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Abstract—To cope with bursty arrivals of high-volume data,
a DSMS has to shed load while minimizing the degradation
of Quality of Service (QoS). In this paper, we show that
this problem can be formalized as a classical optimization task
from operations research, in ways that accommodate different
requirements for multiple users, different query sensitivities to
load shedding, and different penalty functions. Standard non-
linear programming algorithms are adequate for non-critical
situations, but for severe overloads, we propose a more efficient
algorithm that runs in linear time, without compromising opti-
mality. Our approach is applicable to a large class of queries
including traditional SQL aggregates, statistical aggregates (e.g.,
quantiles), and data mining functions, such as k-means, naive
Bayesian classifiers, decision trees, and frequent pattern discovery
(where we can even specify a different error bound for each
pattern). In fact, we show that these aggregate queries are special
instances of a broader class of functions, that we call reciprocal-
error aggregates, for which the proposed methods apply with full
generality.
Finally, we propose a novel architecture for supporting load

shedding in an extensible system, where users can write arbitrary
User Defined Aggregates (UDA), and thus confirm our analytical
findings with several experiments executed on an actual DSMS.

I. INTRODUCTION
Important applications, such as live traffic monitoring, track-

ing of stock prices, credit card fraud detection, and net-
work monitoring for intrusion detection, must process massive
volumes of data streams with real-time or quasi real-time
response. To support these applications, a new generation of
data management systems, called Data Stream Management
Systems (DSMS) is being developed. The continuous query
languages of such DSMS are often similar to those of tradi-
tional SQL-compliant DBMSs [4], [2], [27]. But DSMS must
also provide QoS in the presence of high-arrival rates, bursty
arrivals and many other technical challenges not faced by
traditional DBMS. In fact, data stream arrival rates can be high
and unpredictable. If the arrival rates significantly exceed the
system’s capacity, queues build up and the processing latency
increases without bound. Therefore, one of the fundamental
tasks of a DSMS is to (i) constantly monitor the current
load, and detect circumstances, where shedding some of the
load becomes inevitable. This of course, will degrade the
quality of the queries’ answers. The question then becomes
(i) when, (ii) where and (iii) how much load to shed. Graceful
load shedding is desired in order to minimize the accuracy
loss. The state-of-the-art on load shedding is still lacking
a general model. Previous work on the problem delivered
effective solutions under simplified conditions. For instance,

most current techniques differentiate between running queries
only based on their processing costs [5], [26], [7], [21], [22];
only a few of them also try to discard the less important parts
of the load, with techniques that are application-specific [7]
or assume that load shedders can be placed at the very source
of the data streams rather than in the DSMS as needed by
many applications [9], [12]. Therefore, the need for more
general load shedding models and algorithms remains acute—
inasmuch as current approaches do not support well the
conditions that occur in many application scenarios, including
the following:
1) Many users may share the same DSMS, demanding
different QoS guarantees. Also, the same user may
weigh her own queries differently. In fact, the QoS
specification itself can be in the form of an aggregate
metric of multiple queries. Thus, we must accept higher
level quality specifications, e.g. to minimize the total
relative error, summed up over a user’s queries.

2) Each query may seek a different goal under load shed-
ding, and that can potentially lead to even different
treatment of the PARTITION BY (a.k.a. GROUP BY) keys
within the same query.

3) The load shedding algorithm itself must incur no or
little overhead to the system. It also has to guarantee an
optimal solution for a large class of aggregate queries.

4) Load shedding techniques should be added easily to
DSMSs, without compromising the openness and ex-
tensibility of the system. Thus, simple primitives are
needed to provide load shedding capabilities for arbitrary
aggregates.

The following examples illustrate how addressing the above
points is not trivial.
Example 1. Consider a data stream where each tuple

represents a transaction of basket items1. Suppose that the
system is running two queries, QA and QB , counting the
occurrence of patterns A and B, respectively, on a window
size of W = 24. (Thus, if A = {milk, butter}, QA is the
number of transactions containing both milk and butter.)If
checking whether a pattern is contained in a tuple takes c
processing units, determining the exact frequency of all the
patterns over all the transactions takes 2× 24 = 48c. Now, if
the system’s capacity only allowed 30c, we must skip counting
some transactions, some patterns, or both. If the user expresses

1In the literature, terms ‘pattern’ and ‘itemset’ are often used interchange-
ably.
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no preference, any arbitrary load shedding scheme leading to
30c would be acceptable. But let us instead assume that our
user wants to minimize G =

∑
p

1−rp
rp

fp where p ranges over
the patterns, rp is the fraction of the transactions considered in
processing Qp, and fp is the true frequency of pattern p2. Let
us now assume that fA = 1, fB = 4 (in reality, these values
are not known and will have to be estimated as discussed
in Sections II,III) and compare three different load shedding
policies, as follows:
1. Uniform: We spend the same amount of resources for

each of the queries, namely 15c each. We have rA = rB = 15

24

and:
G =

1− 15/24

15/24
× 1 +

1− 15/24

15/24
× 4 = 3

2. Proportional: We allocate our resources in proportion
to the frequency of each pattern. Thus, since fB

fA
= 4, we

spend 6c and 24c units onQA andQB , respectively. Therefore,
rA = 6/24, rB = 24/24, and thus:

G =
1− 6/24

6/24
× 1 +

1− 24/24

24/24
× 4 = 3

3. Optimal: The optimal load shedding plan (one that
minimizes G) could be achieved (discussed in Section V-C) if
we allocated 10c and 20c units to QA and QB , respectively.
Thus, we have rA = 10/24, rB = 20/24, and thus:

G =
1− 10/24

10/24
× 1 +

1− 20/24

20/24
× 4 = 2.2

While all three policies meet the maximum load requirement
of 30c processing units, not all of them produce the same
value for our goal function. The current literature on load
shedding has so far only applied the first method, namely
uniform [5], [26], [7], [21], [22]. However, as illustrated by
this simplified example, depending on the users’ criteria and
the specific application needs, a uniform load shedding may
not be best.
Example 2. Consider the following data stream and the two

continuous queries running upon (written in ESL [6]):
STREAM OpenAuction (itemID int, price real, ts timestamp)

ORDER BY ts SOURCE ’port4561’;
SELECT itemID, sum(price)

OVER(ROWS 49 PRECEDING SLIDE 10
PARTITION BY itemID)

FROM OpenAuction;
SELECT itemID, max(price)

OVER(ROWS 49 PRECEDING SLIDE 10
PARTITION BY itemID)

FROM OpenAuction;

Since both max and sum are built-in aggregates, the sys-
tem can automatically correct the query answers once load
shedding is applied. For sum, the answer needs to be scaled
up by the inverse of the shedding ratio, whereas for max, the
result can be left intact3. Second, different users/applications

2If the fp estimates are accurate, this minimizes the total variance.
3There are more sophisticated methods for even correcting the min re-

sults [17].

may prefer to minimize different types of error, which will
require different correction policies. Finally, due to the black
box semantics of User-Defined Aggregates (UDA), the system
is not able to shed data from its input4. UDAs have proven ef-
fective in providing expressiveness5, extensibility and mining
functionalities in a DSMS [24], [23]. Thus, when overloaded,
shedding input from UDAs provides a significant source of
efficiency for a DSMS. In this paper, we propose a novel
architecture (implemented in our own DSMS) to enable a
flexible load shedding framework that can be applied to both
built-in and user defined aggregates, and can suit different
correction policies.
Problem Definition. In this paper, we tackle the problem of

optimal load shedding for aggregates over data streams, when
queries have different processing costs, different importance
and the users have provided their own arbitrary error functions,
which may require different treatment of the keys even within
the same query. Therefore, customers provide their business
needs in terms of QoS specifications (e.g., stating the maxi-
mum error tolerated), and our work translates such guarantees
into concrete amounts of load to be shed from each query (or
its keys). We also propose and implement a novel architecture,
that allows the system to apply our optimal load shedding over
a large class of arbitrary UDAs (e.g., complex mining tasks),
which are treated as black boxes.
Contributions. In summary we make the following contri-

butions: 1. We formulate the general load shedding problem as
an optimization problem of finding a proper shedding ratio for
each query, such that in the end, a weighted error is minimized.
We allow the queries in question to have different importance,
error functions, processing costs, and maximum tolerated error.
2. We recognize a sub-class of queries based on the relation
between their error and the applied shedding ratio, called
reciprocal-error queries, and show that most common aggre-
gate functions (and thus, mining tasks) fall into this class.
3. For a collection of N reciprocal-error queries, standard al-
gorithms from operations research can find an optimal solution
in time O(N · logN). However, we propose a more efficient
algorithm for severe overload conditions, that runs in O(N),
without losing optimality.
4. We propose a novel architecture that can deliver our
optimal policy, even in the presence of a large class of
UDAs. We provide our users with an API to export their
keys and their weights, and use query rewritings that can suit
different execution environments, i.e. sequential DSMSs and
parallel/distributed ones.
5.We present an extensive case study for the applicability and
effectiveness of our approach, using frequent pattern mining
and monitoring. We discuss several optimization opportunities
in the implementation of adaptive load shedding.

4Assuming a window-based aggregate, one may still shed the input via
WinDrop operators [22]. However, it will result in missing output for
several windows instead of providing approximate results within some error
guarantees.
5A DSMS becomes Turing-complete for data streams if UDAs are al-

lowed [6].
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6. We validate our theoretical results by implementing them
into a full-fledged DSMS (StreamMill [6]). We present empir-
ical results demonstrating the significant improvements on the
quality of mining queries, measured by well-known metrics
such as absolute MSE, relative error, and the number of false
positives and negatives.
Outline. In §II and §III we review the related work and

provide a background on load shedding in a DSMS. In §IV we
study the effect of load shedding on answer quality. Adaptive
load shedding and our proposed algorithm are introduced
in §V. We present our proposed architecture in §VI. Our
extensive case study on counting queries and frequent pattern
mining in §VII is followed by addressing efficiency concerns
in §VIII. Finally, empirical results are presented in §IX, and
we conclude in §X.

II. RELATED WORK

The prior work has addressed the processing of join queries
under load shedding [10], [11], [16], which usually involves
adhoc heuristics. For aggregate queries, which is the focus of
this paper, we instead use random load shedding.
In their pioneering paper, Babcock et al. [5] proposed

random drop operators carefully inserted along a query plan
such that the aggregate results degrade gracefully. Tatbul et
al.[22] showed that an arbitrary tuple-based load shedding can
cause inconsistency when windowed aggregation is used. They
proposed a new operator called WinDrop that drops windows
completely or keeps them in whole. Inspired by their work,
in Section V-D, we discuss how our framework can deliver
both subset [22] and approximate results [5], [17], [7], [12],
[9]. Also in Section VI, we address a similar concern, where
missing output tuples is not an acceptable option for the
application, and the system has to be assisted by programmers.
Although in this paper we focus on dropping tuples, our
techniques can be easily combined with the WinDrop operator,
as follows. Once our algorithm decides on the shedding ratio
for each query, a separate WinDrop operator can be applied
to each group of the queries sharing the same ratio.
Perhaps the most aligned with our line of work is that

in Loadstar [7], arguing that for many data mining tasks
a more intelligent load shedding scheme for data streams
is required. Even though this pioneering work differentiates
between different input streams, they still treat all queries
equally. Moreover, their adhoc method only focuses on classi-
fication tasks and their quality of decision, whereas we propose
a general framework for a larger class of queries and support a
more customizable setting. Recently, load shedding in sensor
and mobile networks has been stated as an optimization
problem in [12], [9], where they rely on the very sources of
the data stream (i.e., nodes) to perform filtering and shedding.
However, we do not make any assumptions about the source
nodes, and the load shedding is performed by our centralized
DSMS, as required by many streaming applications. Thus, our
DSMS does not need to trust, rely upon or communicate with
any of the stream generator nodes, in order to deliver more
flexibility, reliability and ease of maintenance.

We borrow the existing techniques from [7], [17] as
complementary modules of our load shedding architecture.
We describe the interaction between such components in
Section III. For boosting the quality of the apriori estimations,
Law and Zaniolo [17] favor a Bayesian model while Loadstar
favors a finite Markov model [7].
There has also been recent work on the application of

control theory techniques in detecting the right time and also
the ‘total amount’ of load shedding. In general, in an open-loop
control (i.e., traditional load shedders), system output or state
information is not used in the controller. On the other hand,
closed-loop control provides better quality, less delay and less
overshooting [26]. As briefly described in Section III, our
method of optimal load shedding can be easily integrated with
such control-loops. Whenever the controller determines the
need for shedding load, and decides on the total amount of load
that needs to be shed (based on monitoring the arrival rates,
queue lengths, CPU usage, etc), our component optimally
distributes the current resources between the running queries
to satisfy the controller, while minimizing the total error.
There is also a close connection between load shedding and

random samplers. In [15], streaming operators (analogous to
our UDAs) can be used for random sampling of the tuples,
which can then be fed into other aggregates. Yi et al. [28]
proposed probabilistic algorithms for detecting malicious in-
consistencies in answers from continuous queries, run over
random synopses of data.

III. BACKGROUND
As shown in Figure 1(a), in the typical architecture of a

DSMS, load shedders are inserted between certain nodes of
the query graph, in order to randomly discard a portion of
the tuples under overload, and hence, reduce the buffer length
and latency [5], [17]. The problem of deciding the optimal
locations in the query network for inserting load shedders
has been addressed by prior work [21]. Figure 1(b) depicts
the major components in our framework. In the following we
discuss each component.
The right time (or frequency of) load shedding, and the total

amount of load to be shed have been addressed by prior work
using techniques from control theory [26]. Their method can
be integrated with ours, referred to asMonitor and Controller
components in Figure 1(b).
The current load shedding literature, generally speaking6,

affects all queries equally. For instance, if the total load is
twice the system’s capacity, all the queries will face 50%
load shedding. Thus, in this paper we extend the current
architecture by adding a novel component, called Optimal
Resource Distributer (ORD). As shown in Figure 1(b), once
the total amount of needed load shedding is decided by the
controller, the ORD calculates the optimal shedding ratio for
every load shedder in the query network. As shown later, in
order to find the optimal solution, the ORD also needs an
estimate of the data distribution/statistics. Prior work [17] has
6Except[12], [9] which are source-based load shedding, and [7] that is

adhoc to a certain classification task, see §II.
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Fig. 1. (a) A query network. (b) The general framework of our load shedding proposal.

also provided means for such estimations from the past data,
which is the Quality Enhancement Module. In fact, those
estimations can also improve the accuracy of the final results
significantly.

IV. LOAD SHEDDING AND ERROR
Data streams are often divided into windows. In particular,

the technique of partitioning large windows into slides to
support incremental computations has proven very valuable
in DSMS [8], [6]. Windows and slides can be either count
based or time based. Continuous queries can be issued over
a tumbling window or a sliding window. There is also a
third type of continuous queries called decaying that does not
require a window definition [6].
Throughout this paper we assume that the arrival rate of the

input tuples and the processing load of the system is monitored
periodically, based on which load shedding decisions are made
for the next W tuples. Let t1, · · · , tW denote the current set
of input tuples. The load shedding ratio applied to query q
is referred to as rq , where 0 < rq ≤ 1. Thus, for processing
q we only look at Rq = rq · W randomly selected tuples
(0 < Rq ≤W ), and then try to estimate the answer from this
random sample. We use L to denote the total resource limit in
this period. The Rq values should be selected in such a way
that the constraint below is satisfied:∑

q∈S

Rq ≤ L (1)

where S is the set of running queries. In the above formulation,
we are assuming separate execution of the queries. Later
in Section VI, we will incorporate the amortized cost of
processing similar queries together.
A query network may contain arbitrary operators (e.g.,

SUM, AVG, mining queries). Next, we explore the relationship
between the shedding ratio and the error for different types of
aggregate queries.

A. Counting and Frequent Pattern Mining
Let us consider an aggregation query q that counts the

occurrence (a.k.a., frequency) of a pattern p. This query can be
a mining task (to verify whether p is frequent enough), or just
a simple COUNT query. In the context of pattern mining, each
ti is a transaction7 and the frequency of p is defined to be the
7For simplicity, in this paper we assume fix length transactions that can fit

in a tuple.

number of tuples ti where p ⊆ ti. For scalar COUNT queries,
the frequency will simply be the number of those tuples where
p = ti.
In the presence of a load shedder with sampling rate rq ,

every tuple of the window will get included in the sample
with probability rq . Let fp be the true frequency of p over
this window. Based on this random sample, we can set an
approximate answer f̂p to be the frequency of p in the
tuples that get included, scaled by 1/rq. Thus, using Bernoulli
sampling theory, one can prove that f̂p is in fact an (unbiased)
estimator, as follows.
An unbiased estimator. For each given query q (with a

WHERE clause looking for pattern p), we can define8 bi = 1
when p ⊆ ti and bi = 0 otherwise. Clearly, we have fp =∑W

i=1
bi.

Since each tuple ti is processed with a probability rq and
discarded with probability 1 − rq , we can define a random
variable Xi such that Xi =

bi
rq
with a probability of rq and

Xi = 0 with a probability of 1−rq . In terms of these random
variables, our estimator of p’s frequency (which is based on the
randomly selected Rq transactions) will be: f̂p =

∑W
i=1

Xi.
The bias and the variance of this estimator can be derived as
follows.

E[f̂p] = E[

W∑
i=1

Xi] =

W∑
i=1

bi = fp (2)

Thus, we have an unbiased estimator, and:

V ar[f̂p] = E[f̂2

p ]− E[f̂p]
2 = E[f̂2

p ]− f
2

p

=
W∑

i=1

E[X2

i ] +
∑

1≤i�=j≤W

E[Xi] · E[Xj ]− f
2

p

=

W∑

i=1

b2i

rq
+ (

W∑

i=1

bi)
2 − (

W∑

i=1

b
2

i )− f
2

p

=
1− rq

rq

W∑

i=1

b
2

i =
1− rq

rq

W∑

i=1

bi (Since bi ∈ {0, 1})

=
1− rq

rq
fp (3)

Note that Eq. (3) relates the variance (relative error) of the
estimator to the applied sampling (shedding) rate rq . The larger

8A more precise notation would be bi,p since each pattern has its own
estimator variables.
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the rq the better, e.g. if rq = 1 (i.e. Rq = W ) the estimator
will be perfect, confirmed by (3) as a zero variance.
Computing the variance. Note that the ultimate goal is to

estimate the fp values as accurately as possible, but equation
(3) is itself written in terms of this unknown variable. Thus
in practice, instead of fp values, we use their approximations
(denoted by f∗p ) in Eq. (3) which can be derived from past
data (see the distribution estimates in Figure 1(b)). However,
note that these approximations are solely used in the process of
estimating the variances which will then be used in Section V,
to find the optimal rq values. Once this optimal load shedding
policy has been applied, we compute the f̂p estimators which
are now more reliable than our first approximations, namely
f∗p . This is due to the fact that for f̂p, we at least have an
analysis of the variance and expectation values. Moreover,
our experimental studies in Section IX have validated that
even using the simplest approximation for f∗p values, we still
achieve significantly more accurate estimators in the end.
Our proposed techniques in later sections are independent

from the specific approximation techniques, except that more
accurate approximations yield better final results. Therefore,
while in our experiments (Section IX) we simply use the fp
counts from the previous window as the f∗p values for the
next window, any other approximation method could be used
here too. In fact, more sophisticated methods can be easily
adopted in our framework, such as a weighted (decaying)
sum of the counts from several past windows or the accuracy
boosting framework introduced by Law and Zaniolo [17]
where a Bayesian model is exploited in correcting the errors
and detecting concept shifts.

B. Reciprocal-Error Queries

In this section we formally define a class of operators,
named reciprocal-error queries, which include a large range
of conventional aggregate operators and which are also key
components of many important mining tasks. As shown later,
the proposed algorithms in Section V work with any collection
of operators from this class.
Definition 1 (Reciprocal-Error Query): A query q is

reciprocal-error with respect to error function e, if under load
shedding with sampling rate rq , one can find an unbiased
estimator for its answer from the random sample, such that
its error eq grows reciprocally with rq . In other words, there
should be aq and bq (both independent of rp and eq) such
that for any 0 < rq ≤ 1:

eq =
bq
rq
− aq (4)

Note that in this definition we do not restrict the type of
error. Thus, a query can be reciprocal-error with respect to
a certain type of error while not so with respect to other
error types. Therefore, once an error function e is chosen, our
proposed algorithms are guaranteed to optimally minimize e
for all the queries that are reciprocal-error with respect to e.
However, in practice more commonly-used error functions in

the context of estimators include variance9, relative error and
accuracy error.
According to Eq. (3), COUNT (and therefore frequent pattern

mining) are reciprocal-error with respect to variance, where
aq = fq and bq = fq . Also, dividing this variance by the true
frequency gives the relative error as 1

rp
− 1. Thus, COUNT and

frequent pattern queries are also reciprocal-error with respect
to relative error.
We can use results from [17] for SUM and AVG queries, for

which two unbiased estimators are introduced. Denoting the
true value of SUM as sq, and its estimator as ŝq, we have:

V ar[ŝq ] = −
s2q(σ

2 + μ2)

Nμ2
+

s2q(σ
2 + μ2)

Nμ2
× 1

rq
(5)

Also denoting the AVG and its estimators by mq and m̂q

respectively, the variance can be derived as:

V ar[m̂q] = −σ2 + μ2

N
+

σ2 + μ2

N
× 1

rq
(6)

where in both equations σ and μ represent the standard
deviation and the mean of the original data respectively. Eq.
(5) and (6) prove that SUM and AVG are also reciprocal-error
with respect to variance.
In addition to frequent pattern mining and monitoring [18],

many other mining tasks can be expressed using the above
reciprocal-error queries. For instance, AVG clustering algo-
rithms such as K-means and K-nearest neighbors are imple-
mented using AVG and COUNT, respectively. The main building
blocks of many classification algorithms are also reciprocal-
error aggregates. For instance, a Naı̈ve Bayesian Classifier
consists of several COUNT queries. Other examples of mining
tasks expressible in terms of reciprocal-error queries include
frequent pattern mining and k-means. More such algorithms
can be found in [17].
Another important class of queries that are reciprocal-error

with respect to variance are quantiles. According to [20], the p-
th sample quantile is asymptotically normal with mean F−1(p)
and variance:

V ar[p-th quantile of the sample] =
p(1− p)

(f(F−1(p)))2
.
W

rq

whereW is the population (window) size, F is the cumulative
distribution function and f = F ′ is the density function. Note
that Median, MAX, MIN are special cases of quantiles.

V. ADAPTIVE LOAD SHEDDING
As simplified in Example 1, the general idea behind adap-

tive load shedding is to treat different keys of each query
differently, in order to achieve optimality. Using different
shedding ratios for different queries always pays off when
the aggregates occur in different paths of the query graph,
as shown in Figure 1. However, different shedding ratios for

9In this paper, we use variance and absolute error interchangeably since
for unbiased estimators, their variance decides the magnitude of uncertainty.
Thus, variance divided by the true value will be our relative error. For accuracy
error see Section VII.
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different PARTITION BY keys of the same aggregate, can
also be beneficial. This may not hold for aggregates with
simple PARTITION BY clauses. For instance, let us compare
the following two queries:
Q1: SELECT itemID, sum(price)

OVER(ROWS 49 PRECEDING SLIDE 10
PARTITION BY itemID)

FROM OpenAuction;
Q2: SELECT patID, count(transaction) AS freq

OVER(ROWS 49 PRECEDING SLIDE 10
PARTITION BY itemID)

FROM PatternTable, TransStream
WHERE contained(patID, transaction)
HAVING freq > 1000;

Due to the unbounded nature of data streams, most DSMSs
use a hash-based implementation for the PARTITION BY keys
of aggregates in order to make the execution non-blocking
(whereas in a DBMS, a sort-merge implementation could be
applied, as a blocking operator). Thus, when executing Q1, the
processing of each tuple requires constant-time (i.e., indepen-
dent of the total number of itemID’s) to look up the value of its
itemID in the hash table. Therefore, having different ratios for
different keys will not save much computation. In other words,
as long as a tuple is going to be considered for a particular
key, considering it for all other keys will not incur additional
overhead. We refer to such queries as ‘flat-cost’ queries. For
example, if the above Q1 query involves three keys for itemID,
say i, j, k, to which we need to apply 50%, 30% and 10%
shedding ratios respectively, one can use the same 50% of
the tuples to update the sum of all three items without extra
overhead.
However, for more involved queries such as Q2, the cost

of processing each tuple of the input stream depends on the
number of patterns stored in PatternTable. We refer to this
class of queries as ‘variable-cost’ ones. These two classes of
queries can be easily detected syntactically. In our system,
joins, and function-based selections mark a query as variable-
cost [19].
In its most general form, we formulate the load shedding

problem as that of minimizing a weighted error of our esti-
mations, once a certain amount of load has to be shed. Let S
be the set of all keys of all the running queries10, and assume
|S| = N . We denote the errors by vector �E = [ek1

, · · · , ekN
],

where eki
is the error in our approximate answer for key ki,

for all keys in S. Similarly, we denote the keys’ importance
by �V = [vk1

, · · · , vkN
], and their resource cost by �C =

[ck1
, · · · , ckN

]. Thus, for each key k, we have a triple: ek, vk
and ck. Now, the problem of adaptive load shedding can be
formally stated as choosing rk values such that they minimize
the weighted error (the scalar product of �E · �V ) as the goal
function (7), subject to the resource constraint (8).

Minimize: G = �E · �V =
∑
k∈S

ek · vk (7)

10In Section VI we discuss how these keys are extracted from the past
results.

while according to (1) and Rk = W · rk:

�r · �C =
∑
k∈S

rk · ck ≤ L

W
(8)

If all the queries in S are reciprocal-error with respect to the
given error function �E, one can use Eq. (4) to simplify the
above optimization goal as follows:

Minimize: G = −
∑
k∈S

ak · vk+
∑
k∈S

bk · vk
rk

= −
∑
k∈S

ak · vk+G1

where:
G1 =

∑
k∈S

bk · vk
rk

(9)

Note that to minimize G, it suffices to minimize G1 while
satisfying (8). Also, notice that ak and bk values differ from
one query type and key to another, and also from one error
function to another. In each case, the proper formula should
be applied, as described in Section IV-B.
For the keys extracted from flat-cost queries, the costs for

all the keys from the same query are equal to the processing
cost of that query for one tuple, divided by the number of keys.
However, we also add extra equality constraints to enforce that
the solution to the above optimization problem sets the same
shedding ratio for all the keys in the same flat-cost query.
On the other hand, for variable-cost queries, the ck values
represent the average processing factor of their queries, per-
tuple-per-key. Also, the shedding ratios of their keys can be
different here.
Next, we discuss three different solutions for the above

mentioned optimization problem. First, we explain the uniform
approach, which is the state of the art method in centralized
load shedding methods [17], [5], [26], [21], [2]. We also
present an alternative method, called proportional, that takes
the weights into consideration when deciding the rk values.
Both of these methods will be later used as baselines to com-
pare with our proposed solution. We argue that our formulation
of a centralized load shedding is flexible, can be efficiently
implemented (see Section V-C), and can be easily extended to
arbitrary UDAs (see Section VI).

A. Uniform Resource Allocation
In current centralized load shedders [17], [5], [26], [21],

[2], a single shedding rate is selected to discard some of the
transactions. The remaining transactions will then be used to
process all the queries. In particular, when the queries share
the same query plan (e.g. all perform counting), they exhibit
the same processing cost too, and thus, the same shedding ratio
will be applied to all of them. In other words, all queries are
treated equally, as they are processed against the same (number
of) transactions. Since the same shedding ratio is uniformly
applied to all the queries regardless of their error functions
and importance (and sometime even their costs), we refer to
this method as uniform. Thus, given L, W and �C the global
load shedding ratio r can be derived as:

r =
L

W.
∑

k∈S ck
(10)
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Therefore, in uniform load shedding, for all k ∈ S, we have
rk = r. When all the the running queries are homogeneous,
one can assume ck = 1 for all k ∈ S.

B. Proportional Resource Allocation
Another heuristic to cope with different importance is to

distribute the available resources between different queries
proportional to their importance vp. More formally, the share
for each query key k from the total resource is determined
using the formula below11.

rk =
vk∑

k′
∈S

vk′

· L

ck.W
(11)

Depending on the application requirements, query types
involved, and the error function, one may find one of the above
methods (i.e., uniform and proportional) more favorable (e.g.,
see Section VII).

C. Optimal Resource Allocation
As mentioned previously, a solution consists of a set of

positive rk values (for all keys k ∈ S) that satisfy constraint
(8). An optimal solution with respect to a given error function
is one that minimizes the goal function G1—see Eq. (9). Our
adaptive load shedding problem becomes a special case of
a subclass of non-linear programming, named separable and
convex resource allocation, and thus, can be optimally solved
using classic operations research algorithms [25]. However, all
these algorithms involve sorting [25], and therefore, their best
time-complexity is, in general, O(|S| · log(|S|)).
However, under severe loads, even a linear-logarithmic

time complexity can be too expensive. In the rest of this
section, we first formulate certain overloaded settings. Then,
we propose a linear-time algorithm for finding the optimal
solution under such settings. Later, in Section VIII, we discuss
further optimization techniques.
Definition 2: For a given resource limit L, window size

W and vectors �C, �E and �V , we call the situation a ‘critical
setting’ if the following condition holds for all k ∈ S:

L

W · √ck
·

√
bk · vk∑

k∈S

√
bk · vk · ck

≤ 1 (12)

Roughly speaking, a critical setting refers to a situation in
which the available resources make us apply load shedding to
most keys if we seek an optimal solution. Before presenting
an efficient algorithm for critical settings, we need to show
that any optimal solution must satisfy the monotonicity prop-
erty. All the omitted proofs can be found in our technical
report [19].
Lemma 1: If bq · vq

cq
= bq′ · vq′

cq′
, in any optimal solution

rq = rq′ . Also, in such solutions, when bq · vqcq < bq′ · vq′cq′
we

have:
1) rq < rq′ if rq < 1.
2) rq = rq′ if rq = 1.

11When the righthand side is larger than one, rk is set to 1.

This lemma, in conjunction with the following results, leads
us to an efficient algorithm as long as the system is in a critical
setting (i.e., the resources are below a certain threshold).
Theorem 2: In any optimal solution for a critical setting, if

bk · vkck < bk′ · vk′

ck′

, we have:

rk =

√
bk · vk
bk′ · vk′

·
√

ck′

ck
· rk′ (13)

Lemma 3: Under a critical setting, if rk values for k ∈ S
are an optimal solution with respect to a given L > 0, then
an optimal solution for the same set of vectors �C, �E and �V
with respect to any other L′ > 0, consists of r′k = L′

L
· rk for

all k ∈ S.
According to Lemma 3, we do not even need to examine

all values for the maximum ratio before applying Theorem 2.
The pseudo code for finding an optimal solution in linear time
is presented next.
Algorithm 1.
1) Let m be one of the keys with maximum bm·vm

cm
. Assign

an arbitrary value to rm. For all other keys k �= m, if
fk = fm then let rk := rm; otherwise choose rk based
on Theorem 2.

2) Let u = sum
k∈S

rk · ck. Return r′k = L·u
W
· rk for all

k ∈ S as an optimal solution satisfying constraint (8).

D. Flexibility of the framework
In general, load shedders follow one of the following two

paradigms: (i) they drop a fraction of the input, and try their
best to provide approximate answers in the output [5], [17],
[7], [12], [9]. (ii) they drop/keep windows entirely such that
the output of the aggregates for the kept windows remains un-
affected while no output is produced for the missing windows.
This latter method is called ‘subset results’, as the output is
always guaranteed to be a subset of the actual answer [22], and
comes at the expense of missing output tuples. Our framework
can naturally combine the two paradigms, to provide a broad
spectrum of applications with more flexibility, as described
next.
The user can provide a maximum-tolerable error for each

of his queries (or even for certain keys within his queries),
above which he would not be willing to see our approximate
results. Thus, once we solve our optimization problem, we
simply revisit12 all the queries that will not meet the required
QoS specs. By ignoring such queries and distributing their
resources among other queries we are able to further boost
the quality of their answers. Thus, a user who always prefers
subset results over inaccurate ones, can simply set all those
maximum tolerable errors to zero. In such a case, the opti-
mization problem determines an optimal solution in which less
affordable/important queries will be ignored in the interest of
providing subset results for other queries.
Implications on designing future systems. Having access

to an optimal load shedding algorithm can also be beneficial

12In fact, we do not need to solve the equation iteratively. We only need
to add appropriate inequality constraints on the shedding ratios. More details
can be found in our technical report [19].
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from a design point of view. For a given QoS requirement,
and an upper bound on overload, one can pose the follow-
ing question: What amount of resources would we need to
guarantee the QoS requirements under a worst-case overload
scenario? The optimal solution will then effectively determine
the minimum amount of resources which would need to be
allocated at the time of designing the system.

VI. ARCHITECTURE
In this section, we present our extensible architecture that

can deliver optimal load shedding for aggregates including
arbitrary UDAs. The main difficulty in shedding input for
arbitrary UDA lies in its black box nature which causes the
following issue:
1) Their internal semantics is not known to the system,
and therefore dropping random input tuples can lead to
unexpected, and unacceptable results.

2) The system cannot automatically make the appropriate
corrections to the results returned by the UDA—as
opposed to built-in aggregates such as MIN and SUM
where the results require no correction or are simple
to scale up.

3) The keys involved in a UDA (to be used in a PARTITION
BY clause) may be unknown to the system, and therefore,
the load shedder cannot decide on different shedding
ratios for each key.

While the first issue above, has been addressed in [22], their
solution seeks to maximize subset results and assumes that
several windows can be ignored, entirely. Our method instead,
deals with general UDAs (whether they are running over a
window or are decaying). We take a middle-road approach,
where we provide the users with an API to export their keys
from the UDAs in a certain format, but the rest of the load
shedding and query re-writing are taken care of by the system.
The user can also specify another built-in or user defined
aggregate to perform the result correction, which will be
invoked by the system upon application of load shedding. We
first discuss the API through which each UDA can export its
internal keys. Then in Section VI-B, we present our execution
model based on the rewriting of aggregate queries.

A. Key Extraction
Each UDA can call our API to export a number of triples

〈k, ak, bk〉, where k is a key value and ak and bk are its
corresponding coefficients from Eq. (4), assuming that the
UDA seeks a reciprocal-error function in a load shedding
situation. These triples exported from UDAs are the only
information that need to be fed into our adaptive load shedder
module (i.e., ORD) for finding an optimal policy. Note that
in most practical cases these coefficients do not impose any
burden on the UDA, inasmuch as these coefficients are either
identical to the results from the previous window, or are
easily computable from those results. For instance, in frequent
pattern mining, according to Eq. (3), we have ak = fk and
bk = fk, where fk is the UDA’s output for pattern (key) k.
Thus, we can simply use the results from the previous window
to estimate these coefficients.

(a) Fork-Merge. (b) Cascade.
Fig. 2. Two different alternatives for rewriting UDA queries.

B. Query Rewriting
Once the load shedder (ORD) decides on the shedding ratios

for individual keys involved in a query, the system will enforce
these ratios as follows:
Flat-cost queries: For each incoming tuple, the scheduler can
easily determine the involved key, and apply the appropriate
shedding ratio. The implementation in this case is quite
straightforward, as each tuple will only be used for one of
the keys.
Variable-cost queries: For this type of query, enforcing differ-
ent shedding ratios for different keys is not trivial. The source
of this complexity is either complicated selection clause (e.g.,
see Q2 in Section V), or implicit keys (i.e., keys not mentioned
in the query expression). Thus, a simple separation of the
incoming tuples based on their key value will not be feasible,
and in some cases can even lead to logical inconsistencies. In
particular, for UDAs, we cannot simply drop some seemingly
irrelevant tuples from their inputs, as it can interfere with their
internal semantics, e.g. the UDA may be building a histogram
(Remember that we treat UDAs as black boxes). Detailed
examples can be found in [19]. Hence, to address this situation,
we rewrite the variable-cost queries that contain a UDA, into
provably equivalent forms, as described next.
1) Fork-Merge Operation: We create multiple instances of

the UDA. In Figure 2(a) these instances are shown as blue
(shaded) semi-ellipses, filled with Si’s. As a running example,
assume that we group all the keys based on their optimal
shedding ratio. Say that we have three groups, S1 with a ratio
of 80%, S2 with 60%, and S3 with 50%. As depicted, we
initialize the first UDA instance with all three sets of the keys,
the second one with the keys in S1 and S2 and the last one
with only S1. For each tuple, the load shedder L1, draws a
random number r (0 < r < 1), and the tuple gets routed to the
appropriate UDA instance, based on r. Thus, if 0 < r ≤ 0.5,
it will get routed to the rightmost instance, if 0.5 < r ≤ 0.6 it
will reach the middle UDA, and if 0.6 < r ≤ 0.8 it will be sent
to the leftmost UDA. One can easily verify that due to the delta
shedding ratios, at the end, all the keys will experience their
own shedding ratio. Thus, the original query will be rewritten
as follows, where RANDOM() returns a random scaler value,
and will be evaluated only once per each tuple, and MAXRATIO
is set to 0.8 by the load shedder.

CREATE STREAM PatternStreamForkMerge AS
SELECT FIS(tid)

OVER (ROWS 1000000 PRECEDING SLIDE 1000)
PARTITION BY ROUTE(RANDOM())
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FROM InputStream WHERE RANDOM() < MAXRATIO;

However, due to common keys among different instances,
we cannot simply take a UNION of the outputs. Instead,
we ask the user to specify the appropriate merge operation
for eliminating/combining the duplicate keys, as shown in
Figure 2(a). For instance, we use MAX for MAX, MIN for MIN,
SUM for COUNT, weighted sum for SUM, or a customized UDA
for a UDA with obscure semantics.
This operation is well-suited to multi-processor servers, or

distributed DSMSs. However, when the key space is too large,
the rewritten query increases the total number of keys in the
running UDAs, and can suffer from many large hash-tables,
causing memory issues. The more important limitation of
the Fork-Merge is its dependence on the user to specify an
appropriate merge operation. Thus, in our system, we have
designed an alternative operation, presented next.
2) Cascade Operation: Similar to Fork-Merge, we again

create multiple instances of the running UDA, shown as blue
semi-ellipses in Figure 2(b). Using the same running example,
this time we initialize each UDA instance with only one key
group, as shown in Figure 2(b). Here, we cascade a series of
load shedder operator13 such that each UDA instance is fed
according to its shedding ratio. For example, a tuple with a
random label r = 0.55 will be forwarded to all the UDAs
except the one with a ratio of 0.5.
Note that in this operation, we are duplicating the tuples

instead of the keys. Therefore, the total size of required hash-
tables will be comparable to that of the original one. Thus, it
is preferable over Fork-Merge operation when the key space
is too large (i.e., many distinct keys). Sharing of the tuples
prevents parallel execution of the query graph, and duplicating
the tuples (as implemented in our system) can cause extra
load to the system. Thus, we only fall back on the Cascade
operation, when the user refuses to specify a merge operator
with his UDA. Note that for Cascade we do not need an adhoc
merge operation; due to the separate keys in each output, we
can use a simple UNION operator, that is the same for all UDAs
(see Figure 2(b)).

C. Result Correction
For built-in aggregates, the system can automatically correct

the output answers once load shedding is applied. For instance,
for MIN and MAX, the answer does not need14 a correction, but
for SUM, the answer has to be scaled up by the inverse of the
shedding ratio.
The correction phase, however, becomes another challenge

in providing load shedding for arbitrary UDAs, as the system
is unaware of their internal semantics. The simplest solution
could be dropping tuples after the UDAs (i.e., from their
outputs). But this late shedding of tuples will not save much

13In the actual implementation, we only use one operator at the top, but
annotate the tuples with their random number, to allow a simpler filtering
along the query graph.
14Here, correction refers to making the estimator unbiased. However, the

accuracy of the results can always be enhanced using other techniques to
reduce the estimator’s variance, see [17].

computation, as all the tuples have been already processed by
the UDA. To overcome this problem, we allow our users to
specify a correction function/aggregate for their own UDA,
if they want a system provided load shedding. At run-time,
the current load shedding ratio applied, can be accessed by
invoking a built-in function, called shedratio(). For simple
corrections, it can be directly called in the query expression;
e.g., to scale up the frequency counts the user will write15:
SELECT FIS(tid) * 1/shedratio()
OVER (ROWS 9999 PRECEDING SLIDE 100)
FROM InputStream;

For more involved answer corrections, the user can imple-
ment yet another UDA. This correction function (specified
in the ON SHEDDING clause) must have a signature that is
compatible with the SELECT clause of the query. Namely, it
has to both take as input and return as output, tuples from the
SELECT clause. The following provides a simple example.
SELECT patID, MyCount(transaction) AS freq
OVER(ROWS 9999 PRECEDING SLIDE 100

PARTITION BY patID)
FROM PatternTable, TransStream
WHERE contained(patID, transaction)
ON SHEDDING Corrector(patID, freq);

VII. CASE STUDY: FREQUENT PATTERN MINING
While our results hold for any error function under which

queries become reciprocal-error, in this section, we provide
a few concrete examples from the field of frequent pattern
mining. We show how one can seek different objectives by
choosing appropriate error functions with different bq coeffi-
cients. In general, different applications that consume frequent
patterns may prefer minimum absolute error or minimum rel-
ative error. Moreover, some applications only need to predict
which patterns are frequent/infrequent, without knowing their
exact frequencies. In other words, if a solution provides poor
estimates it might still be acceptable as long as the frequency
error does not cross the minimum support threshold, i.e. the
error does not make a frequent pattern infrequent or vice versa.
In the following, we briefly discuss how each of these popular
goals can be achieved within our framework.

A. Minimizing the absolute error.
By choosing the coefficients ap = fp and bp = fp,

according to Eq. (3), minimizing Eq. (7) will effectively
minimize the total (or average) Mean Squared Error (MSE)
or variance. Next, we use the general results obtained in
Section V, for analyzing the special case of frequent pattern
mining, and for different resource allocation policies.

B. Minimizing the relative error.
The relative error of the estimator is its variance normalized

by its frequency. Thus, dividing Eq. (3) by fp gives the relative
error as −1+ 1

rp
. Similarly, by choosing the coefficients ap = 1

and bp = 1, minimizing Eq. (7) will effectively minimize the
total (or average) relative error. Due to the symmetry of the

15Note that this is different from a built-in count query, where the system
can automatically correct the results.
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patterns in terms of these coefficients, the optimal solution
uses the same shedding ratio for all patterns. Thus, we have
the following lemma.
Lemma 4: If the error function is relative error, and all

queries are counting queries, both uniform and optimal ap-
proaches lead to the same solution.
Uniform Policy. Since all the queries are counting, we can

assume that ck = 1 for all k ∈ S. We can use Eq. (3) and also
assume that vk = 1 for all k ∈ S. This simplifies the total
weighted error of this special case as follows.

Guni =
1− r

r

∑
k∈S

fk =
N.W

L

∑
k∈S

fk −
∑
k∈S

fk (14)

Proportional Policy. Similar to the uniform case, we can
further simplify the total weighted error for frequent pattern
mining. When for all k ∈ S, we have rk < 1, ck = 1, and
vk = 1, one can derive the following:

G
prop =

∑

k∈S

(
W ·

∑
k∈S

fk

L · fk
− 1) · fk =

N ·W ·
∑

k∈S
fk

L
−
∑

k∈S

fk

(15)

Thus, in the context of frequent pattern mining, pattern
verification [18], and any other application that consists of
only counting queries, we make the following observation:
from (14) and (15) we notice that both the uniform and
proportional16 load shedding policies produce the same total
variance (Guni = Gprop). However, the uniform approach is
still more favorable since it does not require knowing the
fk values, while the proportional method does. Based on
the quality of the approximation used, the analysis for the
proportional approach will vary, and the result in (15) may
not necessarily be achievable.
Both uniform and proportional approaches can be imple-

mented in time linear in the number of queries, but none of
the two produce the optimal solution for G1 (as demonstrated
by Example 1).
Optimal Policy. Similar to uniform and proportional poli-

cies, we can calculate the total error (here, variance) for the
special case of frequent pattern mining:
Lemma 5: For frequent pattern mining, under a critical

setting, the minimum variance is the following:

Gopt=−
∑
k∈S

fk+
W

L
(
∑
k∈S

√
fk)

2 (16)

C. Maximizing the classification confidence
For a given minimum support α, if the objective is to de-

termine whether fp ≥ α or fp < α as confidently as possible,
one can seek to maximize the following goal function:

Gα =
∑
p

|Pr[fp ≥ α|f̂p] − Pr[fp ≤ α|f̂p]| (17)

Using the central limit theorem, we can prove that for a given
set of patterns with fp and f̂p being the true frequency and

16The requirement of rq < 1 for proportional method, will be formalized
in Definition 2.

the estimate for pattern p respectively, we have:

Gα =
∑
p

2√
π
·
∫ fp−α√

2·
1−rp
rp

0

e−t2dtsinv (18)

By minimizing the negated goal, namely −Gα, we will
maximize the confidence of our classification. Even though
our counting queries are not reciprocal-error with respect to
Eq. (18), we can use an approximation of this integration
for which counting becomes reciprocal-error. For instance, for
0.1 < rp < 0.9, a simple approximation can be the following:s

Gα ≈
∑
p

1

2
− (fp − α)2

π

1

r

Our experiments in Section IX show that even this simpli-
fied goal function leads to significant improvements in terms
of false positive and false negative percentages.

VIII. OPTIMIZATION OPPORTUNITIES
As analyzed in Section V-C and validated by our exper-

iments in Section IX, the overhead of finding an optimal
solution itself is negligible. However, there are circumstances
where having the same load shedding ratio allows for exe-
cution optimizations. One important such circumstance is in
frequent pattern mining. In frequent pattern mining, all the
patterns that share the same shedding ratio can be batched
together in a single pattern tree which is a compact data
structure allowing fast mining and counting of transactional
data [13], [18]. Thus, while the uniform approach does not
deliver an optimal solution, it can be implemented more
efficiently. In the rest of the section, we address this issue.
A. Verification and fast counting
Mozafari et al. have recently shown that the well known

fp-tree data structure is not only efficient for mining but is
even more so for conditional counting (called verification in
[18]). For a given set of patterns and a set of transactions, the
verification task is to accurately count the occurrence of those
patterns against the transactions if their frequency is above a
given threshold. In other words, patterns that are guaranteed
to be infrequent need not be counted and can be skipped
for efficiency. The authors have proposed a fast verifier (i.e.,
an algorithm for verification) that outperforms the traditional
counting methods such as hash trees, even with a threshold of
zero. Thus, we use these verifiers to perform our optimal load
shedding solution to address the aforementioned efficiency
concerns that arise in a pattern mining/monitoring scenario,
as described next.

B. k-means for coarsening different ratios
An optimal load shedding solution can potentially lead to

a different shedding ratio for each pattern (or query). Since
applying a different shedding (sampling) rate for counting
each pattern’s frequency is not practical, we group the patterns
according to the proximity of their sampling rate. Then, each
group will be stored in a separate pattern tree that will undergo
the same shedding ratio in the counting process. By choosing
the ratio of each group to be the mean of its members’ ratios,
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Algorithm k-optimal(k)
Input: k is the allowed number of shedding groups.
Output: Frequency estimates of the given patterns.
0: For each window:
1: �r← Optimal Solution from [25]
2: (g1, r̄1), · · · , (gk, r̄k)← k-means(�r)
3: For each group 0 ≥ i ≥ k:
4: Insert patterns of group gi into pattern tree PTi

5: For each transaction t in the current window:
6: draw a random number ρ
7: Consider t in counting of all pattern trees PTi,

where ρ ≤ r̄i
Return count estimates for the given patterns.

Fig. 3. The pseudo code for k-optimal algorithm.

the total resource usage will not increase. Note that the larger
the groups, the fewer the different ratios, which would improve
efficiency at the expense of optimality. In an extreme case,
when we group all the patterns into one group, the final
solution turns into a uniform one. At the other extreme, when
each group only consists of one pattern, the solution remains
optimal. A high-level pseudo code for this algorithm is given
in Figure 3, named k-optimal.
The k-optimal algorithm employs the k-means clustering

algorithm [14] to group the patterns, and therefore a proper k
should be provided as input to the algorithm. The best trade-
off between efficiency (smaller k) and optimality (larger k)
can be determined according to the application requirements
and through empirical comparisons to measure the overhead
of adding each extra pattern tree. In our experiments in
Section IX-F, we show that in practice even a few pattern trees
can significantly improve on the uniform approach without
compromising either accuracy or efficiency. Since we are
dealing with one dimensional data (i.e., the ideal shedding
ratio of each pattern) we can perform k-means in time O(N ·
log(N)) where N is the total number of patterns. We first
sort the patterns according to their shedding ratio which is
determined by the optimal solution. We use a disjoint set data
structure to represent the groups. Initially, each pattern is a
group by itself. All the groups are inserted into a min-heap
data structure according to their closest distance from their
neighbors. Since group ratios are numbers and they are kept
sorted, each group will always have (at most) two neighbors.
By performing delete-min on the heap, and merging the top-
element of the heap with its closest neighbor, we will have
one fewer group. This operation will be repeated until there
are only k groups left in the heap. Due to space limitations,
we omit a pseudo code for performing k-means on 1-D data.

IX. EXPERIMENTS
This section presents empirical evidence, demonstrating (i)

improvements on the results’ quality, and (ii) the efficiency
aspects of our proposed techniques. All experiments were
conducted on a P4 machine running Linux, with 1GB of RAM.
All the algorithms are implemented in C, and integrated into
StreamMill [6] which is an existing DSMS.

Quality of mining results. The first goal of our experiments
is to compare the proposed load shedding algorithm with
its state-of-the-art counterpart, namely the uniform approach.
We will study the effect of different load shedding policies
under different quality metrics and under different overloading
settings (§IX-A, §IX-B,§IX-C). We used both synthetic (IBM
QUEST [3]) and real-world datasets (Kosarak [1]), but due to
the similarity of the results and lack of space, we only report
the experiments achieved on the Kosarak dataset. Unless stated
otherwise, in most of the following experiments we used a
window size of 10, 000 tuples, a minimum support of 1%,
and almost 400 patterns.
Efficiency. The second sets of our experiments, study the

efficiency of our proposed framework, in §IX-D,§IX-E,§IX-F.
A. Absolute error
We measured the absolute MSE (i.e., variance) of different

shedding policies for a wide range of overloading ratios.
We separately investigated slightly overloaded and highly
overloaded situations, respectively in Figures 4(a) and 4(b).
The horizontal axis demonstrates the amount of available
processing resources normalized by the ideal amount needed
to process the entire window. The vertical axis (shown in log-
scale) is the variance summed up over all the patterns. For the
Kosarak dataset, according to Definition 2, the critical setting
was any setting in which the available resource was less than
4.5% of the current load.
As shown in Figure 4(a), both optimal and proportional

methods significantly outperform the uniform approach when
the resource to load ratio is comparable (e.g., above 50%).
While in such situations the optimal method is only slightly
better than the proportional method, their distance becomes
more dramatic for highly overloaded settings as shown in Fig-
ure 4(b). Also, the more overloaded the closer the uniform and
proportional methods are. In particular, they produce exactly
the same total variance for all critical settings (confirmed by
Eq. (14) and Eq. (15)), namely ratios below 4.5%.
B. Relative error
When the goal is to minimize the relative error, the uniform

method is identical to our optimal solution (as confirmed
by Lemma 4). As shown in Figure 4(c), proportional load
shedding on average causes 1.3 times more relative error than
the optimal (or uniform) solution. Note that the vertical axis
is in log-scale.
C. Classification Confidence
As discussed in Section VII, minimizing −Gα would

maximize the confidence of our estimators in classifying
frequent patterns from infrequent ones. However, even using
a simple approximation of Eq. (18) our optimal algorithm
was able to significantly outperform the uniform approach.
A false negative occurs when a pattern’s frequency is falsely
underestimated to be below the threshold, and a false positive
refers to the false overestimation of an infrequent pattern with
a frequency that is above the threshold.
Figure 5(a) compares the average number of false negatives

for the optimal and the uniform approach. In particular, when
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Fig. 4. (a) Variance in different load shedding policies under non-critical settings. (b) Variance in different load shedding policies. All ratios below 4.4%
are critical settings for kosarak dataset. (c) Relative error under load shedding.

the resource was at least 50% of the ideal amount, the optimal
method introduced no false negatives, while the uniform
approach still produced a significant number of false negatives.
Consistently, Figure 5(b) demonstrates the superiority of the
optimal approach in terms of false positives. While the two
curves become closer for highly overloaded settings, they are
more distant for other settings (e.g., ratios above 30%).

D. Algorithmic Improvements
As discussed in Section V-C, finding an optimal solution

takes N · log(N) time in the worst case scenario, where N is
the total number of keys. However, our proposed algorithm for
solving the equation under critical settings, runs in time O(N).
As shown in Figure 5(c), the actual outperformance delivered
by our algorithm for 10000 keys, is at least 5 times. In fact,
due to the sorting operation that is required by the standard
algorithm [25], our outperformance becomes more dramatic
for larger number of keys. The run time of both algorithms is
independent of the window size and the number of queries,
and only depends on the total number of keys involved. Note
that our method is only applicable to critical settings, where
finding an optimal solution in linear time is guaranteed. In
fact, in critical settings the system’s resources become even
more valuable.

E. Load Shedding Overhead on the System

For this experiments, we use the California’s Realtime
Freeway Speed data17, stored as an offline stream with a
window size of 200K tuples, and a collection of randomly
generated continuous queries, each containing one simple
algebraic aggregate, involving 1000 distinct key values. The
average processing time of each query was 17.713 secs per
window. Due to space limitations and similarity of the results,
we report a few different settings in Table I. The cost of
finding the optimal solution (shown under LS Time column)
is negligible compared to the time spent on processing the
actual queries (this ratio is shown in the Overhead column).
Thus, our system allows for supporting hundreds of aggregate
queries with hundreds of thousands of different keys, without
spending more than a few percents of the resources. In many
real applications, the key space is much smaller. Rows marked
with an asterisk represent critical settings.

17http://www.dot.ca.gov/traffic/d7/update.txt

F. Efficiency and Loss of optimality
To address the efficiency concerns discussed in Section VIII,

we proposed the k-Optimal Algorithm that groups the patterns
into k groups according to the proximity of their shedding
ratios. We ran k-Optimal with different values for k to find an
appropriate tradeoff. Figure 6(a) shows that while the optimal
algorithm incurs some efficiency overhead compared to the
uniform method, we can improve our algorithm’s efficiency
by choosing smaller k values. In the extreme case of k = 1,
k-optimal exactly matches the uniform method. However, the
efficiency overhead becomes negligible for a wide range of k
values, here from 1 to 50.
With fewer groups, there are more patterns in each group,

and hence ratios within a group tend to be more distant from
the optimal value. This is shown in Figure 6(b) where the error
(i.e., variance) increases with fewer groups. Again, for a wide
range of group sizes the difference in variance is negligible.
Thus, by choosing a k value from 50 to 5 (i.e., an average
group size between 8 and 80) one can achieve a variance
reasonably close to that of the optimal one, without incurring
any significant time overhead.

X. CONCLUSION
In this paper, we have proposed a very general framework

that achieves optimal load shedding policies, while accom-
modating different requirements for different users, different
query sensitivities to load shedding, and different penalty
functions. The experimental results confirmed the superiority
of the proposed algorithm over the state-of-the-art methods.
A second advantage of this algorithm is its applicability
to a wide spectrum of aggregate functions which we have
formally characterized using a newly introduced notion, called
reciprocal-error queries. Besides the typical algebraic aggre-
gates, this class also includes sophisticated mining tasks. We
propose an extensible architecture that allows UDAs to benefit
from the system-provided load shedding functions. In fact,

TABLE I
LOAD SHEDDING OVERHEAD ON THE SYSTEM.

#queries Resource/Load #keys LS Time Overhead
10 90% 100K 0.030 sec 0.17%
100 9% 1M 0.361 sec 1.99%
500 1.8% 5M 0.379 sec * 2.13%
1000 0.9% 10M 0.758 sec * 4.27%
2000 0.45% 20M 1.515 sec * 8.55%
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Fig. 5. (a) Effect of optimal load shedding on number of false negatives. (b) Effect of optimal load shedding on number of false positives. (c) Comparing
the standard algorithm and our critical-setting method, for finding the optimal solution.

Fig. 6. Efficiency/Accuracy trade-off between different shedding policies (numbers in parentheses are average group size): Run time and Variance.

our experimental studies show significant improvements (in
absolute error, false positives, and false negatives) compared
to the uniform approach used by previously proposed load
shedders. We showed that the load shedding problem reduces
to a non-linear optimization problem of operations research,
and it is thus solvable, irrespective of window size, in time
N · log(N), where N is the total number of queries. We
also propose a more efficient algorithm to handle severe
overloads, without losing optimality. Our approach has been
integrated into an existing DSMS, and has proven to be
scalable and without much overhead. Future work includes
developing and integrating prediction methods to cope with
concept shifts/drifts, by using past statistics [7], [17].
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