
Complex Pattern Matching in Complex Structures:
the XSeq Approach

Kai Zeng #1, Mohan Yang #2, Barzan Mozafari ∗3, Carlo Zaniolo #4

#University of California, Los Angeles, CA
1,2,4{kzeng,yang,zaniolo}@cs.ucla.edu

∗Massachusetts Institute of Technology, Cambridge, MA
3barzan@csail.mit.edu

Abstract—There is much current interest in applications of
complex event processing over data streams and of complex
pattern matching over stored sequences. While some applications
use streams of flat records, XML and various semi-structured
information formats are preferred by many others—in particular,
applications that deal with domain science, social networks,
RSS feeds, and finance. XSeq and its system improve complex
pattern matching technology significantly, both in terms of
expressive power and efficient implementation. XSeq achieves
higher expressiveness through an extension of XPath based on
Kleene-* pattern constructs, and achieves very efficient execution,
on both stored and streaming data, using Visibly Pushdown
Automata (VPA). In our demo, we will (i) show examples of XSeq
in different application domains, (ii) explain its compilation/query
optimization techniques and show the speed-ups they deliver, and
(iii) demonstrate how powerful and efficient application-specific
languages were implemented by superimposing simple ‘skins’ on
XSeq and its system.

I. INTRODUCTION

There has been much interest in querying massive collec-
tions of data in order to discover useful patterns in biological
data, user behavior, social networks, financial data analysis,
and many others. XML provides a very popular data exchange
format that is often used in these applications, along with
languages such XPath and XQuery. However, experience with
processing XML streams has revealed that they present several
limitations, both in terms of expressive power and amenability
to efficient implementation, which can be effectively addressed
by Kleene-closure constructs by use of Visibly Pushdown
Automata (VPA) at the implementation level [1]. VPA [2] and
Nested Words [3] provide a natural extension to the finite state
automata (FSA) model over XML [4], which have proven to be
very effective, inasmuch as they provide a scalable technology
that achieves the right balance between expressiveness and
tractability [1].

In this demo, we will (i) show examples of how XSeq
system extends XPath with powerful Kleene-* constructs and
how these new constructs are critical in various application
domains, (ii) explain the compilation/query optimization tech-
niques used in our system and show the speed-ups they deliver,
and (iii) demonstrate how powerful and efficient application-
specific languages were implemented by superimposing simple
‘skins’ on XSeq and its system.

In the next section, we briefly overview the XSeq language,
and in section III, we present an outline of the architecture of

our engine. In Section IV, we demonstrate several examples
from a wide range of interesting application domains. We
highlight the demonstration of ease-of-use and performance
of XSeq system in Section V, and present our conclusions in
Section VI.

II. THE XSEQ QUERY LANGUAGE

As our first example, let us consider a stored XML docu-
ment describing the clinical trial records of a particular drug,
which consists of a bunch of testers, each with multiple
prescriptions. Figure 1 shows a snippet of such an XML
record.
<drugTests>
<test @patientID=‘2012312’>
<prescription @date=‘2008-07-14’, @dosage=‘350’ />
<prescription @date=‘2008-07-20’, @dosage=‘400’ />
<prescription @date=‘2008-07-27’, @dosage=‘420’ />
...

</test>
<test ...

</drugTests>

Fig. 1. The clinical trial records.

Example 1: Say that, for each patient participating the drug
test, we must identify the longest consecutive period in which
he/she took a dosage of higher than 400 milligram each time.
Two trials are consecutive if they are no more than 7 days
apart. This example is expressed by the following query:

Query 1:
return $T@ID, max(last($X)@date - $P@date)
from //$T /$P (\$X)*
partition by //$T @ID
where tag($T)=‘test’ and tag($X)=‘prescription’
and tag($P)=‘prescription’
and prev($X)@date + 7 >= $X@date
and $P@date + 7 >= first($X)@date
and $P@dosage >= 400 and $X@dosage >= 400

Here, the path expression consists of named steps, where
variables start with $. tag($X) returns the XML tag name of
variable $X.

As illustrated by this example and Table I, XSeq inherits
most constructs and their similar semantics from the navi-
gational fragments of XPath (e.g., axes and attributes), but
also extends the syntax of XPath with a few but powerful
constructs: (i) the Kleene-* and (ii) immediate following axes,
i.e., immediate following sibling and first child.
Kleene-*. XSeq supports Kleene-* expressions in path expres-
sions, where a Kleene-* expression A∗ is defined as the infinite

Axis Shorthand
child /

descendant //
following sibling λ (empty string)

immediate following sibling \
first child /\

TABLE I
IN ADDITION TO XPATH AXES, XSEQ HAS ‘\’

union ∅ ∪ A ∪ (AA) ∪ (AAA) ∪ · · · . Thus, in Query 1, (\$X)∗
means zero or more repetition of \$X.
Order Semantics, Aggregates. XSeq is a sequence query lan-
guage. Therefore, unlike XPath where the input and output are
sets, the input and the output of an XSeq query are sequences.
In XSeq, the input data is viewed as a pre-order traversal of the
XML tree. For conciseness in expressing horizontal sequence
patterns, the default axis of XSeq is the following sibling
axis. XSeq also introduces the immediately following notion,
which brings XSeq a clear advantage over all previous ex-
tensions of XPath in terms of expressiveness, succinctness
and optimizability. With the immediate following sibling axis,
XSeq can easily express a consecutive sequence, e.g., (\$X)∗
in Query 1 represents consecutive prescriptions, while XPath
needs to use double negation to express the same meaning.
Similarly, the first child axis navigates to the very first child
node under the current one. Besides the traditional aggregates
(e.g. sum, max), XSeq also supports sequential aggregates
(i.e., first, last, prev) which are only applied to variables
from the Kleene-* expression. For instance, last($X) returns
the last $X in the (\$X)∗ sequence. Similarly, first($X)
returns the first node of (\$X)∗, and prev($X) returns the
node before the current node of the sequence. As an example,
prev($X)@date+ 7 >= $X@date ensures that two trials are
no longer than 7 days apart.
Partition By. XSeq supports partitioning the input XML data
by their keys. As shown in Query 1, the data is partitioned by
patients’ IDs, whereby the search for the longest period for
each patient can be done in parallel. Although this construct
does not add to the expressiveness, it provides a more con-
cise syntax for complex queries and better opportunities for
optimization. However, XSeq only allows partitioning by an
attribute field, and requires that except this attribute, the rest
of the partitioning clause is a prefix of the path expression
in the from clause. This constraint is important for ensuring
efficiency and also for avoiding queries with ill semantics. The
formal syntax and semantics of XSeq can be found in [1].

III. SYSTEM OVERVIEW

The high-level architecture of XSeq system is depicted in
Figure 2. The XSeq system is a general-purpose pattern match-
ing/complex event process engine, where (i) users can submit
their XSeq queries through a web-based general purpose client
to query XML data in many domains, such as genomic data,
financial data, temporal databases and software traces; (ii) for
specific applications, in particular genomic data analysis, users
can specify the patterns by regular expressions via specialized
application interfaces, which helps automatically translate the
patterns into XSeq queries. Specialized application interfaces

Fig. 2. System architecture

are also available to visualize the detected protein patterns, as
shown in Figure 4.

Our XSeq engine comprises of four major modules. XSeq
queries, once submitted, are first compiled by the XSeq
compiler into a raw query plan, which is a VPA. During
the compilation, the XSeq compiler consults with the XML
schema optimizer module to generate better optimized VPA.
This compiled VPA is handed to the XSeq automaton manager,
which consults with the VPA optimizer and further optimizes
the VPA using VPSearch algorithm. The final query plan is
then executed by the automaton manager. The XSeq engine
relies on the I/O module which provides access methods
for both stored and streaming XML data. The I/O module
serializes the stored data or hands over the streaming data,
and presents a sequence of inputs to the automaton manager.

IV. ADVANCED APPLICATIONS

A. Genomic Data Analysis

XML is a standard data exchange format in Molecular
Biology. Many biology databases provide data in XML for-
mat. Searching complex patterns in proteins, RNA and DNA
sequences plays an important role in the study of genomics,
pharmacy and so on. For instance, the structural motifs are
important supersecondary structures in proteins, which have
close relationships with the biological functions of the protein
sequences. These motifs are of a large variety of structural
patterns, usually very complex, e.g., the β-meander motif is
composed of two or more consecutive antiparallel β-strands
linked together, as depicted in Figure 3(a)1.

Consider now protein data with a simplified schema as
below. Example 2 uses XSeq to detect such motifs.
<!DOCTYPE uniprot [
<!ELEMENT uniprot (protein)*>
<!ELEMENT protein (fullName, feature+)>
<!ELEMENT fullName (#PCDATA)>
<!ATTLIST feature type CDATA #REQUIRED>]>

Example 2 (Detecting β-meander motifs):
return $N/text()
from //protein[$N] /$F \$G (\$H)*
where tag($N) = ‘fullName’ and tag($F) = ‘feature’
and tag($G) = ‘feature’ and tag($H) = ‘feature’
and $F@type = ‘beta-strand’
and $G@type = ‘beta-strand’
and $H@type = ‘beta-strand’

1http://en.wikipedia.org/wiki/Beta sheet

(a) (b)

Fig. 3. (a) The β-meander motif (b) The falling wedge pattern

In our demonstration, we will provide a protein dataset
(from the famous uniprot database2) to allow our audience to
interact with XSeq. For users who are not familiar with XSeq,
we will let them to use our specialized web-based client to
write regular expression style sequence patterns. Our system
automatically translates arbitrary regular expression patterns
into equivalent XSeq queries, and visualizes the detected motif
sites on the protein sequences through graphical views, as
shown in Figure 4.

B. Financial Data Analysis

We will use stock data from Yahoo! Finance3 to allow
the audience to issue queries to search for patterns of their
interest. For instance, the falling wedge pattern, as shown in
Figure 3(b)4, is a bullish presage of an uptrend.
<!DOCTYPE prices [
<!ELEMENT prices (row)*>
<!ATTLIST row date CDATA #REQUIRED>
<!ATTLIST row open CDATA #REQUIRED>
<!ATTLIST row close CDATA #REQUIRED>
<!ATTLIST row volume CDATA #REQUIRED>]>

Example 3 (Falling wedge pattern):
return $R@close, last($Y)@close
from //$R ((\$S)* \$X (\$T)* \$Y)*
where tag($R) = ‘row’ and tag($S) = ‘row’
and tag($X) = ‘row’ and tag($T) = ‘row’
and tag($Y) = ‘row’
and $R@close > first($S)@close
and prev($S)@close > $S@close
and last($S)@close > $X@close
and $X@close < first($T)@close
and prev($T)@close < $T@close
and last($T)@close < $Y@close
and prev($X)@close < $X@close
and prev($Y)H@close > $Y@close

C. Temporal Queries

Traditional temporal databases use a state-oriented represen-
tation, where tuples of a database are time-stamped with their
maximal period of validity. This state-based representation re-
quires temporal coalescing and/or temporal joins even for basic
query operations (e.g. projection), and are thus prone to ineffi-
cient execution. Some recent research work has proposed using
XML-based event-oriented representation for transaction-time
temporal database, where value updates in database history
are recorded as events [5], [6], [7]. For example, below is the

2uniprot: http://www.uniprot.org
3Yahoo! Finance: http://finance.yahoo.com
4http://en.wikipedia.org/wiki/Wedge pattern

Fig. 4. The web client for complex pattern matching in protein sequences

DTD of a temporal employee XML, where each employee has
a sequence of salary and dept elements time-stamped by the
tstart, tend attributes, representing the update events ordered
by their start time in the database’s evolution history.
<!DOCTYPE employees [
<!ELEMENT employees (employee*)>
<!ELEMENT employee (name (salary | dept)+)>
<!ATTLIST employee id CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT salary (#PCDATA)>
<!ELEMENT dept (#PCDATA)>
<!ATTLIST salary tstart CDATA #REQUIRED>
<!ATTLIST salary tend CDATA #IMPLIED>
<!ATTLIST dept tstart CDATA #REQUIRED>
<!ATTLIST dept tend CDATA #IMPLIED>]>

XSeq is a powerful event-oriented temporal language, which
can express effectively the basic temporal operations (e.g.,
temporal joins and temporal coalescing), as well as very
complex temporal sequence patterns. This can be illustrated
by the following example.

Example 4: Find employees who have risen quickly with-
out changing department. More precisely, we want to find
employees who

1) once hired (with some salary and into some department),
2) have gone through one or more salary adjustments, fol-

lowed by
3) a transfer to another department,
4) for a final salary that is 40% above the initial one.

This complex pattern can be expressed succinctly by Query 2.
Query 2:

return $X
from //employee[@$X] /$A \$B \$C (\$D)* \$E
where tag($A) = ‘salary’ and tag($B) = ‘dept’
and tag($C) = ‘salary’ and tag($D) = ‘salary’
and tag($E) = ‘dept’ and tag($X) = ‘id’
and $E/text() <> $B/text()
and last($D)/text() > 1.4 * $A/text()

In this demo, users will experience the simplicity and
power of XSeq by writing temporal queries over XML-based
temporal dataset.
D. Software Analysis

Modern programming languages and software frameworks
offer ample support for debugging and monitoring appli-
cations. For example, in the .NET framework, the Sys-
tem.Diagnostics namespace contains flexible classes which
can be easily incorporated into applications to output runtime
debug/trace information as XML files. The following XML
snippet shows a software trace of a function fibonacci that
recursively called itself but in the end threw out an exception.
<main>
...
<fibonacci @input = ‘500’>
<fibonacci @input = ‘499’>
...
<exception @msg = ‘overfolow’ />

</fibonacci>
</fibanacci>
...

</main>

Searching and analyzing the patterns in software traces
could help debugging. For example, we can easily identify
the input to the last iteration of the function fibonacci and
the depth of the recursive calls by

Query 3:
return last($F)@input, count($F)
from //$X (/$F)* /$E
where tag($X) != ‘fibonacci’
and tag($F) = ‘fibonacci’
and tag($E) = ‘exception’

Our XSeq system can also help database administrators,
given that many commercial databases can export query plans
in XML format. Thus our administrators can write XSeq
queries to detect patterns of interest, in order to locate per-
formance bottlenecks, e.g., the most costly two-way join in a
large block of multi-way joins.

During the demonstration, we will provide XML-based
software traces and SQL query plans, and let the audience
raise interesting queries against the XSeq system.

V. EASE-OF-USE AND PERFORMANCE

Our audience will be allowed to write their own sequence
queries using our user-friendly interfaces designed for various
application domains. Thus, those users who are interested in
genomic data analysis, but are unfamiliar with regular expres-
sions, will be able to use our web-based client to translate
genomic patterns into XSeq, and visualize the detected patterns
in graphical views (see Figure 4). However, more experienced
users will work with our general-purpose client to try different
XSeq queries over various XML data sets, ranging from finan-
cial data and temporal databases to software debugging traces.
Finally, we will have other native XPath engines available so
that audience can compare the performance of XSeq on both
traditional XML queries and sequence queries. Our audience
will be able to watch individual XSeq optimization techniques
in action and experience their effectiveness.

As described in [1], the XSeq engine has both static and
run-time optimizations. The main static optimizations are as
follows:

Cutting the inferrable prefix. We can always remove the
longest prefix of the pattern as long as (i) the prefix has not
been referenced in the return or the where clause, and (ii)
the omitted prefix can be inferred from the remaining suffix.
Due to the sequential nature of VPA, such simplifications can
greatly improve efficiency by reducing a global pattern search
to a more local one.
Reducing non-determinism. Our algorithm for translat-
ing XSeq queries produces VPAs that are typically non-
deterministic. Reducing non-determinism speeds up execu-
tion by avoiding many unnecessary backtracking. For in-
stance, if we know that an element referred in the query
contains no attributes and no subelements, we can remove
the non-deterministic states corresponding to those attributes
and subelements. This technique decreases non-determinism
without incurring in the exponential memory costs which are
common with full determinization of VPAs.

At query time, a straightforward evaluation of a VPA re-
quires matching the pattern starting from every input element.
However, inspired by the KMP algorithm, we use a similar
backtracking minimization technique for VPAs—a technique
called VPSearch [8]. During the demo, we will provide a high
level description of these optimizations and then demonstrate
their effectiveness by simply testing running times after each
optimization is turned on or off.

VI. CONCLUSION

The XSeq system supports a powerful language extension to
XPath which is effective at expressing complex sequence pat-
terns over both stored and streaming XML data. XSeq is highly
amenable to optimization and efficient implementation, and
thus the XSeq system achieves excellent performance on both
traditional and sequence XML queries. We have devised user-
friendly interfaces, including a specialized client for translating
regular expression style protein sequence pattern into XSeq
queries, so that the users can gain the first-hand experience
at writing XSeq queries. We will present several real-world
examples from various application domains, such as genomic
data analysis, financial data analysis, temporal databases and
software analysis.

REFERENCES

[1] B. Mozafari, K. Zeng, and C. Zaniolo, “High-performance complex event
processing over xml streams,” in SIGMOD Conference, 2012, pp. 253–
264.

[2] R. Alur and P. Madhusudan, “Visibly pushdown languages,” in STOC,
2004, pp. 202–211.

[3] ——, “Adding nesting structure to words,” J. ACM, vol. 56, no. 3, 2009.
[4] C. Koch, “Xml stream processing,” in Encyclopedia of Database Systems,

2009, pp. 3634–3637.
[5] T. Amagasa, M. Yoshikawa, and S. Uemura, “A data model for temporal

xml documents,” in DEXA, 2000, pp. 334–344.
[6] F. Wang, C. Zaniolo, and X. Zhou, “Archis: an xml-based approach to

transaction-time temporal database systems,” VLDB J., vol. 17, no. 6, pp.
1445–1463, 2008.

[7] C. Zaniolo, “Event-oriented data models and temporal queries in
transaction-time databases,” in TIME, 2009, pp. 47–53.

[8] B. Mozafari, K. Zeng, and C. Zaniolo, “From regular expressions to
nested words: Unifying languages and query execution for relational and
xml sequences,” PVLDB, vol. 3, no. 1, pp. 150–161, 2010.

