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CAVEAT:
Representative not exhaustive



Moving to the Cloud

Why cloud? (are you really asking?)



Moving to DaaS

Why Database as a Service (Daa$) for tenants?
DB management drama becomes provider’s problem

(Ideally) high level Service Level Agreement (SLAs / SLOs)

Accelerate development litecycle

Why Database as a Service (Daa$) for providers?
Internalize a high-cost portion of service (admin)

Scale + density + uniformity = lower cost



Tenant’s view Provider’s view



Traditional DB deployments

Yo... the DB
is slowl
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What changes in DBaaS?
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Commercial DaaS
Tuning Issue

Running max-throughput, write-heavy
YCSB workload against:

- fully managed DBMS
- manually tuned DBMS

(Same virtualized hardware, same
DBMS, different tuning)

Interpretation: default log-configuration
is off.

DaaS (managed DBMS)
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* experiments using OLTPBench: http://oltpbenchmark.com



Daa$: challenges (and agenda)

Multi-tenancy Architectures
SLA/SLO
Detfinition
Fnforcement
High Availability
Replication
Fault tolerance
Partitioning
(security/privacy)

Workload Characterization
Estimation / Prediction
Resource Attribution
What if analysis

Resource Management
Allocation / Balancing
Tenant Placement
Admission Control

Migration

Performance Isolation



Multi-tenancy architectures

"Most common ways to tackle this problem”




Shared Hardware (DB-in-a-VM)

DBMS DBMS DBMS
(tenant2) (tenant3) (tenant4)
Guest OS Guest OS Guest OS

VM VM VM
Hypervisor

Hardware
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Shared Process

Database Database Database
(tenant?2) (tenant3) (tenant2?)

Database Process

ON

Hardware
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Shared Table

Rows Rows Rows
(tenant2) (tenant3) (tenant4)
Table

Hardware

Database Process

ON
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Trade-off

Shared Hardware
Strong Isolation (security, performance)
l Mechanics (High Availability, Migration)

Shared Process

Sharing and coordination resource
consumption (MEM/CPU/Disk IOps)

Shared Table
Amortize metadata overheads




Multi-tenancy Architectures

Shared Hardware
SmartSLA, RemusDB, Amazon RDS

Shared Process

RelationalCloud, CloudDB, SQLAzure, Delphi, Y! cidr2009
(shared storage) ElasTras, DAX

Shared Table

Force.com, Jacobs/Aulbach
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DBMS DBMS DBMS

Shared Hardware (DB-in-a-VM) .

Guest OS || Guest OS |[FGuest OS
VM VM VM

“Reusing/Specializing VM technologies for DaaS"

Hypervisor

Hardware




Commercial offering: Amazon RDS

Amazon RDS
Provides pre-configured DBMS (MySQL/Oracle/SQLServer)
Addresses much of provisioning issues

Strong Isolation / catch-all configuration
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SmartSLA [Xiong et al. ICDE 2011]

FOCUS
Leverage VM-based mechanisms
Deliver DB-level SLAS

Key Contribution
SLA violation vs Resource modeling

Actuation of VM-based mechanisms (cpu, ram, replication)
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SmartSLA

Database Systems

Control

Cost

Key mechanism —>

Performance . .
Resource Allocation System Modelling

(monitor, optimizer, actuator) (learner)
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Fstimating SLA violation cost and Allocation

Normalized CPU

_ Machine Leaming
Normalized Mcmory

Average SLA Penalty Cost
= f(CPU, Memory,
#Replicas, Rate)

Normalized #Replicas

Nomalized Rate

Average SLA
Penalty Cost

Traming Data

ML Modeling
Build a Map of space
(simple ML/features)
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REMUSDRB 'Minhas et al. VLDB 2011 /VLDBJ 2013]

FOCUS
High Availability via VM replication

OLTP-compatible performance

Key Contributions
Reuse of mature VM technology (oro of Shared Hardware)

Smart DB-spedific tricks to improve performance
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REMUS

Leverage Xen VM-replication
Snapshots the VM state every few tens of ms
Delays network and disk writes until next checkpoint (consistent)

Fail-over to secondary and restart from latest checkpoint

Problems
DBMS bufferpool changes too fast (large deltas to checkpoint)
Latency overhead is high for OLTP
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REMUSDB: DB-specific optimizations

Avoid checkpointing “clean” pages

Limit network delay to Commit/Abort

Reduce impact on throughput
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Shared Hardware shortcomings

20:1 consolidation 20:1 consolidation (skewed)
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Design mismatch
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Shared Process

“The DBMS knows best”

(tenant3)

Database
(tenant2)

{ Database }

Database
(tenant?2)

Ve

Database Process

~N

ON

Hardware




Commercial offering: SQLAzure  [Bernstein et al. ICDE 2011]

SQL Azure
Shared DBMS process, Dedicated database
Shared logging L:%"""
Modified version of SQL Server Tn *‘E;_?g_
High-availability via quorum of replicas fk T
Support scale-out /1 """ f
ACID within a row-group ,;'/—' — 1L I
Read-committed across row-group S = — ]
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FlasTras Architecture Das et al. HotCloud 2009]
(Shared Storage)
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DAX [Liu et al. VLDB 2013]
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RelationalCloud [Curino et al. CIDR 2011]
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Shared Process shortcomings

Comparing multi-tenancy (No DBMS is perfect)

MySQL DBMS-X DBMS-Y
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* experiments using OLTPBench: http://oltpbenchmark.com



Rows
(tenant4)

Rows
(tenant2)

Shared Table =N

=N
“Extreme multi-tenancy” > Ta ble <
Database Process

OS
Hardware




ey idea
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Jacobs and Aulbach BTW 2007/]

Memory Memory Disk Disk
I instance | 10,000 instances | 1 instance | 10,000 instances
PostgreSQL 55 79 4 4,488
MaxDB 80 80 3 1,168
Commerciall 171 616 200 414,210
Commercial2 74 2,061 3 693
Commercial3 273 359 1 13,630

Table 1. Storage Requirements for Schemas Instances (in megabytes)




Force.com and [Aulbach et al. SIGMOD 2008]

Focus
Target tens of thousands of tenants per server
Partially shared schema (polymorphic SaasS apps)

Deal with schema-leve/ DBMS scalability limits

Key Contribution

Clever data design, schema mapping / query rewriting
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[Aulbach et al. SIGMOD 2008]

Many variants

SELECT Beds
FROM Accounti7
WHERE Hospital=‘State’ .

(Q1)

ﬁ

SELECT Beds
FROM (SELECT Strl as Hospital,
Intl as Beds
FROM Chunkine|str
WHERE Tenant = 17
AND Table = 0
AND Chunk = 1) AS Accounti7
WHERE Hospital=‘State’ .

(Qlchunk)



Shared Table shortcomings

Focused on extreme multi-tenancy
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Daa$: challenges (and agenda)

Multi-tenancy Architectures
SLA/SLO

Definition

Enforcement
High Availability «

Replication

Fault tolerance

(security/privacy)

Workload Characterization
Estimation / Prediction
Resource Attribution
What if analysis

Resource Management
Allocation / Balancing
Tenant Placement
Admission Control

Migration

Performance Isolation



Partitioning

“Chop it and scale it out”



Schism [Curino et al. VLDB 2010]
Positioning

Partitioning for shared-nothing DBMSs (RelationalCloud)
FOCUS

automatic partitioning of arbitrary schemas (many-to-many)

handle access skew, replication

Key Contributions

Model the problem as graph-partitioning

"Explain” results using decision trees (practical partition functions)
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Schism: Graph-based Partitioning

INPUT




Schism: Graph-based Partitioning
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Schism: Graph-based Partitioning
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tuples in the DB are nodes in the graph
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Schism: Graph-based Partitioning

INPUT GRAPH REPRESENTATION
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Schism: Graph-based Partitioning

INPUT GRAPH REPRESENTATION
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Schism: Graph-based Partitioning

INPUT GRAPH REPRESENTATION
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Schism: Graph-based Partitioning

GRAPH REPRESENTATION
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SELECT * FROM account WHERE id IN {4,6,7}

ABORT
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Sch|sm Graph based Partitioning

GRAPH REPRESENTATION EXPLANATION PHASE

Workload Trace W ~
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UPDATE account SET bal=60k WHERE id=2;

O e M T
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| Natural Classification
Problem (Decision Tree)
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\
|
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\COMMIT = . 3 2 - '
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SELECT * FROM account WHERE id IN {4,6,7} @ 1 19 P-0 ID <12

ABORT

:%Abstract partitioning I
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) P-1] ID=12

Explanation:



SWORD

Key Contributions

Repartitioning heuristics

[Quamar et al. EDBT 2013]

User Interface

—_—

Query Workload Manager

<

| DB-1 DB-2

Router Router
Transaction Transaction
Manager Manager
------ DB-1

Workload
Data Monitoring

Partitioner | | and Statistical

Module

Incremental
Repartitioning
Module

Data Placement Module
S ——

Scaling to larger problems by pre-processing (hyper)graph

Greater focus on replication for fault-tolerance

Use of guorums (not just ROWA)



Horticulture 'Pavio et al. 2012]

FOCUS
Time-varying skew

Handle Store procedures natively

Key Contributions
Schema and workload-driven partitioning

Large neighborhood search (rich cost model + cheap estimation)

Horizontal partitioning + table replication + index replication
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Horticulture:
Cost Model

Both distributed transactions and
temporal skew heavily impact
performance
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Horticulture: Large Neighborhood search

Input Best Demgn

Table Candidate

C_ID
Replication: False
2ndry Index: |{C_ID,C_NM}

Prnc Candidate \
Parameter:

Horizontal:
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Where are we with partitioning?

Problems we know how to solve:
OLAP (tons of classic work)

OLTP (few recent papers, good grasp on the problem)

More to do:
OLAP-OLTP mixed workloads partitioning
Coordinating replication (and erasure codes) for:
Performance, Fault-tolerance

Geo-distributed placement/replication
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Daa$: challenges (and agenda)

Multi-tenancy Architectures
SLA/SLO

Detfinition

Fnforcement
High Availability «

Replication

Fault tolerance
Partitioning
(security/privacy)

Workload Characterization
Estimation / Prediction
Resource Attribution
What if analysis

Resource Management
Allocation / Balancing
Tenant Placement
Admission Control

Migration

Performance Isolation



Managing Resource Contention






Contention for Resources

Resources are shared, finite, and valuable




Enable “Performance” in a Shared Environment

System needs to isolate the tenants to provide performance when finite
resources are shared.
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Mechanisms to Enforce Isolation

Hard Soft
Static Provisioning Smart Placement
Resource Allocation (Admission Control)

(Dynamic Provisioning)
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Daa$: challenges (and agenda)

Multi-tenancy Architectures
SLA/SLO
Detfinition
Enforcement
High Availability «
Replication
Fault tolerance
Partitioning «
(security/privacy)

Workload Characterization
Estimation / Prediction
Resource Attribution
What it ana|y5|s

Tenant Placement
Admission Control
Miaration




Hard Isolation

"Keeping your word about resource sharing”



SQLVM [CIDR 2013, SIGMOD 2013, VLDB 2014]

FOCUS
Embedding resource allocation in DBMS kernel.
How to share critical resources required by DB.

How to understand resource allocation.

Key Contributions
Fine grain resource scheduling (CPU, Memory, 1/O).

Metering to audit resource promise.
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SQLVM Motivation

Query level SLOs are hard.

SELECT Product, SUM(Sales) as TotalSales

FROM FactSales F JOIN DimProduct P JOIN DimStates S
ON F.ProdID = PProdID and F.Stateld = S.Stateld
WHERE State = Mermont’ ‘California’

GROUP BY Product

Ad-hoc queries add to the challenge.

10/1/2013 CIDR 2013
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Resource Governance Mechanism

50 IOPS

100 IOPS

Tenantl
Application

—_d-

Tenant2
Application

Capacity:
200 IOPS

Machine in cluster

Database server process

Tenantl Tenant2
database database

Storage

10/1/2013

resources
VM inside SQL process”
CPU utilization, IOPS, Memory, ...

Resource governance
Fine-grained resource sharing
Novel mechanisms

Metering (auditing)

Monitor actual and promised metrics
for tenant

Determine violations

CIDR 2013

Tenant is promised reservation of DBMS
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Resource Allocation

CPU
Reservation: CPU utilization (e.g. 10%) for running or runnable tasks

Memory (Buffer Pool)
Reservation: Hit Ratio of workload for given memory size (e.g. 1GB)

Disk I/O: Shaping Traffic
50 IOPS = one I/O every 20 msec issued
I/0 request tagged with deadline. Put into queue
Issue I/Os whose deadline has arrived

10/1/2013 CIDR 2013
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Challenges

Metering and auditing resources.
Multi-core CPU scheduling.
Multiple volumes

Indirect and direct work.



Soft Isolation

"Smart placement to mitigate resource contention”



Daa$: challenges (and agenda)

Multi-tenancy Architectures Workload Characterization

SLA/SLO Estimation / Prediction
Detfinition Resource Attribution
Enforcement What if analysis

High Availability « Resource Management
Replication Allocation / Balancing

Fault tolerance
Partitioning « Admission Control

(security/privacy) Migration
Performance Isolation



Common Patterns

Understand workloads
Fixed, Profiled, or Learned
[solated vs Consolidated

How workloads combine
Provided function (oracle)
Models

Observations

85

Find placement
Incremental
Bin-packing
Optimization

Metrics
Robustness
Costs (SLA, Operating)
Performance (TPS, Latency)



Towards Multi-Tenant Performance SLOs

Willis Lang, Srinath Shankar, Jignesh M. Patel, Ajay Kallan
Univ. of Wisconsin and MS Gray Systems Lab

ICDE 2017



Common Patterns

Understand workloads
Fixed, Profiled, or Learned
Isolated vs Consolidated

How workloads combine
Provided function (oracle)
Models

Observations
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Find placement
Incremental
Bin-packing
Optimization

Metrics
Robustness
Costs (SLA, Operating)
Performance (TPS, Latency)




Towards Multi-Tenant Performance SLOs

Focus
Different hardware configurations (SKU)
Multiple tenant performance SLO classes

Place to meet SLOs and minimize costs
Key Contributions

Cost aware server consolidation

Tenant placement optimization framework
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Heterogeneous SLO Characterization

Benchmark server to find max degree multi-tenancy
for perf objectives

I

Systematically reduce ‘H' tenants, steadily increase ‘L
tenant scheduling until a perf objective fails

RN
&)

Server characterizing function:

RN
o

Both perf objectives met

- Some perf objective fails

Slide by Lang et al.

Num of H (100tps) Tenants

1
Number58f L (10tps) Tenants 00



Approach

Assumption

In memory tenant addition is mainly linear.
Solution

One DB instance per SLO throughput class.

(Balancing buffer pool sharing)
Discover frontier

Use solver for ILP formulation to minimizes costs
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RTP: Robust Tenant Placement for
“lastic In-Memory DB Clusters

Jan Schaffner, Tim Januschowski, Megan Kercher, Tim Kraska,
Hasso Plattner, Michael J. Franklin, Dean Jacobs

Hasso Plattner, SARP UC Berkeley, Brown University

SIGMOD 2013



Common Patterns

Understand workloads
Fixed, Profiled, or Learned
Isolated vs Consolidated

How workloads combine
Provided function (oracle)
Models

Observations
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Find placement
Incremental
Bin-packing
Optimization

Metrics
Robustness
Costs (SLA, Operating)
Performance (TPS, Latency)




Robust Tenant Placement

FOCUs
In memory databases with temporal changes / etheral DBs
Minimize servers while being robust to failures

Replication with ability to redirect workloaa

Key Contributions
Incremental algorithms to reduce total costs of ownership
Maintain replication and respect server load.

Migration and existing placement aware solution
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Workloads
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Workloads are diurnal and short lived bursty tenants.

Workload resource consumption. is univariate and additive

Read heavy workloads
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Placing Tenants

Robust to failure (interleaving tenants over bin packing)
Maintain replication

Migration capacity
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Solutions

Greedy Heuristics
Meta-heuristics

Exact Solutions

Static and incremental solutions.
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Framework

Incremental algorithms follows these steps:

1. Delete un-needed replicas
2. Ensure migration flexibility
3. Create missing replicas
4. Fix overloaded servers

5. Reduce number of active servers

6. Minimize max load
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PMAX: Tenant Placement in Multitenant
Databases for Profit Maximizationr

Ziyang Liu, Hakan Hacigimus, Hyun Jin Moon,
Yun Chi, and Wang-Pin Hsiung

NEC Laboratories America

EDBT 2013



Common Patterns

Understand workloads
Fixed, Profiled, or Learned
Isolated vs Consolidated

How workloads combine
Provided function (oracle)
Models

Observations
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Find placement
Incremental
Bin-packing
Optimization

Metrics
Robustness
Costs (SLA, Operating)
Performance (TPS, Latency)




PMAX

FOCUS
Latency response SLOs
Workloads are not fixed and vary, history is not available

Profit maximization

Key Contributions
Cost focused placement solution

Bounded approximation algorithms & dynamic prog. solution
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Common Patterns

Understand workloads

Varied arrival rate
Provided query SLA (over
| 0ad = resp. time / arrival
0oad > 1 = missed SLA T Nemberd Tt

Average Query Processing Time (5)
[

Figure 3: Relationship between Average TPC-W Query Pro-
cessing Time and Number of Tenants on a Server

How workloads combine
Server load = sum tenants load * tenant load factor

105



Placement Formulation

Fach server has a operating costs.

Place tenants to minimize costs (occasional violations OK).

Two problem formulations:
Uniform: Fixed arrival rate and SLA
General: Varied arrival and query based SLA
Both reduced to NP-hard
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Solution

Best fit heuristic is sub-optimal

Encourage NEW Servers

Use normalized SLA ordering of tenants

Approximation and DP solution
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Daa$: challenges (and agenda)

Multi-tenancy Architectures Workload Characterization

SLA/SLO
Detfinition Resource Attripution
Enforcement What if analysis

High Availability « Resource Management
Replication Allocation / Balancing
Fault tolerance Tenant Placement

Partitioning « Admission Control

(security/privacy) Migration

Performance Isolation ¥



Workload-Aware Database Monitoring anc
Consolidation

Carlo Curino, Evan PC. Jones, Samuel Madden, and Hari Balakrishnan

MIT

SIGMOD 2011



Common Patterns

Understand workloads
Fixed, Profiled, or Learned
Isolated vs Consolidated

How workloads combine
Provided function (oracle)
Models

Observations
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Find placement
Incremental
Bin-packing
Optimization

Metrics
Robustness
Costs (SLA, Operating)
Performance (TPS, Latency)




Kalros

FOCUS
Modeling resource consumption of OLTP workloads

Consolidate workloads

Key Contributions
Method to determine active working set size
Model disk I/O for consolidation

-ind balanced consolidation plan.
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Buffer Pool Gauging for RAM

Databases are greedy
Use ballooning to ID active working set size

200
)
O
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= mysql
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%
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—
D
= 0 o — L 'l Il Il 1
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Portion of Buffer Pool Stolen (%)
953 MB Bufferpool, on TPC-C 5W (120-150 MB/WH) Slide by Sam Madden



Disk Model

With working set in RAM:
I/O is flushing and txn logs

Regardless of transaction type, max
update throughput of a disk
depends primarily on database

working set size.

Adding workload metrics holds.
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Node Assignment via Optimization

Objective Function Values

Goal: minimize required machines (leaving headroom), balance load

Problem modeled as:
Mixed-integer non-linear optimization problem

Constraint Violation Penalty
(workloads assignments, «

. : Implemented in DIRECT non-linear
max resources is violated P

solver; several tricks to make it go fast

W

+———  Local Minima .

for K servers)
(balanced load

/ for K servers)

Global Minimum
( minimum possible K,
and balanced load

4-server solutions 5-server solutions 6-server solutions
—ﬁ
0% 100% 0% 100% 0% 100%%

i Slide by Sam Madden
load assigned to one of the servers



Daa$: challenges (and agenda)

Multi-tenancy Architectures Workload Characterization
SLA/SLO
Detfinition
Enforcement | | |
High Availability « Resource Management
Replication Allocation / Balancing
Fault tolerance Tenant Placement
Partitioning « Admission Control
(security/privacy) Migration

Performance Isolation ¥



Performance and resource modeling in
highly-concurrent OLTP workloads

Barzan Mozafari, Carlo Curino, Alekn Jindal, Samuel Madden

MIT, MS CSIL

SIGMOD 2013




Common Patterns

Understand workloads
Fixed, Profiled, or Learned

Isolated vs Consolidated

How workloads combine
Provided function (oracle)
Models

Observations
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Find placement
Incremental
Bin-packing
Optimization

Metrics
Robustness
Costs (SLA, Operating)
Performance (TPS, Latency)



DBSeer

Focus
Attribute resource consumption to txn classes (and tenants)
Attribute at runtime in consolidated process

Build models of various DB resources
Key Contributions

Models for disk I/O, locks, throughput, etc
Attribute resources to tenants.

Ability for DBAs to play what-if
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DBSeer From 10000 ft

e S
Reconfigure / Tune

What-if questions 1
DB Admin

(1) Input (logs) ‘ Output (insight)

SQL logs
time, connection, sql_statement
10:23:13.30, C1,BEGIN TRANSACTION cpu /)
10
19DBMS logs _ model
time window, # pages, # writes,
2212~ AN1 2000 T
?8:5 (t')S logs CPU RAM
. me, 3 ’
10:23:13, 89, 2005, model
10:23:14, 85, 2010,
10:23:15 87, 2007,
5
2) Preprocessing / i i 3
(2) Clustering Aligned |=——l- 3) Modeling
Logs




Transaction Clustering

Problem: Different transaction have different access patterns

1. Extract features of each transaction
SQL Logs - number of rows read/written to each table
2. Run DBSCAN clustering algorithm

time connection sgl stmt
1:92 C1 BEGIN TRANSACTION
1:93 C2 SELECT * FROM

NI A T

Access
Distributions




Predicting Disk I/O

Disk Reads = Cache miss rate * # logical reads

Disk Writes = log IO + data IO
Log IO (sequential): redo logs

Data IO (random): dirty pages

due to log reclamation

due to page evictions (buffer pool misses)

Key Observation:
# dirty pages flushed = # new pages getting dirtied
Predict # of dirty pages



Other Components of DBSeer

Clustering transactions
Disk Writes
RAM/Disk Reads

Predicting expected cache-miss rate
Lock Contention
Queuing theory techniques

Network, CPU, Logical I/O, Logging
Linear regression

Max Throughput
Finding the bottleneck resource



Daa$: challenges (and agenda)

Multi-tenancy Architectures
SLA/SLO
Detfinition
Enforcement
High Availability «
Replication
Fault tolerance
Partitioning «
(security/privacy)

Workload Characterization
Fstimation / Prediction ¥
Resource Attribution ¥
What if analysis ¢

Resource Management

Allocation /Balancing

Admission Contro

Migration

Performance Isolation




Characterizing tenant behavior f

Multite

nlacemer

t and crisis

d

Nt DBMSS

mitigation |

or

Aaron J. ElImore, Sudipto Das, Alexander Pucher, Divyakant Agrawal,
Amr El Abbadi, Xifeng Yan

UC Santa Barbara, MSR

SIGMOD 2013




Common Patterns

Understand workloads
Fixed, Profiled, or Learned

Isolated vs Consolidated

How workloads combine
Provided function (oracle)
Models

Observations
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Find placement
Incremental
Bin-packing
Optimization

Metrics
Robustness
Costs (SLA, Operating)
Performance (TPS, Latency)




Pythia

Focus

Tenant workloads are unknown, disk-based, and dynamic

Use supervised learning to model tenants and colocation

Leverage models to resolve performance crisis

Key Contributions
Method for empirically learning how tenant classes colocate

End to end framework for tenant placement
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Tenant Model

Want to construct a tenant model which given a vector of database
attributes provides a tenant class (or label).

Tenant based on database agnostic attributes
(TPS, cache hit %, buffer pool size, write %, etc)

Easily available and available after consolidation

Correlates to tenants’ behavior and performance requirements



Describe Resource Consumption

Tenant labels should describe resource consumption.
For example, we are concerned with: Disk and CPU
Use colored shapes as example classes:

* Disk Heavy
B CPU Heavy

A Disk Medium

CPU Light
Disk Light '9

Train a function T : set of tenant / DB attributes =» class

=
—_—



L earn which classes colocate well

Want to see how a node is performing

Boundaries set
by administrator.

Under v+ Uses resources and
Good v latency SLOs.
Over X Control over

t consolidation.

Incrementally learned
through observation



Things Don't Always Go To Plan

Single tenant in percentile latency causes a node violation.

Use node model to identify set of tenants to remove and identify
destinations to receive tenants.

How to identify which tenants and destination nodes?



Searching for a solution
Implemented as a hill-climbing algorithm
Fach step is a migration

FEvaluate the sum of: each nodes “over”-ness * # tenants



Daa$: challenges (and agenda)

Multi-tenancy Architectures Workload Characterization

SLA/SLO & Fstimation / Prediction ¥
Detfinition Resource Attribution ¥
Enforcement What if analysis ¢

High Availability « Resource Management
Replication Allocation / Balancing
Fault tolerance Tenant Placement ¢

Admission Control

Performance Isolation ¥

Partitioning «
(security/privacy)




Migration for Load Balancing



Migration Forms

Want to move a database between servers
Naive: Stop-and-copy

Improvement: Flush-and-copy

Replication based: Synchronous

Ideal: Live Migration



Migration Goals
Downtime

Service Interruption
Migration Overhead

Time to Complete



Albatross Das et al. VLDB 2011]

FOCUS
Live migration in a shared storage transactional DB

Migration TM state and cache

Key Contributions
First live migration for shared storage.

Minimal strain on destination
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Live Migration for Shared Storage

DBMS Node Cached DB Transaction Cached DB Transaction
State State State State

Tenant/DB Partition | Tenant/DB Partition

Source Destination

Persistent
Image
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Albatross Live Migration

Ownership Source Destination
(Nyro) (Ng.o)
< 1| >
Steady State 1. Begin Migration 2. Iterative Copying _| 3. Atomic Handover Steady State

Time e T

T

T

Initiate Migration
*Snapshot cache at N
=|nitialize tenant at N,
"N,,. continues executing

Src
transactions

Synchronize and Catch-up
*Track changes to DB State at N,
=|teratively synchronize state changes
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Finalize Migration

»Stop serving Tenant at N,

»Synchronize cache

=*Migrate transaction state
*Transfer ownership to N,




Zephyr [Elmore et al. SIGMOD 2011]

FOCuUs
_ive migration in a shared nothing transactional DB (H2)

NO heavy-weight synchronization protocols or replication.

No downtime, some aborted transactions.

Key Contributions
First live migration for shared nothing DBMS.

Minimal strain on source (scale up)
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Init Mode

Freeze index wireframe and migrate

Owned Pages

Active transactions

g—

P

>,

Ps

P

n

[cies Tt

Source

> Un-owned Pages

Destination

Page owned by Node

Page not owned by Node



Dual Mode

Requests for un-owned pages can block

P, P, accessed by Ty, P,
P ».
P3 P3
. —> -
. P, pulled from :
Pn source Pn
Old, still active { ISerzra T !py-+r ! pm } New transactions
transactions
Source Destination
Index wireframes remain frozen Page owned by Node

Page not owned by Node



Finish Mode

Pages can be pulled by the destination, if needed

Completed

1

Pl Pl
P, >
P3 P3
[ ] % o
° /D]/ /DZ/ ,OUS/?ed °
° from source e
P Py
[ opsdseor
7_D/7
Source Destination

Page owned by Node

Page not owned by Node



"Cut Me Some Slack”: Latency-Aware Live Migration
for Databases [Barker et al. EDBT 2012]

FOCUS

Key Contributions
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Slacker Approach

Uses hot backup to migrate
Snapshot, Recover, Delta Shipping, & Handover

Throttle using a linux pipe limiter & piping backup

Use a PID controller (feedback loop on latency)



ProRea — Live Data
RDBMS with Snaps

FOCUS

Key Contributions
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nase Migration for Multi-tenant

not Isolation

[Schiller et al. EDBT 2013]



ProRea - Approach

Instead of 2PL based on SI
Proactively migrates hot pages
Reduced aborts from Zephyr

Implemented in PostgreSQL



In Closing



Many Other Issues

Pricing
Replication
Swapping instead of migration [SWAT @ EDBT 2013]
Security / Privacy
Admission Control / Query Scheduling
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Future Challenges
Additional resource isolation controls

Query processing, buffer management, etc
SLOs / SLAs

Workload or resource based

Multi-user (application, data scientist, developer, C-level)
Data sharing
Better workloads
Analytics
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Thanks!



