
From Regular Expressions to Nested Words:
Unifying Languages and Query Execution for

Relational and XML Sequences
Barzan Mozafari Kai Zeng Carlo Zaniolo

Computer Science Department
University of California at Los Angeles, California, USA

{barzan, kzeng, zaniolo}@cs.ucla.edu
ABSTRACT
There is growing interest in query language extensions for pattern
matching over event streams and stored database sequences, due
to the many important applications that such extensions make pos-
sible. The push for such extensions has led DBMS vendors and
DSMS venture companies to propose Kleene-closure extensions of
SQL standards, building on seminal research that demonstrated the
effectiveness and amenability to efficient implementation of such
constructs. These extensions, however powerful, suffer from limi-
tations that severely impair their effectiveness in many real-world
applications. To overcome these problems, we have designed the
K*SQL language and system, based on our investigation of the
nested words, which are recent models that generalize both words
and trees.

K*SQL extends the existing relational sequence languages, and
also enables applications from other domains such as genomics,
software analysis, and XML processing. At the same time, K*SQL
remains extremely efficient, using our powerful optimizations for
pattern search over nested words. Furthermore, we show that other
sequence languages and XPath can be automatically translated into
K*SQL, allowing for K*SQL to be also used as a high-performance
query execution back-end for those languages. Therefore, K*SQL
is a unifying SQL-based engine for sequence and XML queries,
which provides novel optimization techniques for both.

1. INTRODUCTION
There is much interest in extending relational query languages

with Kleene-* (Kstar) constructs for matching complex patterns of
events in data streams and stored sequences. The power and flex-
ibility of Kstar constructs for SQL, which were introduced in [28,
29], have recently attracted the attention of DBMS vendors and
DSMS start-up companies, leading to the recent SQL-MR pro-
posal for their inclusion into the SQL standards [36]. This is hardly
surprising, given Kstar’s proven effectiveness in application areas
as diverse as stock market and auction monitoring [30], publish-
subscribe systems [12], RFID-based inventory management [7],
click stream analysis [29], and electronic health systems [16, 20].
In financial services, for instance, a brokerage customer may be in-
terested in a sequence of stock trading events that represent a new
market trend. In RFID-based tracking and monitoring, applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

may want to track valid paths of shipments and detect anomalies in
the supply chains.

In this paper we show that, in spite of the many success stories
mentioned above, we have only begun to explore the variety of new
applications made possible by the Kstar constructs. We introduce a
new language and system, called K*SQL, that reaches well beyond
existing proposals to provide:

1. A unifying framework. Many query languages have been
proposed, each designed for a different domain. K*SQL is power-
ful enough to express and support efficiently both set and sequence
queries on both relational and XML data, residing in the database or
flowing in as a data stream. The many domain-specific languages
previously proposed for various combinations of the above retain
their validity and desirability in their own application realm, but
because of its superior query optimization technology and expres-
siveness, K*SQL can be used to support and extend them—e.g.,
XPath 2.0 can be efficiently implemented by a simple translation
into equivalent K*SQL queries [24]. Thus, even when program-
mers prefer to continue to write their XML queries in XPath, they
will still benefit from the performance improvement brought by
K*SQL as a query execution backend.

Furthermore, K*SQL provides a natural query language for nested
words—a recently proposed model from the field of formal verifi-
cation[6], which generalizes both words and tree structures. To the
best of our knowledge, this is the first database query language
proposed for this very powerful and useful data model.

2. More complex patterns. In addition to supporting new data
models, the power of K*SQL allows it to match more powerful pat-
terns on standard relational sequences and streams. These are criti-
cal in advanced applications, such as stock analysis, RFID process-
ing and trajectory mining. For instance, many real-world sequence
queries that involve nested Kstar patterns are not expressible in
current languages, such as the proposed SQL-MR standards [36].
Also, when data is embedded in XML, which is a common practice
with data exchange over the internet, K*SQL can express sequence
queries that are not expressible in XPath 1.0 or 2.0.

We achieve these goals through the following contributions:
1. We study the formal properties of sequence extensions for

SQL by incrementally extending our query language to support pat-
tern matching over (i) bounded regular expressions, (ii) regular ex-
pressions, and finally (iii) regular expressions over nested words.
This methodology allows us to characterize the expressiveness of
K*SQL, and compare it to other existing languages (Section 3).

2. Based on our study of expressiveness, we carefully design a
natural extension of SQL that provides versatility and ease-of-use,
while minimizing syntactic additions (Section 2).

3. We develop extensive optimization techniques for K*SQL,
including generalizations of the KMP [19] algorithm to the case

of nested words and visibly push-down words (Section 4).
4. We implement and validate our optimization techniques on

well-known benchmarks and real-world data (Section 5).
5. We provide compilation algorithms and tools for automatic

translation of several (e.g., XPath, SASE+ [15]) languages into
K*SQL, thus allowing for both (i) code-base migrations and (ii)
the use of the proposed optimizations also as a back-end query ex-
ecution engine when users prefer those languages as an interface
(Section 3.1, Appendix D).

The paper is organized as follows. We briefly introduce the basic
syntax of K*SQL through examples in Section 2, followed by a
summary of our complexity results in Section 3. We highlight our
main algorithms for implementation and optimization of K*SQL in
Section 4 which are empirically validated in Section 5. We review
the related work and conclude in Sections 6 and 7, respectively.

2. K*SQL BY EXAMPLES
K*SQL extends the syntax of a previous SQL-based sequence

language (SQL-TS [28]) with a few but powerful constructs. Thus,
we first use a simple example that could also be expressed in most
of existing languages, before considering examples involving our
extensions. Similar to [36], our pattern extensions are meant to
be effective on both DB tables and data streams. So, as our first
example, let us consider a DB table containing recent Nasdaq stock
transactions (we discuss data streams later):

EXAMPLE 1. A table with Nasdaq transactions.

CREATE TABLE NasdaqTable (seller Varchar(20), buyer Varchar(20),
stockName Varchar(8), shares Integer, price Integer,
datetime Timestamp)

Here, price is the price per share. As an example, consider the
following well-known query from stock market analysis:

EXAMPLE 2 (Double-bottom or ‘W’ pattern). Find those stocks
whose price has formed a W-shape. That is, the price has been go-
ing down to a local minimum, then rising up to a local maximum
and then again, decreasing to another local minimum, and finally,
followed by another rise. The starting price should be at least 50.
(See Fig. 1).

SELECT S.stockName, D.avg(price) AS runningAvg,
avg(D.price) AS finalAvg, last(D.price) AS finalPrice

FROM NasdaqTable
PARTITION BY stockName
ORDER BY datetime
AS PATTERN (S A* B+ C+ D+)

WHERE S.price >= 50 AND S.price > first(A).price
AND A.price < prev(A).price
AND B.price > prev(B).price
AND C.price < prev(C).price
AND D.price > prev(D).price AND maximal(D)

The above is a typical K*SQL query. The semantics are based on
‘immediately follows’ relationship between ordered tuples. Thus,
the syntax is very similar to SQL, except that we have sequential
semantics:
• The PARTITION BY clause splits the tuples according to

their stockName value, as if they were separate streams.
• The ORDER BY clause defines how the tuples in each parti-

tion should be ordered, e.g., in the above example we order
the transactions in their chronological order. Similar to SQL,
the DESC keyword can be added for descending order.
• The AS PATTERN clause defines the sequential pattern that

we are searching for. In Example 2, S, A, B, C and D refer to

consecutive tuples. Variable S is singleton and matches with
exactly one tuple, while the other variables are group vari-
ables (or Kstar variables): ∗ allows for arbitrary repetition,
while + requires a repetition of at least 1. These variable
names can be used in the WHERE predicates to express the
relationship between these tuples.

K*SQL supports both running aggregates (e.g. D.avg(price))
as well as final (a.k.a. blocking) aggregates (e.g., avg(D.price)).
K*SQL also supports the four typical sequence modifiers, namely
first, last, prev and next which can be applied to group vari-
ables. In K*SQL, maximal(D) denotes that we will remain in the
D+ state until this fails–i.e., until the price is no longer increasing.
In the absence of the maximal predicate, the default behavior is
to return all the matches, namely any number of successive occur-
rences satisfying the predicates.

As mentioned, Example 2 could be expressed in most of the pre-
viously proposed languages as well, modulo minor variations in
keywords and syntax. K*SQL uses the same constructs for both
stored tables and data streams; however, the ORDER BY clause will
be omitted in continuous queries on data streams where the order
follows from the very declaration of the stream, such as that in Ex-
ample 3. For instance, in our system, an input stream of Nasdaq
transactions can be defined as follows:

EXAMPLE 3. A stream of Nasdaq transactions.
CREATE STREAM Nasdaq (seller Varchar(20), buyer Varchar(20),

stockName Varchar(8), shares Integer,
price Integer, datetime Timestamp)

ORDER BY datetime SOURCE ’port4446’;

In this example SOURCE ′port4446′ declares the port at which
the input data is arriving; ORDER BY datetime declares that tuples
in our stream are ordered according to their timestamp datetime.
In the absence of such declaration, the data stream is assumed or-
dered by its arrival order. But in either case, continuous queries
assume and maintain this order, and thus our K*SQL queries over
data streams do not contain any explicit ORDER BY clause–which
will therefore be omitted in the rest of this paper.

Due to space constraints, we only briefly covered the basics of
K*SQL syntax so that the reader can follow our examples and un-
derstand some of the convenient and more expressive constructs
that K*SQL provides 1.

Our next order of business is to allow nested Kstars in the defini-
tion of patterns. Although it requires only a minor syntactic exten-
sion, nested Kstars significantly improve the usability and expres-
siveness of our language.

2.1 Nested Kstars
The ‘W-shape’ pattern of Example 2 consists of two ‘V-shape’

patterns. However there are many more complex queries that in-
volve nested Kstars. For instance, consider the following example
from stock analysis, known as uptrend falling wedge pattern2.

EXAMPLE 4 (Wedge pattern). Find those stocks whose price
fluctuates as a series of ‘V-shape’ patterns, where in each ‘V’ the
range of the fluctuation becomes smaller, and eventually, the price
rises up to higher than its starting point.

Since each ‘V’ sub-pattern is itself two Kstars, say X+Y+, we
need to somehow express the arbitrary number of repetition of this
sub-pattern with a nested Kstar, say (X+Y+)∗. Next questions are
1For the formal syntax and semantics of K*SQL see Appendix A
and [22].
2
http://www.chartpatterns.com/wedges.htm

then how to clearly express the complex conditions on such pat-
terns, and how to run them efficiently? The following K*SQL
query is the answer to this query.

SELECT first(first(Z).X).stockName,
first(first(Z).X).price AS startPrice,
E.price AS finalPrice

FROM Nasdaq
PARTITION BY stockName
ORDER BY datetime %Optional for streams
AS PATTERN ((Z: X+ Y+)+ E)

WHERE Z.X.price < prev(Z.X).price
AND Z.Y.price > prev(Z.Y).price
AND max(Z.price)-min(Z.price) <

max(prev(Z).price)-min(prev(Z).price)
AND first(first(Z).X).price < E.price

Here, K*SQL goes beyond SASE+ [15], SQL-TS and SQL-MR
by supporting nested Kstars. Next, we briefly explain the new fea-
tures introduced in the query above.

Aliases. As shown in this Example, K*SQL allows the use of
aliases for subpatterns: (Z : X+Y+) defines Z as an alias for the
sequence X+Y+, one for each ‘V’-phase in the example considered.
Now, (Z : X+Y+)+ denotes one or more occurrences of Z. We
have thus moved from patterns consisting of linear sequences to
patterns consisting of sequences of sequences. K*SQL allows for
any depth of nested Kstars, e.g. here the depth is 2. Perhaps two
main reasons why previous languages did not support nested Kstars
were (i) they would lead to ambiguity in the aggregates and, (ii)
they require much more complex optimizations. Use of aliases in
K*SQL overcomes the former obstacle, as described next.

Aggregates on nested Kstars. K*SQL assumes that each in-
stance of Z has virtual attributes whose values are derived from
the instances of X+ and Y+ occurring in this instance of Z, e.g.
min(Z.price) is the minimum price among the X’s and Y’s of the
current repetition of Z. We could also calculate the running and fi-
nal averages of the falling prices in the current Z by Z.avg(X.price)
and avg(Z.X.price), respectively. Also, max(prev(Z).price) refers
to the maximum price in the previous repetition of Z.

Similarly, the running aggregate first is available on Z, with
unchanged semantics, i.e. Z.first(Y.price) denotes the sequence
of the rising prices of the first Z, while first(first(Z).X).price
returns the price of the first tuple of X in the first Z.

Therefore, the K*SQL syntax for nested Kstars is powerful and
unambiguous, and only requires the user to assign a new alias vari-
able to each compound Kstar 3, i.e. a Kstar expression consisting
of more than one variable. In fact, even though partial optimiza-
tions for nested Kstars were proposed in [18], they did not allow
aggregates on such constructs due to the ambiguity that such com-
binations would cause. Thus, K*SQL syntax achieves the unambi-
guity while allowing aggregates on nested Kstars, mainly through
the aliases and the simple semantics introduced above. Efficiency
concerns are addressed in Sections 4 and 5.

So far we have only considered relational data, but in practice,
many data streams are embedded in XML tags, as XML allows for
generality, and usability of data exchange over the Internet. For
instance, stock/financial transactions are often encoded and pub-
lished as XML streams. Thus, a next natural question is ‘whether
and how a sequence language can query such data’? And if possi-
ble at all, ‘what types of XML data and queries can be expressed in
our language’? Next, we answer these questions for K*SQL.

3No alias is required for simple Kstars, since B+ is viewed as equiv-
alent to (B: +), where is the anonymous variable, as in Dat-
alog.

2.2 Linear-Hierarchical Data
Consider the following DTD for an XML schema:

<!DOCTYPE company [
<!ELEMENT company (name, (transaction)*)>
<!ELEMENT transaction (price, buyer, date)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT buyer (#IDREF)>
<!ELEMENT date (#PCDATA)>
]>

Throughout this paper, we use SAX-3 [37] representation of XML4,
a slightly modified version of the famous SAX API. Thus, ev-
ery XML is processed as a stream of SAX events represented by
triplets (type, token, value). The order in which these triplets
appear in the sequence reflect their pre-order traversal position in
the document. By having a unique tag name for the root element
(‘company’ in this example), we can easily extend the same for-
mat even to represent a stream of several XML documents with the
same schema5. The following is the beginning portion of an XML
document, within a stream that consists of the XML documents for
several Nasdaq companies:

(type, token, value)
...
106: (’open’, ’company’, -),
107: (’open’, ’name’, -),
108: (’text’, ’IBM’, -),
109: (’close’, ’name’, -),
110: (’open’, ’transaction’, -),
...

Here, the numbers represent the relative position of each tag
within the stream of company XMLs. Assume that the stock trans-
actions under each company appear according to their date attribute.
Thus, a transaction occurred earlier has an open tag with a smaller
position number. We begin by searching the same ‘W’-shape pat-
tern as in Example 2, but this time from XML data.

EXAMPLE 5. The K*SQL query below, returns all the W-shape
stocks in a given Nasdaq XML document stream (See Figure 1).

SELECT C.token as CompanyName,
first(Z.first(X.G.token)) as price1,
first(Z.last(X.G.token)) as price2,
first(Z.last(Y.K.token)) as price3,
last (Z.last(X.G.token)) as price4,
last (Z.last(Y.K.token)) as price5,

FROM NasdaqStream
AS PATTERN (A B C D (Z: (X: E F G H Iˆ6 J)*

(Y: E F K H Iˆ6 J)*
)ˆ2 L

)
WHERE A = open(’company’)

AND B = open(’name’)
AND D = close(’name’)
AND E = open(’transaction’)
AND F = open(’price’)
AND H = close(’price’)
AND J = close(’transaction’)
AND X.G.price <= prev(X.G).price
AND Y.K.price >= prev(Y.K).price
AND L = close(’company’)

Syntactic shorthands. Note that for XML documents, the tu-
ples are processed according to their appearance order, and hence
4Any relational format for pre-order traversal of the
stored/streaming XML file(s) is acceptable.
5If the document tokens are out-of-order, a fourth column can be
used for documentId.

Figure 1: A double-bottom or W-shape stock pattern.

the ORDER BY clause for XML queries is omitted 6. Here, open()
and close() are merely convenient shorthands to recognize open
or close tags, e.g. B = open(′name′) could be replaced by a condi-
tion that B.type =′ open′ AND B.token =′ name′. Here, we also
used the notation I∧6 as a shorthand for the repetition, i.e. IIIIII;
likewise (Z : . . .)∧2 stands for (Z : . . .)(Z : . . .). Also observe
that, due to their similar definitions, variables E, F, G, H, I and J, are
used under both X and Y, and thus we can use the path notation X.E
or Y.E to refer to one or the other. When their path notation is miss-
ing, the parser disambiguates them by duplicating their predicates
for each subpattern that they appear in (see [22]).

Query explanation. In the query above, the first part of the pat-
tern, namely ABCD, parses the 〈company〉〈name〉somename〈/name〉
header. Next, we use Z to alias the definition for a ‘V’-shaped pat-
tern and use Z∧2 to capture a ‘W’. In each ‘V’, the falling and
rising phases are defined by X∗ and Y∗, respectively. To recog-
nize each occurrence of X , we use four variables, EFGH, recogniz-
ing 〈transaction〉 〈price〉 somePrice〈/price〉, which are fol-
lowed by I∧6, where I’s act as wildcards to skip the next six tags,
namely 〈buyer〉Name〈/buyer〉 〈date〉somedate〈/date〉, and so
on. Here, J and L refer to the corresponding close tags for trans-
action and company. The rest is obvious (consider the W-shape
pattern in Figure 1).

Limitations of other languages. This example illustrates the
power of nested Kstars (with aliasing) in K*SQL. Kaghazian et
al. [18] also allow nested Kstars but they do not support aggregates
on such expressions. However, the hierarchical aliasing in K*SQL
allows us to select subsequent occurrences of X and then compare
the G prices within and so on. On the other hand, expressing queries
such as Example 2 in XPath is often difficult7 if not impossible8

(e.g., for an extension of XPath with Kstar see [32]).
The next question is whether these constructs (i.e., nested Kstars

plus aliasing and aggregates) are also capable of querying XML
data with recursive schemas?, as a recursive nature can represent a
serious challenge for a relational sequence language.

<familyroot id=”31602”>
<son name=”John”>

<son name=”Brian”>
</son>
<son name=”Bob”>

<son name=”Paul”>
</son>

</son>
<daughter name=”Alice”>
</daughter>

</son>
</familyroot>

Figure 2: Sample XML document for ancestry information.

XML with recursive schema. Consider the tiny ancestry XML
in Figure 2, in which, for example, a son can contain other sons to

6The order of appearance of the tags in the XML, is referred to as
the total ‘document order’ in XPath 2.0 and XQuery.
7The ‘W’-shape query is expressible in XPath but is hard to write,
read and optimize (see Appendix E).
8For examples, see Appendix E.

an arbitrary depth. Now consider the following example.

EXAMPLE 6. For an ancestry XML (e.g., the one in Figure 2),
return the names of all those sons whose father is named ‘John’.

Such queries are very easy to write in XPath, here:

//son[name = ”John”]/son/@name

Current Kstar languages cannot express such queries simply be-
cause they cannot determine (i) how many intermediate 〈son〉’s
they should skip before reaching all the sons of John, and (ii) they
cannot detect that, e.g., Paul is Bob’s son and not Brian’s, say, e.g.,
by considering their depth in the XML. To overcome these limita-
tions for recursive structures, K*SQL supports a simple but power-
ful aggregate, called isElement. The following K*SQL query is
equivalent to the XPath expression above:

SELECT Y.value as sonNames
FROM AncestryRelation
AS PATTERN (A X N* B Y N* C N* D)
WHERE A = open(’son’)

AND X.type = ’attribute’ AND X.token = ’name’
AND X.value = ’John’ AND isElement(N)
AND B = open(’son’)
AND Y.type = ’attribute’ AND Y.token = ’name’
AND C = close(’son’) AND D = close(’son’)

In K*SQL, isElement() is a built-in function that is internally
implemented using a stack which evaluates to true on every tuple,
until a violation of well-nestedness occurs, at which point, it evalu-
ates to false. For the example above, when a new tuple is assigned
to state N∗, it is added to the stack if its token is an open tag. But if
the new tuple’s token is a close tag, we check if the top of the stack
is its corresponding open tag. If yes, we pop it, and otherwise there
is a stack violation, and the tuple will be passed to the next state,
e.g. B. For tokens that are neither open nor close tags, we do not
touch the stack but remain in N∗ depending on the query mode, e.g.,
in maximal mode, we stay in N∗ until a stack violation occurs, but in
all-match mode, we consider all the options non-deterministically.
In Appendix C, we explain how, in K*SQL, isElement() is im-
plemented in a generic form (i.e., not limited to XML or its specific
SAX representation).

Query explanation. Here, each time a 〈son〉 tag is found (ele-
ment A), the X element checks its name attribute, the N∗ elements
skip the well-nested elements to ignore the intermediate children of
the current node. Since the default setting is non-deterministic, at
some point, the automaton will follow the B element instead of N,
and if it is another 〈son〉 tag, the automaton will proceed with the
rest of the pattern. Once all possible traces of this automaton are
explored (either success or failure), the first element (i.e., A) will be
moved forward until the next 〈son〉 is found, and the same process
is repeated.

Nested structures other than XML. The capabilities of K*SQL,
in querying data with both sequential and hierarchical structures, is
not limited and specific to XML. In fact, K*SQL provides for pat-
tern matching over nested words as well as over words. Nested
words were originally proposed for static program analysis [4, 6],
but can model other dual linear-hierarchical structures as well. XML
represents only one example of such data. Procedural programming
traces and genomic data are other examples. A brief background
on these notions can be found in Appendix B. Interestingly, in Sec-
tion 3.3, we prove that K*SQL can query any data that can be mod-
eled using nested words (or visibly pushdown words [5], a closely
related notion). The examples in this paper were chosen from the
XML domain due to the importance of XML and its familiarity to

the database community, and also its long history of rich languages
in the field. However, we emphasize that our constructs are not
specific to XML or its particular SAX representation. A brief ex-
planation on the application of K*SQL for other domains such as
program traces and RNA sequences are provided in Appendix C.

Many interesting questions arise at this point: Can K*SQL ex-
press all XPath queries? What is the true expressive power that
our built-in isElement construct brings to K*SQL? How does
K*SQL compare with other existing sequence languages? What
is the query evaluation complexity in K*SQL? What if we allow
aggregates? How can we optimize K*SQL queries and ensure effi-
ciency? The next two sections address these questions.

3. EXPRESSIVE POWER
In this section, we briefly present our main results on the expres-

siveness of K*SQL, and compare it to other existing models and
languages. The proofs are in Appendices D, F or [22].

3.1 K*SQL vs. XPath
Core XPath 2.0 [33] represents a fragment of XPath that is com-

plete for First Order (FO) logic over trees [34]. In Appendix D, we
prove the following theorem:

THEOREM 1. For every Core XPath 2.0 query, there is an equiv-
alent K*SQL query.

Moreover, we show later (Theorem 5) that K*SQL is as expres-
sive as VPLs which are equivalent to monadic second order (MSO)
logic over nested words [26]. Thus, K*SQL is strictly more expres-
sive than Core XPath 2.0, which is in turn strictly more expressive
than Core XPath 1.0 [34]. Appendix E further elaborates on the
limited expressivity of XPath for sequence queries.

In Appendix D, we provide a simple constructive proof 9, that
shows we can algorithmically construct an equivalent K*SQL query
for any given Core XPath expression10. We have implemented
this translation algorithm as a utility tool with a user-friendly in-
terface [24] to help migrate old XPath code bases to our K*SQL
system. Using this tool, loyal XPath programmers can still write
their queries in XPath and compile them into K*SQL to benefit
from the optimization techniques developed for sequence queries,
i.e. K*SQL can also act as an efficient query execution backend for
XPath.

3.2 K*SQL vs. Other Sequence Languages
In this section, we study the expressiveness of K*SQL and com-

pare it with other sequence languages. We first disallow aggregates
in these query languages, to differentiate between the real power of
the language core itself from that brought about by aggregates. In
Appendix G, we briefly address the effect of allowing aggregates
on the complexity and expressiveness.

While a full query language can return additional information
about the matches, in order to simplify the presentation, here we
only consider the decision version of these query languages, i.e.
the select clause returns a ‘TRUE’ answer when a match is found.
Thus, the language membership for a given query is the decision
of whether the input sequence satisfies the pattern described by the
PATTERN construct and the WHERE conditions (details in [22]).

9While we could also derive Theorem 1 from Theorem 5, we in-
ductively prove the former in Appendix D, since it gives us a linear-
time algorithm for intuitive translation of XPath queries.

10Our actual implementation [24] also translates extra features that
are not part of Core XPath but are included in most industrial im-
plementations of XPath 1.0 and 2.0, e.g. aggregates, arithmetic,
etc.

For a query language L, and for a given alphabet Σ, we use D(L)
to denote the class of all the decision problems that can be en-
coded/expressed as a query written in L running on a sequence of
input symbols from Σ.

A hierarchy of constructs. Here, we start from a restricted ver-
sion of K*SQL, then incrementally add back its main constructs,
leading to the following hierarchy of languages: K*SQL1: when
we don’t allow any of isElement, nested Kstars, or query compo-
sition; K*SQL2: when we allow nested Kstars but no isElement

or query composition; and finally K*SQL3: where both nested
Kstars and isElement are allowed but no query composition 11.
This hierarchy has enabled us to (i) analyze the effect of these crit-
ical constructs on the usability of the language, (ii) decide on what
extensions are needed for expressiveness and which ones are only
syntactic sugar or help the optimizer, and finally, (iii) compare with
other existing languages while providing insights on a unified ap-
proach to querying both words and nested words.

LEMMA 2 (K*SQL1). Let A ⊆ Σ∗. The following state-
ments are equivalent:
1. A ∈ D(K*SQL1).
2. A ∈ D(SQL-MR [36] without query composition).
3. A ∈ D(SASE+ [15] restricted to its ‘strict contiguity’ and ‘par-
tition contiguity’ modes, and without query composition).
4. A ∈ D(Cayuga [11]).

In our technical report [22] we formalize the class of the lan-
guages above using a ‘bounded’ NFA (i.e., contains no loops) where
the transitions between the states are labeled with regular formulas.
Moreover, SQL-TS [28] becomes a strict subset of D(K*SQL1),
due to the lack of non-determinism in SQL-TS. The SASE+ lan-
guage runs in different modes for the matching condition: strict
contiguity, partition contiguity, skip till next match, and skip till
any match. The latter two modes increase the expressiveness of
SASE+. Using these modes, SASE+ (under query composition) is
equivalent to NFAb [15] which is in turn equivalent to class of reg-
ular languages (when the predicates are regular[15, 22]). This, and
the following lemma lead us to Theorem 4.

LEMMA 3 (K*SQL2). Let A ⊆ Σ∗. The following state-
ments are equivalent:
1. A is recognizable using a regular expression (RE).
2. A ∈ D(K*SQL2).

THEOREM 4. D(K*SQL2) is equal toD(SASE+ with query com-
position).

From SASE+ to K*SQL2. The translation of SASE+ queries
into K*SQL2 is simple. The PATTERN and WHERE clauses of SASE+
are analogous to K*SQL2. However, SASE+ supports skip till next
match and skip till any match in its query modes, whereby irrele-
vant tuples in the middle of a match are skipped. To emulate these
modes in K*SQL2, we use wildcards and nested Kstars as follows:
every SASE+ pattern X∗ is replaced with (A : B X C)∗ in K*SQL,
where B and C are wildcards, thus allowing arbitrary tuples between
consecutive X’s.

In summary, in the absence of aggregates, and once we allow
query compositions, from the previous languages, SQL-MR [36]
(using all match mode), SASE+ [15] (using its ‘skip till any match’
mode) become equivalent to K*SQL2. Also, Cayuga under query
composition is contained in K*SQL2. This containment is strict,
if the class of DSPACE[log n] problems are strictly contained in
NSPACE[log n]. This is due to Theorem 4 and complexity results
from [13], showing that Cayuga is a subset of DSPACE[log n] and
can express some complete problems in this class.

11Query composition does not add to the expressiveness of
K*SQL [22].

3.3 Monadic Second Order Logic
While the unified support and optimization of sequence and XML

queries represent a significant result, that is ready for commercial
deployment, even higher level of expressive power and more excit-
ing applications can be envisioned with the approach proposed in
this paper. In fact, the expressive power of K*SQL can be formally
characterized in terms of a recently proposed model, called Visibly
Pushdown Languages (VPL), and thus, K*SQL can query other hi-
erarchical structures besides XML, such as procedural traces and
genomic data (e.g., see Appendix C).

Similar to regular languages, VPLs can be recognized by two
equivalent representations: Visibly Pushdown Automata (VPA) and
Visibly Pushdown Effects (VPEs)[26]. Also, VPLs are equiva-
lent to languages definable in Monadic Second Order logic with
a matching relation µ, a.k.a. MSOµ [5]. For background on VPL
and VPE, and the proof of the following theorem see Appendix F.

THEOREM 5 (K*SQL3). K*SQL3 can express all Visibly Push-
down Expressions, and therefore can recognize all Visibly Push-
down languages and nested words.

4. OPTIMIZATION
Here we briefly cover some of the core ideas that we have devel-

oped for the optimization of K*SQL. Optimization of non-deterministic
queries, other run-time optimizations, caching and indexing are dis-
cussed in details in [23].

4.1 Compile-time Optimization
At the compile time, we perform two important steps: query

rewriting, and pre-calculating several offline matrices which are
used by the optimization engine at run-time.

4.1.1 Query Re-writing
The compiler translates the K*SQL query into a special VPA

(Visibly Pushdown Automata) where the transitions are made based
on the predicates of the WHERE clause, and the states correspond
to the pattern variables [23]. The K*SQL parser categorizes the
predicates into three types: Context Free (CF), Running Context
Sensitive (RCS), and Final Context Sentitive (FCS). In summary,
running predicates (i.e., CF and RCS) are preconditions which are
assigned to the states, and are evaluated upon examining each tuple
for that state, while final predicates (i.e., FCS) are postconditions
which are assigned to the outgoing edges, and are examined only
upon leaving a state. CF predicates are those predicates whose lat-
est results can be cached in our in-memory history structure (part of
the run-time system). For instance, the results of predicates that in-
volve aggregates, are considered context sensitive (they depend on
the assignment of more than one tuple), and thus, are not cached.

In a naive implementation, an impossible match with a Kstar
may not be detected until the end of the input window, i.e. when
the post-conditions are finally checked. To avoid this, we re-write
the FCS predicates into an equivalent form, by splitting them into
a running part (weaker version) and a final one (the stronger con-
dition). This way, the running part serves as a precondition and
prunes many unpromising attempts earlier on, even before the end
of the input is reached. For example, max(B.price) = 18 is equiv-
alent to B.max(price) ≤ 18 AND max(B.price) = 18 while
the first conjunct in the latter form, is RCS and hence, can be
checked as a precondition. Analogous rewritings are possible for
min and count and even for more complex postconditions involv-
ing a combination of these aggregates. Another important case of
such query re-writing applies to our nested constructs. For instance,
isElement(B) is split into two separate checks: (i) the stack for B
must be empty in the end, and (ii) the stack for B must stay valid

at all times. Thus, while isElement is by its nature a context sen-
sitive postcondition, it is translated into FCS and RCS parts. The
compile-time optimizer adds all these weaker preconditions to the
WHERE clause, in order to optimize the execution.

4.1.2 Off-line Optimization Matrices
K*SQL infers an implication graph [30] from the WHERE clause

to capture the implications between different parts of the pattern.
In order to optimize the pattern search, several offline tables are
pre-calculated which will later guide the pattern search at run-time.
We briefly mention the more important ones (Pj refers to the j’th
element of a given pattern P):
•Jump[j]: How far should the pattern be shifted to the right, if

a mismatch occurs on Pj .
•Next[j]: The earliest position in the pattern that we need to

check for a match, once we shift the pattern by Jump[j].
•NETB (Not Even Try Before): A table to infer and remem-

ber the earliest position before which we should not attempt any
matches. This is mainly used for isElement where the distance
between an open and its close tag is used to skip many unpromis-
ing tuples, as soon as a mismatch occurs.

The calculation of NETB is described in [23] and the first two
are similar to [30, 18] (with some corrections).

4.2 Optimization for Nested Constructs
The main construct of K*SQL for querying hierarchical struc-

tures, is the isElement. The K*SQL system applies several compile-
time optimizations for this construct. For run-time optimizations of
the nested constructs, we have developed another algorithm, called
VPSearch which generalizes the Knuth-Morris-Pratt algorithm [19]
to the case of pattern matching over visibly push-down words. We
have also designed another algorithm, called Nested KMP [23],
which applies to nested words. The input12 is considered a nested
word, when it is preprocessed (e.g., indexed or annotated) in such
a way that, for every open tag, the position of its corresponding
close tag can be found in O(1) time, otherwise it is considered a
visibly pushdown word, i.e. we need a stack to parse the matching
tags. Trivially, Nested KMP achieves a greater level of optimiza-
tion than VPSearch. Since such preprocessing of XML data is not
always feasible (e.g., in data streams or in on-line applications),
we only present VPSearch which applies to the more general case
where no pre-annotation of the input is assumed (for Nested KMP
see [23]).

Assume that we are searching for patternP =〈a〉b〈a〉〈c〉b〈/c〉〈/a〉〈/a〉.
Failing to recognize the hierarchical structure, any word search al-
gorithm will consider Σ̂ = {a, 〈a〉, 〈/a〉, b,〈b〉,〈/b〉, c,〈c〉, 〈/c〉} as the
alphabet. For instance, KMP [19] or OPS [30] will start scanning
the input from left to right, until a mismatch occurs, as shown in
the example of Figure 3, where the first failure is when P4 mis-
matches with T4 (step I). Using their prefix functions, KMP/OPS
shift the pattern by 2 positions, and since Next[4] = 2, their next
comparison will be between T4 and P2 (step II). After the second
failure, since Next[2] = 1, those algorithms compare T4 with P1

(step III), and only after the third failure, they finally move the
input pointer to T5.

However, by exploiting the hierarchical structure, we could avoid
most of these unnecessary checks. In fact, by analyzing the pattern
P , we knew a priori the distance of each open tag from its close
tag. For instance, for P1, this distance is 7 (since it matches with
P8) while for the second 〈a〉 this distance is 4. Thus, after the first
mismatch in step I , we could immediately infer that T3 is an open

12Formally, in a nested word[6] the hierarchical structure is explicit,
but in a visibly pushdown word[5] it is implicit.

i 1 2 3 4 5 6 7 8 9 10 11
T 〈a〉 b 〈a〉 〈/a〉 · · · ·
P 〈a〉 b 〈a〉 〈c〉 b 〈/c〉 〈/a〉 〈/a〉
(I) ↑

〈a〉 b 〈a〉 〈c〉 b 〈/c〉 〈/a〉 〈/a〉
(II) ↑

〈a〉 b 〈a〉 〈c〉 b 〈/c〉 〈/a〉 〈/a〉
(III) ↑

T : 〈a〉 b

1︷ ︸︸ ︷
〈a〉 〈/a〉 · · ·

P : 〈a〉 b

4︷ ︸︸ ︷
〈a〉 〈c〉 b 〈/c〉 〈/a〉 〈/a〉︸ ︷︷ ︸

7

Figure 3: KMP versus VPSearch for pattern matching against
visibly pushdown words.
tag that closes after 1 tuple, and thus can never match with either
of P1 or P3. This would allow us to skip the next two checks (steps
II, III) and immediately resume the search from T7. Note that
KMP/OPS were not able to skip those checks, since they only look
at the equality of the symbols but not at the hierarchical edges.

The observation made above is the main idea behind the VPSearch
algorithm where we use a 2-dimensional prefix array instead of the
KMP’s 1-D prefix. The full description of the algorithm is provided
in [23]. In summary, when the implication graph for a given query
is complete, the VPSearch achieves the same linear-time optimality
for nested words as KMP does for words. The memory complexity
is O(d) where d is the maximum depth of the given XML.

5. EXPERIMENTS
The goal of our experiments is to study the amenability of K*SQL

queries to efficient execution. Thus, we compare the efficiency of
XML queries written in K*SQL to those run on the state-of-the-art
XPath/XQuery engines. We also study the effectiveness of our op-
timization on the execution time, as well as the contribution of each
of our optimization techniques to the overall performance.

We have implemented the parser, optimizer and the run-time
query execution engine for K*SQL, all in Java. For data I/O and
storage, we use the Stream Mill [7] API which is an extensible
DSMS, providing access methods for both stored and streaming
data.

Experiments were conducted on a 1.6GHz Intel Quad-Core Xeon
E5310 Processor running Ubuntu 6.06, with 4GB of RAM. For
complex sequence queries we used real-world datasets including
world crude oil prices13, a year of historical data for the S&P 500
stocks14 (125K records), and more than 7.6M NASDAQ records15

since 1970. For XML, we used well-known benchmarks: Protein
Sequence Database16 (600MB, avg depth 5), Shakespeare plays17

(8MB, avg depth 6) and XMark [31]. Due to lack of space and
the similarity of the results, for each experiment we only report the
results on one dataset.

5.1 XML queries in K*SQL
We used the XMark benchmark to compare the execution time

of their queries on native XML processors, versus the same queries
that were run in K*SQL (using our XPath translation algorithm,
Appendix D). We compared against two of the fastest academic
and industrial engines, MonetDB/XQuery[10] and Zorba [8], re-
spectively. Since these two engines are written in C/C++, we trans-
formed our java bytecodes into binary executables using Excelsior

13Official energy statistics of the US government, www.eia.doe.gov
14
http://biz.swcp.com/stocks/

15
http://infochimps.org/dataset/stocks_yahoo_NASDAQ

16
http://www.cs.washington.edu/research/xmldatasets

17
http://www.cafeconleche.org/examples/shakespeare

JET 7.0. (Natively coded C/C++ algorithms are typically much
faster than JET generated binaries). (We have conducted more
comparisons against other XPath engines that we could obtain, in-
cluding XSQ [25] and eXist which are reported in [22]).

Out of the 20 XMark XQuery queries, Q1, Q2, Q5, Q13, Q14,
Q15 were easily expressible in XPath. In Figure 4(a), we report
the total execution time for these queries, on an XMark dataset of
size 57MB. We have also run several sequence queries on Nasdaq
transactions (embedded in XML tags). For instance, in Figure 4(a),
S1 is the ‘V’-shape query (similar to Example 5) that we ran for
20KB of data (the XPath engines could not easily handle larger
data, since the XPath query for finding ‘V’ patterns involves sev-
eral nested joins). In summary, despite the maturity of the research
on XPath optimization, K*SQL achieves a very competitive perfor-
mance on conventional queries, while for sequence queries involv-
ing Kstars (such as S1), K*SQL queries are consistently faster than
their XPath counterparts, by several orders of magnitude.

5.2 Query Execution Time
Sequence queries written in K*SQL enjoy a high level of effi-

ciency through the proposed optimization techniques. Depending
on the query and input, our optimization can improve the execution
time of a K*SQL query by several folds. Due to lack of space, here
we only report the results for double-bottom (W-shape) query over
the NASDAQ dataset, shown in Figure 4(b). The optimized query
runs from 1.5x to 6x times faster, and the gap becomes larger as the
number of input tuples increases.

5.3 Number of Backtracks
We further evaluated each part of our optimization techniques, in

isolation, to gain better insight on their effect on the execution of
K*SQL queries. In Figure 4(c), we report the number of backtracks
during the execution of the ‘V’-shape query (i.e., A+B+), over Nas-
daq transactions, embedded in XML format. Here, we only fo-
cus on two main parts of K*SQL optimization for XML queries,
namely VPSearch and caching—whereby a compact bitmap retains
the result of predicate evaluations on the recent tuples. For this
query, on average, caching (which itself uses the implication graph)
reduced the number of unnecessary backtracks by 55% (compared
to the naive implementation). The contribution of VPSearch to the
overall performance of this query is limited (i.e., 16%) due to the
low depth (i.e., 3) of the XML structure for Nasdaq transactions
which only allows for a few tags to be skipped after each mismatch.
However, VPSearch combined with the cache structure reduce the
backtracks by 70%. More experiments are reported in [22].

6. RELATED WORK
The original SQL-TS language [29, 28, 30], led to the recently

proposed extension of SQL standards called SQL Match-Recognize
(SQL-MR) [36] which features K*SQL1 kind of constructs. Sim-
ple optimizations of nested Kstars were addressed in [18]. The
use of these languages in temporal queries was discussed in [35,
17], and further applications were demonstrated in the recent im-
plementation of SQL-MR in [14].

Another major area that benefits from our proposal is Complex
Event Processing (CEP), where pattern matching is a means for
discovering complex events. The SASE language [1], was de-
signed for CEP over data streams, and was recently extended in
SASE+ [15] which provides a special syntax for allowing (i.e.,
skipping) irrelevant tuples in between those that match a given
pattern (see Section 3.2). Another CEP system is Cayuga [11]
that comes with a SQL-like language (called CEL) for expressing
queries over event streams. CEL has a FOLD operator, that skips an

(a) (b) (c)

Figure 4: (a) XML queries in K*SQL vs. native XML engines. (b) W-shape pattern in K*SQL: optimized vs. straightforward
implementation. (c) Contribution of different parts of the K*SQL optimization on the overall performance.

a-priori unknown number of tuples. However, expressing a pattern
with more than one Kstar element requires writing nested queries
that are inherently hard to optimize. The patterns expressible in
CEL are a subset of those expressible in SQL-MR. The CEDR
language [9] also has sequencing operators, but does not support
Kstars. A recent system is the Microsoft CEP server[3] which is
based on the LINQ language (an extension to .NET, as a built-in
query language).

Query automata have been recently proposed [21] for the eval-
uation of MSO formulas on nested words. The K*SQL system
that implements K*SQL language will be demonstrated (as a demo
paper) in [24], which also includes its user-friendly interfaces, au-
tomatic query translators, and several visualization tools.

7. CONCLUSIONS
In this paper, we propose powerful generalizations for the Kleene-

closure constructs that have recently been the focus of much re-
search and commercial interest. Our extensions support more com-
plex pattern queries both on linear sequences and on XML data—in
fact the queries supported by XPath are a subset of those supported
by our K*SQL language. The paper also introduces powerful query
optimization techniques whereby K*SQL can be implemented very
efficiently on both relational sequences and hierarchical data such
as XML. Having a unified execution engine that efficiently sup-
ports different data models and their query languages represents an
exciting development for both data bases and data stream manage-
ment systems. There is also potential for further benefits, given
that K*SQL can express Visibly Pushdown Expressions—a power-
ful generalization of regular expressions that has been successfully
applied to software analysis and genomic data. The competitive
performance, compared to mature XML technology, achieved by
by K*SQL is remarkable considering that the latter is still in its in-
fancy and provides greater expressive power than Core XPath 2.0.

8. REFERENCES
[1] E. W. 0002, Y. Diao, and S. Rizvi. High-performance complex event processing

over streams. In SIGMOD, 2006.
[2] J. Abrashams and et. al. Prediction of RNA secondary structure, including

pseudoknotting. Nucleic Acids Research, 18(10):3035, 1990.
[3] M. H. Ali and et. al. Microsoft cep server and online behavioral targeting.

PVLDB, 2009.
[4] R. Alur. Marrying words and trees. In PODS, 2007.
[5] R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC, 2004.
[6] R. Alur and P. Madhusudan. Adding nesting structure to words. In

Developments in Language Theory, 2006.
[7] Y. Bai, F. Wang, P. Liu, C. Zaniolo, and S. Liu. Rfid data processing with a data

stream query language. In ICDE, 2007.
[8] R. Bamford and et. al. Xquery reloaded. VLDB, 2009.
[9] R. S. Barga and et. al. Consistent streaming through time: A vision for event

stream processing. In CIDR, 2007.

[10] P. Boncz and et. al. Monetdb/xquery: a fast xquery processor powered by a
relational engine. In SIGMOD, 2006.

[11] A. J. Demers and et. al. Cayuga: A general purpose event monitoring system. In
CIDR, 2007.

[12] A. J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M. White. Towards
expressive publish/subscribe systems. In EDBT, 2006.

[13] Y. Diao and et. al. SASE+: An Agile Language for Kleene Closure over Event
Streams. Technical report, University of Massachusetts, Amherst, 2008.

[14] N. Dindar and et. al. Dejavu: declarative pattern matching over live and
archived streams of events. In SIGMOD, 2009.

[15] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman. On supporting kleene
closure over event streams. In ICDE, 2008.

[16] L. Harada and Y. Hotta. Order checking in a cpoe using event analyzer. In
CIKM, 2005.

[17] C. S. Jensen and R. T. Snodgrass. Temporal query languages. In Temporal
Database Entries for the Springer Encyclpedia of Database Systems, volume
TR-90, 2008.

[18] L. Kaghazian, D. McLeod, and R. Sadri. Scalable complex pattern search in
sequential data. In CIKM, 2008.

[19] D. Knuth, J. Morris Jr, and V. Pratt. Fast pattern matching in strings. SIAM
Journal on Computing, 6:323, 1977.

[20] M. Liu and et al. E-cube: Multi-dimensional event sequence processing using
concept and pattern hierarchies. In ICDE, 2010.

[21] P. Madhusudan and M. Viswanathan. Query automata for nested words. In
MFCS ’09, pages 561–573, 2009.

[22] B. Mozafari and C. Zaniolo. K*sql reference: Syntax, semantics and
optimizations. Technical report, UCLA,
http://cs.ucla.edu/˜barzan/reports/ksql.pdf, 2010.

[23] B. Mozafari, K. Zeng, R. Majumdar, and C. Zaniolo. Optimization for
Kleene-Closure Queries Based on Visibly Pushdown Automata. under
submission.

[24] B. Mozafari, K. Zeng, and C. Zaniolo. K*sql: A unifying engine for sequence
patterns and xml. In SIGMOD, 2010.

[25] F. Peng and S. S. Chawathe. Xpath queries on streaming data. In SIGMOD,
2003.

[26] C. Pitcher. Visibly pushdown expression effects for xml stream processing. In
PLAN-X, 2005.

[27] A. Potthoff. Modulo-counting quantifiers over finite trees. Theor. Comput. Sci.,
126(1), 1994.

[28] R. Sadri, C. Zaniolo, A. M. Zarkesh, and J. Adibi. Optimization of sequence
queries in database systems. In PODS, 2001.

[29] R. Sadri, C. Zaniolo, A. M. Zarkesh, and J. Adibi. A sequential pattern query
language for supporting instant data mining for e-services. In VLDB, 2001.

[30] R. Sadri, C. Zaniolo, A. M. Zarkesh, and J. Adibi. Expressing and optimizing
sequence queries in database systems. TODS, 29(2):282–318, 2004.

[31] A. Schmidt and et. al. Xmark: a benchmark for xml data management. In
VLDB, 2002.

[32] B. ten Cate. The expressivity of xpath with transitive closure. In PODS, 2006.
[33] B. ten Cate and M. Marx. Axiomatizing the logical core of xpath 2.0. In ICDT,

2007.
[34] B. ten Cate and M. Marx. Navigational xpath: calculus and algebra. SIGMOD

Record, 36(2):19–26, 2007.
[35] C. Zaniolo. Event-oriented data models and query languages in transaction-time

databases. In TIME, 2009.
[36] F. Zemke, A. Witkowski, M. Cherniak, and L. Colby. Pattern matching in

sequences of rows. In [sql change proposal, march 2007],
http://asktom.oracle.com/tkyte/row-patternrecogniton-11-public.pdf
http://www.sqlsnippets.com/en/topic-12162.html, 2007.

[37] X. Zhou, H. Thakkar, and C. Zaniolo. Unifying the processing of xml streams
and relational data streams. In ICDE, 2006.

APPENDIX
A. K*SQL SYNTAX

The K*SQL syntax extends the 〈simple table〉 construct of the
SQL:2003 standard. The BNF grammar is provided in Figure 5.
The definition of several non-terminal symbols, such as 〈identifier〉
and 〈derived column〉, have been omitted from Figure 5, since
they are identical to those in the ANSI/ISO standard18 for SQL:2003.

The syntax for the additional method invocations that K*SQL
supports as built-in functions are as follows. Both open() and
close() methods accept an expression of type string as argument
and return a string value. The isElement() function accepts a
〈column reference〉 as argument and return a boolean value.

Note that throughout the paper, for clarity purpose, we have
used:
〈pattern element base〉 = open/close(〈expression〉)
as a shorthand for:
〈pattern element base〉 · XmlColName = open/close(〈expression〉).
Similarly, we have used
isElement(〈pattern element base〉)
as a shorthand for:
isElement(〈pattern element base〉 · XmlColName).

The formal semantics and also the full syntax can be found in [22].

B. BACKGROUND ON NESTED WORDS AND
VPA

Nested word [4] is a recently proposed notion from the field of
automata [5, 6] that can model data with both sequential and hier-
archical structures. Common examples include XML, procedural
programming traces or even genomic data [5].

Informally19, in a nested word there is a sequential ordering among
all the elements, while there is a secondary, hierarchical structure
which is formed by nested edges between some of the elements,
i.e., the edges do not cross. In this sense, nested words generalize
both words and ordered trees, and allow both word and tree opera-
tions. In a nested word, the elements (a.k.a. positions) are divided
into three disjoint sets: (i) call elements, where there is an outgoing
hierarchical edge, (ii) return elements, where there is an incoming
hierarchical edge, and (iii) internal elements that lack any hierar-
chical edges. A nested word is allowed to have pending edges, that
are incoming edges without any call positions or outgoing edges
without return positions. A nested word without pending edges is
called well-matched. This terminology is owed to the software ver-
ification literature [6], where a program consists of several nested
function calls and returns, while other instructions (internal posi-
tions) form the sequential execution. However, nested words can
be also used in several other domains. In Figure 6, n1 is a nested
word that represents a portion of an XML document that is not
well-matched (it is still a valid nested word, as none of the edges
cross). In Figure 6, white circles are internal positions, while blue
and black circles represent calls and returns, respectively.

Another appealing area for nested words is genomics. RNA se-
quences are not simply long strands of nucleotides. Rather, intra-
strand base pairing leads to structures such as the one depicted in
Figure 6. The covalent chemical bonds between subsequent nu-
cleotides in each strand can be seen as the primary structure, while
the hydrogen bonds between the bases (G&C, A&U) form a sec-
ondary structure [2]. Since these bonds do not cross, each RNA

18ISO/ANSI Foundation (SQL/Foundation), http://www.iso.
org.

19The formal definitions can be found in [4].

sequence can be modeled as a nested word, e.g. n2 in Figure 6.
Decision properties. Traditionally, dual structures such as XML

have been modeled as ordered trees, and thus, have been queried us-
ing tree automata. Various classes of automata over nested words
have been defined that have higher expressiveness and succinctness
compared to word and tree automata [6]; however, their decision
complexity and closure properties are analogous to the correspond-
ing word and tree special cases. For example, regular languages
of nested words are closed under union, intersection, complemen-
tation, concatenation, and Kleene-* [6]; deterministic nested word
automata are as expressive as their non-deterministic counterparts;
and membership, emptiness, language inclusion and equivalence
are all decidable [4].

Difference between nested words and visibly pushdown words.
The input to a Nested Word Automaton (NWA) must come as a
word with a parsed nested structure, i.e., upon seeing a call po-
sition we know its corresponding return position and vice versa.
However, in many situations the input is given as word and the
nested structure yet needs to be parsed/inferred. For instance, given
a streaming XML, we do not know the return positions of the calls,
at least during the first scan of the data. Thus, to handle such situa-
tions, Alur and Madhusudan [5] have proposed Visibly Pushdown
Languages (VPL) where a stack is used to store the pending call and
return symbols. VPLs are a subclass of context-free languages that
are accepted by Visibly Pushdown Automata (VPA). Here again,
the alphabet is split into three disjoint sets of Σc,Σr and Σi and
upon reading a call symbol (a ∈ Σc), the VPA has to push on the
stack, and upon reading a ∈ Σr it has to pop the stack. For a ∈ Σi,
the VPA cannot use the stack.

C. K*SQL FOR OTHER DOMAINS
As briefly mentioned in Section 2.2, the power of K*SQL in

querying linear-hierarchical data is not limited to XML, and its
isElement construct is not dependant on a particular SAX rep-
resentation. To see the latter, note that isElement(B) is used as
a shorthand for isElement(B.myXmlTag) where we could replace
myXmlTag with any other column name under which the original
xml tags are stored (same applies to open() and close()). Also,
these constructs are not XML-specific: in general, for any domain
that can be represented by nested words, the user only needs to re-
define the open() and close() functions, which are, internally in-
voked by isElement(), and thus, we do not need to re-implement
isElement for every new domain. For instance, in running static
analysis over programming traces, the open() function detects a
function call, while the close() detects it’s corresponding return
statement(s). Similarly, in RNA sequences (genomics), intra-strand
base pairing occurs between guanine (G) and cytosine (C) pair
which can be modeled as corresponding open and close symbols,
and so can adenine (A) and uracil (U) pair (see [2, 5] for more on
the representation of RNAs as nested words.).

D. PROOF OF THEOREM 1 (ALGORITHM)
Here, we provide a simple constructive proof for Theorem 1,

that shows we can algorithmically construct an equivalent K*SQL
query for any given XPath expression. We have implemented this
algorithm as a utility tool for K*SQL system [24].

Our algorithm starts by rewriting the leftmost axis-step into a
K*SQL query. Then, at each step, iteratively, the pattern clause of
the existing K*SQL query is updated, depending on the type of the
current axis specifier. The predicates on the current level of XML
nodes are moved to the WHERE clause of K*SQL, while nested ex-
pression patterns are independently translated into K*SQL, which
then will be intersected with the answer set of the current K*SQL

〈simple table〉 ← 〈sequence query spec〉|〈query specification〉|〈table value constructor〉|〈explicit table〉
〈sequence query spec〉 ← SELECT 〈seq select list〉

〈from clause〉 PARTITION BY 〈column reference〉〈order by clause〉
〈pattern clause〉
〈where clause〉

〈seq select list〉 ← 〈derived column〉[, 〈derived column〉...]
〈pattern clause〉 ← AS PATTERN ′(′ 〈pattern〉 ′)′

〈pattern〉 ← 〈atomic pattern〉[〈pattern〉]|〈compound pattern〉[〈pattern〉]
〈atomic pattern〉 ← 〈pattern element〉[〈pattern repetition〉]

〈compound pattern〉 ← (〈pattern element〉 : 〈pattern list〉)[〈pattern repetition〉]
〈pattern element〉 ← 〈identifier〉
〈pattern repetition〉 ← +| ∗ |〈unsigned integer〉|{〈unsigned integer〉 : 〈unsigned integer〉}

|{ : 〈unsigned integer〉}|{〈unsigned integer〉 : }
〈pattern list〉 ← 〈pattern〉[〈pattern list〉]

〈column reference〉 ← 〈pattern element base〉 ′.′ 〈column name〉
〈pattern element base〉 ← 〈pattern element〉|〈pattern element base〉 ′.′ 〈pattern element〉

| (PREV |NEXT |FIRST |LAST) ′(′ 〈pattern element base〉 ′)′

Figure 5: Formal syntax for K*SQL. The starting rule for K*SQL is 〈sequence query spec〉, which extends the 〈simple table〉
construct of SQL:2003.

Figure 6: Tiny examples of nested words in different domains:
XML and genomics.

Axis := self | child | parent
| descendant | ancestor
| following | preceding
| following sibling | preceding sibling

NameTest := QName | *
Step := Axis::NameTest | Axis::NameTest[NodeExpr]
PathExpr := Step

| PathExpr/Step
| PathExpr union PathExpr
| PathExpr intersect PathExpr
| PathExpr except PathExpr

NodeExpr := PathExpr | not NodeExpr
| NodeExpr and NodeExpr
| NodeExpr or NodeExpr

Figure 7: Syntax of Core XPath 1.0 combined with 2.0.

query.
To focus on the navigational fragment of XPath, in the following,

we use the syntax of core XPath 1.0 [34] combined with XPath
2.0 [33]. This syntax is presented in Figure 7. To further simplify
the discussion, we also omit the ‘reference’ and ‘for loop’ of XPath
2.0, as they can be trivially emulated in K*SQL using variables and
conjunctions, respectively.

In core XPath, the start production is PathExpr. We induc-
tively translate a PathExpr into an equivalent K*SQL query. When-
ever the production rule is ‘union’, ‘intersect’, or ‘except’ we rewrite
the expression into separate paths, and then inductively, translate
each path expression independently; in the end we use respectively
use union operator |, K*SQL intersection, and negation of the pred-
icates to combine the sub-queries. Therefore, we only need to
concentrate on the PathExpr/Step production. As our induc-
tion hypothesis we assume that we know how to translate the first

k− 1 steps of the given expression from the left, into an equivalent
K*SQL query, as follows:

SELECT Xi1 , · · · , Xik
FROM XmlStream
ORDER BY tokenId
AS PATTERN ((X1 : A1 · · · E∗j · · · (X2 : A2 · · · B2)ˆt2 · · · B1)ˆt1

· · · E∗
j′ · · · (X3 : A3 · · · B3)ˆt3)

WHERE where clause

After translating each step, the pattern clause consists of a list of
well-nested elements, i.e. (Xi : Ai · · ·Bi) orE∗j whereAi andBi
are corresponding open/close tags and Ej is a well-nested element.
The ti’s denote the occurrence of their element, i.e. whether they
are a star element (ti = ∗,+) or a simple singleton (ti = 1). The
select clause outputs a subset of Xi’s, such that the selected tuples
are precisely the XML tags that correspond to the XPath expression
upto the current Step. For the base case of k = 1, the select and
where clauses are empty and the pattern clause consists of a simple
(E∗0). Now, assuming that we have an K*SQL query in the format
above that is equivalent to the first (leftmost) k−1 steps of the given
PathExpr, we show how to construct a new K*SQL query that
is equivalent to the first k > 0 steps. Depending on the Axis of
the k’th step, we have the following cases for Axis::NameTest
(node filter [NodeExpr] is addressed separately):

self: If the NameTest is a QName, for every Xi in the current
select clause, we add the following predicate to the where clause:
Ai = open(QName). When the NameTest is ‘*’ we do not
need to change the where clause.

child: For every Xi in the current select clause, we replace it
with all of its ‘immediate children’ in the current pattern definition,
as follows: an immediate child ofXi is defined as either anEjtj or
an (Xj : Aj · · ·Bj)tj that appears between Ai and Bi without be-
ing enclosed in any sub-patterns of Xi. For the immediate children
ofXi that are of formXj , we just addXj to the select clause, while
for the immediate children of formEj

tj , we first replace them with
the new20 pattern Ej1

∗(Xj : AjEj2
∗Bj)

tjEj3
∗, and then we add

the new Xj to the select clause. Trivially, in the where clause we
declare all the new E,A and B variables as isElement, open

20In this proof, whenever we add new variables to the pattern clause
we assure that the new variable names are different from the exist-
ing names.

and close, respectively. In the end, we remove the original Xi and
also duplicateXj’s from the select clause. The where clause is also
updated to reflect the NameTest requirement, similar to the ‘self’
axis above.

parent: For every Xi in the current select clause, we replace it
with its ‘immediate parent’ in the current pattern definition, as fol-
lows: an immediate parent of Xi is defined as the first upper level
(Xj : Aj · · ·Bj) that encloses Xi. If such Xj does not exist for a
given Xi (i.e., when Xi is the root element) we eliminate Xi from
the select clause without adding any new variables. Otherwise, we
replace Xi with Xj and update the where clause appropriately to
reflect the NameTest requirement for Aj . Duplicate X variables
are removed from the select clause to avoid identical outputs.

descendant (ancestor): For everyXi in the current select clause,
we replace it with its ‘descendants’ (‘ancestors’), as follows: a
descendant (ancestor) of Xi is defined as either an Ej

tj or an
(Xj : Aj · · ·Bj)tj (for ancestor, it can be only of form (Xj :
Aj · · ·Bj)tj) that is enclosed between Ai and Bi (for ancestor,
Xj should be enclosing Xi definition). For the descendants of Xi
that are of form Xj , we just add Xj to the select clause, while for
the descendants of form Ej

tj , we first replace them with the new
pattern Ej1

∗(Xj : AjEj2
∗Bj)

tjEj3
∗, and then we add the new

Xj to the select clause. (For ancestors, we simply replace Xi with
all its ancestor Xj’s.) Trivially, in the where clause we declare all
the new E,A and B variables as isElement, open and close, re-
spectively. In the end, we remove the originalXi and also duplicate
the Xj’s from the select clause. The where clause is also updated
to reflect the NameTest requirement for Aj .

following sibling (preceding sibling): For every Xi in the cur-
rent select clause, we replace it with its ‘next’ (‘previous’), as fol-
lows: next (previous) of Xi is defined as the variable that immedi-
ately follows (precedes) the definition of Xi in the pattern clause,
and has the same immediate parent as Xi. If such a variable does
not exist, we simply remove Xi from the select clause. If the next
(previous) is of form Xj , we just add Xj to the select clause, while
for variables of form Ej

tj , we first replace them with the new pat-
tern (Xj : AjEj1

∗Bj)Ej2
tj (for previous, we replace Ejtj with

Ej2
tj (Xj : AjEj1

∗Bj)), and then we add the newXj to the select
clause. Trivially, in the where clause we declare all the new E,A
and B variables as isElement, open and close, respectively. In
the end, we remove the original Xi and also duplicate Xj’s from
the select clause. The where clause is also updated to reflect the
NameTest requirement for Aj .

following (preceding): For everyXi in the current select clause,
we replace it with its ‘rights’ (‘lefts’), as follows: right (left) of
Xi is defined as any variable that follows (precedes) the defini-
tion of Xi in the pattern clause. If no such variable exists, we
simply remove Xi from the select clause. If the right (left) is
of form Xj , we just add Xj to the select clause, while for vari-
ables of form Ej

tj , we first replace them with the new pattern
Ej1

tj (Xj : AjEj2
∗Bj)Ej3

tj , and then we add the new Xj to
the select clause. Trivially, in the where clause we declare all the
newE,A andB variables as isElement, open and close, respec-
tively. In the end, we remove the original Xi and also duplicate
Xj’s from the select clause. The where clause is also updated to
reflect the NameTest requirement for Aj .

Adding node filters. In navigational XPath [34], node expres-
sions are used as node filters, with an existential semantic, i.e.
R[N] is the subset of nodes satisfying path expression R from
which node expression N evaluates to at least one node. Thus, for
translating a path expression R[N], we apply the process above to
translate R first, then by appending N to R we have another path
expression that can be similarly translated into a separate query

in K*SQL, which then will be added as a conjunct. When the
node expression contains ‘not’ we first negate the pattern (through
its where clause) and then add it a conjunct; Similarly, for node
expressions with ‘or’/‘and’, we use disjunctive/conjunctive sub-
queries, accordingly.

For instance, for translating R[N1 or N2] we will have:
SELECT select clause for R
· · ·
WHERE where clause AND (
EXISTS (K*SQL query for R/N1)
OR EXISTS (K*SQL query for R/N2))

E. XPATH FOR SEQUENCE QUERIES
XPath is strictly subsumed by K*SQL. Core XPath 2.0 rep-

resents a fragment of XPath that is complete for First Order (FO)
logic for trees [34]. From Theorem 5 we know that K*SQL is as
expressive as VPLs which are equivalent to monadic second order
(MSO) logic over nested words [26]. Thus, K*SQL is strictly more
expressive than Core XPath 2.0.

Optimization of sequence queries in XPath/XQuery. While
there are MSO queries over XML that cannot be expressed in Core
XPath 2.0 (e.g., modulo counting [27] such as returning every 4’th
tag), and FO queries that cannot be expressed in Core XPath 1.0
(see [34] for an example), in practice, the main deficiency of XQuery
and XPath in expressing sequence queries lies in the inevitable
complexity of such queries, which compromises their optimiza-
tion and readability. For instance, consider the following simple
sequence query over XML:

EXAMPLE 7. For the following stock data xml, find the decreas-
ing sequences of consecutive close prices, with length at least 1.
<Stocks>
<Stock close="0.98"/>
<Stock close="0.95"/>

....
</Stocks>

Below is a possible way of writing this query, which clearly exem-
plifies the limited room for optimizations of such complex queries
in XPath/XQuery21:
<results>{
for $t1 in doc("mydoc.xml")//Stock
return <result><head>{$t1/@close}{
for $t4 in $t1/following-sibling::Stock
let $x:=(for $x in $t1/following-sibling::Stock

where $x<<$t4 return $x)
where $t4/@close<=$t1/@close
and (every $t2 in $x satisfies

$t2/@close<=$t1/@close and
$t2/@close>=$t4/@close)

and (every $t2 in $x, $t3 in for $x in
$t2/following-sibling::Stock
where $x<<$t4 return $x

satisfies $t2/@close>=$t3/@close
and $t3/@close>=$t4/@close)

return <tail>{$t4/@close}</tail>
}</head></result>}</results>

This situation becomes significantly worse if we want to search
for several Kstar patterns. For instance, in [22], we have expressed
the ‘V’-pattern query (similar to Example 2) in XPath and XQuery
using double negations and nested queries resulting in an extremely
complex expression which cannot be easily optimized (e.g. see the
performance of query S1 in Section 5.1). However, such queries
can be easily represented as a regular expression in K*SQL (see
Example 5).

21None of the available XQuery engines were able to execute this
query on any XML document larger than a few kilobytes.

F. FROM VPE TO K*SQL
Background on Visibly Pushdown Expressions. The class of

visibly pushdown languages (VPL) has been proposed [5] as em-
beddings of context-free languages that is rich enough to model
data with hierarchical relations (such as XML, software analysis,
and RNA) and yet is tractable and robust like the class of regu-
lar languages. Visibly pushdown automata (VPA) recognize VPLs,
where the input symbol determines when the stack should be pushed
or popped.

Pitcher [26] generalized the notion of regular expressions for
representing VPLs, called Visibly Pushdown Expressions (VPE).
VPEs represent another equivalent notion for VPLs: every VPL
can be expressed as a VPE, and every VPE can be translated into
a monadic second order logic (MSO) over a nested relation, and
there exists a VPA that accepts the same language that that VPE
expresses. Below is the formal definition of a VPE:

The symbol patterns used in a VPE are defined as follows (where
Σc, Σr and Σi are the set of call, return and internal symbols, re-
spectively):

p :: = a (symbols, a ∈ Σc ∪ Σr ∪ Σi)
| p+ p (union)
| ¬p (complement)
| ∼c (wildcard for Σc)
| ∼r (wildcard for Σr)
| ∼i (wildcard for Σi)

In the following, we use the abbreviation p1&p2 to denote¬(¬p1+
¬p2). Also, Pc refers to all symbol patterns of the form ∼c &p,
and so on. Thus, a well-matched VPE (denoted as T) is defined as:

T :: = φ (empty set)
| () (empty sequence)
| p (symbol pattern where, p ∈ Pi)
| p1[T]p2 (element, p1 ∈ Pc, p2 ∈ Pr)
| T.T (concatenation)
| T + T (union)
| T&T (intersection)
| A (VPE variable)
| T∗ (repetition)

And finally, below is the grammar for VPEs:

S :: = T (Well-nested VPE)
| p (symbol pattern)
| S.S (concatenation)
| S ⊕ S (overlapped concatenation)
| S + S (union)
| S&S (intersection)
| S∗ (repetition)

Here, the⊕ operator insists that the last symbol of the first string
is the same as the first symbol of the second string, e.g. a⊕ a.b =
a.b, but a ⊕ (b + c) denotes an empty language. Next, we show
how our K*SQL3 language can encode any arbitrary VPE.

F.1 Proof of Theorem 5
PROOF. We prove this by induction, with the base case being

the expression of the symbol patterns.
Expressing symbol patterns (SP). An arbitrary symbol a in

K*SQL3 is a simple pattern A with a predicate A = a. The union
of two SPsA andB can be written asA|B in the pattern clause with

the disjunction of their predicates in the where clause. The com-
plement of p is derived by negating the predicates of the K*SQL3
query for p. Wildcards for calls, returns and internal symbols can
be encoded using simple checks, e.g. A = c1 OR · · · OR A =
ck for all ci ∈ Σc and so on.

Expressing well-matched VPEs. Empty sets and sequences are
trivial. SPs p ∈ Pi are derived by encoding p inductively, and then
adding a conjunctive predicate to enforce that all the symbols are
internal. For p1[T]p2, once we recursively encode p1, T and p2,
we append their patterns and conjunct their predicates. Note that
according to our induction assumption, p1 and p2 are guaranteed
to be made of open and close tags, i.e. using predicates. Concate-
nation is encoded by first renaming all the variables such that the
two K*SQL3 queries do not share any variables. Then, we append
the pattern parts of the queries and conjunct their predicates. In-
tersection, VPE variables and repetition (a.k.a. Kstar) are directly
supported by K*SQL3.

Expressing arbitrary VPEs. T and p can be encoded by our in-
duction assumption. Concatenation, union, intersection and repeti-
tion are encoded similarly to their well-matched counterparts. Note
that K*SQL3 does not require the pattern to be well-nested, e.g. a
check for an open tag does not have to be accompanied by a cor-
responding check for its close tag. The overlapped concatenation,
S1 ⊕ S2, will be encoded as follows. We rename all the variables
of the K*SQL3 patterns for S1 and S2, to assure that they do not
share any variable names. Assume that the first variable of S2 is
v2 and the last variable of S1 is v1. We conjunct the predicates of
the K*SQL3 queries for S1 and S2, and append their patterns. We
then add the following predicate to the resulting K*SQL3 query as
a conjunctive term: last(v1) = first(v2).

G. AGGREGATES AND COMPLEXITY
Similar to other practical query languages, K*SQL also allows

certain aggregates to appear in the predicates. For instance, SASE+
allows any associative aggregation operation with an identity ele-
ment and an NC1 iterated multiplication algorithm. Once we allow
the same set of aggregates in K*SQL and all of the languages dis-
cussed in Section 3.2, we will achieve similar complexity results.

For instance, the ordered graph reachability problem (called oRE-
ACH) can be expressed in a simple SASE+ query (using its ‘skip
till any match’ mode) without using any aggregates [13]. Thus, ac-
cording to Theorem 4, K*SQL2 can also express oREACH which is
NSPACE[log n]-complete. However, even after allowing the afore-
mentioned class of aggregates in K*SQL2, the new language will
be still contained in NSPACE[log n], since similarly to SASE+, the
formulas can be simulated in NC1, where for the aggregates we
perform a partial-prefix computation. Similarly for K*SQL3, after
allowing such aggregates, the new language will be still contained
in NSPACE[log n] (see [22] for details).

Thus, in summary, both K*SQL2 and K*SQL3, once enhanced
with predicates that have aggregate functions discussed above, can
express a subset of NSPACE[log n] including some problems that
are complete for NSPACE[log n].

ACKNOWLEDGEMENTS
We would like to thank Rupak Majumdar for his insightful com-
ments, Alexander Shkapsky for his help with improving this manuscript,
Hetal Thakkar and Yijian Bai for the Stream Mill system, Nikolay
Laptev and Hamid Mousavi for their their help on the integration of
the K*SQL in Stream Mill, and Vincenzo Russo for the GUI. This
work was supported in part by NSF-IIS award 0705345.

