
Optimization of Sequence Queries in Database Systems

Reza Sadri Carlo Zaniolo
Computer Science Department

University of California
Los Angeles, CA 90095

reza|zaniolo@cs.ucla.edu

Amir Zarkesh Jafar Adibi
ZAIAS Technologies Corporation

5086 Avenida Oriente
Tarzana, CA 91356

azarkesh|jadibi@U4cast.com.

ABSTRACT
The need to search for complex and recurring patterns in
database sequences is shared by many applications. In this
paper, we discuss how to express and support efficiently so-
phisticated sequential pattern queries in databases. Thus,
we first introduce SQL-TS, an extension of SQL, to express
these patterns, and then we study how to optimize search
queries for this language. We take the optimal text search
algorithm of Knuth, Morris and Pratt, and generalize it to
handle complex queries on sequences. Our algorithm ex-
ploits the inter-dependencies between the elements of a se-
quential pattern to minimize repeated passes over the same
data. Experimental results on typical sequence queries, such
as double bottom queries, confirm that substantial speedups
are achieved by our new optimization techniques.

1. INTRODUCTION
Many applications require processing and analyzing sequen-
tial data. Examples include the analysis of stock market
prices [3], meteorological events [9], and the identification of
patterns of purchases by customers over time [1, 2]. These
applications focus on finding patterns and trends in sequen-
tial data. The patterns of interest in actual applications
range from very simple ones, such as finding three consec-
utive sunny days, to the more complex patterns used in
datamining applications [1, 4, 6]. These applications have
motivated researchers to extend database query languages
with the ability of searching for and manipulating sequential
patterns.

The time-series datablades [6] introduced by Informix pro-
vide a library of functions that can be called from an SQL
query, and most commercial DBMSs support similar exten-
sions. But datablades lack in expressive power, flexibility
and integration with DB query languages; thus, DB re-
searchers have been seeking time-series tools that are more
powerful, more flexible, and more integrated with DB query
languages. In particular, the PREDATOR system proposed
an SQL extension called SEQUIN [15, 16, 14] for querying

sequences. Then, SRQL [12] extended the relational alge-
bra with sequence operators for sorted relations, and added
constructs for querying sequences to SQL.

In this paper, we view sorted relations as sequences as in
SRQL, but propose a new and more powerful SQL-like lan-
guage for pattern searching, and advanced techniques for
optimizing queries in such a language.

2. THE SQL-TS LANGUAGE
Our Simple Query Language for Time Series (SQL-TS) adds
to SQL simple constructs for specifying complex sequential
patterns. For instance, say that we have the following table
of closing prices for stocks:

CREATE TABLE quote (name Varchar(8),
date Date,
price Integer)

Now, to find stocks that went up by 15% or more one day,
and then down by 20% or more the next day, we can write
the SQL-TS query of Example 1:

Example 1. Using the FROM clause to define patterns

SELECT X.name
FROM quote

CLUSTER BY name
SEQUENCE BY date
AS (X, Y, Z)

WHERE Y.price > 1.15 * X.price
AND Z.price < 0.80 * Y.price

Thus, SQL-TS is basically identical to SQL, but for the fol-
lowing additions to the FROM clause:

• A CLUSTER BY clause specifying that data for each stock
is processed separately (i.e., as it were a separate stream.)

• A SEQUENCE BY clause specifying that the data must be
traversed by ascending date. Figure 1 shows how the
SEQUENCE BY and CLUSTER BY statements affect the in-
put. Rows are grouped by their CLUSTER BY attribute(s)
(not necessarily ordered), and data in each group are
sorted by their SEQUENCE BY attributes(s). This is simi-
lar to SRQL, where we have GROUP BY and SEQUENCE BY

attributes [12].

name price date
...
INTC $60 1/25/99
INTC $63.5 1/26/99
INTC $62 1/27/99
...
IBM $81 1/25/99
IBM $80.50 1/26/99
IBM $84 1/27/99
...

Figure 1: Effects of SEQUENCE BY and CLUSTER BY on
data

• The AS clause, which in SQL is mostly used to assign
aliases to the table names, is here used to specify a se-
quence of tuple variables from the specified table. By
(X, Y, Z) we mean three tuples that immediately fol-
low each other. Tuple variables from this sequence can
be used in the WHERE clause to specify the conditions
and in the SELECT clause to specify the output.

Expressing the same query using SQL would require three
joins and would be more complex, less intuitive, and much
harder to optimize.

A key feature of SQL-TS is its ability to express recurring
patterns by using a star operator. Take the following exam-
ple:

Example 2. Find the maximal periods in which the price of
a stock fell more than 50%, and return the stock name and these
periods

SELECT X.name, X.date AS start_date,
Z.previous.date AS end_date

FROM quote
CLUSTER BY name
SEQUENCE BY date
AS (X, *Y, Z)

WHERE Y.price < Y.previous.price
AND Z.previous.price < 0.5 * X.price

In SQL-TS, each tuple is viewed as containing two addi-
tional fields that refer to the previous and the next tuple
in the sequence within the same cluster. Thus, for instance
Z.previous (X.next) delivers the last tuple (the first tuple)
in the ∗Y sequence, and Z.previous.date is the date of this
last tuple (the SQL3 syntax Z.previous→ date is also sup-
ported). Here the star construct ∗Y is used to specify a
sequence of one or more Y’s of decreasing price, as per the
condition the condition Y.price < Y.previous.price. In gen-
eral, a star denotes a sequence of one or more (not zero or
more!) tuples that satisfy all applicable conditions in the
where clause. Thus, Z here is the first tuple where the price
of the stock is no longer smaller than the previous one. Con-
structs similar to the star have been proposed previously in
several query languages, and their semantics is easily for-
malized using recursive Datalog programs [11]. Also observe
that a left maximality condition in implicit in the SQL-TS
semantics, meaning that when two overlapping sequences
satisfy the query, we return only the one that starts first.

3. SEARCH OPTIMIZATION
Since SQL-TS is a superset of SQL, all the well-known tech-
niques for query optimization remain available, but in addi-
tion to those, we find new optimization opportunities using
techniques akin to those used for text searching. For in-
stance, take the following example:

Example 3. Find companies whose closing stock price in

three consecutive days was 10, 11, and 15.

SELECT X.name
FROM quote

CLUSTER BY name
SEQUENCE BY date
AS (X, Y, Z)

WHERE X.price =10 AND Y.price=11
AND Z.price=15

The text searching algorithms by Knuth, Morris and Pratt
(KMP), discussed below, provides a solution of proven opti-
mality for this query [8, 18]. Unfortunately, the KMP algo-
rithm is only applicable when the qualifications in the query
are equalities with constants as those of Example 3

Therefore, in this paper, we extend the KMP algorithm to
handle the conditions that are found in general queries—
in particular inequalities between terms involving variables
such as those in the next example.

Example 4. For IBM stock prices, find all instances where

the pattern of two successive drops followed by two successive

increases, and the drops take the price to a value between 40 and

50, and the first increase doesn’t move the price beyond 52.

SELECT X.date AS start_date, X.price
U.date AS end_date, U.price

FROM quote
CLUSTER BY name
SEQUENCE BY date
AS (X, Y, Z, T, U)

WHERE X.name=’IBM’
AND Y.price < X.price
AND Z.price < Y.price
AND 40 < Z.price < 50
AND Z.price < T.price
AND T.price < 52
AND T.price < U.price

3.1 Searching Simple Text Strings
The KMP algorithm takes a sequence pattern of length
m, P = p1 . . . pm, and a text sequence of length n, T =
t1 . . . tn, and finds all occurrences of P in T . Using an ex-
ample from [8], let abcabcacab be our search pattern, and
babcbabcabcaabcabcabcacabc be our text sequence. The al-
gorithm starts from the left and compares successive char-
acters until the first mismatch occurs. At each step, the ith

element in the text is compared with the jth element in the
pattern (i.e., ti is compared with pj). We keep increasing i
and j until a mismatch occurs.

j, i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ti a b c b a b c a b c a a b c a b c
pj a b c a b c a c a b

⇑

1
 j

1
 next[j]

pattern

pattern

1
 j

1
 next[j]

pattern

pattern

Figure 2: The meaning of next(j)

For the example at hand, the arrow denotes the point where
the first mismatch occurs. At this point, a naive algorithm
would reset j to 1 and i to 2, and restart the search by
comparing p1 to t2, and then proceed with the next input
character. But instead, the KMP algorithm avoids back-
tracking by using the knowledge acquired from the fact that
the first three characters in the text have been successfully
matched with those in the pattern. Indeed, since p1 6= p2,
p1 6= p3, and p1p2p3 = t1t2t3 we can conclude that t2 and
t3 can’t be equal to p1, and we can thus jump to t4. Then,
the KMP algorithm resumes by comparing p1 with t4; since
the comparison fails, we increment i and compare t5 with p1:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ti a b c b a b c a b c a a b c a b c
j 1 2 3 4 5 6 7 8 9 10
pj a b c a b c a c a b

⇑
Now, we have the mismatch when j = 8 and i = 12. Here
we know that p1 . . . p4 = p4 . . . p7 and p4 . . . p7 = t8 . . . t11,
p1 6= p2, and p1 6= p3; thus, we conclude that we can move
pj four characters to the right, and resume by comparing
p5 to t12. Therefore, by exploiting the relationship between
elements of the pattern, we can continue our search without
moving back in the text (i.e., without changing the value
of i). As shown in [8], the KMP algorithm never requires
backtracking on the text. Moreover, the index on the pat-
tern can be reset to a new value next(j), where next(j) only
depends on the current value, and is independent from the
text. For a pattern of size m, next(j) can be stored on an
array of size m. (Thus this array can be computed once
as part the query compilation, and then used repeatedly to
search the database, and its time-varying content.)

The array next(j) can be defined as follows:

1. Find all integers k, 0 < k < j, for which pk 6= pj and
such that for every positive integer s < k, ps = pj−k+s

(i.e., p1 = pj−k+1 ∧ . . . ∧ pk−1 = pj−1).

2. If no such k exists, then next(j) = 0 else next(j) is the
largest of these k’s (yielding the least value of j−k+1).

This definition is clarified by Figure 2. The upper line shows
the pattern, and the lower line shows the pattern shifted
by k; the thick segments show where the two are identi-
cal. When no shift exists by which the shifted pattern can
match the original one, we have next(j) = 0, and the pat-
tern is shifted to the right till its first element is at position
j, i.e., the current position in the text. In the KMP algo-
rithm, this is the only situation in which the cursor on the
input is advanced following a failure. (Of course, the input
cursor is always advanced after success.)

The KMP Algorithm:

j = 1; i = 1;
while j ≤ m ∧ i ≤ n do {

while j > 0 ∧ ti 6= pj do
j = next[j];

i = i + 1; j = j + 1; }
if i > n then failure

else success;

The KMP algorithm is shown above. An efficient algorithm
for computing the array next is given in [8]. The complexity
of the complete algorithm, including both the calculation of
the next for the pattern and the search of pattern over text,
is O(m + n), where m is the size of the pattern and n is
the size of the text [8]. When success occurs, the input text
ti−m+1 . . . ti matches the pattern.

4. GENERAL PREDICATES
The original KMP algorithm can be used to optimize simple
queries, such as that of Example 3, in which conditions in the
WHERE clause are equality predicates and t is a tuple variable:

p1(t) = (t.price = 10)

p2(t) = (t.price = 11)

p3(t) = (t.price = 15)

However, for the powerful sequence queries of SQL-TS we
need to support:

1. General Predicates: In particular we need to sup-
port systems of equalities and inequalities such as those
of Example 4 where we have the following predicates:

p1(t) = (t.price < t.previous.price)

p2(t) = (t.price < t.previous.price)

∧ (40 < t.price < 50)

p3(t) = (t.price > t.previous.price)

∧ (t.price < 52)

p4(t) = (t.price > t.previous.price)

2. Repeating pattern expressions: The KMP algo-
rithm assumes that the pattern consists of a fixed num-
ber of elements. To support queries such as that of
Example 2, we need to optimize searches involving re-
curring patterns expressed by the star.

3. More general objects: In modern database systems
we store many different types of objects, such as im-
ages, text, and XML objects, along with user-defined
methods and predicates on these objects.

4.1 Optimized Pattern Search
In this section, we introduce the Optimized Pattern Search
(OPS) algorithm, which is an extension the KMP algorithm.
The OPS algorithm is directly applicable to the optimization
of SQL-TS queries, since it handles the much more general
conditions that occur in time series applications, including
repeating patterns that can be expressed by the star con-
struct.

Say that we are searching the input stream for a sequen-
tial pattern, and a mismatch occurs at the j-th position of
the pattern. Then, we can use the following two sources of
information to optimize our next steps in the search:

• All conditions for elements 1 through j−1 in the search
pattern were satisfied by the corresponding items in
the input sequence, and

• The condition for the jth element in the search pattern
was not satisfied by its corresponding input element.

Therefore, much as in the KMP algorithm, we can capture
the logical relationship between the elements of the pattern,
and then infer which shifts in the pattern can possibly suc-
ceed; also, for a given shift, we can decide which conditions
need not be checked (since their validity can be inferred from
the two kinds of information described above).

Therefore, we assume that the pattern has been satisfied for
all positions before j and failed at position j, and we want
to compute the following two items,

• shift(j): this determines how far the pattern should
be advanced in the input, and

• next(j): this determines from which element in the
pattern the checking of conditions should be resumed
after the shift.

Observe that the KMP algorithm only used the next(j) in-
formation. Indeed, for KMP, the search pattern was never
shifted in the text (except for the case where next(j) = 0 and
the pattern was shifted by j). The richer set of possibilities
that can occur in OPS demand the use of explicit shift(j)
information. Furthermore, the computation for next and
shift is now significantly more complex and requires the
derivation of several three-valued logic matrices.

4.2 Implications Between Elements
The OPS algorithm begins by capturing all the logical rela-
tions among pairs of the pattern elements using a positive
precondition logic matrix θ, and a negative precondition
logic matrix φ. These matrices are of size m, where m is
the length of the search pattern. The θjk and φjk elements
of these matrices are only defined for j ≥ k; thus we have
lower-triangular matrices of size m. We define:

θjk =

8<: 1 if pj ⇒ pk ∧ pj 6≡ F
0 if pj ⇒ ¬pk

U otherwise

φjk =

8<: 1 if ¬pj ⇒ pk

∅ if ¬pj ⇒ ¬pk ∧ pj 6≡ T
U otherwise

We have added the terms pj 6≡ F in definition of θ, and
pj 6≡ T in definition of φ, to make sure that the left side
of the implication relationships are not equivalent to false,
because in that case the value of the corresponding element
in the matrix could be both 0 and 1. By excluding those

k

1
 k + 1
 j

1

j
-
1

j
-
k
j
-
k
-
1

k

k

1
 k + 1
 j

1

j
-
1

j
-
k
j
-
k
-
1

k

Figure 3: Shifting the pattern k positions to the
right

cases, we have removed the ambiguity. Logic matrices θ and
φ contain all the possible pairwise logical relations between
pattern elements. For instance, for Example 4 we have:

Example 5. Computing the matrices θ and φ for Example 4

p2 ⇒ p1 therefore θ21 = 1
p3 ⇒ ¬p1 therefore θ31 = 0
p3 ⇒ ¬p2 therefore θ32 = 0
p4 ⇒ ¬p2 therefore θ42 = 0
p4 ⇒ ¬p1 therefore θ41 = 0
¬p4 ⇒ ¬p3 therefore φ43 = 0

Therefore we have

θ =

2664 1
1 1
0 0 1
0 0 U 1

3775

φ =

2664 0
U 0
U U 0
U U 0 0

3775
¿From matrices φ and θ, we can now derive another triangu-
lar matrix S that describes the logical relationships between
whole patterns. The Sjk entries in the matrix, which are
only defined for j > k, are computed as follows:

Sjk = θk+1,1 ∧ θk+2,2 ∧ · · · ∧ θj−1,j−k−1 ∧ φj,j−k

Thus, say that the pattern was satisfied up to, and exclud-
ing, element j; then, Sjk = 0 means that the pattern can-
not be satisfied if shifted k positions. Moreover, Sjk = 1
(Sjk = U) means that the pattern is certainly (possibly) sat-
isfied after a shift of k. Figure 3 illustrates the situation. In
calculating matrix S, we use standard 3-valued logic, where
¬U = U , U ∧ 1 = U , and U ∧ 0 = 0. For the example at
hand we have:

Shifted Pattern

i
–
j + 1

1

1

i
–
j + shift(j) + 1
 i
-
j + shift(j) + next(j)

shift(j) + 1
 shift(j) + next(j)

i

j

next(j)
 j
-
shift(j)

Input

Pattern

shift(j)

Shifted Pattern

i
–
j + 1

1

1

i
–
j + shift(j) + 1
 i
-
j + shift(j) + next(j)

shift(j) + 1
 shift(j) + next(j)

i

j

next(j)
 j
-
shift(j)

Input

Pattern

shift(j)

Figure 4: Next and Shift definitions for OPS

Example 6. Computing the matrix S for Example 5

S2,1 = φ2,1 = U

S3,1 = θ2,1 ∧ φ3,2 = 1 ∧ U = U

S3,2 = φ3,1 = U

S4,1 = θ2,1 ∧ θ3,2 ∧ φ4,3 = 0

S4,2 = θ3,1 ∧ φ4,2 = 0

S4,3 = φ4,1 = U

S =

2664 U
U U
0 0 U

3775
We can now compute shift(j), which is the least shift to
the right for which the overlapping sub-patterns do not con-
tradict each other (Figure 4). Thus, shift(j) is the column
number for the leftmost non-zero entry in row j of S. When
all these entries are equal to zero, then a failure will occur
for any shift up to j. In this case, we set shift(j) = j; thus,
the pattern is shifted to the right till its first position coin-
cides with the position immediately after the cursor in the
text. More formally:

shift(j) =

8<: j if ∀k < j, Sjk = 0

min({k | Sjk 6= 0}) otherwise

Thus, shift(j) tells us how much the pattern can be ad-
vanced on the input before there is any chance of success.
We can now compute next(j) which denotes the element
in the pattern from which checking against the input should
be resumed (for elements before next(j) the result is already
known to be true). There are basically three case. The first
case is when shift(j) = j, and thus the first element in the
pattern must be checked next against the current element
in the input. The second case is when shift(j) < j and
Sj,shift(j) = 1; In this case we only need to begin our check-
ing from the element in the pattern that is aligned with
the first input element after current input position—thus,
next(j) = j−shift(j)+1. The third case occurs, when nei-
ther of the previous cases hold; then the first pattern element
should be applied to the input element i− j + shift(j) + 1;
but if θshift(j)+1,1 = 1, then the comparison becomes unnec-
essary (and similar conditions might hold for the elements
that follow). Thus, we set next(j) to the leftmost element
in the pattern that must be tested against the input. Figure
4 shows how this works. Now we can formally define next
as follows:

1. if shift(j) = j then next(j) = 0, else

2. if Sj,shift(j) = 1 then
next(j) = j − shift(j) + 1, else

3. if neither of these conditions hold, then
next(j) = min(
{t | 1 ≤ t < j − shift(j) ∧ θshift(j)+t,t = U}
∪ {j − shift(j)|φj,j−shift(j) = U})

For the example at hand we have:

Example 7. Compute shift and next for Example 5

shift(1) = 1
shift(2) = 1 since S21 6= 0
shift(3) = 1 since S31 6= 0
shift(4) = 3 since S41 = 0 ∧ S42 = 0

∧S43 6= 0

next(1) = 0 since shift(1) = 1
next(2) = 1 since φ21 6= 1
next(3) = 2 since θ21 = 1 ∧ φ32 6= 1
next(4) = 1 since φ41 6= 1

The calculation of arrays shift and next is done as part of
query compilation. This is discussed in Section 6.

4.2.1 The Main Algorithm.
We can use the values stored in arrays next and shift to
optimize the pattern search at run time. Consider a predi-
cate pattern p1p2 . . . pm. Now, pj(ti) is equal to one, when
the i-th element in the input sequence satisfies a pattern
element pj ; otherwise, it is zero.

The OPS Algorithm
j = 1; i = 1;
while j ≤ m ∧ i ≤ n do {

while j > 0 ∧ ¬pj(ti) do {
i = i− j + shift(j) + next(j);
j = next(j); }

i = i + 1; j = j + 1; }
if i > n then failure

else success;

Here too, as in the KMP algorithm, success denotes that
ti−m+1 . . . ti satisfies the the pattern. However, we see the
following generalizations with respect to KMP:

• The equality predicate ti = pj is replaced by pj(ti)
that tests if pj holds for the i-th element in the input
(i.e., the j-th tuple of the sorted cluster).

• When there is a mismatch, we modify both j and i,
which, respectively, index the input and the pattern.
The new value for j is next(j) and the new value for i
is i− j + shift(j) + next(j).

For instance, we used the pattern in the query of Example
4 to search the following sequence:

55 50 45 57 54 50 47 49 45 42 55 57 59 60 57.

2 4 6 8 10 12 14
1

1.5

2

2.5

3

3.5

4
Naive Search Path

i

j

2 4 6 8 10 12 14
1

1.5

2

2.5

3

3.5

4
OPS Search Path

i

j

Figure 5: Comparison between path curve of the
naive search (top chart) and OPS (bottom chart)

Figure 4.2.1 compares the evolution of the values of j and
i for the naive algorithm and the OPS algorithm. Clearly,
for the OPS algorithm, the backtracking episodes are less
frequent and less deep, and therefore the length of the search
path is significantly shorter.

5. DEALING WITH THE STAR
An important advantage of the OPS algorithm is that it
can be easily generalized to handle recurrent input patterns
which, in SQL-TS, are expressed using the star. For exam-
ple, say that ∗p is an element in our search pattern, where
p = t.price < t.previous.price. Then ∗pj matches any se-
quence of records with decreasing prices.

The calculation of the logic matrices θ and φ remains un-
changed in the presence of star patterns; thus, the formulas
given in Section 4.2 will still be used. However, the cal-
culation of the arrays shift and next must be generalized
for star patterns as described next. Consider the following
SQL-TS query:

Example 8. Find patterns consisting of a period of rising
prices, followed by a period of falling prices, followed by another
period of rising prices.

SELECT X.name, FIRST(X).date AS sdate,
LAST(Z).date AS edate

FROM quote
CLUSTER BY name
SEQUENCE BY date
AS (*X, *Y, *Z)

WHERE X.price > X.previous.price
AND Y.price < Y.previous.price
AND Z.price > Z.previous.price

Therefore, the three predicates that must be satisfied by the
tuples, X, Y and Z, are as follows:

p1(X) = (X.price > X.previous.price)

p2(Y) = (Y.price < Y.previous.price)

p3(Z) = (Z.price > Z.previous.price)

These will be called star predicates, because they are pre-
fixed with a star in the ‘from’ clause of the query, which
searches for the pattern: ∗p1(X), ∗p2(Y), ∗p3(Z).

To support efficient search on patterns with star, at runtime,
we maintain an array of counters, one per pattern element.
Each counter keeps track of the cumulative number of input
tuples that have matched the pattern up to this element. For
instance, say that we have the following sequence of values
for t.price:

20 21 23 24 22 20 18 15 14 18 21

and let count(j) denote the counter for the j-th element of
the pattern. After matching the pattern with the text we
have:

count(1) = 4
count(2) = 9 since 5 elements satisfy p2

count(3) = 11 since 2 elements satisfy p3.

We update and use these counters at runtime while search-
ing the input for sequences that satisfy the pattern. There-
fore, for star patterns, our search algorithm is generalized
as described next.

If the current input element satisfies the pattern then, we
advance the input cursor to the next element, and if

1. the current pattern element is not a star, we advance
the pattern cursor to the next element, otherwise

2. the current element is a star and we update count to
count + 1 (and leave the cursor on the current pattern
element).

If the current input element does not satisfy the pattern,
then

1. if the current pattern element is a star predicate, which
has already been satisfied by the previous input el-
ement, then we advance the pattern cursor and the
input cursor to their next respective elements;

2. if the current pattern element is not a star predicate,
or it is a star predicate which has not been tested on
the previous input element, then we

- reset j (the index in the pattern) to next(j), and

- reset i (the index in the input) to:
i− count(j − 1) + count(shift(j) + next(j)− 1).

In the presence of stars, the compile-time computation for
shift(j) and next(j) is more complex, and it is discussed
next.

5.1 Finding next and shift for the Star Case
Consider the following graph based on the matrix θ (exclud-
ing the main diagonal)

θ21

↓ ↘
θ31 → θ32

↓ ↘ ↓ ↘
θ41 → θ42 → θ43

↓ ↘ ↓ ↘

The entry θjk in our matrix correlates pattern predicates pj

with pk, k < j, when the two are evaluated on the same
input element. Therefore, we can picture the simultaneous
processing of the input on the original pattern, and on the
same pattern with the cursor shifted back by j−k. Thus, the
arcs between nodes in our matrix above represent the com-
bined transitions in the original pattern and in the shifted
pattern. In particular, consider θjk where neither pj nor
pk are star predicates; then after success in pj and pk, we
transition to pj+1 in the original pattern, and to pk+1 in
the shifted pattern: this transition is represented by an arc
θjk → θj+1,k+1. However, if pj is a star predicate, while pk is
not, then the success in both will move pk to pk+1, but leave
pj unchanged: this is represented by the arc θjk → θj,K+1.
In general, it is clear that only a subset of the arcs listed in
the previous matrix represent valid transitions, and should
be considered, and this set is further limited by the values of
θ. In particular, since all the predicates in the pattern must
be satisfied by the shifted input, every arc to and from a
node that has value 0 can be discarded: we only keep those
arcs where both end-points are 1 or U .

If we consider all possible transitions, we conclude that only
the following arcs are valid from any given node in the graph,
assuming that all its neighbors are nonzero nodes:

1. If both elements j and k of the pattern sequence are
star predicates and θjk = U , then we have three out-
going arcs from θjk: one to θj+1,k, one to θj+1,k+1 and
one to θj,k+1. Pictorially,

U → θj,k+1

↓ ↘
θj+1,k θj+1,k+1

2. If both element j and element k of the pattern are stars
and θjk = 1, we have two outgoing arcs from θjk: one
to θj+1,k+1 and the other to θj,k+1. Pictorially,

1 θj,k+1

↓ ↘
θj+1,k θj+1,k+1

There is no arc to θj,k+1, because θj,k = 1; thus all
input tuples that satisfy pj must also satisfy pk.

3. If both elements j and k of the pattern are non-star
predicates, then we have only one arc from θjk to
θj+1,k+1. Pictorially,

θjk θj,k+1

↘
θj+1,k θj+1,k+1

4. If element j of the pattern is a star predicate, but
element k is not, then we have two arcs from θjk: one
to θj+1,k+1 and the other to θj,k+1:

θjk → θj,k+1

↘
θj+1,k θj+1,k+1

5. If element k of the pattern is a star predicate but ele-
ment j is not, then we have two arcs from θjk: one to
θj+1,k+1 and the other to θj+1,k. Thus we have:

θjk θj,k+1

↓ ↘
θj+1,k θj+1,k+1

For all the arcs shown above, we have assumed that their
end nodes are either U or 1; however, when such nodes are
0, their incoming arcs will instead be dropped. The directed
graph produced by this construction will be called the Im-
plication Graph for pattern sequence P , and will be denoted
as GP .

The graph GP has m nodes where m is the number of el-
ements in the pattern. Now, for each value of j ≤ m, the
matrix representing GP must be modified with entries from
φ to account for the fact that the jth element of the pattern
failed on the input. Therefore, we replace the jth row of
GP (i.e., the row that starts with θj,1) with the jth row of
matrix φ and remove rows greater than j.

We also update the arcs between elements in row j − 1 and
row j according to the new values of elements in row j.
Basically, the rules previously discussed for arcs between θ
nodes still hold now that the arcs lead to φ nodes. However,
since we only want arcs that have U or 1 as their end-node,
we eliminate all arcs leading to a node φj,k in the last row
when this node has value 0. The resulting graph will be
called the Implication Graph for pattern element j, denoted
Gj

P .

The following SQL-ST query illustrates the computation of
or matrices θ and φ. We want to find occurrences of the
following four-period pattern in IBM’s stock prices:

Example 9. Find occurrences of the following four-period
patterns in IBM’s prices: (i) a period of increasing prices
in the 30-40 range, followed by (ii) a period of decreasing
prices, followed by (iii) another period of price increases
moving the price into the 35-40 range, (iv) followed by a
period of price decreases taking the price below 30.

SELECT X.NEXT.date, X.NEXT.price,
S.previous.date, S.previous.price

FROM quote
CLUSTER BY name,
SEQUENCE BY date

AS (*X, Y, *Z, *T, U, *V, S)
WHERE

X.name=’IBM’
AND X.price > X.previous.price
AND 30 < Y.price
AND Y.price < 40
AND Z.price < Z.previous.price
AND T.price > T.previous.price
AND 35 < U.price
AND U.price < 40
AND V.price < V.previous.price
AND S.price < 30

Therefore our pattern predicates (on an input tuple t) are:

p1(t) = (t.price > t.previous.price)

p2(t) = (30 < t.price < 40)

p3(t) = (t.price < t.previous.price)

p4(t) = (t.price > t.previous.price)

p5(t) = (35 < t.price < 40)

p6(t) = (t.price < t.previous.price)

p7(t) = (t.price < 30)

Observe that p1, p3, p4, and p6 are star predicates, and the
others are not. Our matrices φ and θ are:

θ =

266666664
1
U 1
0 U 1
1 U 0 1
U 1 U U 1
0 U 1 0 U 1
U 0 U U 0 U 1

377777775

φ =

266666664
0
U 0
U U 0
0 U U 0
U U U U 0
U U 0 U U 0
U U U U U U 0

377777775

Since p1, p3, p4, and p6 are star predicates, and p2 and p5

are not, we will connect the elements of θ (after excluding
the main diagonal), and obtain the following matrix GP :

266666666666666666664

−

U −
↘

0 U −

1 U 0 −
↓ ↘ ↘
U 1 U U −

↘ ↘ ↓ ↘
0 U → 1 0 U −

↘ ↓ ↘ ↘
U 0 U U 0 U −

377777777777777777775

Say now that we want to build G6
P . We replace row 6 of GP

with row 6 of φ and update the paths from the 5th row to
the 6th row according to new value. Thus, the graph G6

P is
as follows:

26666666666666664

−

U −
↘

0 U −

1 U 0 −
↓ ↘ ↘
U 1 U U −
↓ ↘ ↘ ↓ ↘
U U 0 U U −

37777777777777775
Consider now the node θ41 in this graph. Observe that there
are several paths nodes that take us to nodes in the last row
of the matrix, through a succession of nodes whose values are
either 1 or U . Therefore, an input shifted by 3 can succeed
along any of these paths (with a shift of 3, the search resumes
by comparing element 3 + 1 in the input against element 1
in the pattern).

However, there is no path to the last row starting from node
θ31: thus, 2 is not a possible shift. Also there is not path
to the last row starting from θ21; thus a shift of size 1 will
never succeed. Therefore, we conclude that shift(6) = 3.

In general, we define shift(j) as follows:

Definition 1. Let P denote the search pattern, and let

σ(j) = {s| ∃ a path from θs+1,1

to a node in the last row of Gj
P }.

then,

1. if the set σ(j) is not empty, then shift(j) = min (σ(j))

2. if σ(j) is empty, and φj1 6= 0 then shift(j) = j − 1

3. if σ(j) is empty, and φj1 = 0 then shift(j) = j.

Now, we can define next. Multiple paths leading to the last
row were acceptable for shift, but they are not acceptable
for next, since this must return a value that uniquely de-
termines the point from which the search must be resumed.
Therefore, let us say that a node in our Gj

P graph is deter-
ministic if there is exactly one arc leaving this node, and
the end-node of this arc has value 1 (thus a deterministic
node cannot take us to an U node or to several 1 nodes).
Thus, we start from θshift(j)+1,1, and if this is not determin-
istic, then we set next(j) = 1. Otherwise, we move to the
unique successor of this deterministic node and repeat the
test. When the first non-deterministic node is found in this
recursive process, next(j) is set to the value of its column.
If the search takes us to the last row in Gj

P , that means that
none of the input elements previously visited needs to be
tested again: thus we set next(j) = j − shift(j).

For the example at hand, there is a non-zero path from node
θ41 to φ61, thus shift(6) = 3. We now consider θ41 = 1
and see that this is not a deterministic node, since there
more than one arc leaving the node. Thus, we conclude
that next(6) = 1.

For the computation of shift(j), we must find from which
nodes in the first column the last row of Gj

P can be reached.
Transitive closure algorithms can be used to identify the
nodes in the first column connected with nodes in the last
row. But for a pattern of length m, we have m(m − 1)/2
nodes in our graph; thus classical algorithms for transitive
closures, such as the Warshall algorithm, can have complex-
ity O(m6). A better approach consists in using the inverse
graph, extended with a root node that has arcs leading to
each node in the last row of our matrix. Then, we can tra-
verse this graph from the root, and among the visited nodes
in the first column, select the one with the smallest row num-
ber (or return the information that this set is empty). The
complexity of graph traversal is linear in the number of arcs
in the graph. Thus, the computation of a single shift(j)
takes O(m2), in the worst case. After determining shift(j),
we compute next(j) by following a linear path on the graph
till we find a U , or a fork or we reach the last row. But, due
to the orientation of its arcs, our graph cannot contain any
path of length greater than 2 ×m. Thus, the computation
of next(j) is linear in m. Therefore, the computation of all
pairs shift(j) and next(j), for 1 ≤ j ≤ m, has complexity
O(m3).

6. IMPLEMENTATION
Elements of φ and θ are calculated based on the semantics
of the pattern elements, particular inequalities between pat-
tern elements. Several satisfiability and implication results
in databases [5] are relevant to calculate the nodes of the θ
and φ matrices, for classes of patterns that involve inequal-
ity. In our implementation, we used the algorithm by Guo,
Sun and Weiss (GSW) [5] for computing implication and
satisfiability of conjunctions of inequalities. In the compu-
tation of our φ and θ matrices, the implication algorithm is
used to determine which nodes have a value of 1, and the
satisfiability algorithm is used to determine the nodes that
have value of 0. The GSW algorithm deals with inequalities
of the form X op C, X op Y , and X op Y +C where X and
Y are variables, C is constant, and op ∈ {=, 6=,≤,≥, <, >}.
Complexity of their algorithm is O(|S| × n2 + |T |) for test-

*Z

(less than 2% change)

*U

(less than 2% change)

*W

(less than 2% change)

*Y
 *R

*V
*T

*Z

(less than 2% change)

*U

(less than 2% change)

*W

(less than 2% change)

*Y
 *R

*V
*T

Figure 6: The relaxed double bottom pattern.

ing implication and O(|S| + n3) for testing satisfiability; n
is the number of variables in S; |S| and |T | are the number
of inequalities respectively contained in S and T . Given the
limited number of variables and inequalities used in actual
queries these compilation costs are quite reasonable.

While the GSW algorithm is sufficient to handle examples
listed so far, a minor extension is needed to handle the of
Example 10, where inequalities have the form say X op C∗Y .
Here we can take advantage of the fact that the domain of
Y is positive numbers (stock prices) and introduce a new
variable Z = X/Y . Then we work with Z op C instead of
the original X op C ∗ Y .

The runtime execution of SQL-TS is achieved via user-defined
aggregates that are capable of applying arbitrary SQL state-
ments on input streams [17].

7. EXPERIMENTAL RESULTS
In order to measure performance, we count the number of
times that an element of input is tested against a pattern
element. The speedups obtained range from the modest one
obtained for the simple search pattern of Figure 4.2.1, to
speedups of more than two orders of magnitude obtained
on the complex patterns found in actual applications. For
instance, a common search in stock market data analysis
is for a double-bottom pattern, where the stock price has
two consecutive local minima. Therefore, in our experiment
we searched for “relaxed double-bottoms” in the recorded
closing value of the DJIA (Dow Jones Industrial Average)
index for the last 25 years. By a relaxed double bottom we
mean a local maximum surrounded by two local minima,
where we only consider the increases or decreases which are
more than 2%. In other words, if the price moves less than
2%, we consider it as if it hasn’t changed. (Figure 6).

Example 10 expresses the relaxed double bottom pattern in
SQL-TS; ∗Z, ∗U, and ∗W represent the areas where changes
are less than 2% and the curve is considered approximately
flat (Figure 6). This query, optimized using the OPS algo-
rithm, executes 93 faster than the naive execution on the
DJIA’s data for the last 25 years. Figure 7 shows there are
12 matches found in the input. The graph in the bottom
of Figure 7 shows one of this patterns that occurred around
June 1990. We ran several queries with complex search pat-
terns, and measured speedups up to 800 times over naive
search.

Example 10. Relaxed double bottom

SELECT X.NEXT.date, X.NEXT.price,
S.previous.date, S.previous.price

FROM djia
SEQUENCE BY date
AS (X,*Y, *Z, *T, *U, *V, *W, *R, S)

WHERE X.price >= 0.98 * X.previous.price
AND Y.price < 0.98 * Y.previous.price
AND 0.98*Z.previous.price < Z.price
AND Z.price < 1.02*Z.previous.price
AND T.price > 1.02 * T.previous.price
AND 0.98*U.previous.price < U.price
AND U.price < 1.02*U.previous.price
AND V.price < 0.98 * V.previous.price
AND 0.98*W.previous.price < W.price
AND W.price < 1.02*W.previous.price
AND R.price > 1.02*R.previous.price
AND S.price <= 1.02*S.previous.price

8. FURTHER WORK & CONCLUSION
In this paper, we described a novel approach for querying
complex sequential patterns and optimizing these queries.
We are currently pursuing various improvements and exten-
sions, on which we next present a very short summary, due
to space limitations.

We have developed a method for calculating φ and θ for a
more general class of predicates that includes predicates on
intervals (open and closed intervals, single-dimensional and
multidimensional ones) [13]. Our method transforms im-
plication and satisfiability problems into set inclusion prob-
lems in the domain of intervals and their complements; we
can then handle the search for patterns in a spatio-temporal
database [13]. We have also extended the OPS algorithm to
optimize patterns containing disjunctive conditions [13].

Clearly, it is possible to search the input stream in either the
forward or the reverse direction. Therefore, we can optimize
searches in both directions, and then select the better. We
are currently seeking good heuristics for selecting the more
effective of the two optimizations. For instance, a large aver-
age value for shift and next is a good indication of effective
optimization. Specially a larger value of shift has more
effect on the speedup.

Finally, we are investigating the suitability of other pattern
search algorithms for extensions similar to those we have
used for KMP. Although there is evidence that KMP pro-
vides better performance on the average [18], than other al-
gorithms, such as those by Karp&Rabin [7] and Boyer&Moore
[10], could offer some advantage in special situations.

9. ACKNOWLEDGEMENTS
This work was partially supported by the National Science
Foundation under grant: NSF–IIS 0070135.

The authors are grateful to the reviewers for the several
improvements they suggested, and to Elias Koutsoupias for
his advice.

Oct76 Jul79 Mar82 Dec84 Sep87 Jun90 Mar93 Dec95 Sep98 May01
0

2000

4000

6000

8000

10000

12000

Jun90

2400

2500

2600

2700

2800

2900

3000

Figure 7: Doublebottoms found in the DJIA data
are shown by boxes. The bottom picture is zoomed
for the area pointed by arrow in the top picture and
shows one of the matches.

10. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential

patterns. In International Conference on Data
Engineerin, 1995.

[2] M. Berry and G. Linoff, Data Mining Techniques: For
Marketing, Sales, and Customer Support. John Wiley,
1997.

[3] R.D. Edwards and J. Magee. Technical Analysis of
Stock Trends. AMACOM, 1997.

[4] C. Faloutsos, M. Ranganathan, and Manolopoulos Y.
Fast subsequence matching in time-series databases.
In Proc. Int. Conf. On Management of Data, pages
419–429, 1994.

[5] S. Guo, W. Sun, and M. Weiss. On satisfiability,
equivalence, and implication problems involving
conjunctive queries in database systems. IEEE
Transactions on Knowledge and Data Engineering,
8(4):604–616, August 1996.

[6] Informix Software Inc. Managing time-series data in
financial applications, 1998. White Paper.

[7] R. Karp and M. O. Rabin. Efficient Randomized
Pattern Matching Algorithm. IBM Journal of
Research and Developement, 31(2):249–260, March
1987.

[8] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast
pattern matching in strings. SIAM Journal of
Computing, 6(2):323–350, June 1977.

[9] E. Mesrobian et al., Extracting spatio-temporal
patterns from geoscience datasets. In IEEE Workshop
on Visualization and Machine Vision, 1994.

[10] J. S. Moore and R. S. Boyer. A Fast String Searching
Algorithma. Communications of ACM,
20(10):762-772, 1977.

[11] I. Motakis and C. Zaniolo. Temporal aggregation in
active databases. In Int. Conf. on the Management of
Data, May 1997.

[12] R. Ramakrishnan et al., SRQL: sorted relational query
language, SSDBM 1998: 84-95.

[13] R. Sadri, Optimization of Sequence Queries in
Database Systems Ph.D. Thesis, UCLA, 2001.

[14] P. Seshadri. Predator: A resource for database
research. SIGMOD Record, 27(1):16–20, 1998.

[15] P. Seshadri, M. Livny, and R. Ramakrishnan.
Sequence query processing. In Proceedings of ACM
SIGMOD Conference on Management of Data, pages
430–441, May 1994.

[16] P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A
model for sequence databases. In ICDE, pages
232–239, 1995.

[17] H. Wang and C. Zaniolo. Using SQL to Build New
Aggregates and Extenders for Object-Relational
Systems. In Proceedings of 26th International
Conference on Very Large Data Bases, 2000.

[18] C. A. Wright, L. Cumberland and Y. Feng, A
Performance Comparison Between Five String Pattern
Matching Algorithms, Dec. 98 Tech.Report,
http://ocean.st.usm.edu∼/cawright/
pattern matching.html

