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Abstract

Transformers achieve state-of-the-art performance for natu-
ral language processing tasks by pre-training on large-scale
text corpora. They are extremely compute-intensive and have
very high sample complexity. Memory replay is a mechanism
that remembers and reuses past examples by saving to and re-
playing from a memory buffer. It has been successfully used
in reinforcement learning and GANs due to better sample ef-
ficiency. In this paper, we propose Transformer with Memory
Replay (TMR), which integrates memory replay with trans-
former, making transformer more sample-efficient. Experi-
ments on GLUE and SQuAD benchmark datasets show that
Transformer with Memory Replay achieves at least 1% point
increase compared to the baseline transformer model when
pretrained with the same number of examples. Further, by
adopting a careful design that reduces the wall-clock time
overhead of memory replay, we also empirically achieve a
better runtime efficiency.

Introduction
Transformers have achieved state-of-the-art performance on
various natural language processing (NLP) tasks, such as
sentimental anaylysis, paraphrase detection, machine read-
ing comprehension, text summarization, question answering
and so on (Devlin et al. 2018; Liu et al. 2019b; Dai et al.
2019; Brown et al. 2020). The training of tranformers typ-
ically consists of two stages: pre-training and fine-tuning.
Pre-training is the stage of training a generic model on an
enormous corpus, such as Wikipedia to learn the represen-
tation inherent in understanding the natural language. Fine-
tuning is the stage of training a task-specific model that is
initialized with pre-trained parameters on the dataset for the
specific downstream task for just a few epochs. Each down-
stream task has a separate fine-tuned model, even though it is
initialized with the same pre-trained parameters. To get good
generic representation, transformers are usually very large
models with a huge number of parameters. For example,
OpenAI recently released GPT-3, which contains 175 billion
parameters (Brown et al. 2020). Training these large-scale
models is extremely compute-intensive and has very high
sample complexity for the pre-training stage (Devlin et al.
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2018; Clark et al. 2020). To make transformers more sam-
ple efficient, Clark et al. (2020) proposed a new transformer
model, called ELECTRA, that consists of two modules:
generator and discriminator. Both generator and discrimina-
tor are transformers, although generator is usually smaller
in size. The discriminator is trained to predict whether each
token in the corrupted input was replaced by the genera-
tor. They showed that their model substantially outperforms
previous models, such as BERT and XLNet given the same
amount of data.

In this paper, we go one step further by integrating the
memory replay mechanism into ELECTRA, which we
show can further improve the sample efficiency. Memory
replay works by maintaining a fixed-size memory buffer
that holds the most recent examples. It greatly improves the
sample efficiency by enabling examples to be reused multi-
ple times for training, rather than throwing away examples
immediately after one-time usage. By controlling the strat-
egy on how examples are managed in the memory buffer
(e.g., how to assign weights to examples), memory replay
can be customized according to specific needs. Memory re-
play mechanism has been successfully used in reinforcement
learning 1 and GANs, because of its improvement on sample
efficiency (i.e., requires less amount of samples to achieve
the same accuracy) (Schaul et al. 2015; Fedus et al. 2020;
Wang et al. 2016; Wu et al. 2018).
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Figure 1: The architecture diagram of our Transformer with
Memory Replay (TMR). The generator produces corrupted
examples, which are being saved to the fixed-size memory
buffer. The discriminator samples examples from the mem-
ory buffer for training. High-quality examples are reused by
the discriminator, thus making it more sample efficient to
train the discriminator.

1The same concept is typically called experience replay in rein-
forcement learning literature.



Specifically, we keep the generator and discriminator
from ELECTRA, but add a memory buffer between them.
In ELECTRA, the generator produces corrupted text exam-
ples by trying to recover masked tokens, and discriminator
takes the corrupted text examples as input and is trained to
predict if each token is either original or replaced. Because
the training objective of the generator is to mimic the origi-
nal input sentences based on the masked ones, the generator
will gradually drift away from its original purpose of provid-
ing random replacements to the input. Thus, the generator
has the inevitable trend to produce lower and lower qual-
ity sentences as the generator is being optimized. We use
memory replay to alleviate the above issue, which we re-
fer to as distribution drift in this paper. Our intuition is that,
by saving examples produced by generator in the memory
buffer, discriminator can reuse high-quality examples from
the past, making it less sensitive to the distribution drift is-
sue, and thus more sample efficient. We call this new trans-
former model Transformer with Memory Replay (TMR). Its
architecture is illustrated in Figure 1. The detailed design
of the memory replay would affect the performance of our
new model. We will dicuss some design choices that lead
to noticeable improvement on sample efficiency. Going be-
yond the design choices discussed in this paper, we hope
that our new model can be viewed as a general framework
that provides an easy way to manipulate training examples
via various memory replay designs, thus possibly achieving
even better sample efficiency.

Related Work

Transformer-based Models. Before the transformer archi-
tecture came along, the dominant sequence models for NLP
were based on complex recurrent neural networks, which
are very hard to parallelize. In (Vaswani et al. 2017), the
transformer architecture, solely based on attention mecha-
nisms and easily parallelizable, was introduced to the NLP
community, which has superior performance than traditional
recurrrent neural networks. Ever since, transformer-based
models have been the top performers in various NLP task
competitions. For example, BERT (Devlin et al. 2018) pre-
trains a large transformer on unlabeled text corpora using
the masked-language modeling task, achieving significant
improvement on GLUE and SQuAD benchmark datasets.
This demonstrates the power of combining transformers
and the self-supervised pre-training strategy. MASS (Song
et al. 2019) and UniLM (Dong et al. 2019) extend BERT
to the generation task by adding auto-regressive generative
training objectives. Instead of masking out input tokens as
in a masked-language modeling task for pre-training, XL-
Net (Yang et al. 2019) masks attention weights such that
the input sequence is autoregressively generated in a ran-
dom order. ELECTRA corrupts the input by replacing some
tokens with plausible alternatives sampled from a genera-
tor, which they showed is more sample efficient. It is also
worth noting that there is significant effort dedicated to im-
proving the transformer architecture to achieve computa-
tion efficiency (Kitaev, Kaiser, and Levskaya 2020; Kim and
Awadalla 2020; Tay et al. 2020a; Rae et al. 2019; Tay et al.

2020b) or to extend beyond the NLP domain (Huang et al.
2018; Parmar et al. 2018; Karpov, Godin, and Tetko 2019;
Girdhar et al. 2019; Huang and Yang 2020).

Memory Replay. Memory replay (or experience replay)
is critical to deep reinforcement learning to achieve super-
human performance (Lin 1992; Schaul et al. 2015; Mnih
et al. 2015). It has been shown to improve sample efficiency
and stability by storing and reusing past transitions (Fedus
et al. 2020). Some follow-up works have refined the basic
memory replay mechanism (Schaul et al. 2015) in various
ways (Horgan et al. 2018; Andrychowicz et al. 2017; Sun,
Zhou, and Li 2020; Luo and Li 2020; Liu et al. 2019a). Sev-
eral works have been trying to understand how memory re-
play works in the context of reinforcement learning. Liu and
Zou (2018) study the effects of replay buffer size and mini-
batch size on learning performance. It has been reported that
agent performance is sensitive to the number of environment
steps taken per gradient step (Fu et al. 2019). Sample effi-
ciency can be improved by varying this ratio in combination
with batch sizes (van Hasselt, Hessel, and Aslanides 2019).
In addition to reinforcement learning, Wu et al. (2018) ap-
plies memory replay to GANs training in the task of learning
new categories in a sequential fashion. They show that mem-
ory replay can prevent catastrophic forgetting (McCloskey
and Cohen 1989), which is typically an issue in sequential
learning.

Transformer with Memory Replay

Model Architecture

In this section, we describe the basic architecture of Trans-
former with Memory Replay (TMR). We keep the generator
G and discriminator D from ELECTRA, but add a memory
buffer between them. We describe each of them and explain
the distribution drift issue which is the reason for using a
memory buffer as follows.

Generator. The generator G is a transformer net-
work (Vaswani et al. 2017) that maps a sequence of input
tokens xG = [xG

1 , · · · , xG
n ] into a sequence of contextual-

ized vector representations hG(xG) = [hG
1 , · · · , hG

n ]. The
input token sequence is obtained from the original text to-
ken sequence x = [x1, · · · , xn] by masking out a random
set of positions, i.e., replacing the original token with the
[MASK] token. Typically, 15% of input tokens are masked
out randomly (Devlin et al. 2018; Clark et al. 2020). For
any position t where the corresponding input token xG

t is
a [MASK] token, the generator outputs a probability for a
particular token x with a softmax layer given by

pG(x|xG) =
exp

(
e(x)ThG

t

)∑
x′ exp

(
e(x′)ThG

t

) (1)

where e(x) is the embedding vector for token x. The gener-
ator is trained with the masked language modeling (MLM)
task, i.e., it learns to predict the original tokens for the
masked out positions. Denote the set of masked out positions
as m = [m1, · · · ,mr]. The loss function for the generator



is

LG(x
G, θG) = E

(∑
i∈m

− log pG(x
G
i |xG)

)
. (2)

Discriminator. Similar to the generator, the discriminator G
is also a transformer network mapping a sequence of input
tokens xM = [xM

1 , · · · , xM
n ] into a sequence of contextual-

ized vector representations hD(xM ) = [hD
1 , · · · , hD

n ]. Al-
though the generator typically has the same model architec-
ture as the discriminator, but smaller in size, the parameter
values from the discriminator are used to initialize the task-
specific model during the fine-tuning stage. Existing work
assumes the input to the discriminator comes directly from
the output of the generator via the inference process, i.e.,
replace each [MASK] token by a token that is sampled ac-
cording to pG(·|xG) (Clark et al. 2020). Instead, we use cor-
rupted examples xM sampled from the memory buffer as the
input to the discriminator, in order to mitigate the distribu-
tion drift issue which we will elaborate shortly. For any po-
sition t ∈ [1, n], the discriminator learns to predict whether
the token xM

t is original or replaced. A token is original if it
matches the token id from the original text input. Otherwise,
a token is considered replaced. The probability that token
xM
t is original is output by a sigmoid layer:

D(xM , t) = sigmoid (wThD
t ) (3)

where w is the learnable parameter to the sigmoid layer. The
loss function of discriminator is

LD(xM , θD) =E

(
n∑

t=1

−1(xM
t = xt) logD(xM , t)

−1(xM
t ̸= xt) log(1−D(xM , t))

)
.

(4)

Distribution Drift. We would like to point out the distribu-
tion drift issue of the generator, which is the key reason that
motivates us to use the memory buffer. Specifically, to min-
imize the negative maximum likelihood loss LG in Equa-
tion 2, the generator will tend to mimic the original input
sentences and generate examples that highly resemble the
input, as the training is making more and more progress.
This behavior will cause the generator to drift away from
its original purpose of providing random replacements to
the input. Imagine an extreme scenario where the genera-
tor is highly optimized based on Equation 2, thus becom-
ing perfectly capable of predicting the original token at
each masked-out position. This generator would produce the
highly similar (if not exactly the same) sentence as the origi-
nal one. For example, if the original sentence x is “The indi-
vidual images in a film are called frames” with tokens “im-
age” and “film” being masked out, the sentence produced by
a highly optimized generator x′M would probably be “The
individual images in a movie are called frames”. When this
sentence x′M is received by the discriminator, all the tokens
are considered as original except for the token “movie”, be-
cause “movie” is the only token that is different from its cor-
responding one from the original sentence x. The discrimi-
nator is supposed to learn reasonable language semantics by

solving a two-class optimization problem based on these la-
beled tokens. However, there are two issues with x′M that
hinder the discriminator’s learning progress:

1. the number of replaced tokens is much less than the num-
ber of [MASK] tokens (e.g., 50% less here), resulting in
insufficient number of replaced tokens that would cause
class imbalance problem for the discriminator;

2. the token “movie” that is considered as replaced is essen-
tially noisy for the discriminator, because the sentence
x′M itself is completely acceptable, and it would be more
reasonable to consider “movie” as original.

The above example shows how a low-quality sentence can
hurt the discriminator’s learning progress.

On the other hand, an insufficiently optimized genera-
tor would probably produce an unacceptable sentence, e.g.,
“The individual coma in a version are called frames”. The
tokens “coma” and “version” are considered as replaced
while other tokens are original. This is a better-quality sen-
tence, because these labeled tokens imply that “coma” and
“version” are not semantically related to other tokens from
this sentence. Unfortunately, the generator has the inevitable
trend to produce lower and lower quality sentences as it is
being optimized. We call this phenomenon the distribution
drift of the generator. Memory replay is a mechanism that
remembers and reuses past examples by saving to and re-
playing from a memory buffer. It can be used to alleviate the
distribution drift issue by replaying high-quality sentences
from the memory buffer as input to the discriminator. It
is worth noting that memory replay can also be treated as
an importance sampling technique (Zhao and Zhang 2015;
Katharopoulos and Fleuret 2018), if we directly use it to hold
the training set. This would enable other transformer mod-
els such as BERT to make use of memory replay. We do
not consider this usage in this paper because memory replay
is especially effective in handling dynamic example stream
rather than static example set (Lin 1992; Schaul et al. 2015).
Next we discuss the memory buffer that is inserted between
the generator and the discriminator.
Memory Buffer. From pG, we create a corrupted example
xM by replacing the [MASK] token in x with a token ran-
domly sampled according to pG(·|xG) for all positions in
m. Any corrupted example xM will be saved into the mem-
ory buffer. We assign a real-valued weight to each exam-
ple in the memory buffer, which indicates the importance
of each example. While the example importance is not di-
rectly accessible, we use different strategies to approximate
it, which will be discussed in the next subsection. The mem-
ory buffer has a fixed size N . To be scalable when N is
large, we use a sum tree to maintain the example weights.
The memory buffer should support at least three operators:
add, update and sample. The operator add is used to
add a new corrupted example xM into the memory buffer.
The operator update is used when we want to update the
weight for an example already in the memory buffer. The op-
erator sample is used to sample some examples from the
memory buffer according to the weight distribution, i.e., the
probability that any example is sampled is proportional to its
weight. Any of these three operators has O(logN) in com-



plexity, because of the need to traverse the sum tree from the
root to a leaf node. The operator sample mentioned here
is essentially a stochastic sampling method. In general, the
probability of sampling example i is

P (i) =
wα

i∑
j w

α
j

(5)

where wj is the weight for example j and the hyperparame-
ter α determines how much prioritization is used. For exam-
ple, α = 0 corresponds to uniform sampling, and α = ∞
corresponds to greedy sampling (i.e., sample examples with
the largest weights). We illustrate more on how memory
buffer works with some concrete examples in Figure 2.

Joint Learning
We learn the generator and discriminator jointly by minimiz-
ing the combined loss

min
θG,θD

∑
xG,xM

LG(x
G, θG) + λLD(xM , θD) (6)

where λ is a scalar that balances the above two loss terms.
We use the same optimizer, Adam with warmup, as in Clark
et al. (2020) to iteratively minimize the combined loss. As-
sume the mini-batch size is K.
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Figure 2: Forward pass of Transformer with Memory Replay
(TMR). For simplicity, mini-batch size is set to 1 in the dia-
gram to illustrate how an example is changed. We put ∗ right
after a token to indicate this token has been replaced by the
generator. Memory replay between the generator and dis-
criminator helps the discriminator to learn more efficiently,
by providing high-quality examples to it. The sentence “the
weather today feels* so good*” is saved to the memory
buffer, and a better-quality sentence “cats* fight over bones”
which is sampled from the memory buffer is instead pro-
vided to the discriminator as input.
Forward Pass. Specifically, during the forward pass of each
iteration, we sample a mini-batch of original text token se-
quence {x(k)}Kk=1. For each x(k), a random set of positions
is selected and the corresponding tokens are replaced by the
[MASK] token. Thus, we get {xG

(k)}
K
k=1 by masking out

random tokens from {x(k)}Kk=1. {xG
(k)}

K
k=1 are provided to

the generator as input, and generator loss LG(x
G, θG) is

computed according to Equation 2. In the meantime, from
the generator output pG(x|xG), as in Equation 1, corrupted
examples {x′M

(k)}
K
k=1 are created by replacing the [MASK]

token in x with a token randomly sampled according to
pG(·|xG). The corrupted examples {x′M

(k)}
K
k=1 are saved into

the memory buffer once created. To get the input for the dis-
criminator, we sample a mini-batch of examples {xM

(k)}
K
k=1

from the memory buffer using the sample operator. The
detailed design of the memory buffer (e.g., how to assign/up-
date example weights) will affect which examples get sam-
pled. Note that the sampled examples {xM

(k)}
K
k=1 are in gen-

eral quite different from the examples {x′M
(k)}

K
k=1 that are

just being saved to the memory buffer by the generator. The
discriminator then computes the loss LD(xM , θD) accord-
ing to Equation 4. The forward pass is illustrated in Figure 2
with mini-batch size as 1.
Backward Pass. During the backward pass, gradient
with respect to generator (or discriminator) parameters is
computed from the generator (or discriminator) loss. As
with (Clark et al. 2020), we don’t back-propagate the dis-
criminator loss through the generator, which is difficult be-
cause of the sampling operation. Adam with warmup is used
to update the generator (or discriminator) parameters based
on the generator (or discriminator) gradient.

Memory Replay Weights
Example weights play an important role in the memory re-
play mechanism. At each iteration, the generator produces
a mini-batch of new corrupted examples {x′M

(k)}
K
k=1. The

operator add is used to add these new examples into the
memory buffer. When a new example is being added to the
memory buffer, an initial weight is assigned to it. We then
use the sample operator to sample a mini-batch of exam-
ples {xM

(k)}
K
k=1 from the memory buffer and provide them

to the discriminator as input. The probability that an exam-
ple is sampled is proportional to its weight. After forward
and backward pass, we use the update operator to update
the weights of the sampled examples based on feedback in-
formation from the discriminator. We hope to increase the
weights of high-quality examples, because they are more
beneficial to training the discriminator. In this way, these
high-quality examples will be more likely to be sampled.

The strategy on how to assign and update example
weights has great effect on which examples will be sam-
pled as input to the discriminator, thus affecting its sam-
ple efficiency. For each new example added to the mem-
ory, we assign its initial weight as the current average of
the weights. We also have tried other strategies to assign the
initial weight, which are discussed in the experiments. Since
the memory buffer has a fixed size, it will eventually be-
come full as we add more and more examples to it. When
we attempt to add a new example to a full memory, we evict
the example with the lowest weight from the memory before
adding the new example. The weight of each example indi-
cates the importance of each example, which might change
as the discriminator is being trained. To keep the example
weight as up-to-date as possible, we update the weight of



each sampled example at the end of each iteration. We dis-
cuss two different strategies on updating example weights.
Loss Difference. We keep track of the discriminator loss
LD, as in Equation 4 for each example every time it is sam-
pled. The loss difference of the current time and the previous
time is used as the new weight. Note that, since computing
the loss difference requires that an example gets sampled at
least twice, we will not update the weight for any new exam-
ple until the second time it is sampled. In this case, we do not
simply use the loss value as the new weight, because the loss
value typically decreases each time an example is sampled,
so a smaller weight would not necessarily imply that it is
less important. Instead, it typically means that this example
has been recently sampled. Our experiments also show that
using loss value as the weight results in bad performance.
Gradient Norm. Gradient norm has been shown to be
the optimal weight for each example in importance sam-
pling (Zhao and Zhang 2015). It demonstrates that per-
example gradient norm can be a strong indicator for the ex-
ample’s importance. Each time an example is sampled, we
update its weight using the discriminator gradient norm for
this example. The drawback of using per-example gradient
norm is that it incurs some overhead to compute the per-
example gradient for each example in the mini-batch (Good-
fellow 2015). Recently, Katharopoulos and Fleuret (2018)
proposed an upper bound on gradient norm that can be com-
puted efficiently. This upper bound has been shown to be
a reasonable approximation on the gradient norm in train-
ing various neural network models (Liu, Wu, and Mozafari
2020). We also use this upper bound as the new weight.

Experimental Setup
Pre-training
We pre-train our model with two different sizes: a small
model and a base model on English Wikipedia. The de-
tailed hyperparameter values are included in the appendix.
As suggested by Clark et al. (2020), in addition to sharing
the embedding table between input and output tokens for
the generator, we also share the embedding table beween
generator and discriminator. We use Adam with warmup
to pre-train the models. The detailed setup is the same as
Clark et al. (2020) if not stated otherwise. Specifically, we
set ϵ = 1e − 6, β1 = 0.9 and β2 = 0.999. The mini-batch
size is 128 for the small model and 256 for the base model.
The memory buffer size N is set to 1k in our experiments.

Fine-tuning
We use two commonly used datasets as the benchmark
to evaluate performance: General Language Understanding
Evaluation (GLUE) (Wang et al. 2018) and Stanford Ques-
tion Answering Dataset (SQuAD) (Rajpurkar et al. 2016).
General Language Understanding Evaluation (GLUE).
GLUE consists of eight tasks (i.e., MNLI, QQP, QNLI,
SST, CoLA, STS, MRPC and RTE)2, each of which cor-
responds to a specific type of NLP problem. As with Clark

2It is customary to exclude WNLI because it is difficult to beat
even the majority classifier.

et al. (2020), our evaluation metrics are Spearman correla-
tion for STS, Matthews Correlation for CoLA, and accuracy
for other GLUE tasks. The average of these scores is re-
ported. Unless stated otherwise, results are on the dev set.
For fine-tuning, we only need the discriminator’s param-
eters to initialize task-specific models (Clark et al. 2020).
Specifically, we use the final hidden vector hD

1 ∈ RH

of the discriminator corresponding to the first input to-
ken ([CLS]) as the aggregate representation (Devlin et al.
2018). Note that H is the hidden size. The only new param-
eters introduced during fine-tuning are classification layer
weights W ∈ RC×H , where C is the number of labels. We
use the standard cross-entropy loss for classification tasks:
− log

(
softmax (hD

1 WT )[class]
)

where [class] is the true
class index.
Stanford Question Answering Dataset (SQuAD). The
Stanford Question Answering Dataset (SQuAD v1.1)
is a collection of 100k crowd-sourced question/answer
pairs (Rajpurkar et al. 2016). Given a question and a passage
from Wikipedia containing the answer, the task of SQuAD
is to predict the answer text span in the passage. As with
the GLUE benchmark, for fine-tuning, we only need the
discriminator’s parameters to initialize task-specific mod-
els (Clark et al. 2020). We introduce a start vector S ∈ RH

and an end vector E ∈ RH to the task-specific model. The
probability of location i being the start of the answer span is
computed as a dot product between hD

i and S, followed by
a softmax over all locations in the paragraph:

PS
i =

eS·hD
i∑

j e
S·hD

j

. (7)

Similarly, the probability of location i being the end of the
answer span is computed as a dot product between hD

i and
E, followed by a softmax over all locations in the paragraph:

PE
i =

eE·hD
i∑

j e
E·hD

j

. (8)

The loss for fine-tuning is − logPS
[start] − logPE

[end], where
[start] and [end] are the correct start and end positions. The
score of a candidate span from position i to position j is
defined as S · hD

i + E · hD
j . The span with highest score

where i ≤ j is used as the prediction.

Experimental Results
Pre-training Efficiency
To show that memory replay can improve the sample effi-
ciency, we compare our models (i.e., TMR(loss diff) and
TMR(grad norm)) with baseline ELECTRA after being
pre-trained with the same number of iterations (i.e., also
the same number of examples, because we use the same
mini-batch size for different methods). TMR(loss diff) and
TMR(grad norm) are our model Transformer with Memory
Replay using loss difference and gradient norm to update ex-
ample weight, respectively. Specifically, we pre-train differ-
ent models to the same number of iterations using the same
setting. We then fine-tune the models on GLUE and SQuAD
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Figure 3: Pre-training efficiency comparison. Our models (i.e., TMR(loss diff) and TMR(grad norm)) have better scores than
baseline ELECTRA when the pre-training has gone through enough iterations, because the memory replay needs time to
accumulate enough high-quality examples.

Table 1: Results on GLUE of the small models after pre-trained for 200k steps.

Model MNLI QQP QNLI SST CoLA STS MRPC RTE Avg.
ELECTRA 0.730 0.881 0.836 0.862 0.733 0.832 0.809 0.584 0.783

TMR(loss diff) 0.753 0.887 0.846 0.868 0.737 0.835 0.811 0.613 0.794

to compare their performance. The results are illustrated in
Figure 3. When the number of iterations is small, our mod-
els have almost the same performance on both GLUE and
SQuAD benchmarks. As the number of iterations increases,
we can see an obvious gap between our models and base-
line. This is because, as more and more examples are pro-
cessed, our models utilize the memory replay to remember
more and more high-quality examples, thus boosting the dis-
criminator’s learning speed. On the other hand, the baseline
ELECTRA uses whatever examples that are produced by
the generator to train the discriminator. As the training of the
generator continues, the distribution of examples produced
will also change due to the distribution drift issue, affecting
the discriminator’s training. We list the detailed results for
each GLUE task after 200k steps in Table 1. As expected, af-
ter the same number of pre-training steps, our models TMR
have better performance than baseline across most of the
GLUE tasks. Note that in the original paper (Clark et al.
2020), the baseline ELECTRA is trained with much more
iterations, getting slightly better GLUE scores than reported
here. We do not train the models for too many iterations be-
cause the max number of iterations used in our experiments
suffices to demonstrate the benefits of the proposed memory
buffer mechanism (especially given the increasing concern
on the effect of excessive energy consumption on the envi-
ronment (Strubell, Ganesh, and McCallum 2019; Schwartz
et al. 2019)).

We also observe that TMR(grad norm) often has better
results than TMR(loss diff). Theoretical analysis has been
provided to show that gradient norm is the optimal weight
for each example in importance sampling (Zhao and Zhang
2015). Echoing this theoretical point, our observation empir-
ically demonstrates that gradient norm is also a good choice
for example weight in memory replay. Loss difference can
be a bad approximation to gradient norm because model pa-
rameters might have changed significantly between adjacent
visits to the same example. However, loss difference is a
relatively cheap way to measure the example importance,
which is especially beneficial in terms of the runtime effi-

ciency as discussed right below.
Runtime Efficiency. We also report the runtime efficiency
in terms of the wall-clock time needed for training. As
shown in Figure 4, using loss difference to measure the ex-
ample importance reduces the wall-clock time overhead of
the memory replay, leading to better runtime efficiency.
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Figure 4: Runtime efficiency comparison using small model
on GLUE. TMR(loss diff) has better runtime efficiency than
the baseline ELECTRA, because TMR(loss diff) achieves
better scores after pretaining for the same amount of wall-
clock time.

Alternative Strategies for Weight Initialization
We discuss some alternative strategies that we have tried but
have worse performance. We initialize the weight of a new
example using the average of example weights in our previ-
ous experiments. This strategy will assign the same weight
to new examples that arrive at the same iteration (i.e., these
new examples are in the same mini-batch). The difference
among examples is essentially ignored by this strategy. Intu-
itively, it might be better to assign weight to a new example
using the weight of a similar example that is already present
in the memory buffer. Since each example is represented
by a sequence of token indices xM = [xM

1 , xM
2 , · · · , xM

n ],
which can be viewed as the feature vector of this exam-
ple, the similarity of two examples can be measured by how
similar their features are. There are two alternative strate-
gies that take into consideration the similarity among exam-



ples: Least Square Regression and Linear Upper Confidence
Bound. Before we dive into these two strategies, let us as-
sume the memory buffer contains a set of examples and their
corresponding weights, denoted as {xB

(i), ri}
N
i=1, where ri is

the weight of the example xB
(i) and N is the capacity of the

memory buffer.

Least Square Regression. To determine the weights for a
new example, we solve a Least Square Regression problem
(LSR) based on examples in the memory buffer and their
weights:

θ∗ = argmin
θ

N∑
i=1

(θTxB
(i) − ri)

2. (9)

Then, we assign θ∗TxM as the initial weight to the new ex-
ample xM . Examples with different features will get differ-
ent initial weights.

Linear Upper Confidence Bound. Multi-armed bandit
problem (Bubeck, Munos, and Stoltz 2009; Even-Dar, Man-
nor, and Mansour 2002) provides a general framework for
studying efficient sampling methods. For example, it has
been used to speed up optimization methods for model train-
ing (Salehi, Thiran, and Celis 2017; Liu, Wu, and Moza-
fari 2020), maximum inner product search (Liu, Wu, and
Mozafari 2019), hyperparameter search (Li et al. 2017), and
model-related query execution (He et al. 2020). We cast the
memory replay into a multi-armed bandit problem, and rely
on a bandit method to initialize and update the example
weights. Specifically, we treat each example as an arm. In
this way, sampling an example is equivalent to picking an
arm to pull, and a high-quality example corresponds to an
arm with high reward. Because each example is represented
as its feature vector, there are an infinite number of possi-
ble examples, implying an infinite number of arms. To deal
with an infinite number of arms, we resort to linear bandit,
a special bandit setting where each arm is represented by a
feature vector and reward is assumed to have a linear rela-
tionship with the arm feature vector. We use a popular linear
bandit method called Linear Upper Confidence Bound (Lin-
UCB), as described in Algorithm 1 of Chu et al. (2011). The
Least Square Regression strategy will not change the inital
weight of a new example until it gets sampled. LinUCB can
essentially keep refining initial weights of new examples as
more and more examples are sampled.

We did some experiments using LSR and LinUCB.
The results are shown in Figure 5. We can see that
both TMR(LSR) and TMR(LinUCB) are much worse than
TMR(loss diff). These results are a bit counter-intuitive, be-
cause the idea of assigning weight to a new example us-
ing the weight of a similar example is reasonable. We sus-
pect the reason why neither TMR(LSR) nor TMR(LinUCB)
work is that the linear relationship between feature vector
and weight/reward, which is assumed by both, does not hold
in our memory buffer. It would be a good future work direc-
tion to consider weight initialization strategies without linear
relationship assumption.
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Figure 5: Comparison of alternative strategies for weight ini-
tialization. TMR(LSR) and TMR(LinUCB) are much worse
than TMR(loss diff) as the number of iterations increases.

Table 2: Runtime cost comparison. The value in the table is
the wall clock time (in seconds) to finish 100 iterations.

Model Time Model Time
ELECTRA 377 TMR(grad norm) 937

TMR(loss diff) 383 TMR(grad bound) 432

Runtime Cost
We investigate the runtime cost for different models. In Ta-
ble 2, we list the wall clock time to finish 100 iterations of
training small models. The baseline ELECTRA model has
the lowest time cost, which is expected, because our mod-
els have the overhead of maintaining the memory buffer.
However, the time cost of TMR(loss diff) is only slightly
larger than that of ELECTRA. This implies that the over-
head of maintaining the memory buffer can be very small,
because computing loss difference will not incur additional
cost. On the other hand, the time cost of TMR(grad norm)
is way larger than the baseline. This is because accurately
computing per-example gradient norm requires us to feed
each example of a mini-batch separately to the model for
both forward and backward pass. This is usually very costly,
because high parallelism provided by GPU cannot be fully
utilized. TMR(grad bound) uses the gradient upper bound
from Katharopoulos and Fleuret (2018) as an approximation
to gradient norm. It can significantly reduce the time cost of
TMR(grad norm).

Conclusion
We have proposed a new transformer model, called Trans-
former with Memory Replay (TMR), for improving the sam-
ple efficiency. Our model integrates a memory replay mech-
anism into ELECTRA by adding a memory buffer between
the generator and discriminator. Because the memory re-
play mechanism enables examples produced by the gener-
ator to be reused multiple times, the discriminator can be
trained with high-quality examples, making it more sample
efficient. We also introduced two different strategies on how
to update example weights (i.e., use loss difference or gra-
dient norm). Our experiments have shown that our models
achieve higher scores than baseline when pre-trained for the
same number of iterations (i.e., using the same amount of
examples). We further demonstrated that the loss difference
strategy leads to better runtime efficiency because of its low
wall-clock time overhead.
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