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ABSTRACT
Sampling is one of the most commonly used techniques in Approx-
imate Query Processing (AQP)—an area of research that is now
made more critical by the need for timely and cost-effective ana-
lytics over “Big Data”. Assessing the quality (i.e., estimating the
error) of approximate answers is essential for meaningful AQP, and
the two main approaches used in the past to address this problem
are based on either (i) analytic error quantification or (ii) the boot-
strap method. The first approach is extremely efficient but lacks
generality, whereas the second is quite general but suffers from its
high computational overhead. In this paper, we introduce a prob-
abilistic relational model for the bootstrap process, along with rig-
orous semantics and a unified error model, which bridges the gap
between these two traditional approaches. Based on our probabilis-
tic framework, we develop efficient algorithms to predict the error
distribution of the approximation results. These enable the com-
putation of any bootstrap-based quality measure for a large class
of SQL queries via a single-round evaluation of a slightly modi-
fied query. Extensive experiments on both synthetic and real-world
datasets show that our method has superior prediction accuracy for
bootstrap-based quality measures, and is several orders of magni-
tude faster than bootstrap.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing
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1. INTRODUCTION
Data-driven activities in business, science, and engineering are

rapidly growing in terms of both data size and significance. This
situation has brought even more attention to the already-active area
of Approximate Query Processing (AQP), and in particular to sam-
pling approaches as a critical and general technique for coping with
the ever-growing size of big data. Sampling techniques are widely
used in databases [7, 11, 16, 22, 24, 32], stream processors [12,
31], and even Map-Reduce systems [9, 30].
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This most commonly used technique consists in evaluating the
queries on a small random sample of the original database. Of
course, the approximate query answers obtained this way are of
very limited utility unless they are accompanied by some accuracy
guarantees. For instance, in estimating income from a small sam-
ple of the population, a statistician seeks assurance that the derived
answer falls within a certain interval of the exact answer computed
on the whole population with high confidence (e.g., within±1% of
the correct answer with probability≥ 95%). This enables the users
to decide whether the current approximation is “good enough” for
their purpose. Thus, assessing the quality (i.e., error estimation) of
approximate answers is a fundamental aspect of AQP.

The extensive work on error estimation in the past two decades
can be categorized into two main approaches. The first approach [9,
15, 16, 22, 23, 24, 25, 33, 44] analytically derives closed-form error
estimates for common aggregate functions in a database, such as
SUM, AVG, etc. Although computationally appealing, analytic error
quantification is restricted to a very limited set of queries. Thus,
for every new type of queries, a new closed-form formula must be
derived. This derivation is a manual process that is ad-hoc and often
impractical for complex queries [34].1

To address this problem, a second approach, called bootstrap,
has emerged as a more general method for routine estimation of
errors [27, 30, 34]. Bootstrap [19] is essentially a Monte Carlo
procedure, which for a given initial sample, (i) repeatedly forms
simulated datasets by resampling tuples i.i.d. (identically and in-
dependently) from the given sample, (ii) recomputes the query on
each of the simulated datasets, and (iii) assesses the answer qual-
ity on the basis of the empirical distribution of the produced query
answers. The wide applicability and automaticity of bootstrap is
confirmed both in theory [13, 41] and practice [27, 30, 34]. Un-
fortunately, bootstrap tends to suffer from its high computational
overhead, since hundreds or even thousands of bootstrap trials are
typically needed to obtain reliable estimates [27, 34].

In this paper, we introduce a new technique, called the Analytical
Bootstrap Method (ABM), which is both computationally efficient
and automatically applicable to a large class of SQL queries, and
thus combines the benefits of these two approaches. Thus, this pa-
per’s main contribution is a probabilistic relational model for the
bootstrap process that allows for automatic error quantification of
a large class of SQL queries (defined in Section 2.2) under sam-
pling, but without performing the actual Monte Carlo simulation.
We show that our error estimates are provably equivalent to those
produced by the simulation-based bootstrap (Theorems 1 and 2).

1This is evidenced by the difficulties faced by previous analytic
approaches in supporting approximation for queries that are more
complex than simple group-by aggregate queries.



The basic idea of ABM is to annotate each tuple of the sampled
database with an integer-valued random variable that represents the
possible multiplicities with which this tuple would appear in the
simulated datasets generated by bootstrap. This small annotated
database is called a probabilistic multiset database (PMDB). This
PMDB succinctly models all possible simulated datasets that could
be generated by bootstrap trials. Then, we extend relational op-
erators to manipulate these random variables. Thus executing the
query on the PMDB generates an annotated relation which encodes
the distribution of all possible answers that would be produced if
we actually performed bootstrap on the sampled database. In par-
ticular, using a single-round query evaluation, ABM accurately es-
timates the empirical distribution of the query answers that would
be produced by hundreds or thousands of bootstrap trials.2

We have evaluated ABM through extensive experiments on the
TPC-H benchmark and on the actual queries and datasets used by
leading customers of Vertica Inc. [5]. Our results show that ABM is
an accurate prediction of the simulation-based bootstrap. Addition-
ally, it is 3–4 orders of magnitude faster than the state-of-the-art
parallel implementations of bootstrap [28].

Therefore, ABM promises to be a technique of considerable prac-
tical significance: The immediate implication of this new technique
is that, the quality assessment module of any AQP system that cur-
rently relies on bootstrap (e.g., [27, 30, 34]) can now be replaced by
a process that uses 3–4 orders of magnitude fewer resources (resp.
lower latency) if it currently uses a parallel (resp. sequential) imple-
mentation of bootstrap. We envision that by removing bootstrap’s
computational overhead, ABM would also significantly broaden the
application of AQP to areas which require interactive and complex
analytics expressible in SQL, such as root cause analysis and A/B
testing [9], real-time data mining, and exploratory data analytics.

The paper is organized as follows. Section 2 exemplifies boot-
strap and the query evaluation problem considered in this paper.
Section 3 provides the necessary theoretical background. In Sec-
tion 4, we present our probabilistic multiset relational model. We
explain our efficient query evaluation technique in Sections 5 and 6.
In Section 7, we discuss several extensions of our technique. We
report the experimental study in Section 8, followed by the related
work in Section 9. We conclude in Section 10.

2. PROBLEM STATEMENT
In this section, we formally state the problem addressed by this

paper. We then provide a small example of bootstrap in Section 2.1,
and a high-level overview of our approach in Section 2.2.

Given a database D and a query q, let q(D) denote the exact an-
swer of evaluating q on D. An approximate answer can be obtained
by (i) extracting from D a random sample D, (ii) evaluating a po-
tentially modified version of q (say q) on D, and (iii) using q(D)
as an approximation of q(D). In some cases, such as AVG, q is
the same as q, but in other cases, q can be a modified query that
produces better results. For instance, when evaluating SUM on a
sample of size 1

f
|D|, one will choose q = fq to scale up the sam-

ple sum by a factor of f . The particular selection of q for a given q
is outside the scope of this paper.3 Instead, we focus on estimating
the quality of q(D) for a given q, as described next.
2Note that we do not claim to provide low approximation error
for arbitrary queries. For instance, random sampling is known to
be futile for certain queries (e.g., joins, MIN, MAX). However, we
guarantee the same empirical distribution that would be produced
by thousands of bootstrap trials (which is the state-of-the-art er-
ror quantification technique for AQP of complex SQL analytics),
whether or not sampling leads to low-error or unbiased answers.
3Similar to the original bootstrap [27, 30, 34], we assume that q is
given. Deriving q for a given q has been discussed in [31].

LetD1, · · · , DN be all possible sample instantiations of D. Then,
q(D) could be any of the {q(Di), i = 1, · · · , N} values. There-
fore, to assess the quality of q(D), one needs to (conceptually) con-
sider all possible query answers {q(Di)}, and then compute some
user-specified measure of quality, denoted by ξ(q(D), {q(Di)}).
For instance, when approximating an AVG query, ξ could be the
variance, or the 99% confidence interval for the {q(Di)} values.
However, since computing ξ(q(D), {q(Di)}) directly is typically
infeasible, a technique called bootstrap is often used to approxi-
mate this value.
Bootstrap. Bootstrap [19] is a powerful technique for approximat-
ing unknown distributions. Bootstrap consists in a simple Monte
Carlo procedure: it repeatedly carries out a sub-routine, called a
trial. Each trial generates a simulated database, say D̂j , which is
the same size as D (by sampling |D| tuples i.i.d. from D with
replacement), and then computes query q on D̂j . The collection
{q(D̂j)} from all the bootstrap trials forms an empirical distribu-
tion, based on which ξ(q(D), {q(D̂j)}) is computed and returned
as an approximation of ξ(q(D), {q(Di)}). Bootstrap is effective
and robust across a wide range of practical situations [27, 30, 34].
Problem Statement. Our goal is to devise an efficient algorithm
for computing the empirical distribution {q(D̂j)} produced by boot-
strap, but without executing the actual bootstrap trials. In particu-
lar, we are interested in the marginal distribution of each individ-
ual result tuple, i.e., the probability of each tuple appearing in any
q(D̂j).4 This marginal distribution enables us to compute the com-
monly used quality measures ξ (e.g., mean, variance, standard devi-
ation, and quantiles as used in [27, 30, 34]). Next, we demonstrate
this in an example.

2.1 An Example of Bootstrap
Bootstrapping a Database. A single bootstrap trial on a relation
R produces a multiset relation, since a tuple may be drawn more
than once. Thus, different trials could result in different multiset
relations. This set of multiset relations can be modeled as a sin-
gle probabilistic multiset relation, where each tuple has a random
multiplicity. Let Rr denote the probabilistic relation that results
from bootstrapping R. Likewise, let Dr denote the probabilistic
database obtained by bootstrapping the relations of a database sam-
ple D. For instance, consider D in Figure 1(a), which has a sin-
gle relation R (named stock) containing three tuples. Figure 1(b)
shows a possible instance R̂ of Rr , produced by a single bootstrap
trial, where tuple t2 and t3 are drawn twice and once, respectively,
while t1 is not selected. For brevity, we denote this resample as
{(t2, 2), (t3, 1)}.

stock
R = Part Type Qty
t1 p01 a 4
t2 p02 b 5
t3 p03 a 3

(a)

stock
R̂ = Part Type Qty
t2 p02 b 5
t2 p02 b 5
t3 p03 a 3

(b)
Figure 1: (a) An example of a database sample D with one relation
R (named stock), and (b) a resample instance of Rr

Bootstrapping this particular database sample D generates 10
possible multiset relations. We refer to these as the possible multi-
set worlds ofDr , denoted as pmw(Dr). Figure 2 shows all the ten
possible instances with their probabilities of being generated.
Queries on the Resampled Database. Consider the “Important
Stock Types” query q in Example 1, which finds the stock types
having a quantity > 30% of the total quantity. To answer q on Dr ,
4The set of all possible query answers, {q(D̂j)}, may have up to
O(2|D|) elements. Thus, due to its extremely large size, returning
this set to the user is impractical.



multiset world prob.
D1 = {(t1, 1), (t2, 1), (t3, 1)} 2/9
D2 = {(t1, 2), (t2, 1)} 1/9
D3 = {(t1, 2), (t3, 1)} 1/9
D4 = {(t2, 2), (t1, 1)} 1/9
D5 = {(t2, 2), (t3, 1)} 1/9
D6 = {(t3, 2), (t1, 1)} 1/9
D7 = {(t3, 2), (t2, 1)} 1/9
D8 = {(t1, 3)} 1/27
D9 = {(t2, 3)} 1/27
D10 = {(t3, 3)} 1/27

Figure 2: The possible multiset worlds of Dr

one needs to evaluate q against each world in pmw(Dr), and add
up the probabilities of all the worlds returning the same answer. For
instance, since q(D1) = q(D2) = {ta, tb} (as in Figure 3(a)), then
Pr({ta, tb}) = 2

9
+ 1

9
= 1

3
. All possible answers from evaluating

q on Dr , denoted by q(Dr), are shown in Figure 3(b).

EXAMPLE 1 (IMPORTANT STOCK TYPES).
SELECT distinct Type FROM stock
WHERE Qty > 0.3 * (SELECT SUM(Qty) FROM stock)

In general, when R has n tuples, q(Dr) can have up to O(2n)
possible answers, which makes it impractical to deliver the distribu-
tion on all possible answers. Instead, for each possible tuple in the
query result (ta and tb in this case) we compute its marginal proba-
bility of appearing in the query result, as shown in Figure 3(c). For
example, ta may appear in the results {ta, tb} or {ta}. Thus, the
marginal probability of ta appearing in any result is 1

3
+ 8

27
= 17

27
.

We denote this marginal distribution as qmrg(Dr).
In real life, instead of our three-tuple example, we have tables

with millions or billions of tuples, where enumerating all possible
worlds is impossible. Thus, bootstrap uses Monte Carlo simula-
tion to approximate the above process, which requires hundreds or
thousands of trials to achieve an accurate estimate for qmrg(Dr).

With qmrg(Dr), we can now measure the quality of q(D). For
instance, the average false negative rate of tuples in q(D), i.e.,
the average probability of missing ta or tb, can be computed by
1
2
{(1− Pr(ta)) + (1− Pr(tb))} = 1

3
.

2.2 Scope of Our Approach
In this paper, we propose a new approach, called the Analytical

Bootstrap Method (ABM), which avoids the computational over-
head of bootstrap. We study the set of conjunctive queries with
aggregates, i.e., queries expressed in the following relational al-
gebra: σ (selection), Π (projection), ./ (join), δ (deduplication),
and γ (aggregate). γA,α(B) denotes applying aggregate α on B
grouped by A. In this paper, we focus on queries without nested
aggregates, i.e., B is not the output of another aggregate. (Nested
aggregates are discussed in our technical report [45].) To simplify
presentation, we first focus on aggregates SUM, COUNT, and AVG,
and defer the extension of ABM to more general aggregates to Sec-
tion 7. Since Bootstrap only works for “smooth” queries,5 we also
restrict ourselves to such queries. In particular, any of the follow-
ing constructs can easily lead to non-smooth queries: (1) extrema
aggregates (MIN/MAX) and (2) equality checks on aggregate results
(e.g., projection/group-by/equi-join on aggregate results). Thus, we
only discuss queries without these constructs.

Among the studied queries, we identify eligible queries, for which
we provide an efficient extensional evaluation. Furthermore, our
query evaluation techniques enjoy a DBPTIME complexity for a
large subset of eligible queries (see Section 5.2).

To provide an intuitive sense of how general/restrictive these
classes of queries are in practice, in Table 1 we summarize the syn-
tactic constraints imposed by different error estimation techniques
5A discussion of smoothness can be found in [19, 34].

Type
ta a
tb b

(a)

answer prob.
{ta, tb} 1/3
{ta} 8/27
{tb} 10/27

(b)

answer prob.
ta 17/27
tb 19/27

(c)

Figure 3: (a) The result of q(D1) and q(D2), (b) all possible an-
swers of q, and (c) their marginal probabilities

along with some statistics. Table 1 compares the set of queries
supported by our formal semantics, our ABM (eligible queries and
those with DBPTIME complexity), previous analytical techniques
(which are strictly subsumed by ABM), and bootstrap (which strictly
subsumes ABM). We have analyzed 22 TPC-H benchmark queries,
as well as a real-life query log from Conviva Inc.[1] consisting of
6660 queries.6 Table 1 reports the fraction of queries from TPC-H
and the Conviva log that is supported by different techniques, i.e.,
queries that satisfy the constraints imposed by each technique.

The set of queries supported by ABM strictly subsumes those of
previous analytical approaches, and it also constitutes a majority
subset of those supported by bootstrap. For instance, ABM supports
19/22 TPC-H queries, and 98.6% of the Conviva ones, covering
most of the queries supported by bootstrap (i.e., 19/22 in TPC-
H and 99.1% in the Conviva log). Previous analytical approaches
only support 9/22 of TPC-H and 36.9% of the Conviva queries.
Also, note that 81.0% of the Conviva queries are supported by
ABM while enjoying a guaranteed DBPTIME complexity.

Note that User Defined Aggregate Functions (UDAFs) can only
be handled by (simulation-based) bootstrap. Fortunately, UDAFs
are quite rare in day-to-day data analysis, as most users find it more
convenient to write pure SQL queries. For instance, none of the
6660 queries in the Conviva log contained a UDAF. 7

3. BACKGROUND
In this section, we provide background on semirings and their

connection with relational operators, followed by a brief overview
of semiring random variables. These concepts will be used in our
probabilistic relational model and query evaluation technique.

3.1 Semirings and Relational Operators
Here, we provide an overview on semirings as well as how they

can be used to compute queries on a database.
A monoid is a triplet (S,+, 0), where:
• S is a set closed under +, i.e., ∀s1, s2 ∈ S, s1 + s2 ∈ S
• + is an associative binary operator, i.e., ∀s1, s2, s3 ∈ S,

(s1 + s2) + s3 = s1 + (s2 + s3)
• 0 is the identity element of +, i.e., ∀s ∈ S,s+0 = 0+s = s

For example, (N,+, 0) is a monoid, where N is the set of natural
numbers, and 0 and + are the numerical zero and addition.

A semiring is a quintuplet (S,+, ·, 0, 1) which follows the four
axioms below:
• (S,+, 0) is a monoid where + is commutative, i.e., ∀s1, s2 ∈
S, s1 + s2 = s2 + s1 (a.k.a. a commutative monoid)
• (S, ·, 1) is a monoid

6Due to proprietary reasons, we had restricted access to Conviva
queries; we were only allowed to run a customized parser on the
query log to compute the breakdown of different query types. Thus,
for performance evaluations, we use Vertica and TPC-H queries.
7UDAFs should not be confused with User Defined Functions
(UDFs) which are quite common in practice (e.g., 42% of Conviva
queries contain UDFs); UDFs operate on a single tuple and return
a single value, while UDAFs operate on multiple tuples and return
a single value. UDFs are usually used to transform or extract data
from each tuple. By treating UDFs as extra columns in the table,
they can be easily supported by both analytic approach and ABM.



Technique Constraints in TPCH in Conviva Log
Analytic Approach Simple group-by aggregate (no MIN/MAX) queries [9, 15, 16, 22, 23, 24, 25, 33, 44] 9/22 36.9%

ABM Semantics Conjunctive queries with (a) no nested aggregates,
(b) no MIN/MAX and (c) no equality checks on aggregate results 19/22 99.1%

ABM Eligible Queries that (a) satisfy all ABM semantics constraints, and
(b) have an eligible query plan (see Definition 9) 19/22 98.6%

ABM Eligible with DBPTIME
Query Evaluation

ABM eligible queries that (a) have DBPTIME-eligible plans
or (b) can be optimized by the containment join optimization (see Section 5.2) 15/22 81.0%

Bootstrap “Smooth” queries 19/22 99.1%

Table 1: Classes of SQL queries supported by different techniques, and their coverage of TPC-H and Conviva queries

• · is left and right distributive over +, i.e., ∀s1, s2, s3 ∈ S,
s1 · (s2 + s3) = s1 · s2 + s1 · s3 and (s2 + s3) · s1 =
s2 · s1 + s3 · s1

• 0 annihilates S, i.e. ∀s ∈ S, 0 · s = s · 0 = 0
A commutative semiring is a semiring in which (S, ·, 1) is also a
commutative monoid. In this paper, all semirings are commutative
semirings. E.g., SN = (N,+, ·, 0, 1) is a commutative semiring.

Green et al. [26] showed that many different extensions of rela-
tional algebra can be formulated by annotating database tuples with
semiring elements and propagating these annotations during query
processing. Consider a multiset database as an example. Tuples
in a multiset relation are annotated with natural numbers N, rep-
resenting their multiplicities in the database. Formally, a multiset
relation R with the tuple domain U is described by an annotation
function πR : U → N, where a tuple t ∈ R⇔ πR(t) 6= 0.

During query processing, the relational algebra is extended with
the + and · operators in semiring SN, which manipulate the anno-
tated multiplicities: for projection, we add the multiplicities of all
input tuples that are projected to the same result tuple, while for
join, we multiply the multiplicities of the joined tuples. That is,
inductively we have:
• Selection σc(R). πσc(R)(t) = πR(t)·1(c(t)), where1(c(t))

returns 1 if c(t) is true and 0 otherwise.
• Projection ΠA(R). πΠA(R)(t) =

∑
t′[A]=t πR(t′) where

t′[A] is the projection of t′ on A.
• Join R1 ./ R2. πR1./R2(t) = πR1(t1) · πR2(t2), where ti

is t on Ui.
Green et al. showed that by annotating tuples with elements from

SN and using the extended relational algebra defined above, we ob-
tain the relational algebra with multiset semantics. However, this
extension is not applicable to bootstrap, because the multiset rela-
tion generated by bootstrap is probabilistic (shown in Section 2.1).
Thus, we introduce our probabilistic multiset relational model in
Section 4 by using semiring random variables (described next).

3.2 Semiring Random Variables
A random variable that takes values from the elements of a semir-

ing S is called a semiring random variable, denoted by S-rv. Anal-
ogous to operators + and · on semiring elements, there are cor-
responding operators that operate on semiring random variables,
called convolutions. Below we define the + convolution (denoted
as ⊕), and the · convolution (denoted as �).

DEFINITION 1 (CONVOLUTION). Let r1 and r2 be two S-
rvs. The convolution ⊕ (resp. �) is a binary operator defined on
monoid (S,+, 0) (resp. (S, ·, 0)), such that r1⊕ r2 (resp. r1� r2)
is a S-rv, where ∀s ∈ S,

Pr(r1 ⊕ r2 = s) =
∑
{Pr(r1 = x ∧ r2 = y)|∀x, y ∈ S, x+ y = s}

Pr(r1 � r2 = s) =
∑
{Pr(r1 = x ∧ r2 = y)|∀x, y ∈ S, x · y = s}

Similar to conventional random variables, we define the disjoint-
ness, independence and entailment between S-rvs, but with some
special treatment for 0 ∈ S.

R/D deterministic relation/database
Rr/Dr probabilistic relation/database from bootstrap
R̂/D̂ a resample instance from bootstrap

mR̂(t) multiplicity of t in R̂
U tuple domain of a relation

head(·) set of attributes in the output of a query
rels(·) set of relations occurring in a query
π,$ annotation functions for PMRs
0/1 Constant random variables with value 0/1

Table 2: Summary of Notations

DEFINITION 2. Let r1 and r2 be two S-rvs.
• r1 and r2 are disjoint, if Pr(r1 6= 0 ∧ r2 6= 0) = 0.
• r1 and r2 are independent, if ∀s1, s2 ∈ S,

Pr(r1 = s1 ∧ r2 = s2) = Pr(r1 = s1) · Pr(r2 = s2)

• r1 entails r2, if Pr(r1 6= 0|r2 6= 0) = 1.

The marginal distribution of a S-rv r can be represented by a
vector pr indexed by S, namely ∀s ∈ S, pr[s] = Pr(r = s).

In general, using Definition 1 to compute convolutions of S-
rvs can be quite inefficient, especially when the semiring S is large.
However, we make the observation that under certain conditions,
the convolution of S-rvs can be quickly computed by simply ma-
nipulating their probability vectors, as stated next.8

PROPOSITION 1 (EFFICIENT CONVOLUTION). Let r1 and r2

be two S-rvs on semiring (S,+, ·, 0, 1):
• If r1 and r2 are disjoint, then pr1⊕r2 = pr1 ] pr2 , where

(pr1 ] pr2 )[s]
def
==

{
pr1 [s] + pr2 [s] if s 6= 0
pr1 [0] + pr2 [0]− 1 if s = 0

• If r1 entails r2 where r2 can only take value 0 or 1, then
pr1�r2 = pr1 .

4. SEMANTICS & QUERY EVALUATION
Next, we introduce our probabilistic multiset relational model,

which annotates each tuple with a SN-rv representing its nondeter-
ministic multiplicity and extends the relational algebra to propagate
these annotations during query processing. Table 2 lists the nota-
tions we use.

4.1 Formal Semantics
Probabilistic Multiset Database Semantics. A probabilistic mul-
tiset relation (PMR) is a multiset relation whose tuples have non-
deterministic multiplicities. Formally, the functional representation
of a PMR Rr is an annotation function πR : U → {SN-rv}, where
πR(t) = πt when tuple t occurs in Rr with a random multiplicity
πt; otherwise, πR(t) = 0.

Specifically, the PMR Rr resulting from bootstrapping R (of
size n) is modeled thus: for all tuples {ti|i = 1, · · · , n} in R,
8All the proofs in this paper are omitted due to space constraints
but can be found in our technical report [45].



(π(t1), · · · , π(tn)) jointly follow a multinomial distributionM(n,
[ 1
n
, · · · , 1

n
]). We can also model a deterministic relation R as a

special PMR, where ∀t ∈ R, πR(t) = 1.

DEFINITION 3 (PMR SEMANTICS). The semantics of a PMR
Rr annotated by πR : U → {SN-rv} is a set of possible multiset
worlds pmw(Rr), where the probability of each world (i.e., resam-
ple instance) R̂ is

Pr(R̂) = Pr
(∧
{πR(t) = mR̂(t) | t ∈ R}

)
A probabilistic multiset database (PMDB) Dr is a database with
PMRs. We omit the semantics of Dr , which have similar defini-
tions (see [45]).
Query Semantics. Evaluating a query q on a PMDBDr is equiva-
lent to evaluating q on every possible multiset world in pmw(Dr).

DEFINITION 4 (QUERY SEMANTICS). The semantics of eval-
uating a query q on a PMDB Dr is a set of possible answers
qpmw(Dr), where each possible answer’s probability is:

∀R̂q ⊆ Uq : Pr(R̂q) =
∑
{Pr(D̂) | D̂ ∈ pmw(Dr) ∧ q(D̂) = R̂q}

Since computing qpmw(Dr) is infeasible (see Section 2.1), we
return a marginal summary qmrg(Dr). i.e., for each tuple t ∈ Uq ,
we return a probability vector p, where p[m] is the probability of t
appearing in any possible answer m times, i.e.,

p[m] =
∑
{Pr(R̂q)|R̂q ⊆ Uq , πR̂q

(t) = m}

4.2 Intensional Query Evaluation
A prohibitive number of worlds makes direct application of the

possible worlds semantics impractical. Thus, this section intro-
duces our intensional evaluation and its semantics, which lay the
theoretical foundation of the evaluation technique we introduce in
Section 5. Intensional evaluation extends relational algebra to prop-
agate the annotations symbolically throughout query execution.
Extending Relational Algebra. Analogous to the multiset seman-
tics introduced in Section 3, we extend relational algebra with ⊕
and � operators from semiring (SN-rv,⊕,�,0,1) to manipulate
the random multiplicities of each tuple, so that query evaluation
using these operators will produce the correct results (with respect
to the possible multiset worlds semantics). We define this extended
relational algebra as follows. (We first discuss how aggregates ma-
nipulate tuple multiplicities, postponing discussion of how aggre-
gates compute values later.)

DEFINITION 5 (INTENSIONAL EVALUATION). Intensional
evaluation is defined inductively on a query Plan P :
• If P = σc(P1), then πP (t) = πP1(t)� 1(c(t)).
• If P = ΠA(P1), then πP (t) =

⊕
t′[A]=t πP1(t′).

• If P = P1 ./ P2, then πP (t) = πP1(t1) � πP2(t2), where
ti = t[head(Pi)].
• If P = δ(P1), then πP (t) = 1(πP1(t)).
• If P = γA,α(B)(P1), then πP (t) = πδ(ΠA(P1))(t).

where 1(r) maps a random variable r to another random variable,
i.e. 1(r) = 1 if r 6= 0, and 1(r) = 0 otherwise. When r is
deterministic, 1(r) degenerates to 0 or 1.

Aggregates. Besides manipulating π, an aggregate produces val-
ues absent from the input relations; an extra semiring annotation
(denoted as $) is thus required to define its computation.

Next, we define the intensional evaluation of SUM. Since manip-
ulating π is defined in Definition 5, we focus on the manipulation
of $. (COUNT is a special case of SUM and AVG can be defined as
an arithmetic function of SUM and COUNT.)

DEFINITION 6 (INTENSIONAL EVALUATION OF γA,SUM(B)).
Intensional evaluation of γA,SUM(B)(P ) is defined as follows:9

1. Annotate P with $ : U → {SR-rv} where SR = (R,+, ·, 0,
1), i.e., $(t) = t[B] � πP (t), where t[B] is treated as a
degenerated SR-rv taking a constant value.

2. Compute SUM(B) = $γA,SUM(B)(P )(t) =
⊕

t′[A]=t$P (t′).

EXAMPLE 2. Consider the database D in Figure 1(a) and the
query q in Example 1. Figure 4 shows the intensional evaluation
of q on Dr using the query plan shown in Figure 4(a). Figure 4(g)
shows the truth table for tuple ta. From this, we can determine the
probability of ta appearing in the result as 17

27
.

Intensional evaluation of q onDr produces a new PMR, denoted
by qi(Dr), whose semantics is defined as follows.

DEFINITION 7 (INTENSIONAL SEMANTICS). The semantics
of qi(Dr) is a set of possible multiset worlds, pmw(qi(Dr)), where
any assignment of the annotations of each tuple t, namely πq(t) and
$q(t), yields a possible world instance R̂q , such that:

Pr(R̂q) = Pr
(∧
{πq(t) = mR̂q

(t) ∧$q(t) |= t | t ∈ Uq}
)

Here, $q(t) |= t means that $q(t) takes the corresponding aggre-
gate value in t.

Because of the commutative and distributive properties of semir-
ings, qi(Dr) is independent of the plan chosen for q [26]. Further-
more, this semantics is equivalent to the possible multiset worlds
semantics qpmw(Dr), as stated next.

THEOREM 1. We have pmw(qi(Dr)) ≡ qpmw(Dr) for every
conjunctive query q with aggregates and every PMDB Dr , as long
as the projected, group-by, and aggregated columns are not the
output of another aggregate.

Theorem 1 proves the correctness of intensional evaluation. How-
ever, intensional evaluation is quite inefficient, since in the worst
case the size of each annotation can grow to the same order of
magnitude as the database, and computing the distribution requires
enumerating all possible annotation values. Thus, our next section
develops an efficient evaluation technique.

5. EXTENSIONAL QUERY EVALUATION
This section presents an extensional evaluation technique that in-

creases efficiency over its intensional counterpart by manipulating
succinct multinomial representations of the annotations rather than
the annotations themselves,

For simplicity’s sake, we limit discussion to queries with a single
(re)sampled relation and without any self-joins of the (re)sampled
relation. (Section 7 discusses extensions to general queries.) Next,
we introduce our multinomial representation, and then describe ex-
tensional evaluation for queries without and with aggregates.

5.1 The Multinomial Representation
This observation prompts our proposed multinomial representa-

tion of the annotations:

OBSERVATION 1. A bootstrap trial on a relation R of n tuples
comprises n i.i.d. experiments. The i-th experiment picks a sin-
gle tuple at random, hence producing a probabilistic relation Rri .
Formally, each Rri is annotated by ρi : U → {SN-rv}, such that
ρi(t) = 1 when tuple t is selected and ρi(t) = 0 otherwise. The
relationRr resulting from bootstrap is the union of {Rri }. One can
easily verify that π(t) =

⊕n
i=1 ρi(t).

9W.l.o.g, in the following discussion, we assume dom(B) = R.



(a)

tuple $SUM π
t1 4π1 π1

t2 5π2 π2

t3 3π3 π3

(b)

$SUM π
4π1 ⊕ 5π2 ⊕ 3π3 1(π1 ⊕ π2 ⊕ π3)

(c) Step À in (a)

tuple $SUM π
t1 4π1 ⊕ 5π2 ⊕ 3π3 π1 � 1(π1 ⊕ π2 ⊕ π3)
t2 4π1 ⊕ 5π2 ⊕ 3π3 π2 � 1(π1 ⊕ π2 ⊕ π3)
t3 4π1 ⊕ 5π2 ⊕ 3π3 π3 � 1(π1 ⊕ π2 ⊕ π3)

(d) Step Á in (a)

tuple π
t1 π′

1 = 1(4π1 ⊕ 5π2 ⊕ 3π3 < 13.3)� π1 � 1(π1 ⊕ π2 ⊕ π3)
t2 π′

2 = 1(4π1 ⊕ 5π2 ⊕ 3π3 < 16.7)� π2 � 1(π1 ⊕ π2 ⊕ π3)
t3 π′

3 = 1(4π1 ⊕ 5π2 ⊕ 3π3 < 10)� π3 � 1(π1 ⊕ π2 ⊕ π3)

(e) Step Â in (a)

Type π
ta a π′

1 ⊕ π
′
3

tb b π′
2

(f) Step Ã in (a)

π1 π2 π3 prob.
1 1 1 2/9
2 1 0 1/9
2 0 1 1/9
1 0 2 1/9
3 0 0 1/27
0 0 3 1/27

(g)

Figure 4: (a) Query plan of Example 1, (b) initial annotation of Rr , (c-d) intensional evaluation steps, and (f) truth table of πq(ta) = 1

Based on Observation 1, we define atoms of an annotation π(t)
as the set of annotations comprising π(t), which are generated from
each experiment, i.e., atom(π(t)) = {ρi(t) | i = 1, · · · , n}. The
atoms hold these properties:
• Within an experiment i, ρi(t) and ρi(t′) are disjoint for any

two tuples t, t′;
• Across different experiments i and j, ρi(·) and ρj(·) are in-

dependent;
• {ρi(t) | i = 1, · · · , n} are i.i.d. S-rvs with the same marginal

probability vector p, where p[0, 1] = [n−1
n
, 1
n

].
These properties allow us to uniquely and succinctly represent

π(t) by a pair [n,p], namely a multinomial representation, reinter-
pretable as the convolution sum of n i.i.d. semiring random vari-
ables with the probability vector p. The probability distribution of
π(t) can be easily reconstructed from its multinomial representa-
tion, using the probability mass function of the Multinomial distri-
bution M(n,p).

Moreover, when atom(π(t)) satisfies certain properties, ⊕ and
� can be directly computed on its multinomial representation, i.e.,

PROPOSITION 2. Let π1 = [n,p1] and π2 = [n,p2].
• If atom(π1)∩atom(π2) = ∅, then π1⊕π2 = [n,p1]p2].
• If atom(π1) ⊆ atom(π2), then π1 � 1(π2) = [n,p1].

Next, we show how our multinomial representation and its prop-
erties enable us to devise the extensional evaluation.

5.2 Queries without Aggregates
This section first formally defines the set of queries eligible for

efficient evaluation, then presents our extensional evaluation.
Preliminaries. Let us denote the sampled relation as Rf . To sim-
plify discussion, we base it on canonical query plans, obtainable
by repeating the procedure below on an arbitrary query plan (using
relational algebra’s rewriting rules [20]):

1. Distinguish different occurrences of Rf by renaming them.
2. Push σ below Π and δ, e.g., σc(ΠA(R)) ≡ ΠA(σc(R)).
3. Eliminate duplicate δ, e.g., δ(ΠA(δ(R))) ≡ δ(ΠA(R)).
4. Pull σ and Π above ./, i.e., R1 ./ σc(R2) ≡ σc(R1 ./ R2)

and R1 ./ ΠA(R2) ≡ Πhead(R1),A(R1 ./ R2).
5. If both subqueries of ./ are deduplicated, pull one δ above
./, i.e. δ(R1) ./ δ(R2) ≡ δ(R1 ./ δ(R2)).

Note that in the canonical form δ is always the last operator of a
join subtree. Since we do not consider self-joins of Rf , w.l.o.g.
we use ./ δ instead of ./, e.g., q1./δ(q2) means q1 joined with the
deduplicated q2.

We also define the induced functional dependencies of query q,
denoted by Γ(q) as in [18]:
• Any functional dependency of rels(q) is in Γ(q).
• Rf .π → head(Rf ) and head(Rf ) → Rf .π are in Γ(q),

i.e., each tuple in Rf has a unique annotation.

• For every join predicateRi.A = Rj .B, bothRi.A→ Rj .B
and Rj .B → Ri.A are in Γ(q);
• For every selectionRi.A = constant, ∅ → Ri.A is in Γ(q).

Following the convention from previous work [17], we recur-
sively define the lineage of πP (t), denoted by L(πP (t)), as

DEFINITION 8 (LINEAGE). The lineage of πP (t) is defined
inductively on a query plan P :
• If P = σc(P1), then L(πP (t)) = L(πP1(t)).
• If P = ΠA(P1), then L(πP (t)) =

⋃
t′[A]=t L(πP1(t′)).

• If P = P1 ./ δ(P2), then L(πP (t)) = L(πP1(t)).
• If P = δ(P1), then L(πP (t)) = L(πP1(t)).
• If P is a relation, L(πRf (t)) = {t}, L(πR(t)) = ∅.

It is easy to see that for any subplan P , the lineage L(πP (t)) for
any tuple t consists of tuples from the same base relation. We de-
note the relation as RLP .
Eligible Plan. Queries can be efficiently computed by the exten-
sional evaluation with an eligible query plan. Given Γ(q), we de-
fine an eligible plan thus.

DEFINITION 9 (ELIGIBLE PLAN). A canonical plan P is el-
igible if all its operators are eligible:
• Operators σ, δ and ./ are always eligible
• Operator ΠA(P1) is eligible, if Γ(P1) implies 〈A,RLP1

.π〉
→ head(P1).

A query’s eligibility can be efficiently checked at compile time.
Next, we introduce the extensional evaluation restricting ourselves
to a strict subset of eligible queries (i.e., those with simple joins)
before generalizing to all eligible queries.
Extensional Evaluation of Queries with Simple Joins. A join
P1 ./ δ(P2) is a simple join if Rf 6∈ rels(P2). Given an eligible
plan P where all joins are simple joins and standalone deduplica-
tion is the last operator of P , one can evaluate P via the following
extensional evaluation procedure, which directly manipulates the
multinomial representations of the annotations.

DEFINITION 10 (EXTENSIONAL EVALUATION (PART 1)).
Extensional evaluation is defined inductively on a query plan P .
Let πP1(t) = [n,pt], then:
• If P = σc(P1), then πP (t) = [n,pt] if c(t) is true, and

[n,0] otherwise.
• If P = ΠA(P1), then πP (t) = [n,

⊎
t′[A]=t pt′ ].

• If P = P1 ./ δ(P2), then πP (t) = [n,pt1 ] where t1 =
t[head(P1)].
• If P = δ(P1), then πP (t) = [1, [pt[0]n, 1− pt[0]n]].

To reconstruct qmrg(Dr), we compute the probability distribution
of πP (t) = [n,p] by pπP (t)[k] =

(
n
k

)
p[0]n−kp[1]k.

Intuitively, an eligible plan ensures that the tuple annotations are
still disjoint after a projection. We formalize this intuition by track-
ing the lineage of tuples.



LEMMA 1. For any subplans P1 and P2,
1. ∀t ∈ P1, πP1(t) =

⊕
t∈L(πP1

(t)) πRf (t).
2. ∀t1, t2 ∈ P1, L(πP1(t1)) ∩ L(πP1(t2)) = ∅.

Lemma 1 ensures that the extensional evaluation correctly esti-
mates qmrg(Dr) on any Dr by following Proposition 2.
Extensional Evaluation of General Queries. The extensional
evaluation from Definition 10 does not apply to eligible queries
with general joins. E.g., P1 ./ δ(P2) may produce different anno-
tations: if πP2(t2) 6= 0, πP1./δ(P2)(t) = πP1(t1), and otherwise
πP1./δ(P2)(t) = 0. To resolve this, we enumerate all possible πP2

values; since for each πP2 value, P1 ./ δ(P2) is deterministic, we
can apply the extensional evaluation from Definition 10.

To aid the enumeration, we represent π(t) as a set of triplets
{(ci, πi,Li)}, where
• ci is a set of conjunctive conditions {cj(πi,j), ∀j} on anno-

tations {πi,j , ∀j},
• Li is a set of lineages {L(πi,j), ∀j} ∪ {L(πi)}.

A triplet (ci, πi,Li) is interpreted as follows: if all cj(πi,j) ∈ ci
are true, π(t) takes value πi, and the lineages of {πi,j , ∀j} and πi
are stored in Li. The set {ci, ∀i} has two properties: (1) any ci and
cj are disjoint, and (2) {ci, ∀i} enumerates all possible conditions
on {πi,j ,∀j}. Thus, the distribution of π(t) can be reconstructed
by Equation 1, which computes a weighted sum of πi’s distribu-
tions under all conditions. Since Li captures the correlation be-
tween ci and πi, Equation 1 can easily be computed. (For details,
see [45].)

f(π(t)) =
∑
∀i

Pr(ci)f(πi | ci) (1)

At query time, we extend the extensional evaluation to manipu-
late ci, πi, and Li. When combining two sets of conditions ci and
cj , we also modify πi and πj following Definition 10 and modify
Li and Lj following Definition 8. Below, we show the extended ex-
tensional evaluation. For the sake of simplicity, we only show the
manipulation of ci, omitting that of πi and Li. Furthermore, lin-
eage maintenance has been well addressed in database provenance
literature (e.g.,[21]). We denote the set {ci,∀i} of πq(t) by Cq(t).
Here, × denotes the set Cartesian product.

DEFINITION 11 (EXTENSIONAL EVALUATION (PART 2)).
Extensional evaluation is defined inductively on a query plan P :
• If P = σc(P1), then CP (t) = CP1(t).
• If P = ΠA(P1), then CP (t) = ×t′[A]=tCP1(t′).
• If P = P1 ./ δ(P2), then CP (t) = CP1(t1) × CP2(t2) ×
{{πP2(t2) 6= 0}, {πP2(t2) = 0}} where ti = t[head(Pi)].
• If P = δ(P1), then CP (t) = CP1(t)× {{πP1(t) 6= 0},
{πP1(t) = 0}}.

This extensional evaluation works for any eligible query q. For
certain queries, one can theoretically create a worst-case database
that makes |Cq(t)| grow exponentially in the size of the database.
Next, we identify situations where |Cq(t)| = O(1), i.e., when
DBPTIME evaluation is guaranteed.10

DEFINITION 12 (DBPTIME-ELIGIBLE PROJECTION).
ΠA(P1) is DBPTIME-eligible, if for every join P2 ./ δ(P3) or
δ(P3) in P1, Γ(P1) implies A→ head(P3).

If ΠA(P1) is DBPTIME-eligible, then CπA(P1)(t) = CP1(t′) for
any t′[A] = t, giving us the following lemma:

LEMMA 2. If every ΠA in an eligible plan P is DBPTIME-
eligible, then |CP (t)| = O(1).

10However, some queries may still be evaluated efficiently on real-
life databases despite being DBPTIME-ineligible, e.g., queries
Q17, Q18, Q20, Q22, V3, and V4 in Section 8.

We can optimize the extensional evaluation for eligible queries
(both DBPTIME-eligible and DBPTIME-ineligible queries) by de-
tecting containment joins. A join P1 ./ δ(P2) is a containment
join if (1) Γ(P1 ./ δ(P2)) implies head(P1)→ head(P2) and (2)
Q = δ(Πhead(P1)(P1 ./ δ(P2))) contains δ(P1), i.e., δ(P1) ⊆
Q for any input database. Whether a join is a containment join
can be decided in polynomial time for a large class of conjunctive
queries [29]. A containment join ensures that joined tuples’ anno-
tations satisfy entailment, i.e.,

LEMMA 3. For any tuple t generated by a containment join
P1 ./ δ(P2), L(πP1(t1)) ⊆ L(πP2(t2)) where ti = t[head(Pi)].

Therefore, we have the following optimization:
• If P = P1 ./ δ(P2) is a containment join, then CP (t) =

CP1(t1) where ti = t[head(Pi)].
Note that the size of CP (t) is reduced by pruning the set CP2(t2)×
{{πP2(t2) 6= 0}, {πP2(t2) = 0}}. Furthermore, the correspond-
ing lineage can be dropped from the annotation. Specifically, if
every join in plan P either satisfies Definition 12 or is a contain-
ment join, P can be evaluated in DBPTIME. The following is an
example of the extensional evaluation for general queries.

EXAMPLE 3. Consider the query in Example 1 and its evalua-
tion steps in Figures 4(c) and 4(d). Let πi = [3,pi] for i = 1, 2, 3,
where pi[0, 1] = [2/3, 1/3].
• π1⊕π2⊕π3 = [3,

⊎3
i=1 pi] = [3,p] where p[0, 1] = [0, 1].

• πi � 1(π1 ⊕ π2 ⊕ π3) = [3,pi], for i = 1, 2, 3 as Step Á is
a containment join.

5.3 Queries with Aggregates
This section extends our extensional evaluation to queries with

aggregates. We first consider aggregates in the return clause of a
query, then aggregates in predicates.
Handling Aggregates in Return Clauses. Similar to Section 5.1,
we can represent the annotation$ of aggregate γA,α(B) in a multi-
nomial representation, such that Proposition 2 still applies to $.
Taking γA,SUM(B)(P ) as an example, let πp(t) = [n,p]. We can
represent the annotation $(t) as [n,p′] where p′[0] = p[0] and
p′[t[B]] = p[1].

To check the eligibility of plan P of a query with aggregates, one
can simply substitute every γA,α(B) in P with δ(ΠA), and check
modified plan P ∗’s eligibility. P is eligible if and only if P ∗ is el-
igible. Extensional evaluation of γ is very similar to Π (as in Defi-
nition 10 and 11), and is omitted. (When maintaining the multino-
mial representation [n,p] of $, p could grow to the database size.
Space-efficient approximation is introduced in Section 6.)
Handling Aggregates in Predicates. In operator σc, if the predi-
cate c contains aggregate γ(q) and Rf ∈ rel(q) (e.g., see step Â
in Figure 4(a)), then c(t) is uncertain since γ is random. Thus, we
must enumerate all possible value ranges of γ. We modify Defini-
tion 11 thus:

DEFINITION 13 (EXTENSIONAL EVALUATION (PART 3)).
We extend Definition 11 by modifying the rule of σ as follows:
• If P = σc(P1), then CP (t) = CP1(t)× enumc(t)

where enumc(t) enumerates all possible valuations of predicate c,
that is, if c is deterministic, enumc(t) = {T} where T is the event
true; otherwise, enumc(t) = {{c(t)}, {¬c(t)}}.

Similar to Section 5.2, the size of Cq(t) may grow exponentially
with the size of the database due to projection and aggregation.
Next, we propose an optimization technique to prune conditions
with 0 probability, greatly reducing Cq(t)’s size. Then, we again
identify cases where DBPTIME evaluation is guaranteed.



OBSERVATION 2. Consider two sets of conditions {γ < 4, γ ≥
4} and {γ < 3, γ ≥ 3}. A Cartesian product of these two sets pro-
duces 4 conditions. However, clearly γ ≥ 4∧γ < 3 is false. In fact,
3 and 4 partition the domain of γ into three parts: (−∞, 3), [3, 4)
and [4,∞). Now a Cartesian product of these two sets produces ex-
actly 3 valid conditions corresponding to the three partitions, i.e.,
γ ∈ (−∞, 3), γ ∈ [3, 4) and γ ∈ [4,∞).

We can generalize this observation into the following pruning rule,
reducing the size of the Cartesian product ofm condition-sets from
O(2m) to O(m).

PROPOSITION 3. Let c0 = −∞ < c1 < · · · < cm < cm+1 =
∞ and Ci = {{γ < ci}, {γ ≥ ci}}, i = 1, · · · ,m. Then,

×mi=1Ci = {{γ ∈ (cj , cj+1]} | j = 0, · · · ,m}

Next, we identify situations with efficient condition enumeration.

LEMMA 4. After substituting every γA,α(B) with δ(ΠA) in an
eligible plan P , if all the Π are DBPTIME-eligible, then |CP (t)| =
O(n|P |), where n is the size of the database.

5.4 Correctness and Complexity
Let qe(Dr) be the result of extensional evaluation of query q on

Dr . The next theorem ensures that extensional evaluation gives (1)
the correct qmrg(Dr) for eligible queries on any Dr , and (2) an
efficient evaluation time for DBPTIME-eligible queries.

THEOREM 2. For any eligible query q and any PMDB Dr ,
qe(Dr) ≡ qmrg(Dr). For any DBPTIME-eligible query q, qe(Dr)
can be computed in DBPTIME.

The extensional evaluation efficiently computes the annotations
in multinomial representation. Nevertheless, reconstructing the ex-
act distributions of aggregates from their annotations can be com-
putationally expensive. For example, the multinomial represen-
tation of SUM could be of size O(n) where n is the size of the
database. This requires enumerating O(2n) possible cases to com-
pute the distribution of SUM. However, many real-world users will-
ingly trade accuracy for efficiency. Thus, Section 6 introduces a fast
approximation technique for reconstructing the distribution from
the annotations.

6. EFFICIENT APPROXIMATION
We now describe our solution to the problem introduced in Sec-

tion 5.4. By approximating multinomial representations as asymp-
totically Gaussian distributions, we efficiently reconstruct the re-
quired distributions from extensional evaluation outputs. Further,
we approximate the multinomial representation by maintaining a
few moments (i.e., mean, variance, and covariance) instead of the
probability vector itself, which reduces the space overhead.

Given an extended multinomial representation (c, $∗,L), Theo-
rem 3 states that we can model {$∗}∪{$j ∈ c, ∀j} as an asymp-
totically multivariate normal distribution. Here, we slightly abuse
the notation to refer to a random variable by its probability vector.

THEOREM 3. Let$i, i = 1, · · · , k be k semiring random vari-
ables, whose multinomial representations are [n,pi], respectively.
When n → ∞, ~$ = [$1, · · · , $k] jointly follows asymptotically
a Gaussian distribution:

~$ ∼ N (n~µ, nΣ)

where ~µi = µpi is the mean of pi, Σi,i = σ2
pi

is the variance of
pi, and Σi,j = σpi,pj is the covariance of pi,pj . Furthermore,

applying any differentiable function ψ on ~$ still yields an asymp-
totic Gaussian distribution:

ψ(~$) ∼ N
(
ψ(n~µ), n∇ψ(n~µ)TΣ∇ψ(n~µ)

)
where∇ψ is the gradient of ψ.

This theorem provides accurate approximation whenever the size
n of the fact relation is sufficiently large; this is typically the case in
large-scale real-life applications. Also, various rules of thumb [14]
can be used to check the quality of approximation. Next, we ex-
plain how to compute the distribution of AVG, and the conditional
probability/distributions in Equation 1.
Computing AVG. AVG can be expressed as SUM/COUNT. Thus, to
compute γA,AVG(B), we rewrite it as two aggregates γA,SUM(B) and
γA,COUNT(B), and evaluate them instead of the original AVG. Let $
be the AVG, and $1, $2 be the corresponding SUM and COUNT.
We have $ = ψ($1, $2) where ψ(x, y) = x/y, for which we
can directly apply Theorem 3 to compute the distribution.
Computing Conditions. As discussed in Section 5.3, there are two
types of conditions: (1) comparing an aggregate with a constant,
and (2) comparing two aggregates. As discussed in Section 2.2, we
focus on comparison operators {<,>,≤,≥}.

W.l.o.g., consider extensional evaluation output (c, $∗,L) where
conditions c = {$i < 0 | i = 1, · · · ,m} ∪ {$′i < $′′i | i =
1, · · · , n}. Let ~$, ~$′ and ~$′′ denote the vectors [$i], [$′i] and
[$′′i ] respectively. We have the following corollary:

COROLLARY 1. Let [$∗, ~$, ~$′, ~$′′] ∼ N (nµ, nΣ). Then

[$∗, ~$, ~$′ − ~$′′] ∼ N (nAµ, nATΣA) = f

whereA = [1,01(m+2n);0m1, Im,0m(2n);0n(m+1), In,−In]. Let
~l = − ~∞ and ~u = [∞;~0]. Thus, (1) f(π | c) is the marginal distri-
bution of $ when f is truncated by the range [~l, ~u] and (2) Pr(c)

is the cumulative probability in the range [~l, ~u].

Computing the truncated probability/distribution in Corollary 1 is
well-studied in statistics. Efficient solutions can be found in [43].

Moreover, Corollary 1 gives us a pruning method for further re-
ducingthe number of conditions we need to enumerate, as in Corol-
lary 2, which we can use to quickly prune conditions with ex-
tremely low probability.

COROLLARY 2. Let c be a set of conditions. Pr(c) is computed
by the cumulative probability ofN (n~µ, nΣ) in the range [~l, ~u],

Pr(c) ≤ Φ(
~ui − n~µi√
nΣi,i

)− Φ(
~li − n~µi√
nΣi,i

),∀i

Sketching Multinomial Representations. As discussed above,
our approximation technique only requires mean, variance, and co-
variance to reconstruct the distributions. We can use these moments
to sketch the multinomial representations without maintaining the
actual probability vector; this greatly reduces the storage overhead
of our algorithms. During extensional evaluation, we directly main-
tain these moments using the following equations.

µp1]p2 = µp1 + µp2 , σ
2
p1]p2

= σ2
p1

+ σ2
p2
− 2µp1µp2

σp1]p′
1,p2

= σp1,p2 + σp′
1,p2

Note that, in the special case of simple group-by aggregates, our
extensional evaluation becomes equivalent to previous analytical
approaches. This is because in these cases extensional evaluation
using the approximate multinomial representation simply consists
of summing up the annotations of the corresponding tuples, thereby
computing the basic statistics in the same way as previous analyti-
cal approaches. However, as we show in Table 1, our technique can
handle a much larger class of queries.



7. EXTENSIONS OF ABM
In this section, we discuss several extensions of ABM.

General Aggregates. Many common aggregates can be written as
functions of simple aggregates. E.g., VAR and STDEV can be writ-
ten as functions of 1st and 2nd moments. Other aggregates such as
MEDIAN, QUANTILE can also be computed using our annotation
by a different CLT approximation [38].
Multiple Sampled Relations. Uniform sampling on multiple re-
lations participating in a join yields non-uniform and undesirably
sparse results [6]. Join synopses [6] are usually used to solve this
problem, where the basic idea is to pre-compute the join (including
self-joins), and uniformly sample from the join results. ABM can
easily support join synopses by simply treating the join synopsis as
the input sampled relation.
Using Stratified Samples. Although uniform samples are widely
used in practice, in some cases stratified samples enable better ap-
proximations (e.g., for skewed data) where each stratum is itself
a uniform sample, but with a different sampling rate than other
strata [9, 16]. Bootstrap can also work on stratified samples, by
bootstrapping each stratum and combining the resamples from all
strata as the simulated dataset [19].

ABM can be easily extended to support stratified samples. In-
stead of using a single pair [n,p] to represent each annotation, we
extend the multinomial representation to a set of pairs {[ni,pi] |
i = 1, · · · , h}, one for each stratum. We can manipulate this gen-
eralized multinomial representation following a similar procedure,
as described in Section 5. ABM can even handle the case where
some strata are sampled while other small strata are not. In Sec-
tion 8.4, we study ABM’s accuracy on stratified samples.

8. EXPERIMENTS
To evaluate the effectiveness and efficiency of ABM, we conduct

experiments on both synthetic and real-world workloads, and com-
pare the results against both sequential and parallel/distributed im-
plementations of bootstrap.

We use MonetDB (v11.15.19) [2] for implementing both boot-
strap and ABM. We do not modify the internals of the relational
engine, but rather implement a middle layer in Java to re-write the
SQL queries to support our extensional evaluation. These mod-
ified queries are then executed by the relational engine. The re-
turned results are fed into a post-processing module (implemented
in R [3] to compute the probabilities/distributions. All pre- and
post-processing times are included in ABM’s execution times.

8.1 Experiment Setup
Parallel/distributed experiments are performed on a cluster of

15 machines, each with two 2.20 GHz Intel Xeon E5-2430 CPU
cores and 96GB RAM. Sequential experiments use only one of
these machines. We report experiments on three workloads: (1)
TPC-H benchmark [4], (2) skewed TPC-H benchmark [35] and (3)
a real-world dataset and query log from the biggest customers of
Vertica Inc. [5] (referred to as Vertica). For details of the datasets
and queries see [45].
TPC-H. We use a 100 GB benchmark (scale factor of 100). We use
17 queries out of the 22 TPC-H queries, namely: Q1, Q3, Q5-Q12,
Q14, Q16-Q20, and Q22.11 The other queries contain aggregates
MIN/MAX, or otherwise do not satisfy our eligible query conditions.
We (re)sample the largest relation lineitem. For queries without
lineitem, we (re)sample the second largest relations, i.e., customer
and partsupp.

11As some of queries produce undesirably sparse results under sam-
pling, we keep the query structures but modify the very selective
WHERE predicates and/or GROUP BY clauses.

Skewed TPC-H. We generate a 1 GB micro-benchmark (scale fac-
tor 1) using the SSB benchmark [35] (a star schema variation of
TPC-H). All the numeric columns follow Zeta distribution with pa-
rameter s ∈ [2.1, 2.3]. We use 13 out of the above 17 TPC-H
queries after modifying them according to the SSB schema; we
leave out Q11, Q16, Q20 and Q22, which are inconsistent with the
SSB schema. Again, we (re)sample the largest relation lineorder.
Vertica. The Vertica benchmark consists of 52 GB and 310 re-
lations. We have chosen the 6 most complex queries (denoted as
V1-V6) from the query logs, which have similar query structures
as TPC-H queries Q1, Q11, Q18, Q22. Again, for each query, we
(re)sample the largest relation. All (re)sampled relations have 9.2
million tuples each, and are 37.8 GB in total.

8.2 Error Quantification Accuracy
In this section, we evaluate the accuracy of our ABM. For each

workload and each query q, we conduct three sets of experiments:
1. Ground Truth (GT). Similar to [27], we take an x% (x =
1, 2, 5, 10) random sample from a single relation, leave the other
relations intact, and compute q on them. We repeat this procedure
n times to collect the empirical distribution of all the n results.
2. Bootstrap (BS). We take an x% random sample from a single
relation, we bootstrap this sample, and compute q on each resample
and the other intact relations. We repeat the resampling process n
times to collect the empirical distribution of all the n results.
3. ABM. We take an x% random sample from a single relation,
and apply extensional evaluation to compute q on the sample and
the other intact relations. For comparison purposes, we use the
same random sample as bootstrap.

To compare the predicted distribution of query results given by
ABM with the empirical distributions given by the ground truth
and bootstrap, we measure various distribution statistics, includ-
ing mean (MEAN), standard deviation (SD), quantiles (QN), 5%-
95% confidence interval (CI), and existence probability (EP) (the
probability of each tuple appearing in the query’s output). For
ground truth and bootstrap, we compute these statistics based on
the empirical distribution of the collected results, whereas for ABM,
we compute these statistics directly on the estimated distribution
of the query results. We report the relative error of these statis-
tics given by different methods. In the figures, we use the nota-
tion S-A-B to denote the relative error of the statistic S given by
method A compared to the same statistic given by method B. For
example, the relative error of our mean prediction µABM to the em-
pirical mean produced by Ground Truth µGT is defined as follows
MEAN-ABM-GT = |µABM−µGT

µGT
|. Note that some test queries (e.g.,

Q20 in TPC-H, V5 and V6 in Vertica) do not return aggregate val-
ues, for which we only report the existence probability.

When a query returns more than one column, we compute both
the average and maximum relative error of all the columns in the
query. Both errors are shown in our figures, where the histograms
represent average error, and the T-shaped error bars represent the
maximum error.
1. Predicting the Empirical Distribution of Bootstrap. In the
first set of experiments, we study whether the approximate distribu-
tion produced by ABM is an accurate prediction of the empirical dis-
tribution given by bootstrap. For this purpose, we compare the two
distributions in terms of: (1) EP-ABM-BS and QNk-ABM-BS for
(k = 5% to 95%) as shown in Figure 5(a), and (2) the Kolmogorov-
Smirnov (KS) distribution distance as shown in Figure 5(b).12

We perform the experiments on both TPC-H and Vertica bench-
marks with different sample rates (x = 1, 2, 5, 10) and n = 1000
bootstrap trials. Due to space limitations, we only report the results

12http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
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Figure 5: Comparing the distributions given by ABM and bootstrap on (a) Quantiles & existence probabilities, (b) KS distance and (c)
User-defined quality measures; (d) Comparing user-defined quality measures given by ABMand bootstrap to ground truth

on the smallest sample size x=1%. The results on larger sample
sizes have better accuracy, and thus are omitted. ABM provides
highly accurate predictions of bootstrap across all different metrics
and queries: On all quantiles, ABM’s largest average relative error
is less than 2%, while most of the average relative errors are even
below 0.1%. Also, the maximum relative error is always below 5%
across all quantiles. For most queries, both distributions predict the
same existence probabilities, i.e., EP-ABM-BS is 0. The average
KS distance is about 5%, which is relatively small for 1% sampling
rate. In summary, these results show that ABM produces highly ac-
curate predictions of the empirical distribution of bootstrap.
2. Predicting User-defined Quality Measures. In this set of ex-
periments, we study the accuracy of various user-defined quality
measures predicted by ABM. We take 1% samples and conduct
1000 sampling/bootstrap trials. The comparison results between
ABM and bootstrap on TPC-H and Vertica workloads are reported
in Figures 5(c). Again, ABM provides highly accurate predictions
of bootstrap: On all statistics, ABM’s maximum relative error is less
than 10%, while most of the relative errors are even below 2%. We
also report the results of comparing both ABM and bootstrap against
the ground truth in Figure 5(d) on TPC-H and Vertica workloads.
More interestingly, ABM can also serve as an accurate predication
of the ground truth. As shown, comparing to the ground truth, most
of ABM’s average relative errors are below 5%. Noticeably, ABM is
very consistent with bootstrap, i.e., when bootstrap approximates
the ground truth well, ABM makes very accurate predictions; when
bootstrap has a relatively large error, so does ABM. This evidences
that ABM is equivalent to bootstrap.
3. Evaluating on skewed TPC-H benchmark. To study how
ABM performs when encounters skewed data, we conduct a micro-
benchmark study using the skewed TPC-H workload. We directly
run 1000 bootstrap trials on the whole dataset and compare the
user-defined quality measures predicted by ABM and bootstrap. The
results are shown in Figure 6(a). Over all queries and all the com-
pared statistics, ABM’s maximum relative error is less than 10%,

while most of the relative errors are even below 2%, which shows
that the data skewness does not impact the accuracy of ABM much.
4. Varying Number of Bootstrap Trials & Sample Size. We
also study the effect of the sample size and the number of bootstrap
trials on the prediction accuracy of ABM. We compare ABM with
bootstrap on both the distance measures used in Experiment 1 and
the user-defined measures used in Experiment 2. Due to space lim-
itations, we only report some representative measures on TPC-H
and take the average and maximum of their relative errors across
all queries. The other measures and the results on Vertica workload
are similar, and are thus omitted.

To study the effect of the number of bootstrap trials, we fix
the sampling rate to 1%, but vary the number of bootstrap trails
(n = 100 to 1000). For each n, we compute the relative error of
the statistics given by ABM against those given by bootstrap. As
shown in Figure 6(b), the relative error between ABM and bootstrap
decreases as the number of trials increases, which clearly shows
that bootstrap suffers from accuracy loss with a finite number of
trials, whereas ABM’s analytical modeling of all possible worlds
overcomes this limitation. Moreover, ABM saves the user from
error-prone parameter tuning required by bootstrap.

To study the effect of sample size, we conduct the experiments
using 1000 bootstrap trials, but varying the sampling rates (x =
1, 2, 5, 10). As shown in Figure 6(c), ABM performs stably for
CI, SD, and KS, while for more linear statistics (i.e., mean and
quantiles) its error further decreases with higher sampling rates.
Nonetheless, the average relative error of all statistics consistently
stays below 3%, even for the smallest sample size (x = 1%).

8.3 Error Quantification Performance
This section demonstrates the superior speed of ABM by com-

paring it against both sequential and parallel/distributed state-of-
the-art bootstrap implementations, as well as CLT-based analytical
approach. We show that ABM is 5 orders of magnitude faster than
the naïve bootstrap and 2-4 orders of magnitude faster than highly
optimized variants of bootstrap.
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Figure 6: (a) ABM vs. bootstrap on user-defined quality measures for Skewed TPC-H; effect of varying (b) number of bootstrap trails, and (c)
sampling rate; comparing time performance of ABM & various techniques (d) under 10% sampling rate, (e) under different sampling rates

10
-
5

10
-
4

10
-
3

10
-
2

10
-
1

10
0

10
1

10
2

V1 V2 V3 V4 V5 V6

A
v

g
/M

ax
 R

el
at

iv
e 

E
rr

o
r(

%
)

MEAN-ABM-BS
SD-ABM-BS

CI-ABM-BS
EP-ABM-BS

Figure 7: ABM vs. bootstrap under stratified sampling

5. Comparing Time Performance. In the first experiment, we
compare ABM against three algorithms: (1) naïve bootstrap, (2) On-
Demand Materialization(ODM) [34], and (3) Bag of Little Boot-
strap (BLB) [28]. To the best of our knowledge, ODM is the best
sequential bootstrap algorithm reported. However, it is limited to
simple group-by aggregate queries. Bag of Little Bootstrap (BLB)
is a bootstrap variant optimized for distributed and parallel plat-
forms. We deploy the sequential algorithms (naïve bootstrap and
ODM) and ABM on a single machine, while deploying the par-
allel/distributed algorithm (BLB) on 10 machines. We compare
ABM with all the three counterparts on TPC-H (x = 10%). All
the counterpart bootstrap algorithms use 1000 trials. Figure 6(d)
reports the running time. ABM is 5 orders of magnitude faster than
the naïve bootstrap, and more than 2-4 orders of magnitude faster
than ODM. Compared with BLB, ABM is 2-4 orders of magnitude
faster although BLB is using 10 times more computation resources.

We also compare ABM with (1) CLT-based analytical approach
(which is only applicable to simple group-by aggregates), (2) ex-
ecuting the approximate query on the sample (Sample), and (3)
executing the exact query on the original DB (Exact). This com-
parison clearly demonstrates that ABM achieves almost identical
running time as CLT and Sample, incurring little overhead. Since
ABM is computed on 10% sample, ABM achieves 10X speed up on
almost every query compared with Exact.
6. Varying the Sample Size. Furthermore, as shown in Figure 6(e),
the execution time of naïve bootstrap and ODM increases with the
sample size. On the contrary, our ABM does not vary much in terms
of execution time as the sample size increases, since a large portion
of ABM’s time is spent on query evaluation, which can be highly
optimized by modern database engines.

8.4 Using Stratified Samples
We study the accuracy of ABM when applied to stratified sam-

ples using the Vertica dataset. We apply different stratification on

the 4 relations used in the experiments, consisting of 74 and up to
360 strata. The dataset is skewed such that the smallest stratum
contains 1/100000 of the corresponding relation, while the largest
stratum contains 63%. We apply the same stratification configura-
tion described in [9]. In particular, we take a stratified sample sized
at 1% of the original relation equally from each stratum, while the
overly small strata are not sampled. We report the relative error of
the predictions given by ABM and bootstrap in Figure 7. As shown,
all relative errors are below 5%, which evidences that ABM can be
extended to support stratified sampling with high accuracy.

9. RELATED WORK
There has been a large body of research on using sampling to

provide quick answers to database queries, on database systems [9,
15, 16, 22, 23, 24, 25, 33, 44], and data stream systems [12, 31].
Approximate aggregate processing has been the focus of many of
these works, which study randomized joins [24], optimal sample
construction [9, 16], sample reusing [44], and sampling plan in a
stream setting [12, 31]. Most of them use statistical inequalities and
the central limit theorem to model the confidence interval or vari-
ance of the approximate aggregate answers [9, 16, 22, 23, 24, 44].
Recently, Pansare et al. [33] develop a very sophisticated Bayesian
framework to infer the confidence bounds of approximate aggre-
gate answers. However, this approach is limited to simple group-by
aggregate queries and does not provide a systematic way of quanti-
fying approximation quality.

Many other works have focused on specific types of queries. For
example, Charikar et al. [15] study distinct value estimation from
a sample; Joshi and Jermaine [25] propose an EM algorithm to
quantify aggregate queries with subset testing.

The bootstrap has become increasingly popular in statistics dur-
ing the last two decades. Various theoretical [13, 19, 41] and ex-
perimental works [8, 27, 30, 34] have proven its effectiveness as a
powerful quality assessment tool. Recent works [30, 34] have used
bootstrap in a database setting, in order to quantify the quality of
approximate query answers. Nevertheless, all these works focus on
improving the Monte-Carlo process of the bootstrap. Thus, Pol et
al. [34] focus on efficiently generating bootstrap samples in a rela-
tional database setting, while Laptev et al. [30] target MapReduce
platforms and study how to overlap computation across different
bootstrap trials or bootstrap samples. A diagnostic procedure is
proposed in [8, 27] to determine when bootstrap’s error estimation
is reliable. This procedure applies bootstrap to multiple sample



sizes. Since ABM is equivalent to bootstrap, it can be seamlessly
used in this diagnostic procedure, as long as the input query is sup-
ported by ABM (e.g., no UDAFs).

Another line of related work is approximate query processing
in probabilistic databases. Much existing work in this area [10,
18, 36, 37, 42] uses possible world semantics to model uncertain
data and its query evaluation. Tuples in a probabilistic database
have binary uncertainty, i.e., they either exist or not with a certain
probability. Specifically, [18, 36] use semirings for modeling and
querying probabilistic databases, focusing on conjunctive queries
with HAVING clauses. On the contrary, we focus on the bootstrap
process and model resampled data, using a possible multiset world
semantics where database tuples have uncertain multiplicities. Fur-
thermore, bootstrap is fundamentally different from probabilistic
databases, since tuples in a resampled relation are always corre-
lated, whereas many probabilistic databases assume that tuples are
independent [10, 18, 36, 37], or propose new query evaluation
methods to handle particular correlations. For instance, [39, 40]
propose Gaussian models to process continuous uncertainty data.
Our work is instead based on the bootstrap, which is naturally char-
acterized by discrete distributions, rather than the continuous dis-
tributions required by previous techniques.

10. CONCLUSION
In this paper, we developed a probabilistic model for the statisti-

cal bootstrap process and showed how it can be used for automati-
cally deriving error estimates for complex database queries. First,
we provided a rigorous semantics and a unified analytical model
for bootstrap-based error quantification; then we developed an ef-
ficient query evaluation technique for a general class of analyti-
cal SQL queries. Evaluation using the new method is 2–4 orders
of magnitude faster than the state-of-the-art bootstrap implemen-
tations. Extensive experiments on a variety of synthetic and real-
world datasets and queries confirm the effectiveness and superior
performance of our approach.
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