind,

‘All‘)) AS ts (Col, Val)

Example 2: Counting over ColumView
CREATE VIEW DescrptrTbl AS
SELECT Col, Val, Dec, count(*)
FROM ColumView
GROUP BY Col, Val, Dec

The benefits of this column-oriented representation become

even more obvious when we turn to the prediction problem.

Let us assume that the tuples to be classified are contained

in a table TestTuples having the same columns as TrainTbl,

except that the Dec column is missing and we instead have

an ID column which uniquely identifies the tuples in the

table (e.g., by a sequence number). Then, the extraction of

the correct statistics for each tuple can be implemented by a

natural join of the table TrainTbl with the DescrptrTbl. Thus,

for each tuple ID, we multiply the corresponding ’Yes’ and

’No’ entries for each of its categorical attributes (including

for ‘All’). Multiplications can be performed efficiently by

simply using the SQL sum aggregate on the logs of these

positive numbers. Thus, the following SQL query defines a

view, namely TestStats, obtained by joining the verticalized

tuples of TestTuples with the DescrptrTbl.

Example 3: Deriving Statistics for Each Tuple

CREATE VIEW TestStats(ID, Val, Dec, LgT) AS
SELECT d.ID, d.Dec, log(d.Total)
FROM TestTuples AS t , DescrptrTbl AS d,

TABLE(verticalize(t.Outlook, t.Temp, t.Humidity,
t.Wind, ‘All‘)) AS ts(Col,Val)

WHERE d.Val=ts.Val AND d.Col=ts.Col

On this view, we implement Equation 1 by simply summing

the logs for the totals of (xi, Dec) minus the log for the

(‘All‘, Dec) counts2 and then taking the max among the

resulting values. Due to space limitations, we omit the simple

SQL code for this computation.

The NBC discussed above can be extended for data streams

by using non-blocking aggregates. However, more complex

mining tasks cannot be expressed with SQL easily and re-

quire user-defined functions. These complex mining tasks

rely heavily on BLOBS, CLOBS and complicated aggrega-

tions/summarization, which make scalar functions much less

suitable to express incremental continuous computations than

user-defined aggregates. Indeed, DSMS research has demon-

strated aggregates applied through constructs such as windows,

slides, and tumbles are critical in the computation of non-

blocking queries on data streams, particularly for analytics

and data mining tasks [17], [6], [8]. While most DSMSs only

support these window constructs on buil-in aggregates, SMM

supports them on arbitrary UDAs, which can be defined using

INITIALIZE, ITERATE, TERMINATE, and EXPIRE actions [8].

While blocking UDAs specify some TERMINATE actions, win-

dow aggregates are non-blocking and specified using EXPIRE

actions. Window aggregates can be freely applied over data

streams [8].

Before we discuss these properties with the help of ex-

amples, let us observe that UDAs might be the solution of

choice even in situations where they are not strictly required

for expressivity. For instance, a fully-functional NBC should

also incorporate support for (i) continuous values (e.g., by

assuming some Gaussian distribution), (ii) various treatments

of null values in the training tables, and (iii) Laplace estimators

to compensate for missing combinations in the training set.

While each of these additions can be expressed in SQL,

the whole resulting code would be unwieldy, and thus its

encapsulation into a UDA is much preferred in practice.

A. Data Streams

Let us say that the stream of input tuples to be classified

is TestStream declared using the CSL statement of Example 4

below. Since tuples are classified individually as they arrive,

we no longer need the explicit ID used in TestTuples. The

definition of a SOURCE clause at the end of the statement

denotes the port on which the data arrives3. As a result of

this, SMM creates a CSV wrapper to ingest data arriving at

this port (A user can also provide his/her own wrapper to read

data of a different format).

2this second log must be added back once at the end, as per ×p(C) in
Equation 1.
3In CSL , this stream declaration can also contain an ORDER BY clause,

to specify a timestamp based order of the tuples.

Example 4: The Input Stream
CREATE STREAM TestStream (Outlook CHAR(10),

Temp CHAR(10), Humidity CHAR(10),
Wind CHAR(10), Dec CHAR(10))

SOURCE ‘port5444’;

The next CSL statement on this incoming stream is that of

Example 5, that performs a verticalization operation, similar

to that of Example 1. By comparing these two examples, we

see that the constructs used in CSL queries are basically those

of SQL, only the create-view construct is replaced with the

create-stream construct.

Example 5: Vertical view of TestStream
CREATE STREAM VertTestStream
SELECT ts.Col, ts.Val, t.Dec FROM TestStream as t,

TABLE(verticalize(Outlook, Temp, Humidity, Wind))
AS ts (Col, Val)

Since each incoming tuple in TestStream generates a group

of four successive tuples in VertTestStream, the prediction

task will be computed on ‘tumble’ window of size 4. For the

‘tumble’ effect, we will specify a window of size 4 (ROWS

3 PRECEDING plus the current one), and a slide of the same

size: SLIDE 4. Thus, the incoming data stream is broken into

chuncks of 4 consecutive tuples, called ‘tumbles’. On this, we

call ClassifyNaiveBayesian as follows:

Example 6: NBC Predictor Calls on windows and slides
CREATE STREAM Predictions AS
SELECT ClassifyNaiveBayesian(Col, Val)

OVER (ROWS 3 PRECEDING SLIDE 4)
FROM VerticalTestStream

SMM uses special execution strategy for tumbles. Since

each tumble’s (consecutive chunck of 4 tuples) is disjoint,

SMM simply executes the base version of the UDA over each

‘tumble’, i.e., starting with the first tuple of the ‘tumble’ and

returning values upon receiving the last tuple of the ‘tumble’

(rather than the last tuple in the input, which would cause a

blocking behavior) and repeating this procedure at the next

input tuple [8]. Therefore ClassifyNaiveBayesian is defined as

a base aggregate through the three INITIALIZE, ITERATE, and

TERMINATE states. The computation in these states can be

specified either in C++ or Java, or natively in SQL itself.

With natively defined UDAs, SQL becomes a Turing complete

and NonBlocking-complete language [30], enabling compact

and declarative definition of complex mining algorithms, and

rapid prototyping of applications. SMM is (at the best of our

knowledge) the only DSMS that supports this capability. An

important advantage of this approach (over UDAs defined

in an external language) is the ability of accessing not only

tables that are internal to the UDA (such as pred in Example

7) but also external tables, such as DescrptrTbl. Thus, in

Example 7 the pertinent values of probability are selected

from DescrptrTbl in the INITIALIZE state, and then their logs

are added in the ITERATE state (with a Laplace estimator

applied), and finally the most probable decision is selected

in TERMINATE.

Example 7: NBC Prediction Aggregate
AGGREGATE ClassifyNaiveBayesian

(column INT, cvalue CHAR(10)): CHAR(10)

{ TABLE pred(pdec INT, ptot REAL);
INITIALIZE: {

INSERT INTO pred
(SELECT dt.dec, 0
FROM DescrptrTbl AS dt
WHERE dt.Col = column AND dt.Val = cvalue ;

UPDATE pred SET pdec= pdec +
(SELECT log(1+dt.Total)
FROM DescrptrTbl AS dt
WHERE dt.Val = cvalue
AND dt.Col = column ANDdt.Dec = pdec); }

ITERATE: {
UPDATE pred p SET ptot = ptot -

(SELECT log(dt.Total+1))
FROM DescrptrTbl AS dt
WHERE dt.Val = ‘All‘
AND dt.Col = column AND Dec = pdec); }

UPDATE pred SET ptot = ptot +
(SELECT log(dt.Total+1))
FROM DescrptrTbl AS dt
WHERE dt.Val = cval
AND dt.Col = column AND dt.Dec = pdec);

TERMINATE: {
INSERT INTO RETURN
SELECT m.pdec FROM pred AS m
WHERE NOT EXIST (
SELECT * FROM pred AS s
WHERE s.ptot > m.ptot
OR (s.ptot = m.tot AND s.pdec < m.pdec));

} }

Note that in the above example we assumed that the De-

scrptrTbl was somehow already precomputed. Let us say rather

than using a precomputed table, we want to regenerate the

table DescrptrTbl continuously from new incoming tuples as

to account for concept shift or drift. We then train our classifier

on a stream of new training tuples that have been verticalized

into a VertTrainStream using CSL statements that, modulo the

addition of the column Dec, are basically identical to those

of Examples 4 and 5. On this incoming VertTrainStream, we

now apply the UDA LearnNaiveBayesian, which we define

in Example 9, over N most recent tuples, where N can be

defined in terms of count or time. In the example below we

use N = 50000 tuples.

Example 8: Training on the last 50000 samples
CREATE VIEW NBClearn AS
SELECT LearnNaiveBayesian(Col, Val, 4, t.Dec)

OVER (RANGE 50000 R0WS PRECEDING)
FROM VerticalTrainStream

The NBC learner is defined as a windowed UDA in Exam-

ple 9, below; this UDA basically computes the count statistics

for the incoming tuples and then writes them into the external

table DescrptrTbl (which for performance reasons should be

defined as an in-memory table, an option supported in SMM).

Example 9: Windowed Aggregate (Learning NBC)
WINDOW AGGREGATE LearnNaiveBayesian(col INT,

val CHAR(10), totCols INT, classVal INT) : INT {
TABLE tupleSummary (Col INT, Val CHAR(10)

Dec INT, Count INT);
INITIALIZE: ITERATE: {
UPDATE tupleSummary

SET Count = Count + 1
WHERE Col = col AND Val = val
AND Dec = classVal;

INSERT INTO tupleSummary VALUES (col, val,
classVal, 1) WHERE SQLCODE <> 0;

/* we omit some additional details here, for clarity.
updateDescriptorTbl is another UDA, that simply,
updates the values in the DescriptorTbl. */

SELECT updateDescriptorTbl(Col, Val, Dec, Count)
FROM tupleSummary WHERE col = totCol;

DELETE FROM tupleSummary
WHERE col = totCols;

}
EXPIRE: {
UPDATE tupleSummary
SET Count = Count - 1
WHERE Col = oldest().col AND
Val = oldest().val AND Dec = classVal;

INSERT INTO tupleSummary VALUES (oldest().col,
oldest().val, classVal, -1) WHERE SQLCODE <> 0;

}
}

Being a windowed UDA LearnNaiveBayesian has to take

into account the tuples leaving the window, besides the in-

coming tuples. Therefore, in its definition, the EXPIRE state

replaces the TERMINATE state of base aggregates. The EXPIRE

state is executed once for each expiring tuple. The system

automatically determines the tuples that have expired, based

on the window size specified in the query. Thus, the aggregate

above keeps the statistics for each original tuple (INITIALIZE

and ITERATE state), till it sees the last vertical tuple of the

original tuple, i.e., col = totCols, in the tupleSummary table.

At the last vertical tuple, it updates the DescrptrTbl. Note,

EXPIRE state performs delta computation of statistics for tuples

expiring out of the window in similar manner. Thus, windowed

UDAs allow the users to specify incremental computation over

incoming data streams.

Updating the DescrptrTbl for each training tuple is not

acceptable in many cases, since both the classifier stability and

efficiency may suffer. We should instead update it every, say

1000, tuples. This problem is solved with the SLIDE construct,

that can be used to divide-up the window into panes [17],

[6], [8]. Therefore, the following CSL query updates the

DescrptrTbl every 1000 tuples.

Example 10: Using slides to pace the training steps
SELECT LearnNaiveBayesian(Col, Val, Dec)
OVER (R0WS 50000 PRECEDING SLIDE 1000)

FROM vertstream

The updateDescrptrTbl UDA, invoked in Example 9, should

only be invoked at the end of each slide.

Thus, for windowed UDAs, the user can specify the actions

to be taken when a tuple arrives/expires, and also when a slide

of tuples expire. This supports delta computation on windows

and slides, and delivers great flexibility and efficiency.

In summary, even for the few data mining tasks, such as

NBC, where in theory SQL has sufficient expressive power,

in practice UDAs are required for (i) the encapsulation and

modularization needed to manage the code, (ii) the flexibility

of using the various kinds of windows that all DSMSs have

recognized as essential for data stream processing, and (iii)

the many optimizations supported by CSL for these constructs.

Furthermore, for more complex mining tasks UDAs become

the sine-qua-non that provides the expressive power necessary

to implement them.

III. MINING MODELS AND MINING FLOWS

As shown in [42], expressive UDAs supported by SMM

can be used to implement many ad hoc mining algorithms.

However for user convenience, it is essential to provide a

uniform interface for defining and invoking these user defined

mining algorithms. Therefore, we propose the Mining Model

Definition Language (MMDL). Syntax for MMDL is formally

defined in Section IV-A. Here, we continue our running exam-

ple to define a model for NBC in MMDL, as in Example 11.

Example 11: ModelType for Naı̈ve Bayesian Classifier

CREATE MODEL TYPE NaiveBayesianClassifier {
SHAREDTABLES (DescrptrTbl),
Learn (UDA LearnNaiveBayesian,

WINDOW TRUE,
PARTABLES(),
PARAMETERS()

),
Classify (UDA ClassifyNaiveBayesian,

WINDOW TRUE,
PARTABLES(),
PARAMETERS()

)
};

The NBC mining model comprises the two tasks: Learn

and Classify. Thus, the model definition specifies the UDAs

associated with these tasks, e.g., UDAs of Examples 9 and 7,

for Learn and Classify tasks, respectively. and the parameters

associated with each task (the PARAMETERS clause), and

where to store them (the PARTABLES clause). Storing the

parameters in these tables allows the user to change them

as the algorithm progresses; a feature that is very useful in

advance streaming applications, as seen in Section V. Finally,

we note that both UDAs share the DescriptorTbl, where the

Learn task stores the statistics, which will be used by the

Classify task at the time of prediction. Thus, a mining model

defined in SMM can have multiple tasks that are associated

with it and these tasks may share one or more tables.

To complete our NBC example next we show how we invoke

the mining model created above. First we create a mining

model instance of NBC and then we invoke the Learn and

the Classify tasks on the training and the testing stream,

respectively.

Example 12: Bagging Ensemble Instance

CREATE MODEL NBCInstance
INSTANCE OF NaiveBayesianClassifier;

RUN NBCInstance.Learn ON myTrainStream
USING window = ROWS 50000;

RUN NBCInstance.Classify ON myTestStream
USING window = ROWS 3, slide = 4;

Note, that the MMDL statements of Example 12 are the

same as the CSL queries of Examples 8 and 6, with the same

window and slide specification.

Thus, all MMDL statements are converted to equivalent

CSL queries and executed within SMM , as we discuss in

Section IV-B in detail. Next, we discuss implementation of

a more advanced mining algorithm within this framework.

A. Ensemble Methods

The UDA of Example 9 maintains an NBC over a window

of tuples from the training stream. However, it is very difficult

to determine the optimal size of the window (to get the best

accuracy in classification), since the data characteristics may

change with time. Therefore, instead of maintaining a single

classifier, the user may want a more complex solution (e.g.,

[43]) and maintain several small classifiers. This approach,

also assures a better adaptation in the presence of concept-shift

and concept-drift, since new classifiers can be continuously

trained based on the latest statistics, while older or inaccurate

classifiers can be retired. Thus, ensemble based methods in-

crease the accuracy of classifiers in presence of concept-drifts

and shifts [43], [11], [21]. Therefore, a DSMS workbench,

must support such advanced mining methods. Here, we discuss

ensemble-based weighted bagging in detail below. However,

other methods can be similarly integrated into SMM through

its extensible framework.

Ensemble Based Weighted Bagging: Ensemble based weighted

bagging was proposed in [43] to improve the accuracy of clas-

sifiers in presence of concept drifts and shifts. The approach is

applicable when there are two parallel streams, a training and a

testing stream, and both are generated by the same underlying

concepts. The approach divides the incoming training stream

into disjoint blocks of data and learns a new classifier for

each block. Therefore, we can use a base UDA with tumbling

windows to learn a new classifier for each block of data. Then

we will have an ensemble of learned classifiers, one for each

recent training ‘tumble’. Besides training new classifiers, the

recent training tuples are also used to estimate the accuracy

of the current ensemble of classifiers—i.e., those that have

been previously derived from the training stream. Thus, each

pre-existing classifier is assigned a weight proportional to

its accuracy on the most recent training window. The newly

arriving testing tuples are first classified using each of the

classifiers from the ensemble. Then, a weighted voting scheme

is employed to determine the final classification of the test

tuples. Figure 1 shows this process pictorially.

Fig. 1. Generalized Weighted Bagging

In Figure 1, hexagon boxes denote UDAs and the labels

between these boxes represent data streams. We note that

the UDA named ‘Classifier Building’ learns the next classifier

to be stored with the ensemble of classifiers. For instance,

Example 9 is one implementation of ‘Classifier Building’ UDA

for NBC. Similarly, the ‘Classification Task’ UDA predicts

the class of each tuple based on each classifier in the en-

semble. For instance, Example 7 is one implementation of

‘Classification Task’ UDA for NBC. Thus, the general flow

and processing of data tuples, depicted in Figure 1, does not

depend on the particular classification algorithm used. In fact,

only the UDAs labeled ‘Classifier Building’ and ‘Classification

Task’ are specific to the particular classification algorithm

being used. Thus, any classification algorithm (NBC, decision

tree, nearest neighbor, etc.), can be introduced into SMM

for ensemble based weighted bagging by implementing a

‘Classifier Building’ UDA and a ‘Classification Task’ UDA.

Therefore, both built-in and arbitrary user-defined classifica-

tion algorithms can take advantage of this advanced technique

without having to re-implement it.

However, we note that specifying the various steps required

for weighted bagging represents a daunting task for analysts

and less experienced users. This is also true for many other

advanced mining processes, that require a step by step invoca-

tion of several mining tasks [42]. Therefore, MMDL supports

specification of one or more mining flows within the mining

model definition. These complex mining processes only have

to be specified once during model definition can be reused

by all users. Consider for instance Example 13. This example

shows the mining model definition for ensemble based bagging

with NBC, which has 6 mining tasks, namely BuildEns, Train,

UpdateEns, Classify, ManageWeights, and Voting. UDAs for

these tasks can be easily implemented in our framework

as discussed in [42]. Furthermore, Example 13 defines two

complex mining flows at the end, one for training and another

for testing, which invoke the other mining tasks defined in the

model. Note, these flows essentially model the data flow as

presented in Figure 1. While these flows are expressed as a

series of CSL statements below, SMM also provides a GUI to

define these work-flows pictorially as we discuss in the next

section.

IV. MINING MODEL FLOWS VIA GUI

SMM supports a ‘box&arrow’ based GUI to enable defini-

tion of complex mining flows, such as that of Example 13. Due

to space limitations, we only give a brief introduction to this

GUI. Figure 2, shows the definition of two simple workflows

for learning and classifying using NBC, where the training

and testing streams are first fed to a UDA for verticalization

and then fed to the appropriate UDA for learning/classification.

The user can define arbitrary workflows by dropping different

entities and connecting them with arrows. SMM then builds a

mining model flow from this GUI.

Example 13: Ensemble Based Bagging
CREATE MODEL TYPE BaggingEnsemble {

SHAREDTABLES (activeEnsembles, ensClassTbl,
ensembleWeights),

Fig. 2. SMM Client GUI

BuildEns (UDA BuildEns,
WINDOW FALSE, ...),

Train (UDA LearnNaiveBayesian,
WINDOW TRUE, ...),

UpdateEns (UDA UpdateEnsembles,
WINDOW FALSE, ...),

Classify (UDA ClassifyNaiveBayesian, ...),
ManageWeights (UDA UpdateWeights, ...),
Voting (UDA WeightedVoting, ...),
Flow Training (
CREATE STREAM buildEnsTrain AS
RUN BuildEns ON INSTREAM;

CREATE STREAM NBCTrain AS
RUN Train ON buildEnsTrain;

RUN UpdateEns ON NBCTrain;
CREATE STREAM ensClassiTrainPairs AS
SELECT a.ensId trainEns, b.ensId testEns,
b.id, b.col, b.val, b.lbl, b.numCols

FROM buildEnsTrain b, activeEnsembles a;
CREATE STREAM ensClassiTrain AS
RUN Classify ON ensClassiTrainPairs;

RUN ManageWeights ON evalClassiTrain;
),
Flow Testing (
CREATE STREAM buildEnsTest AS
RUN BuildEns ON INSTREAM;

CREATE STREAM ensClassiTestPairs AS
SELECT a.ensId trainEns, b.ensId testEns,
b.id, b.col, b.val, b.lbl, b.numCols

FROM buildEnsTest b, activeEnsembles a;
CREATE STREAM evalClassiTest AS
RUN Classify ON ensClassiTestPairs;

INSERT INTO OUTSTREAM AS
RUN Voting ON evalClassiTest)

}

A. Definition of MMDL

In this section, we present the formal syntax of MMDL as

supported in SMM [34]. The language allows definition of

new mining models, which can be instantiated and invoked

by arbitrary users. Mining models consist of different mining

tasks that combine to provide a mining algorithm. For instance,

for classification algorithms we may have one or more data

cleaning tasks followed by a learning task and a classification

task. Furthermore, mining models consist of flows that connect

TABLE IV
MMDL SYNTAX

ModelDef → CREATE MODEL TYPE ModelNm ‘{‘
SHAREDTABLES ‘(‘ [TableNm]* ‘)‘,
[TaskDef]+
[FlowDef]+
‘}‘

TaskDef → TaskNm ‘(‘
UDA UdaNm,
WINDOW ‘TRUE‘|‘FALSE‘,
PARTABLES ‘(‘ [TableNm]* ‘)‘,
PARAMETERS ‘(‘ [ParamNm]* ‘)‘
‘)’

FlowDef → FlowNm ‘(‘
SQLStatements
‘)’

its mining tasks, e.g. ensemble based methods, as discussed

previously, to define end-to-end mining process. Thus users

can integrate new mining algorithms in the system by defining

a mining model and providing the implementation of the

underlying methods as UDAs. Users can optionally define

mining flows for better usability of their methods.

The formal syntax of MMDL is given in Table IV. Each

model must have at least one task. Users must specify a UDA

associated with each task and the parameters that it accepts.

Users may also specify zero or more tables that can be shared

by the tasks of the mining model.

Furthermore, MMDL allows the data mining experts to de-

fine zero or more mining flows for complex mining processes,

as seen in Example 13. Once a mining model is defined,

the users can create an instance of the mining model and

invoke the tasks and flows of the mining model. The unified

syntax used to invoke built-in and user-defined tasks is given

in Table V.

Example 12 showed how we use this syntax to instantiate

an NBCmining model and execute the mining tasks. The with

clause specifies the input stream and the using clause specifies

the arguments that mining task takes.

B. Compilation of MMDL

When the user specifies a new mining model, SMM stores

the mining model details in the data dictionary. Then, when the

user creates an instance of the mining model, SMM will store

an entry in the data dictionary for the instance and also create

all the shared tables. These shared tables will have special

names that tie them to the instance. Thus, two instances of

the same mining model do not conflict with each other. After

the user has created an instance he can decide to invoke one

of the mining tasks or flows. If the user decides to invoke one

of the tasks, then internally SMM invokes the corresponding

TABLE V
TASK INVOCATION SYNTAX

TaskInv → RUN ModelInstNm ‘.‘ TaskNm
WITH TableStreamNm
[USING ‘(‘ [ParamAssign]* ‘)‘]?

ParamAssign → ParamNm ‘=‘ Value

aggregate over the specified stream with the given parameters

(including window and slide). Note, that the SMM system is

intelligent in that this invocation of the aggregate will only

modify the tables that are corresponding to current mining

model instance. The output of this invocation can be diverted

to the user or into another stream. If the user decides to invoke

one of the mining flows then SMM executes each statement in

the flow definition. Note these statements will be concurrently

running and they may in turn invoke other mining tasks of the

model. Also, note that the user can then also invoke other flows

of the mining task concurrently. For example, the user may

first start executing the training flow for a classification task

and then invoke the testing flow. Thus, MMDL is integrated

into SMM by compiling the mining models, tasks, and flows

into CSL streams, queries, and UDAs. Next, we show how

MMDL is used to support complete end-to-end association rule

mining in SMM .

V. ASSOCIATION RULE MINING

Association rule mining represents an important mining

method, which also has many online applications. The asso-

ciation mining process consists of many steps, starting with

the difficult task of finding frequent patterns. Efficient pattern

mining from data streams represents a difficult problem that

has been the focus of much research work [16], [27], [35]. In

particular, recently proposed SWIM algorithm [35] optimizes

the use of window/slide constructs to achieve efficiency in an

online setting. Thus, the algorithm first divides up the stream

into smaller slides (a.k.a. panes), and then uses other off-

the-shelf mining methods (e.g., fp-growth [27]) to mine each

slide individually. Here each window is composed of k slides,

where k can be anywhere from 1K to 1M. SWIM constructs

a superset of all globally frequent patterns by taking the

union of all locally frequent ones. This superset of candidates

will then be verified to detect actual global frequent patterns.

Verification constitutes the core computation and bottleneck in

the SWIM algorithm, which is solved via conditional counting,

described next. Given a set of patterns, the goal of conditional

counting is to find their exact frequencies only if they are

above a certain threshold. By skipping the full processing of

those patterns that are less frequent, a verifier (i.e., a program

that performs the verification) can significantly outperform

a naive counting in which all patterns are fully processed

regardless of their frequency. Thus, SWIM efficiently verifies

the aforementioned candidate patterns. Every time that the

window slides, both the new and expired slides are processed

accordingly, to maintain the union of all candidate patterns, in

an incremental fashion. In general, other existing algorithms

for frequent pattern mining can also be easily integrated in the

SMM framework.

Association Rule PostMining. The straightforward derivation

of rules from frequent pattern tends to produce a large number

of rules. Thus, many post-processing techniques have been

proposed to summarize, analyze, mine and rank the rules

found from the mining process [32]. Thus, an online mining

workbench must support the complete mining process, as

opposed to only supporting the core problem for finding

frequent patterns.

Previous research projects have focused on integrating as-

sociation rule mining in relational DBMSs. For instance, OLE

DB for DM supports association rule mining much in the

same way as classification. However, the queries to invoke

these algorithms get increasingly complex, due to the required

structure of the data [40], which in turn complicates the inte-

gration of other post-processing techniques. Instead, Calders

et al. [9], propose an approach to incorporate association rule

mining in relational databases through virtual mining views.

This approach achieves much closer integration and allows the

mining system to push down the constraints related to frequent

patterns mining for optimized execution. In addition to support

and confidence thresholds, these also include specification of

high (low) importance items that should always (never) be

reported. Therefore, Calders et al. [9] propose a 3-table view

of the discovered association rules as shown below.

Sets(sid int, item int);
Supports(sid int, supp real);
Rules(rid int, sida int, sidc int, sid int, conf int);

The Sets table stores the frequent patterns by their id and

items. The Supports table stores the support of the frequent

patterns by their id. Finally, the Rules table list the confidence

of each rule by storing its rule id (rid), its antecedent itemset

(sida), its consequent itemset (cida), and the union of the two

(sid). This framework is easily extended to work with data

streams, and to integrate different post-mining techniques as

we discuss next.

First, we define a mining model in MMDL that provides

similar view over discovered patterns and rules. The definition

of an association-rule mining model, and a sample instance are

given in Example 14. Of course, the users can modify and/or

extend this mining model to derive new mining models.

Example 14: Association Rule Mining Model
CREATE MODELTYPE AssociationRuleMiner {

SHAREDTABLES (Sets, RulesHistory),
FrequentItemsets (UDA FindFrequentItemsets,

WINDOW TRUE,
PARTABLES(FreqParams),
PARAMETERS(sup Int, uninterestingItems List,
rejectedPats List, acceptedPats List, ...)

),
AssociationRules (UDA FindAssociationRules,

WINDOW TRUE,
PARTABLES(AssocParams),
PARAMETERS(conf Real, corr Real)

),
PruneSummarizeRules (UDA PruneSummarizeRules,

WINDOW TRUE,
PARTABLES(PruneParams),
PARAMETERS(chiSigniThresh Real)

),
MatchWithPastRules (UDA MatchPastRules,

WINDOW TRUE,
PARTABLES(AssocParams),
PARAMETERS()

),
Flow ARMFlow (

CREATE STREAM FrequentPatterns AS
RUN FrequentItemsets
ON INSTREAM;

CREATE STREAM AssocRules AS
RUN AssociationRules
ON FrequentPatterns USING confidence > 0.60
AND correlation > 1;

CREATE STREAM PrunedRules AS
RUN PruneSummarizeRules
ON AssocRules USING chiSigniThresh > 0.50;

INSERT INTO OUTSTREAM AS
RUN MatchPastRules
ON PrunedRules)

};

CREATE MODEL AssocRuleMinerInstance
NSTANCE OF AssociationRuleMiner;

RUN AssocRuleMinerInstance.ARMFlow ON Transactions
USING sup > 10, window = ROWS 1M, slide = 100K;

In Example 14, association rule mining is decomposed

into four sub-tasks, namely FrequentItemsets, Association-

Rule, PruneSummarizeRules, and MatchWithPastRules. As

previously discussed, these are implemented as UDAs. For

instance, we use the SWIM algorithm to continually find the

frequent patterns, i.e. FrequentItemsets task, from a set of

transactions. Thus, the analyst can invoke the tasks of the

mining model, one after the other, in a step-by-step procedure,

or simply invoke the ARMine flow, defined at the end of

(Example 14). This flow is also shown in detail in Figure 3.

The first task invoked in our example, is the frequent

patterns mining algorithm, e.g., SWIM, over instream (the

transactions stream). We specify the size of the window and

slide to instruct the algorithm to report frequent patterns every

100K (slide) transactions for the last 1 million (window) tuples

along with the support threshold. Also note, the user may

specify a list of patterns that should be always rejected (or

accepted), regardless of their frequency. A continuous algo-

rithm such as SWIM can utilize these constraints to efficiently

prune (or keep) nodes (or include nodes) that may not be of

interest (or are of interest) regardless of frequency. Indeed,

SMM pushes down the parameters specified in the USING

clause, to the underlying algorithm for optimized execution.

The results of this frequent patterns algorithm are inserted into

the FrequentPatterns stream, denoted by the CREATE STREAM

construct. The FrequenPatterns stream is in fact the same as

the Supports stream as proposed in Calders et al. [9]. The

frequent patterns algorithm must also update the Sets table.

The second step in our flow, finds association rules based on

the results of the previous task. Any algorithm that generates

Fig. 3. Association Rule Mining: End-to-end flow

 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

 2
0
0
0

 3
0
0
0

 4
0
0
0

 5
0
0
0

 6
0
0
0

 7
0
0
0

 8
0
0
0

 9
0
0
0

 1
0
0
0
0

R
u
n
n
in
g
 t
im
e
 (
se
c)

Slide size

Standalone
Integrated in SMM

Fig. 4. Standalone SWIM vs. Integrated in SMM

rules based on frequent patterns can be used in this second

step. The algorithm also takes confidence and correlation

thresholds to prune the resulting association rules. This task

and other tasks down stream may utilize the Sets table, thus

it is denoted as a SHAREDTABLE in model type definition.

Finally, the results of this mining task are inserted into the

AssocRules stream.

The third step prunes/summarizes the association rules,

which is an optional step. Association rule mining is an

exhaustive method. Thus, it often produces a large number

of associations, which makes it difficult, if not impossible, for

the analyst to manage. Therefore many research efforts have

focused on pruning and summarizing the results of association

rule mining. For instance, Liu et al. [32] attempts to find rules

that are insignificant or that over-fit the data. Therefore, while

pruning and summarizing represents an optional step, it has

significant practical value for the analyst. Finally, in the fourth

and final, the discovered rules are matched against previous

rules, to determine new rules. Since, many rules may already

be frequent, the analyst should only be notified about new

rules, as opposed to overwhelming him/her with a large set of

unchanged rules.

Thus, the complete association rule mining process is sup-

ported in this framework, where UDAs and windows allow def-

inition of complex mining tasks and MMDL allows declarative

specification of mining tasks and flows connecting these tasks.

Furthermore, the framework is extensible in that it allows easy

integration of new mining algorithms.

VI. PERFORMANCE

We will now discuss the results of four sets of experiments

designed to evaluate the scalability, performance and robust-

ness of SMM. We first evaluate the SMM’s performance on

a single mining query, using existing mining packages, such

as C4.5 and Weka. Then we evaluate the ability of SMM to

support multiple queries concurrently, when the system is not

experiencing an overload situation. Finally, we discuss SMM

ability to deal with overload situations through the advanced

load shedding algorithms that have been integrated into the

system. We decided to run our experiments on a single-

processor machine, with a Pentium4, 2.4GHz processor, 1GB

RAM, running under Linux. We used Weka version 3.4.12 and

JRE version 1.6.0. Note, all algorithms first load the data into

main memory and thus we ignore this load time.

A. Running C4.5 and the Cost of Integration
Cost of Integration. In this experiment we compare the per-

formance of SWIM algorithm, implemented as standalone and

integrated in SMM as an external aggregate. We use the IBM

QUEST data generator [3] to generate the test dataset. Figure 4

shows the results for minimum support 0.15%, window size

20K and varying slide size. From Figures 5–6, we see that

SMM only has about 15-20% overhead over standalone SWIM.

C4.5 and Weka. In this experiment, we compare SMM with

C4.5 and Weka (J48) decision tree classifier on two real-world

datasets. The first dataset is called Iris, which contains 4 real-

valued attributes and a prediction attribute, which can take 3

different values [24]. The second dataset contains heart disease

data with 13 attributes and a prediction attribute that takes 5

distinct values signifying risk of heart disease [24]. We have

increased the dataset size by copying all the tuples multiple

times. We compare the open source implementation of C4.5

decision tree classifier and the Weka decision tree classifier

(J48) with the one integrated in SMM . SMM allows easy

integration of such existing mining algorithms through UDAs

defined in C/C++ or Java. The results for training and testing 1

million tuples are presented in Figures 5 and 6. Note to enable

a direct comparison, for these experiments we do not apply any

load shedding and the accuracy of the classifiers is the same.

The better performance obtained by SMM and C4.5 over Weka

and J.8 is not surprising considering the better performance of

C++ over Java, and the modest run-time overhead incurred by

running external algorithms in SMM . However, the fact that,

we could take an off-the-shelf mining algorithm and include it

in SMM (with minimal programming effort and performance

overhead), is a clear demonstration of the extensibility of our

system. In general, SMM provides an efficient framework that

allows easy integration of new and existing mining algorithms,

Fig. 5. C4.5 Decision Tree over Iris

Fig. 6. C4.5 Decision Tree over Heart Disease

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30
 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

To
ta

l
Ru

n-
Ti

me
 (

se
co

nd
s)

Av
er

ag
e

Ru
n-

Ti
me

 p
er

 Q
ue

ry
 (

se
co

nd
s)

Number of Parallel Queries

Total Run-Time
Average Run-Time per Query

Fig. 7. SMM Scalability

and it is also conducive to the concurrent execution of multiple

mining tasks, as we discuss next.

B. Concurrent Queries

In this experiment we evaluate the performance of SMM

over multiple parallel queries. A total of thirty parallel queries

were run. These queries are random queries that describe

patterns over Nasdaq1, RFID2 and SIGMOD3 datasets. We

measured throughput (total output per unit time) as the number

of queries changes from 1 to 30. As the number of queries

changes from 1 to 15, we see the throughput increase from 14

to 20 kbps. Beyond 15 queries, the throughput becomes lower,

and for 25 queries it return to be of 14 kbps. When multiple

queries are running, resources are shared and thus a noticeable

drop in average run time per query can be observed between

a single and multiple query execution time.

Figure 7 depicts the total running time for all queries and

the average response time for each query. Observe that the

total running time grows slowly. Furthermore the average

response time per query is almost constant (for number of

queries > 1) and demonstrates the advantage of our parallel

query architecture. In summary SMM is able to derive multiple

queries concurrently with good performance and response time

whenever the processor and memory load do not exceed the

maximum capacity of the system. In overload situation SMM

is able to maintain QoS by relying on its load shedding

capabilities, which are discussed next.

C. Mining-Aware Load Shedding

Providing efficient support of load shedding for continuous

queries has been a cornerstone for achieving QoS guarantees

in SMM [41], [7], [36]. Furthermore, SMM is the first to extend

this to data mining computations. The basic approach used by

SMM is proposed in [7] where load-shedders are inserted into

the query execution graph to sample the data streams as to

ensure minimal drop in quality of various aggregates being

computed. In [31] a generalization was proposed whereby

complex mining aggregates besides simple aggregates could

be supported. This result was further improved in [36] where

an algorithm was proposed to achieve optimal load shedding,

while accommodating different requirements for different

users, query sensitivities, and penalty functions. This load

shedding algorithm is fully integrated in SMM. Based on our

1http://infochimps.org/dataset/stocks yahoo NASDAQ
2http://lahar.cs.washington.edu/content/Download/RFIDData/rfidData.html
3http://www.cs.washington.edu/research/xmldatasets/

experiments the overhead of the load shedding algorithm is

around 2% even under the most extreme conditions, i.e. if

the available Resource(R) is only 1/5th of the Load(L) on the

system (R/L = 0.20). We refer the reader to [36] for detailed

results of our experiments.

VII. STATUS AND FURTHER EXTENSIONS

Currently, the SMM supports all of the entities and con-

structs described in this paper, which includes data streams,

continuous queries, complex UDAs (which can define arbi-

trary mining methods), mining models, and mining flows.

Furthermore, the system integrates a library containing wide

range of mining methods, such as NBC, decision tree classifier,

linear regression, ensemble based methods, DBScan cluster-

ing, windowed K-means, SWIM, SQL-TS, K*SQL, etc. Thus,

SMM supports integration of a wide range of built-in and

user defined algorithms over data streams along with all the

data stream related extensions, such as load shedding, window

synopses, QoS, etc. Sequences and Regular Expressions

There has been much research interest in developing new

tools and languages for querying massive collections of data,

in order to discover patterns in click streams, RFID data

processing, asset tracking, weather forecast, fraud detection,

and financial data analysis. To this end, several CEP (Complex

Event Processing) systems and patterns languages have been

proposed [37], [25], [14], [18], [19]. Most pattern languages

provide some constructs for certain subsets of regular ex-

pressions, which are also the cornerstone of the SQL:2003

extension proposal put forth by DBMS vendors and DSMS

venture companies, called SQL Match-Recognize[45]. SMM

supports the K*SQL language that (i) is strictly more powerful

than these languages on relational data streams but (ii) it

can also support queries on XML streams and nested words

documents [5], [4]. This allows SMM to search for sequential

patterns using regular expressions, including complex patterns

in time series. It also makes it possible to support mining of

streaming XML documents, an application of interest to many

data mining researchers.

The integration of K*SQL with SMM is accomplished via

a UDA function: its arguments include a schema, a pattern

definition, a select clause and a where clause. The support of

K*SQL is a farther indication of the power and extensibility

of SMM and its SQL+UDA based architecture [5], [4].

VIII. RELATEDWORK

Related work on supporting data mining in DBMS and

DSMS was discussed in the introduction. Here we focus on

data stream mining algorithms.

On-line data stream mining has been the focus of many

research efforts, and a recent review can be found in [22].

For instance, Ester et al. [15] proposed extending a static

clustering algorithm, namely DBScan, for continuous clus-

tering of data streams. Similarly, there have been efforts to

build online classification algorithms, such as decision tree

classifiers [23]. Additionally, researchers have focused on

improving the accuracy of on-line classifiers using ensemble

based methods [43], [11], [21]. Furthermore, there has also

been significant research in finding frequent patterns and asso-

ciation rules [44], including frequent pattern mining over over

a stream of transactions. For instance, Chi et al. [10] propose

the Moment algorithm, which is a differential algorithm for

closed frequent patterns over continuous windows. On the

other hand, Mozafari et al. [35] proposed the SWIM algorithm

to maintain frequent patterns over large sliding windows.

IX. CONCLUSION

For all the research interest in (i) DSMSs and in (ii) data

stream mining algorithms, very little progress had made in the

past, toward combining the two—although it is clear that (ii)

cannot be successfully deployed without the QoS provided by

(i). Foremost among the technical challenges that prevented

this integration, we find the SQL-based query languages used

by most DSMSs. Thus, the first contribution of SMM is

to show that limitations of SQL are overcome by minimal

extensions that combine UDAs with window/slide constructs.

Thus, SMM compares with the Weka paragon, in terms of

open architecture and extensibility, while outperforming it in

terms of scalability and performance. Furthermore, we note

that while in this paper we have only shown the integration of

a few existing data stream mining ideas, many other mining

algorithms can be easily integrated in the SMM framework.

SMM supports the addition of new mining algorithms by

UDAs over windows/slides, the definition of mining models

and mining flows via MMDL, and user-friendly GUI. Thus, the

SMM system is significant because it has delivered (i) the first

data stream mining workbench, and (ii) effective techniques

and a general architecture to extend a DSMS with high-level

functionality for very advanced application domains.

REFERENCES

[1] IBM. DB2 Intelligent Miner http://www-
306.ibm.com/software/data/iminer.

[2] ORACLE. Oracle Data Miner Release
10gr2http://www.oracle.com/technology/products/bi/odm.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In VLDB, 1994.

[4] Barzan Mozafari andKai Zeng and Carlo Zaniolo. From regular
expressions to nested words: Unifying languages and execution for
relational and xml sequences. In VLDB 2010: 36th Int. Conference

on Very Large Data Bases, 2010.
[5] Barzan Mozafari andKai Zeng and Carlo Zaniolo. K*sql: a unifying

engine for sequence patterns and xml. In SIGMOD Conference, pages
1143–1146, 2010.

[6] A. Arasu, S. Babu, and J. Widom. Cql: A language for continuous
queries over streams and relations. In DBPL, pages 1–19, 2003.

[7] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding for
aggregation queries over data streams. In ICDE, pages 350–361, 2004.

[8] Y. Bai, H. Thakkar, C. Luo, H. Wang, and C. Zaniolo. A data stream
language and system designed for power and extensibility. In CIKM,
2006.

[9] Toon Calders, Bart Goethals, and Adriana Prado. Integrating pattern
mining in relational databases. In PKDD, 2006.

[10] Y. Chi, H. Wang, P. Yu, and R. Muntz. Moment: Maintaining closed
frequent itemsets over a stream sliding window. In ICDM, 2004.

[11] F. Chu and C. Zaniolo. Fast and light boosting for adaptive mining of
data streams. In PAKDD, volume 3056, 2004.

[12] Coral8, inc. (n.d.). Home — Coral8, Inc. Retrieved July 7, 2006, from
http://www.coral8.com/, 2005.

[13] Weka 3: data mining with open source machine learning software in
java. http://www.cs.waikato.ac.nz.

[14] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald,
Varun Sharma, and Walker M. White. Cayuga: A general purpose event
monitoring system. In CIDR, 2007.

[15] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Michael Wimmer, and
Xiaowei Xu. Incremental clustering for mining in a data warehousing
environment. In VLDB, 1998.

[16] C. Jin et al. Dynamically maintaining frequent items over a data stream.
In CIKM, 2003.

[17] D. Abadi et al. Aurora: A new model and architecture for data stream
management. VLDB Journal, 12(2):120–139, 2003.

[18] Mohamed H. Ali et. al. Microsoft cep server and online behavioral
targeting. PVLDB, 2009.

[19] Nihal Dindar et. al. Dejavu: declarative pattern matching over live and
archived streams of events. In SIGMOD, 2009.

[20] Sirish Chandrasekaran et al. Telegraphcq: Continuous dataflow process-
ing for an uncertain world. In CIDR, 2003.

[21] George Forman. Tackling concept drift by temporal inductive transfer.
In SIGIR, pages 252–259, 2006.

[22] João Gama, Jesús S. Aguilar-Ruiz, and Ralf Klinkenberg. Knowledge
discovery from data streams. Intell. Data Anal., 12(3):251–252, 2008.

[23] Joao Gama, Ricardo Rocha, and Pedro Medas. Accurate decision trees
for mining high-speed data streams. In KDD, 2003.

[24] UCI Machine Learning Group. UCI Machine Learning Repository
http://www.ics.uci.edu/ mlearn/mlsummary.html.

[25] Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, and Neil Immerman.
On supporting kleene closure over event streams. In ICDE, 2008.

[26] J. Han, Y. Fu, W. Wang, K. Koperski, and O. R. Zaiane. DMQL: A data
mining query language for relational databases. In DMKD, Montreal,
Canada, 1996.

[27] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In SIGMOD, 2000.

[28] T. Imielinski and A. Virmani. MSQL: a query language for database
mining. Data Mining and Knowledge Discovery, 1999.

[29] Tomasz Imielinski and Heikki Mannila. A database perspective on
knowledge discovery. Commun. ACM, 39(11):58–64, 1996.

[30] Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Data models and query
language for data streams. In VLDB, 2004.

[31] Yan-Nei Law and Carlo Zaniolo. Improving the accuracy of continuous
aggregates and mining queries on data streams under load shedding.
IJBIDM, 3(1):99–117, 2008.

[32] Bing Liu, Wynne Hsu, and Yiming Ma. Pruning and summarizing the
discovered associations. In KDD, 1999.

[33] R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining
association rules. In VLDB, Bombay, India, 1996.

[34] Introducing Stream Mill:. User-guide to the dsms, esl and smm.
http://yellowstone.cs.ucla.edu/projects/index.php/.

[35] B. Mozafari, H. Thakkar, and C. Zaniolo. Verifying and mining frequent
patterns from large windows over data streams. In ICDE, 2008.

[36] Barzan Mozafari and Carlo Zaniolo. Optimal load shedding with
aggregates and mining queries. In ICDE, pages 76–88, 2010.

[37] Reza Sadri, Carlo Zaniolo, Amir Zarkesh, and Jafar Adibi. Optimization
of sequence queries in database systems. In PODS, Santa Barbara, CA,
May 2001.

[38] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule
mining with relational database systems: Alternatives and implications.
In SIGMOD, 1998.

[39] Streambase. Complex Event Processing, Event Stream Processing,

StreamBase Streaming Platform. Retrieved July 4, 2006, from
http://www.streambase.com/, 2005.

[40] Z. Tang and et al. Building data mining solutions with OLE DB for
DM and XML analysis. SIGMOD Record, 34(2):80–85, 2005.

[41] N. Tatbul, U. Setintemel, S. Zdonik, M. Cherniack, and M. Stonebraker.
Load shedding in a data stream manager. In VLDB, 2003.

[42] H. Thakkar, B. Mozafari, and C. Zaniolo. Designing an inductive data
stream management system: the stream mill experiences. In Scalable
Stream Processing Systems, 2008.

[43] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data
streams using ensemble classifiers. In SIGKDD, 2003.

[44] Xiaoyu Wang, Hongyan Liu, and Jiawei Han. Finding frequent items in
data streams using hierarchical information. In SMC, 2007.

[45] Fred Zemke, Andrew Witkowski, Mitch Cherniak, and Latha Colby.
Pattern matching in sequences of rows. In [sql change proposal,
march 2007], http://asktom.oracle.com/tkyte/row-patternrecogniton-11-

public.pdf http://www.sqlsnippets.com/en/topic-12162.html, 2007.

