
Aaron J. Elmore, Carlo Curino,
Divyakant Agrawal, Amr El Abbadi

[aelmore,agrawal,amr] @ cs.ucsb.edu
ccurino @ microsoft.com

2

Why cloud? (are you really asking?)

 Economy-of-scale arguments

 Pay-per-use value to customers

Moving to the Cloud

Moving to DaaS

Why Database as a Service (DaaS) for tenants?

 DB management drama becomes provider’s problem

 (Ideally) high level Service Level Agreement (SLAs / SLOs)

 Accelerate development lifecycle

 Why Database as a Service (DaaS) for providers?

 Internalize a high-cost portion of service (admin)

 Scale + density + uniformity lower cost

The illusion we are aiming for…

Tenant’s view Provider’s view

Traditional DB deployments

Yo… the DB
 is slow!

$#%@#!
…Try now.

DBAdmin Developer

DB

What changes in DBaaS?

Developer

Developer

Developer

Developer

Developer

Developer

Developer
Developer

Developer

DBAdmin

DB

Developer

Developer

Developer

Developer

Developer

Developer
Developer

Developer

* experiments using OLTPBench: http://oltpbenchmark.com

DaaS (managed DBMS)

Manually tuned DBMS

DaaS: challenges (and agenda)

10

Shared Hardware (DB-in-a-VM)

Hardware

Hypervisor

Guest OS
VM

DBMS
(tenant1)

Guest OS
VM

DBMS
(tenant2)

Guest OS
VM

DBMS
(tenant3)

Guest OS
VM

DBMS
(tenant4)

Shared Process

Hardware

OS

Database Process

Database
(tenant1)

Database
(tenant2)

Database
(tenant3)

Database
(tenant2)

Shared Table

Hardware

OS

Database Process

Table

Rows
(tenant1)

Rows
(tenant2)

Rows
(tenant3)

Rows
(tenant4)

Shared Hardware

Shared Process

Shared Table

Strong Isolation (security, performance)

Mechanics (High Availability, Migration)

Amortize metadata overheads

Trade-off

Sharing and coordination resource

consumption (MEM/CPU/Disk IOps)

Shared Hardware

 SmartSLA, RemusDB, Amazon RDS

Multi-tenancy Architectures

Shared Process

 RelationalCloud, CloudDB, SQLAzure, Delphi, Y! cidr2009

 (shared storage) ElasTras, DAX

Shared Table

Force.com, Jacobs/Aulbach

16

“Reusing/Specializing VM technologies for DaaS”

Hardware

Hypervisor

Guest OS
VM

DBMS
(tenant1)

Guest OS
VM

DBMS
(tenant2)

Guest OS
VM

DBMS
(tenant3)

Guest OS
VM

DBMS
(tenant4)

Amazon RDS

 Provides pre-configured DBMS (MySQL/Oracle/SQLServer)

 Addresses much of provisioning issues

 Strong Isolation / catch-all configuration

Commercial offering: Amazon RDS

SmartSLA [Xiong et al. ICDE 2011]

Focus

 Leverage VM-based mechanisms

 Deliver DB-level SLAs

Key Contribution

SLA violation vs Resource modeling

 Actuation of VM-based mechanisms (cpu, ram, replication)

Key mechanism

 Decompose problem in:

 ML-based model of resource / SLA-penalty

 Allocation of resource + replication

SmartSLA

ML Modeling

 Build a Map of space

 (simple ML/features)

Estimating SLA violation cost and Allocation

Allocation algorithm

 Explore allocation space

 Models infrastructure cost for replication

 Models cost of increasing replication

REMUSDB [Minhas et al. VLDB 2011 /VLDBJ 2013]

Focus

 High Availability via VM replication

 OLTP-compatible performance

Key Contributions

Reuse of mature VM technology (pro of Shared Hardware)

 Smart DB-specific tricks to improve performance

REMUS

Leverage Xen VM-replication

 Snapshots the VM state every few tens of ms

 Delays network and disk writes until next checkpoint (consistent)

 Fail-over to secondary and restart from latest checkpoint

Problems

DBMS bufferpool changes too fast (large deltas to checkpoint)

 Latency overhead is high for OLTP

REMUSDB: DB-specific optimizations

Avoid checkpointing “clean” pages

 no checkpoint for clean pages

 bookkeeping so that secondary fetch from disk if needed

Limit network delay to Commit/Abort

Leverage transactional semantics

 “delay” only Commit/Abort messages

Reduce impact on throughput

32% goes down to about 10%

Design mismatch

 DBMS were designed to make full use of dedicate machines

 Aggressively consume idle resources (especially IOPs)

 [Curino et al. VLDB 2010]

20:1 consolidation 20:1 consolidation (skewed)

26

Hardware

OS

Database Process

Database
(tenant1)

Database
(tenant2)

Database
(tenant3)

Database
(tenant2)

“The DBMS knows best”

Commercial offering: SQLAzure [Bernstein et al. ICDE 2011]

SQL Azure

 Shared DBMS process, Dedicated database

 Shared logging

 Modified version of SQL Server

 High-availability via quorum of replicas

 Support scale-out

 ACID within a row-group

 Read-committed across row-group

ElasTras Architecture [Das et al. HotCloud 2009]

 (Shared Storage)

OTM
OTM

Distributed Fault-tolerant Storage

OTM

TM Master
Metadata
Manager

P1 P2 Pn

Txn Manager
DB

Partitions

Master and MM Proxies

Log Manager Durable Writes

Health and
Load

Management

Lease
Management

Scalable and fault tolerant m/t achieved by data layer spanning colos

Use Cassandra for storage tier with single owning DB instance

Leverage DB and quorum semantics for performance

Operation type & R/W/N

Epoch-bounded strong consistency

DAX [Liu et al. VLDB 2013]

RelationalCloud [Curino et al. CIDR 2011]

* experiments using OLTPBench: http://oltpbenchmark.com

32

“Extreme multi-tenancy”

Hardware
OS

Database Process
Table

Rows
(tenant1)

Rows
(tenant2)

Rows
(tenant3)

Rows
(tenant4)

Key idea

 DBMSs don’t scale well at the tenant/schema level

[Jacobs and Aulbach BTW 2007]

Force.com and [Aulbach et al. SIGMOD 2008]

Focus

 Target tens of thousands of tenants per server

 Partially shared schema (polymorphic SaaS apps)

 Deal with schema-level DBMS scalability limits

Key Contribution

Clever data design, schema mapping / query rewriting

[Aulbach et al. SIGMOD 2008]

Many variants

 Private Table

 Extension Table

 Universal Table

 Pivot Table

 Chunk Table

 Chunk Folding

Focused on extreme multi-tenancy

 Middleware-based querying rewriting

 Ad-hoc security

 Hard to provide performance isolation

 Only for small / low-activity tenants

DaaS: challenges (and agenda)

39

“Chop it and scale it out”

Schism [Curino et al. VLDB 2010]

Positioning

 Partitioning for shared-nothing DBMSs (RelationalCloud)

Focus

 automatic partitioning of arbitrary schemas (many-to-many)

 handle access skew, replication

Key Contributions

Model the problem as graph-partitioning

 “Explain” results using decision trees (practical partition functions)

Schism: Graph-based Partitioning

Schism: Graph-based Partitioning

Graph Representation:

 tuples in the DB are nodes in the graph

Graph Representation:

 tuples in the DB are nodes in the graph

 transactions impose edges among the tuples they access

Schism: Graph-based Partitioning

Schism: Graph-based Partitioning

Graph Representation:

 tuples in the DB are nodes in the graph

 transactions impose edges among the tuples they access

Schism: Graph-based Partitioning

Graph Representation:

 tuples in the DB are nodes in the graph

 transactions impose edges among the tuples they access

Schism: Graph-based Partitioning

Graph Representation:

 tuples in the DB are nodes in the graph

 transactions impose edges among the tuples they access

Graph Partitioning: find K (close to) balanced partitions of the

nodes that minimize the weight of the cut edges (i.e., minimize

distributed transactions)

Schism: Graph-based Partitioning

Graph Partitioning,
NP-Complete, but

great heuristics
(METIS)

Schism: Graph-based Partitioning

Natural Classification
Problem (Decision Tree)

Explanation: compact, predicate-based representation of the

graph-partitioning solution

SWORD [Quamar et al. EDBT 2013]

Key Contributions

 Repartitioning heuristics

 Scaling to larger problems by pre-processing (hyper)graph

 Greater focus on replication for fault-tolerance

 Use of quorums (not just ROWA)

Horticulture [Pavlo et al. 2012]

Focus

 Time-varying skew

 Handle Store procedures natively

Key Contributions

 Schema and workload-driven partitioning

 Large neighborhood search (rich cost model + cheap estimation)

 Horizontal partitioning + table replication + index replication

Best Design Input

Workload

Schema

DDL

Initial Design Relaxation Local Search

Restart

53

Horticulture: Large Neighborhood search

Horticulture Schism

0

10,000

20,000

30,000

40,000

50,000

60,000

4 8 16 32 64

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

4 8 16 32 64

TPC-C

TPC-C

Skewed

(txn/sec)

higher is better

Throughput comparison (for H-Store)

(cost estimate)

lower is better

Where are we with partitioning?

Problems we know how to solve:

 OLAP (tons of classic work)

 OLTP (few recent papers, good grasp on the problem)

More to do:

 OLAP-OLTP mixed workloads partitioning

 Coordinating replication (and erasure codes) for:

 Performance, Fault-tolerance

 Geo-distributed placement/replication

DaaS: challenges (and agenda)

Managing Resource Contention

Finding the Balance

Tenant’s view Provider’s view

Contention for Resources

t1 t2

t4
t3

Enable “Performance” in a Shared Environment

71

Mechanisms to Enforce Isolation

Hard

Static Provisioning

Resource Allocation

 (Dynamic Provisioning)

Soft

Smart Placement

(Admission Control)

DaaS: challenges (and agenda)

Hard Isolation

“Keeping your word about resource sharing”

SQLVM [CIDR 2013, SIGMOD 2013, VLDB 2014]

Focus

 Embedding resource allocation in DBMS kernel.

 How to share critical resources required by DB.

 How to understand resource allocation.

Key Contributions

Fine grain resource scheduling (CPU, Memory, I/O).

 Metering to audit resource promise.

SQLVM Motivation

WHERE State = ‘Vermont’ WHERE State = ‘Vermont’ ‘California’

77 10/1/2013 CIDR 2013

Resource Governance Mechanism

100 IOPS 50 IOPS

Capacity:
200 IOPS

79 10/1/2013 CIDR 2013

Tenant2
Application

Machine in cluster

Database server process

Tenant1
database

Tenant2
database

Tenant is promised reservation of DBMS

resources

“VM inside SQL process”
CPU utilization, IOPS, Memory, …

Resource governance

Fine-grained resource sharing
Novel mechanisms

Metering (auditing)

Monitor actual and promised metrics
for tenant
Determine violations

Resource Allocation

CPU
CPU utilization

Memory (Buffer Pool)
Hit Ratio

Disk I/O: Shaping Traffic
issued

81 10/1/2013 CIDR 2013

Challenges

8
2

Soft Isolation

DaaS: challenges (and agenda)

Common Patterns

Understand workloads

How workloads combine

Find placement

Metrics

Common Patterns

Understand workloads

How workloads combine

Find placement

Metrics

Towards Multi-Tenant Performance SLOs

Focus

 Different hardware configurations (SKU)

 Multiple tenant performance SLO classes

 Place to meet SLOs and minimize costs

Key Contributions

Cost aware server consolidation

 Tenant placement optimization framework

Benchmark server to find max degree multi-tenancy
for perf objectives

Systematically reduce ‘H’ tenants, steadily increase ‘L’
tenant scheduling until a perf objective fails

Server characterizing function:

Both perf objectives met

Some perf objective fails

Heterogeneous SLO Characterization

diskC

0

5

10

15

20

25

0 50 100

N
um

 o
f H

 (1
00

tp
s)

 T
en

an
ts

Number of L (10tps) Tenants

Assumption

Solution

Approach

Common Patterns

Understand workloads

How workloads combine

Find placement

Metrics

Robust Tenant Placement

Focus

 In memory databases with temporal changes / etheral DBs

 Minimize servers while being robust to failures

 Replication with ability to redirect workload

Key Contributions

Incremental algorithms to reduce total costs of ownership

 Maintain replication and respect server load.

 Migration and existing placement aware solution

Workloads

0

20

40

60

80

100

12-13-2010

12-14-2010

12-15-2010

12-16-2010

12-17-2010

12-18-2010

12-19-2010

R
eq

ue
st

 R
at

e
in

 (%
)

Time (in Days)

Placing Tenants

Greedy Heuristics

Meta-heuristics

Exact Solutions

Static and incremental solutions.

Solutions

Framework

Incremental algorithms follows these steps:

Common Patterns

Understand workloads

How workloads combine

Find placement

Metrics

PMAX

Focus

 Latency response SLOs

 Workloads are not fixed and vary, history is not available

 Profit maximization

Key Contributions

Cost focused placement solution

 Bounded approximation algorithms & dynamic prog. solution

Common Patterns

Understand workloads

How workloads combine

Each server has a operating costs.

Place tenants to minimize costs (occasional violations OK).

Two problem formulations:

Placement Formulation

Solution

DaaS: challenges (and agenda)

Common Patterns

Understand workloads

How workloads combine

Find placement

Metrics

Kairos

Focus

 Modeling resource consumption of OLTP workloads

 Consolidate workloads

Key Contributions

Method to determine active working set size

 Model disk I/O for consolidation

 Find balanced consolidation plan.

Buffer Pool Gauging for RAM

953 MB Bufferpool, on TPC-C 5W (120-150 MB/WH) Slide by Sam Madden

Disk Model

115

Node Assignment via Optimization

Implemented in DIRECT non-linear
solver; several tricks to make it go fast

Slide by Sam Madden

Problem modeled as:
Mixed-integer non-linear optimization problem

DaaS: challenges (and agenda)

118

Common Patterns

Understand workloads

How workloads combine

Find placement

Metrics

DBSeer

Focus

 Attribute resource consumption to txn classes (and tenants)

 Attribute at runtime in consolidated process

 Build models of various DB resources

Key Contributions

Models for disk I/O, locks, throughput, etc

 Attribute resources to tenants.

 Ability for DBAs to play what-if

DBSeer From 10000 ft

What-if questions

Transaction Clustering

New
Order

Payment

Delivery

SQL Logs

time connection sql stmt
1:92 C1 BEGIN TRANSACTION
1:93 C2 SELECT * FROM
….

Build
Access

Distributions

1. Extract features of each transaction
- number of rows read/written to each table

2. Run DBSCAN clustering algorithm

Predicting Disk I/O

Disk Reads =

Disk Writes =

Key Observation:

 Predict # of dirty pages

Other Components of DBSeer

DaaS: challenges (and agenda)

131

Common Patterns

Understand workloads

How workloads combine

Find placement

Metrics

Pythia

Focus

 Tenant workloads are unknown, disk-based, and dynamic

 Use supervised learning to model tenants and colocation

 Leverage models to resolve performance crisis

Key Contributions

Method for empirically learning how tenant classes colocate

 End to end framework for tenant placement

Tenant Model

Describe Resource Consumption

Disk Heavy

Disk Medium

Disk Light

CPU Heavy

CPU Light

 Feature 1 Feature 2 Feature 3 T() =

Learn which classes colocate well

Under
Good
Over

Boundaries set
by administrator.

Uses resources and
latency SLOs.

Control over
consolidation.

Incrementally learned
through observation

node

node model

Things Don’t Always Go To Plan

 .

Searching for a solution

DaaS: challenges (and agenda)

Migration for Load Balancing

Migration Forms

Migration Goals

Albatross [Das et al. VLDB 2011]

Focus

 Live migration in a shared storage transactional DB

 Migration TM state and cache

Key Contributions

First live migration for shared storage.

 Minimal strain on destination

147

Tenant/DB Partition

Persistent
Image

DBMS Node

Source Destination

Tenant/DB Partition

Cached DB
State

Transaction
State

Cached DB
State

Transaction
State

Live Migration for Shared Storage

148

Finalize Migration
Stop serving Tenant at Nsrc
Synchronize cache
Migrate transaction state
Transfer ownership to Ndst

Ownership Source
 (Nsrc)

Destination
(Ndst)

Time

1. Begin Migration 2. Iterative Copying 3. Atomic Handover

Synchronize and Catch-up
Track changes to DB State at Nsrc
Iteratively synchronize state changes

Initiate Migration
Snapshot cache at Nsrc
Initialize tenant at Ndst
Nsrc continues executing
transactions

Steady State Steady State

Albatross Live Migration

Zephyr [Elmore et al. SIGMOD 2011]

Focus

 Live migration in a shared nothing transactional DB (H2)

 No heavy-weight synchronization protocols or replication.

 No downtime, some aborted transactions.

Key Contributions

First live migration for shared nothing DBMS.

 Minimal strain on source (scale up)

Init Mode

Owned Pages

Active transactions

Un-owned Pages

Freeze index wireframe and migrate

Page owned by Node

Page not owned by Node

P
1

P
2

P
3

P
n

T
S1

,…, T
Sk

Source Destination

P
1

P
2

P
3

P
n

Dual Mode

Requests for un-owned pages can block

Old, still active
transactions

New transactions

Page owned by Node

Page not owned by Node

P
1

P
2

P
n

T
Sk+1

,…, T
Sl T

D1
,…, T

Dm

P
3

P
3
 accessed by T

Di

P
3
 pulled from

source

Source Destination

P
1

P
2

P
3

P
n

Index wireframes remain frozen

Finish Mode

Pages can be pulled by the destination, if needed

Completed

Page owned by Node

Page not owned by Node

P
n

Source Destination

P
1

P
2

P
3

P
1
, P

2,
 … pushed

from source

T
Dm+1

,…,
T

Dn

P
n

P
1

P
2

P
3

“Cut Me Some Slack”: Latency-Aware Live Migration

for Databases [Barker et al. EDBT 2012]

Focus

 Interference aware live migration

Key Contributions

Throttles migration to minimize impact

 Implementation with no internal modification

Slacker Approach

ProRea – Live Database Migration for Multi-tenant

RDBMS with Snapshot Isolation [Schiller et al. EDBT 2013]

Focus

 Overcome some Zephyr shortcomings

Key Contributions

A proactive and reactive live migration

ProRea - Approach

In Closing

157

Many Other Issues

158

Additional resource isolation controls

SLOs / SLAs

Data sharing

Better workloads

Analytics

Future Challenges

Thanks!

