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Abstract

There has been substantial research on sub-linear time ap-
proximate algorithms for Maximum Inner Product Search
(MIPS). To achieve fast query time, state-of-the-art tech-
niques require significant preprocessing, which can be a bur-
den when the number of subsequent queries is not sufficiently
large to amortize the cost. Furthermore, existing methods do
not have the ability to directly control the suboptimality of
their approximate results with theoretical guarantees. In this
paper, we propose the first approximate algorithm for MIPS
that does not require any preprocessing, and allows users to
control and bound the suboptimality of the results. We cast
MIPS as a Best Arm Identification problem, and introduce a
new bandit setting that can fully exploit the special structure
of MIPS. Our approach outperforms state-of-the-art methods
on both synthetic and real-world datasets.

Introduction
The problem of Maximum Inner Product Search (MIPS) has
received significant attention in recent years (Yu et al. 2017;
Shrivastava and Li 2014; Neyshabur and Srebro 2015) as a
key step in many machine learning algorithms and applica-
tions. For instance, it appears in matrix-factorization-based
recommender systems (Koren, Bell, and Volinsky 2009;
Cremonesi, Koren, and Turrin 2010; Liu et al. 2015), multi-
class prediction (Dean et al. 2013; Jain and Kapoor 2009),
structural SVM (Joachims 2006; Joachims, Finley, and Yu
2009), and vision applications (Dean et al. 2013). The MIPS
problem can be formally defined as follows: given a col-
lection of n data vectors, S = {v1, v2, · · · , vn}, where
vi ∈ RN , 1 ≤ i ≤ n, and a query vector q ∈ RN , the
goal is to find v∗ ∈ S that maximizes (or approximately
maximizes) the inner product qT v∗. In other words, MIPS is
the following problem:

v∗ = argmax
v∈S

qT v (1)

The naı̈ve linear search for solving MIPS requires O(n ·N)
time to exhaustively compute all n inner products, which
can be daunting for massive datasets (large n) and/or high-
dimensional data (large N ). This has led to significant inter-
est in devising sub-linear time algorithms to solve the MIPS
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problem approximately, including the best paper award at
NIPS’14 (Shrivastava and Li 2014) and many other propos-
als (Yu et al. 2017; Neyshabur and Srebro 2015; Bachrach et
al. 2014).
Motivation I: Preprocessing Overhead. Despite their dif-
ferent merits, existing approximate techniques for MIPS all
share a common pattern: they require a substantial time for
preprocessing the data set S, during which they construct a
data structure that can then be used to answer queries more
efficiently. For example, they construct a hash table (Shri-
vastava and Li 2014), a sorted index (Yu et al. 2017), space
partition trees (Bachrach et al. 2014), or other data structures
(Auvolat et al. 2015). Existing methods require various data
structures to be built during preprocessing time. In fact, the
preprocessing time is, in some cases, so large that it even
exceeds the time complexity of the naı̈ve approach for an-
swering log n queries, i.e., O(Nn log n) (Yu et al. 2017).
We have summarized the preprocessing time of the previ-
ous techniques in Table 1. The rationale is that query times
will be faster after the preprocessing step. The preprocess-
ing time is therefore justified when there are many queries
and the set S remains the same, i.e., once the preprocessing
is done it would benefit many subsequent queries. However,
there are many cases where either the number of queries is
relatively small (or even 1), or the set S changes frequently,
e.g., the approximate Linear Minimization Oracle (LMO) in
Matching Pursuit and Frank-Wolfe optimization (Locatello
et al. 2017; Jaggi 2013). In these scenarios, the preprocess-
ing time is simply a burden. In this paper, our first motivation
is to design an approach to MIPS that will not require any
preprocessing, while still achieving a query speed-up better
than those approaches that do require it.
Motivation II: Suboptimality Bounds. As summarized in
Table 1, specific parameters such as the number of hash
functions or depth of partition trees are used to trade search
accuracy with search efficiency. Various data structures
with pre-specified parameters (Shrivastava and Li 2014;
Bachrach et al. 2014; Auvolat et al. 2015) are built before
any query is given, which means that the trade-off is some-
what fixed for all queries. Thus, the computational cost for
a given query is fixed. However, in many real-world scenar-
ios, each query might have a different computational bud-
get. (Yu et al. 2017) proposed a greedy method where the
user could control the computational budget for each query.



The computational budget can be viewed as an efficiency-
accuracy knob. Nevertheless, the user can’t get a solution
with a guaranteed level of optimality in general.1 It is cru-
cial for practitioners to have a knob with which the user can
explicitly request and guarantee a certain level of optimality
for each query (Mozafari and Niu 2015; Agarwal et al. 2013;
2014), e.g., to know how accurate the solution would be if
more computational budget were allowed (Park et al. 2018).
Thus, our second motivation in this paper is to design a
MIPS algorithm that can bound (and directly control) the
suboptimality of the returned answer, regardless of the data
distribution. Specifically, for any 0 < ε < 1 and 0 < δ < 1
chosen by the user, the algorithm must be able to guaran-
tee that, with probability at least 1 − δ, the returned solu-
tion v̂ is ε-optimal with respect to optimal solution v∗, i.e.,
1
N q

T v∗ − 1
N q

T v̂ < ε. This would help us to better under-
stand the behavior of our algorithm theoretically, and would
offer a flexible knob for trading off error and computational
efficiency in practice.
Our Approach. Our approach to MIPS is inspired by the
Multi-Armed Bandit (MAB) problem (Bubeck, Munos, and
Stoltz 2009; Audibert and Bubeck 2010; Even-Dar, Man-
nor, and Mansour 2006; Jamieson et al. 2014). MAB is a
predominant model for characterizing the tradeoff between
exploration and exploitation in decision-making settings. In
MAB, there are n arms; each time we pull an arm, it returns
a reward (e.g. a reward generated by sampling from a Guas-
sian distribution). The true mean of an arm is defined as the
mean of the distribution from which its rewards are sam-
pled. The goal in MAB is to either (1) accumulate as much
reward as possible, or (2) identify the best arm (i.e., the one
with the highest true mean). In our paper, our goal is the lat-
ter. We cast MIPS as a Best Arm Identification problem: we
can treat each data vector as an arm, where pulling it means
multiplying one of its coordinates with the corresponding
coordinate from the query vector. We must then dynamically
decide how many more floating-point multiplications to per-
form for each inner product, based on the partial results of
all inner products thus far.

There are two different stopping conditions for the Best
Arm Identification problem: fixed confidence and fixed bud-
get. With fixed confidence, the MAB algorithm seeks to min-
imize the sample complexity—the number of pulls used—
while guaranteeing that the returned arm is ε-optimal with
probability at least 1−δ for any given 0 < δ < 1, 0 < ε < 1.
In the fixed budget setting, the MAB algorithm stops once it
has used its budget in terms of the sample complexity, while
seeking to return an arm whose true mean is as close as
possible to that of the best arm. Although our Motivation
II is inline with the fixed confidence setting, the existing
MAB methods for fixed confidence are not effective for the
MIPS problem. This is because the existing algorithms are
designed for i.i.d. rewards drawn from some unknown dis-
tribution over an infinite population (Bubeck, Munos, and
Stoltz 2009; Audibert and Bubeck 2010), and thus require
many pulls to achieve an accurate estimate of an arm’s true

1A more detailed treatment of the previous work is deferred to
Section of Related Work

mean. In MIPS, however, the useful number of pulls for
any arm is upper bounded by N (the vectors’s dimension).
In other words, rewards are sampled without replacement
from a discrete uniform distribution over a finite population.
Therefore, by exploiting this structure, we should be able
to significantly lower the number of pulls. In this paper, we
introduce a new setting for Best Arm Identification prob-
lem with fixed confidence that suits the special structure of
MIPS. We also propose an algorithm, called BOUNDEDME,
inspired by the Median Elimination framework (Even-Dar,
Mannor, and Mansour 2002), using a tight statistical bound
for sampling without replacement.

In summary, we make the following contributions:

• We identify two desirable motivations for the MIPS prob-
lem that are important in practice but overlooked by ex-
isting solutions (Movitaion I and Motivation II). We in-
troduce a new MAB setting for Best Arm Identification,
where the rewards for each arm are sampled from a large
but finite list. We call this setting Multi-Arm Bandit with
Bounded Pulls (MAB-BP).

• We propose a new algorithm for MAB-BP, called
BOUNDEDME, which extends Median Elimination with
a tight statistical bound. When applied to MIPS, BOUND-
EDME enjoys a significantly lower sample complexity
than all previous MAB methods developed for fixed con-
fidence setting. More importantly, as a bandit approach,
BOUNDEDME does not require any preprocessing (unlike
previous MIPS solutions).

• Our extensive experiments on both synthetic and real-
world datasets show that BOUNDEDME’s query time is
5–10× faster than state-of-the-art MIPS algorithms, de-
spite their use of preprocessing.

Related Work
Existing Approaches to MIPS
There are a number of sampling-based methods for MIPS.
For example, SAMPLE-MIPS (Cohen and Lewis 1999) is a
scheme that samples (i, j) ∈{1, · · · , n}×{1, · · · , N} with
probability proportional to v(j)i q(j). However, it requires that
all candidate and query vectors be nonnegative. DIAMOND-
MSIPS (Ballard et al. 2015) is another sampling-based ap-
proach which solves a similar problem, called maximum
squared inner product search (MSIPS). The goal in MSIPS
is to find candidate vectors v ∈ S for which (qT v)2 is max-
imized. The solution to MSIPS, however, can be very dif-
ferent than that of MIPS, e.g., the former might return a v
whose inner product with q is a large negative value.

Another popular approach is to reduce MIPS to the
nearest neighbor search problem, which can then be
solved using locality-sensitive hashing (Shrivastava and
Li 2014; Neyshabur and Srebro 2015), neighbor-sensitive
hashing (Park, Cafarella, and Mozafari 2015), PCA-trees
(Bachrach et al. 2014), or K-Means approaches (Auvolat et
al. 2015). Nonetheless, all of these methods share a com-
mon pattern. Before answering any queries, they conduct a
preprocessing on S to construct an approach-specific data
structure, e.g., hash table in LSH-MIPS, space partition



Table 1: State of the art algorithms for MIPS. Here, n is the number of data vectors and N is the vectors’ dimensionality.

Method Preprocessing Query Theoretical Guarantees Notes
Time Time

BOUNDEDME
(our method)

0 O
(
n
√
N
ε

√
log
(
1
δ

))
Guaranteed to return an ε-optimal
solution with probability at least 1−
δ

User can choose any desired
error 0<ε<1 and confidence
0<δ<1

GREEDY-
MIPS (Yu et al.
2017)

O(Nn log n) O(BN) No guarantees in general. (They
guarantee optimality with high
probability, only for uniformly dis-
tributed data and budget B ≥
O(N log(n)n

1
N )

For non-uniform data, the
results can be arbitrarily
poor (e.g., if the largest co-
ordinate of qT v is identical
for all v ∈ S, the output will
be a random subset)

LSH-
MIPS (Shri-
vastava and
Li 2014;
Neyshabur and
Srebro 2015)

O(Nnab) O(nN2a b) They guarantee to return the opti-
mal vector v∗ for query q with prob-
ability

1−
(

1−
(

1− cos−1(qT v∗)

π

)a)b
where a is the number of bits in
each hyper LSH function and b is
the number of hyper LSH functions

Since v∗ is unknown a pri-
ori, the users cannot control
the lower bound of this prob-
ability (e.g., if qT v∗ = −1,
this probability will always
be 0 regardless of the values
chosen for a and b)

RPT-
MIPS (Keivani,
Sinha, and Ram
2017)

O(LNn log n) O(L log n) They guarantee to return the opti-
mal vector v∗ for query q with prob-
ability upper bounded by some po-
tential function depending on q, S
and L, where L is the number of
trees

Since q is unknown a priori,
the users cannot control the
lower bound of this proba-
bility

PCA-
MIPS (Bachrach
et al. 2014)

O(N2n) O(nN
2d

) None d is the depth of the PCA
tree

trees in PCA-MIPS, or cluster centroids in (Auvolat et
al. 2015). These data structures only contain information
about the vectors in S and are independent of any query.
Then, for each query, they use an efficient procedure on
their preconstructed data structure to select a set of can-
didate vectors (i.e., a subset of S). They perform an ex-
act ranking on this candidate set to return the best vector.
A recent approach, Randomized Partitioning Tree (RPT-
MIPS) (Keivani, Sinha, and Ram 2017), builds a partition-
ing tree on top of an LSH scheme to solve the MIPS prob-
lem. RPT-MIPS guarantees the exact solution with a prob-
ability that depends on the vector set S and the given query.
However, RPT-MIPS cannot directly control the quality of
the returned vector (i.e., suboptimality bounds in Motiva-
tion II). Another approach is GREEDY-MIPS (Yu et al.
2017), which builds on the same algorithmic pattern, but
also provides a budget for the size of the candidate set. This
parameter is the only mechanism that implicitly controls the
tradeoff between precision and query time. Table 1 summa-
rizes the theoretical guarantees offered by some of the recent
MIPS algorithms.

Existing Approaches to MAB
Best Arm Identification is a popular setting in MAB that
aims to identify the best arm by dynamically deciding on
how many times to pull each arm. In the fixed budget setting,
the main idea behind algorithms such as Successive Halving
(Karnin, Koren, and Somekh 2013; Jamieson and Talwalkar
2016) and Successive Rejects (Audibert and Bubeck 2010)

is to dynamically allocate the budget to the different arms
in order to remove the bad arms in a round-by-round fash-
ion until only one arm is left. Naturally, these methods tend
to use up their budget in order to return an arm whose true
mean is as close as possible to the optimal arm. The fixed
budget setting isn’t suitable for our problem in this paper. In
the fixed confidence setting, algorithms share the same idea
of dynamically pulling arms and removing the unpromis-
ing ones from consideration, such as Successive Elimina-
tion (Even-Dar, Mannor, and Mansour 2006), Exponential
Gap Elimination (Karnin, Koren, and Somekh 2013), LUCB
(Kalyanakrishnan et al. 2012), and Lil’UCB (Jamieson et
al. 2014). These algorithms are inline with our Motivation
II, as they also seek to minimize sample complexity while
guaranteeing that the returned arm is within a pre-specified
proximity of the optimal arm. However, they cannot be di-
rectly applied to the MIPS problem because they assume the
rewards are i.i.d. samples from some unknown distribution
over an infinite population, whereas in MIPS, the rewards
are sampled without replacement from a discrete uniform
distribution over a finite list.

A Bandit Approach to MIPS
In this section, we show how the MIPS problem can be
viewed as a Best Arm Identification problem with fixed con-
fidence. As previously mentioned, the goal in MIPS is to
solve the problem:

v∗ = argmax
v∈S

qT v



where S = {vi|vi ∈ RN , 1 ≤ i ≤ n} is a collection of n
data vectors and q ∈ RN is a given query.

We cast MIPS as a bandit problem as follows. For ev-
ery data vector vi ∈ S , we consider a corresponding
arm ai, whose reward has the following true mean pi =
1
N

∑N
j=1 v

(j)
i q(j) =

vTi q
N , where v(j)i and q(j) are the j-

th coordinates of vi and q, respectively, for 1 ≤ j ≤ N .
When the arm ai is pulled t times (1 ≤ t ≤ N ), its
rewards are generated by taking t i.i.d. samples with re-
placement from its reward list Ri, defined as the set Ri =

{v(1)i q(1), v
(2)
i q(2), · · · , v(N)

i q(N)}.
Each time the arm ai is pulled, returning a reward corre-

sponds to a floating-point operation in MIPS for multiplying
one of the coordinates from vi with its counterpart from q,
i.e., computing v(j)i q(j) for some 1≤j≤N . The reward lists
are initially unknown, but the more we pull an arm, the more
we learn about its reward list. Our goal in MIPS is to find
the arm with the highest true mean—the vector whose inner
product with q is the highest—using as few floating point
operations as possible.

Unfortunately, in a traditional bandit setting, even if we
pull the ai arm N times, we still do not know the exact true
mean of Ri, i.e., the exact inner product of vi and q. This
is because traditional bandit problems are designed for an
unknown distribution over an infinite population, and hence
rely on sampling with replacement. However, to solve MIPS,
the rewards are drawn from a finite reward list—i.e., N co-
ordinates. Thus, if we can exploit this structure and use sam-
pling without replacement, we must be able to pull the arms
significantly fewer times than in a traditional bandit. Further,
once we have pulled the ai arm N times, we should know
the entire content of Ri, equivalent to the exact computation
of the inner product between vi and q. Next, we formally
define this new bandit setting.

Multi-Armed Bandit with Bounded Pulls
(MAB-BP)

We now formally introduce a new Multi-Armed Bandit set-
ting, which we call Multi-Armed Bandit with Bounded Pulls
(MAB-BP). Assume a set of n arms A = {a1, · · · , an}.
Each arm ai is associated with a reward list Ri =

{R(1)
i , R

(2)
i , · · · , R(N)

i }, where N is the size of the reward
list. Here, we assume R(j)

i ∈ [0, 1], but a similar analysis
applies as long as the reward value is bounded. Every time
an arm ai is pulled, a reward is returned by sampling a value
without replacement from its reward list Ri. Denote the true
mean of reward for arm ai as pi = 1

N

∑N
j=1R

(j)
i . Thus,

once an arm is pulled N times, the mean of the returned re-
wards is exactly equal to the true mean pi. Our goal is the
same as in a traditional Best Arm Identification: to identify
an ε-optimal arm with probability at least 1− δ using as few
pulls as possible, where ε and δ are provided by the user. We
say that an arm â is an ε-optimal arm if pa∗ − pâ < ε, where
a∗ is the optimal arm.

It is easy to see that by choosing R(j)
i = v

(j)
i q(j) for 1 ≤

j ≤ N , one can cast MIPS as a MAB-BP problem. However,

note that MAB-BP can be used to solve any problem of the
form:

arg max
1≤i≤n

N∑
j=1

f(i, j)

where f can be an arbitrary function.
For MIPS, f(i, j) = v

(j)
i q(j). However, one can also

use MAB-BP to solve the Nearest Neighbor Search (NNS)
problem: given a collection of vectors S = {v1, · · · , vn},
where vi ∈ RN , 1 ≤ i ≤ n, and a query vector q ∈
RN , the goal is to find v∗∈S that is closest to q, i.e.,
‖q − v∗‖2 =

∑N
j=1(q(j) − v∗(j))2 is minimized. In this

case, f(i, j)=−(q(j) − v(j)i )2.

BOUNDEDME: An Algorithm for Solving
MAB-BP

Existing bandit algorithms are sub-optimal for MAB-BP.
The fundamental reason is bandit algorithms have to esti-
mate the minimum number of samples needed to obtain an
estimate p̂ of the true mean p that satisfies the given error ε
and confidence δ requirements, i.e., P [p̂− p ≤ ε] ≥ 1− δ.

The efficiency of a bandit algorithm depends on how
accurately it can estimate the number of required sam-
ples, based on the reward values it has observed for each
arm. This goal is achieved using concentration inequali-
ties (Boucheron, Lugosi, and Massart 2013). Since in tra-
ditional bandit the rewards are typically assumed to be sam-
pled from a sub-Gaussian distribution over an infinite pop-
ulation (Jamieson and Nowak 2014), these algorithms often
rely on Hoeffding’s bound or the law of iterated logarithm
(LIL) bound to determine the sample size for mean estima-
tion of the reward distribution over an infinite population.
However, as noted earlier, the reward values in MAB-BP are
sampled without replacement and from a finite list. Thus, an
algorithm that can exploit this additional information should
be able to solve the MAB-BP problem more efficiently (i.e.,
with lower sample complexity).

Next, we derive a concentration inequality for sampling
without replacement and then present our algorithm.

A Concentration Inequality for MAB-BP
We use the following corollary from (Bardenet, Maillard,
and others 2015).

Corollary 1 (Corollary 2.5 in (Bardenet, Maillard, and oth-
ers 2015)). Let X = (x1, x2, · · · , xN ) be a finite set of
size N > 1 in [a, b] with mean µ = 1

N

∑N
i=1 xi, and

(X1, · · · , Xm) be a list of size m < N sampled without re-
placement from X . Then for anym ≤ N , and any δ ∈ [0, 1],
it holds

P

[
1

m

m∑
t=1

Xt − µ ≤ (b− a)

√
ρm log(1/δ)

2m

]
≥ 1− δ (2)

where ρm is defined as

ρm = min

{
(1− m− 1

N
), (1− m

N
)(1 + 1/m)

}
(3)



Based on this corollary, we could get the following con-
centration inequality for sampling without replacement, as
in the following lemma2.

Lemma 1. Let X = (x1, x2, · · · , xN ) be a finite set of
size N > 1 in [a, b] with mean µ = 1

N

∑N
i=1 xi, and

(X1, · · · , Xm) be a list of size m < N sampled without
replacement from X . Then, for any given 0 < ε < 1, 0 <
δ < 1, if

m = min{ u+ 1

1 + u
N

,
u+ u

N

1 + u
N

} (4)

where u = log(1/δ)
2

(b−a)2
ε2 , then we have

P

[
1

m

m∑
t=1

Xt − µ ≤ ε

]
≥ 1− δ (5)

.

We can see that as the error bound ε approaches 0, the
required sample size m will approach the finite set size N ,
but never exceedN . This matches our previous intuition that
it is ineffective to pull one arm more than N times in MAB-
BP. It is worth noting that a lemma similar to Lemma 1 can
be derived to show that P

[
1
m

∑m
t=1Xt − µ ≥ −ε

]
≥ 1− δ,

based on a corollary similar to Corollary 1.

The BOUNDEDME Algorithm
Our proposed algorithm, BOUNDEDME, is based on the me-
dian elimination strategy, but tailored to our MAB-BP set-
ting. The basic idea of median elimination strategy is that,
given a set of arms A, we pull each of these arms for a
certain number of times to update their empirical means,
discard the worst half in terms of their updated empirical
means thus far, and repeat until only one arm remains. In
Algorithm 1, we present BOUNDEDME for the more gen-
eral case of identifying the top K arms with the highest true
means of rewards. (The best arm identification is a special
case, where K=1.) To be more specific about the difference
between Algorithm 1 and the general median elimination
strategy, the number of times that we pull each remaining
arm is tl − tl−1 for the l-th iteration, where tl is defined in
the line 7 of Algorithm 1. Since we want to identify the top
K arms, at the end of the l-th iteration, we discard

⌈
|Sl|−K

2

⌉
arms with least empirical means thus far where |Sl| is the
number of remaining arms at the begining of l-th iteration,
rather than discarding the worst half. In addition, we will
stop when only K arms remain.

To simplify our notation, we enumerate the arms accord-
ing to their true mean, i.e., p1>p2>· · ·>pn. Let T ∗ =
{1, 2, · · · ,K} be the set of bestK arms.3 For any set T con-
sisting of K arms, we say that T is ε-optimal if p̃T∗ − p̃T ≤
ε, where p̃S is the K-th highest true mean among the arms
in S. We also define the suboptimality of T to be p̃T∗ − p̃T .

Given ε and δ provided by the user, BOUNDEDME’s goal
is to identify a set of K arms that is ε-optimal with probabil-
ity at least 1− δ, using as few pulls as possible.

2All omitted proofs can be found in the supplementary material.
3We use the index i instead of ai to simplify the notation.

Algorithm 1 BOUNDEDME Algorithm (for top-K)
1: input: K ≥ 1, ε > 0, δ > 0, and a set of arms A
2: output: a set of K arms that is ε-optimal with probabil-

ity 1− δ
3:
4: set S1 = A, ε1 = ε

4 , δ1 = δ
2 , l = 1

5: set t0 = 0
6: while |Sl| > K do

7: set tl = m

(
2
ε2l

log

(
2(|Sl|−K)

δl

(⌊
|Sl|−K

2

⌋
+1
)))

8: Pull every arm a ∈ Sl for tl − tl−1 times, and let p̂la
denote its empirical mean since the begining of the
algorithm

9: Find the
⌈
|Sl|−K

2

⌉
-th value of p̂la in ascending order,

and denote it as p̄l
10: Sl+1 = Sl \ {a ∈ Sl : p̂la ≤ p̄l} (more precisely, re-

move
⌈
|Sl|−K

2

⌉
arms with the least empirical means

thus far)
11: εl+1 = 3

4εl, δl+1 = δl
2 , l = l + 1

12: end while
13: return Sl

We use the following function to simplify our presenta-
tion:

m(u) = min

{
u+ 1

1 + u
N

,
u+ u

N

1 + u
N

}
(6)

We can see that m(u) < N as long as u > 0. We have the
following lemma.

Lemma 2. For Algorithm 1, at any iteration l, we have
P
[
p̃Sl
≤ p̃Sl+1

+ εl
]
≥ 1− δl .

Based on the above Lemma 2, we could get the main the-
oretical property of Algorithm 1.

Theorem 1. The BOUNDEDME algorithm (Algorithm 1) is
guaranteed to return ε-optimal solution with probability at
least 1− δ.

Note that BOUNDEDME is never slower than the naı̈ve
search, which has the O(nN) time complexity:

Corollary 2. For each arm, the number of times it is pulled
by Algorithm 1 is upper-bounded by N .

BOUNDEDME’s time complexity is also lower than Me-
dian Elimination (Even-Dar, Mannor, and Mansour 2002),
which is O

(
n
ε2 log( 1

δ )
)
:

Corollary 3. The time complexity of Algorithm 1 is

O
(
n
√
N
ε

√
log
(
1
δ

))
.

Remark 1. When Algorithm 1 is applied to the MIPS prob-
lem, the above bound indicates that the running time is sub-
linear in the dimension of vectors, but linear in the size of
vector set S. This implies that our approach is especially
effective for very high-dimensional data. To mitigate the po-
tential issue of linear dependence on the size of S, we could
exploit the geometric structure or similarity among vectors
from S. The tradeoff here is that this would now require



some preprocessing. For example, we could find the con-
vex hull of the set S first, and then only focus on the set
of extreme points that form the convex hull, because the so-
lution of the MIPS problem is guaranteed to always include
at least one of these extreme points. Thus, when the num-
ber of extreme points is much smaller than the size of S, our
algorithm becomes sublinear in the size of S.

Experiments
Our experiments aim to (1) empirically validate the theoret-
ical guarantees of Theorem 1 and (2) compare our method
against the state-of-the-art.
Datasets. Since Theorem 1 is a worst-case guarantee, we
use an adversarily-generated synthetic dataset to verify its
correctness. Then, we use both synthetic and real-world
datasets to compare our algorithm with several state-of-the-
art techniques. For each dataset, we used 104 vectors with
105 dimensions.
Baselines. We compared our method against the following
state-of-the-art methods:

• LSH-MIPS (Shrivastava and Li 2014; Neyshabur and
Srebro 2015), which is a popular method for MIPS. We
used the nearest neighbor transformation proposed in
(Bachrach et al. 2014) and the LSH function, as suggested
in (Neyshabur and Srebro 2015). We used the standard
amplification procedure, i.e., the final result is an OR-
construction of b hyper LSH hash functions and each hy-
per LSH function is an AND-construction of a random
projections.

• GREEDY-MIPS (Yu et al. 2017), which is a recently pro-
posed method that uses a budget B to control the time
complexity of the query time.

• PCA-MIPS (Bachrach et al. 2014), which uses the depth
of the PCA tree to control the time-precision tradeoff.

Comparison Metrics. We compare different algorithms by
varying their parameters in order to explore their tradeoffs
between precision and online speedup. Precision is defined
as the fraction of true top K solutions in the returned top K
solutions. Online speedup of an algorithm is defined as the
query time required by the naı̈ve (i.e., exhaustive) search di-
vided by the query time of that algorithm. Recall that, unlike
the baselines, our algorithm does not require any prepro-
cessing. However, we ignore the preprocessing time of the
baselines in our comparisons, showing that our algorithm’s
online speedup is still superior despite the lack of any pre-
processing.

Characteristics of the BOUNDEDME Algorithm
Theorem 1 provides a PAC bound for BOUNDEDME. In
other words, with the δ and ε provided by the user, BOUND-
EDME is guaranteed to return an ε-optimal solution with
probability at least 1− δ. Note that this is a worst-case guar-
antee, and in most cases we expect the returned solution to
be much better than that. Therefore, to empirically validate
our worst-case guarantee, we design an adversarial dataset
as follows (we will use other realistic datasets in later exper-
iments).

To generate an adversarial dataset, we use 104 arm, each
with a list of 105 reward values. For each arm a, we choose
its true mean ra uniformly at random from [0, 1]. Then, the
rewards for that arm are generated with every reward being
1 with probability ra and being 0 with probability 1 − ra.
When an arm is pulled—i.e., a sample is drawn from the
rewards list without replacement—the rewards with value 1
are returned before those with value 0. This is to make the
arms as indistinguishable as possible to the algorithm, thus
causing an adversarial scenario.

In this experiment, we vary ε between 0 and 0.6. For
each value of ε, we try all values of δ from the set
{0.01, 0.05, 0.1, 0.2, 0.3}. For each pair of ε and δ, we run
BOUNDEDME 20 times, each time on a different randomly
generated adversarial dataset (as described above). We then
measure the (1 − δ)-percentile of the list of suboptimalities
for each specific pair of ε and δ. Figure 1 reports the average
of these suboptimalities for each value of ε. Since the sub-
optimality is always less than its corresponding value of ε, it
confirms that they are indeed smaller than their correspond-
ing values of ε, i.e., validating Theorem 1.

BOUNDEDME vs. Other MIPS Algorithms on
Synthetic Datasets
We generate two synthetic datasets, where the vector values
are drawn from Gaussian and uniform distributions, respec-
tively. For BOUNDEDME, we varied ε, δ∈[0, 1]. For LSH-
MIPS, we varied a∈[1, 20] and b∈[1, 50]. For GREEDY-
MIPS, we varied B from 10% to 100% of the dataset size.
For PCA-MIPS, we varied the tree depth in [0, 20]. We
run experiments for both the cases of returning the top 5
and 10 solutions. As shown in Figures 2 and 3, when the
online speedup is small, all methods have very high pre-
cision. However, when online speedup becomes larger, the
precisions achieved by other methods start to drop quickly,
while BOUNDEDME can still maintain high precision. This
demonstrates that BOUNDEDME outperforms these previ-
ous methods, despite its lack of preprocessing time.

BOUNDEDME vs. Other MIPS Algorithms on
Real-World Datasets
We also compare BOUNDEDME against others on two real-
world datasets, Netflix and Yahoo-Music used in (Yu et al.
2017). We use the same setting as in (Yu et al. 2017) to com-
pute the vector embeddings using matrix factorization. The
other parameters are the same as previous subsection for the
case of identifying the top 5 solutions. Again, as shown in
Figure 4, the precision of other methods drops more quickly
than that of BOUNDEDME, implying the superior perfor-
mance of BOUNDEDME over its counterparts.

Conclusion
We introduced a new bandit setting, Multi-Armed Bandit
with Bounded Pulls (MAB-BP), where the rewards are sam-
pled without replacement from a finite list. We showed that
this setting can be used for solving important problems,
such as Maximum Inner Product Search and Nearest Neigh-
bor Search. We also proposed a new algorithm, BOUND-
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EDME’s guarantees
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Figure 2: Synthetic Gaussian dataset
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Figure 3: Synthetic uniform dataset
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Figure 4: Real-world datases

EDME, which extends the Median Elimination framework
for MAB-BP settings. Using a new concentration inequal-
ity for finite lists, we derived BOUNDEDME’s suboptimal-
ity guarantee and sample complexity. By applying BOUND-
EDME to MIPS, we improved on state-of-the-art methods
for MIPS by (1) avoiding their preprocessing step, and (2)
offering a knob to the user to directly control the subopti-
maltiy of the results. We also conducted extensive experi-

ments on both synthetic and real-world datasets, showing
significant speedups over state-of-the-art MIPS algorithms.
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