

Keyword(s):

Abstract:

©

Self-selecting, self-tuning, incrementally optimized indexes

Goetz Graefe, Harumi Kuno

HP Laboratories
HPL-2010-24

database index, adaptive, autonomic, query execution

In a relational data warehouse with many tables, the number of possible and promising indexes exceeds
human comprehension and requires automatic index tuning. While monitoring and reactive index tuning
have been proposed, adaptive indexing focuses on adapting the physical data-base layout for and by actual
queries. "Database cracking" is one such technique. Only if and when a column is used in query predicates,
an index for the column is created; and only if and when a key range is queried, the index is optimized for
this key range. The effect is akin to a sort that is adaptive and incremental. This sort is, however, very
inefficient, particularly when applied on block-access devices. In contrast, traditional index creation sorts
data with an efficient merge sort optimized for block-access devices, but it is neither adaptive nor
incremental. We propose adaptive merging, an adaptive, incremental, and efficient technique for index
creation. Index optimization focuses on key ranges used in actual queries. The resulting index adapts more
quickly to new data and to new query patterns than database cracking. Sort efficiency is comparable to that
of traditional B-tree creation. Nonetheless, the new technique promises better query performance than
database cracking, both in memory and on block-access storage.

External Posting Date: February 6, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: February 6, 2010 [Fulltext]

To be published and presented at EDBT 2010, Lausanne, Switzerland, March 22-26, 2010

Copyright EDBT 2010

Self-selecting, self-tuning, incrementally optimized indexes
Goetz Graefe

Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94304

Harumi Kuno

Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94304

Abstract
In a relational data warehouse with many tables, the

number of possible and promising indexes exceeds human

comprehension and requires automatic index tuning. While

monitoring and reactive index tuning have been proposed,

adaptive indexing focuses on adapting the physical data-

base layout for and by actual queries.

“Database cracking” is one such technique. Only if and

when a column is used in query predicates, an index for the

column is created; and only if and when a key range is que-

ried, the index is optimized for this key range. The effect is

akin to a sort that is adaptive and incremental. This sort is,

however, very inefficient, particularly when applied on

block-access devices. In contrast, traditional index creation

sorts data with an efficient merge sort optimized for block-

access devices, but it is neither adaptive nor incremental.

We propose adaptive merging, an adaptive, incremen-

tal, and efficient technique for index creation. Index opti-

mization focuses on key ranges used in actual queries. The

resulting index adapts more quickly to new data and to new

query patterns than database cracking. Sort efficiency is

comparable to that of traditional B-tree creation. Nonethe-

less, the new technique promises better query performance

than database cracking, both in memory and on block-

access storage.

Categories and subject descriptors
E.2 Data storage representations – arrays, sorted trees.

Keywords
Database index, adaptive, autonomic, query execution.

 1

1 Introduction
In a relational data warehouse with a hundred tables

and a thousand columns, billions of indexes are possible, in

particular if partial indexes, indexes on computed columns,

1
 Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee pro-

vided that copies are not made or distributed for profit or com-

mercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, to republish, to post

on servers or to redistribute to lists, requires prior specific permis-

sion and/or a fee.

EDBT 2010, March 22-26, 2010, Lausanne, Switzerland.

Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00.

and materialized views with their indexes are considered.

Thus, index selection is a central, classic, and very hard

problem in physical database design. Too few or the wrong

indexes force many queries to scan large parts of the data-

base; too many indexes force high update costs. Unpredict-

able ad-hoc queries exacerbate the problem.

One approach is to focus on enabling very fast scans,

e.g., using shared scans and columnar storage formats, an

approach suitable to high-bandwidth high-latency devices

such as traditional disk drives and disk arrays. Low-latency

database storage such as flash memory will likely re-

energize research into index-based query processing.

Another approach is to tune indexes in response to the

actual workload. Contemporary index selection tools rely

on monitoring database requests and their execution plans,

occasionally invoking creation or removal of indexes on

tables and views. Such tools tend to suffer from three

weaknesses. First, the interval between monitoring and

index creation can exceed the duration of a specific request

pattern; in which case there is no benefit to those tools.

Second, even if that is not the case, there is no index sup-

port during this interval, so data access during the interval

is wasted with respect to index creation, and eventual index

creation imposes an additional load that interferes with

query execution. Last, but not least, traditional indexes on

tables cover all rows equally, even if some rows are needed

often and some never. For example, recent business trans-

actions are queried more often than those years ago, ex-

treme price fluctuations are more interesting than stable

prices, etc. Even where it is possible to limit an index, e.g.,

using a partial index or a materialized view, it is often dif-

ficult or impossible to predict the key ranges to focus on.

Database cracking [IKM 07a, KM 05] has pioneered

focused, incremental, automatic optimization of the repre-

sentation of a data collection − the more often a key range

is queried, the more its representation is optimized. This

optimization occurs entirely automatically, as a side effect

of queries over key ranges not yet fully optimized.

Figure 1. A column store partitioned by database cracking.

For example, after the column store illustrated in Fig-

ure 1 has been queried with range boundary values c, g, m,

s, and u, all key values below c have been assigned to sto-

Column domain and storage array

c g m s u
j y

rage locations to the far left, followed by all key values

between c and g, etc. When a new query with range boun-

daries j and y is processed, the values below g are ignored,

the values between g and m are partitioned with pivot value

j, the values between m and u are returned as query results

without partitioning or sorting, and the values above u are

partitioned with pivot value y. Subsequent queries continue

to partition these key ranges.

Database cracking was a distinct innovation when it

was proposed, but it also has some weaknesses. First, data-

base cracking requires many steps to reach the final repre-

sentation for a key range, even if no further cracking is

applied to minimal partitions smaller than a pre-determined

size, say 4 MB. Thus, optimization of newly loaded data

and adaptation to a new focus of query activity are much

slower and more expensive than they ought to be. Second,

the efficiency of transforming an initial data representation

into a fully optimized one depends on the query pattern,

i.e., the sequence in which boundary keys and thus pivot

values are introduced. Third, search efficiency never reach-

es that of a traditional index if cracking leaves unsorted

minimal partitions, say 4 MB. While a traditional index

permits binary search with log2(N) comparisons among N

records, the expected cost for a linear search in an unsorted

minimal partition is N/2 comparisons (assuming foreknow-

ledge of precisely one match). For example, with 65,000

records in a partition (4 MB ÷ 60 B), the difference is 16

versus 32,500 comparisons or a factor 2,000. Fourth, data-

base cracking seems to work well for in-memory databases

but not for block-access storage.

In this paper, we introduce adaptive merging, a new

technique that overcomes these weaknesses. It combines

the efficiency of traditional B-tree creation with the adap-

tive and incremental behavior of database cracking. It dif-

fers from database cracking as it is based on merging (as in

a merge sort) rather than on partitioning (as used in quick-

sort). The performance advantages of adaptive merging are

substantial both during adaptation when the focus of query

activity shifts to a new key range and during individual

queries against a fully optimized data representation.

2 Prior work
Our design relies on multiple directions of prior work.

Section 2.1 covers approaches that monitor execution and

periodically evaluate what indexes are appropriate for a

running workload. Section 2.2 reviews database cracking,

the only other approach we know of that continually adapts

index structures to reflect a running workload. Finally, Sec-

tion 2.3 describes one of multiple mechanisms well-suited

to providing an underlying storage mechanism for imple-

menting our adaptive merging approach.

2.1 Automatic index selection
As indexes are crucial to query performance in most

database systems, the problem of selecting the best index

set is as old as physical data independence. Most previous

approaches have focused on automating decisions of which

indexes to create, merge, or drop [BC 07, CN 07, FST 88,

H 76, S 74]. Both index tuning and index creation costs are

added to the database workload. Once a decision is made, it

affects all key ranges in an index. For example, Bruno and

Chaudhuri maintain a set of statistics about incoming que-

ries, use them to identify and evaluate existing and candi-

date indexes, and then explicitly create or drop target in-

dexes [BC 07]. They do not consider partial indexes, nor do

they support partially completing an index to focus efforts

on the key ranges of interest in the query workload, and to

avoid effort spent on other key ranges.

The recognition that some data items are more heavily

queried than others has led to the concept of partial indexes

[S 89, SS 95]. A generalization is the concept of materia-

lized views and their indexes. This results in further in-

creases in the complexity and run-time of index tuning.

The present research is orthogonal to the contents of

indexes as it focuses on mechanisms for dynamic creation,

optimization, and maintenance of a general search struc-

ture. We propose a mechanism that, like database cracking,

can automatically create and refine index structures as re-

quired by the current pattern of selection queries. Note that

our approach is complementary to “monitor queries then

build indexes” approaches, in that our method could be

invoked when observations indicate a potential benefit.

That is to say, adaptive indexing could provide mechanisms

and could be guided by the observe-and-tune techniques

proposed in those earlier research efforts.

2.2 Database cracking
Database cracking, which combines features of both

automatic index selection and partial indexes, is the only

other proposal we have seen for refining index structures as

a side effect of unpredictable dynamically-arriving queries.

When a column is used in a predicate for the first time, a

cracker index is created by copying all data values in the

appropriate column from the table‟s primary data structure.

When the column is used in the predicate of another query,

the cracker index is refined as long as a finer granularity of

key ranges is advantageous.

The keys in a cracker index are partitioned into disjoint

key ranges and unsorted within each. As illustrated in Fig-

ure 2, each range query analyzes the cracker index, scans

the key ranges that fall entirely within the query range, and

uses the two end points of the query range to further parti-

tion the appropriate two key ranges. Thus, in most cases,

each partitioning step creates two new sub-partitions using

logic very similar to the partitioning step in quicksort

[H 61]. A range is partitioned into 3 new sub-partitions if

both end points fall into the same key range. This happens

in the first partitioning step in a cracker index (because

there is only one key range encompassing all key values)

but unlikely thereafter [IKM 07a].

Figure 2. Partitioning in a cracker index.

Figure 2 illustrates how database cracking refines the

array of key values in a cracker index. Each character

represents a record; the character is its key value. In this

small example, each vowel appears twice and each conso-

nant once. The top box shows the initial cracker index im-

mediately after copying. The center box shows the cracker

index after a range query for keys d through g. Both end

points are included in the new center partition. The bottom

box shows the partitions after a subsequent range query for

key range f through j. The two new boundary keys are used

to further refine two partitions. Partition sizes are very un-

evenly distributed.

Key ranges never queried are never partitioned or op-

timized. This is a crucial advantage of adaptive indexing

over traditional indexes including those created by most

external tuning tools. On the other hand, each individual

data record is moved many times during the incremental

transformation from the un-optimized initial representation

to the fully optimized final representation.

As the core operation of database cracking is very sim-

ilar to partitioning in quicksort [H 61]. In an in-memory

database, it performs very well. As each key value in the

database must be compared with the boundary key of the

query predicate, it adds very little to the elapsed time of

each query. In a sense, database cracking is designed to

achieve the maximal benefit in the data organization with-

out slowing down in-memory scans, i.e., to maximize the

benefit that can be achieved “for free.”

With block-access devices like disk and flash storage,

it probably performs like quicksort in virtual memory,

which database systems do not use. For block-access sto-

rage, database developers have long favored external merge

sort and B-tree indexes. As shown in Section 4, adaptive

merging performs well over block access storage, requiring

an order of magnitude fewer queries than database cracking

to optimize an optimized index for a query set.

2.3 Partitioned B-trees
Our search for an adaptive indexing technique suitable

for block-access storage led us to an algorithm based on

merging rather than on partitioning and to a data structure

known as partitioned B-trees [G 03], which are variants of

traditional B-tree indexes [BM 72]. Our proposal applies to

hash indexes if those are B-trees on hash values and to mul-

ti-dimensional indexes if those use a space-filling curve

such as UB-trees [B 97]; whether it applies to other hash

indexes and other multi-dimensional indexes is left to fu-

ture research. It applies to indexes on block-access devices

such as traditional disks and flash storage as well as to in-

memory indexes optimized for CPU caches. Finally, it ap-

plies to both primary and secondary B-tree indexes, includ-

ing multi-column (“compound”) B-tree indexes, i.e., to the

vast majority of indexes used in practice today.

Partitioned B-trees differ from traditional B-trees as

they add an artificial leading key field. Distinct values in

this field define partitions within the B-tree. Partitions ap-

pear and disappear due to record insertion and deletion,

with no catalog modification. Records with the same value

in this field can be searched as efficiently as in a traditional

B-tree. The desired steady state is to have only a single

partition. Temporary additional partitions enable optimiza-

tions during index creation, roll-in (loading), and roll-out

(purging). Moreover, external merge sort can store runs in

B-tree partitions with benefits for deep read-ahead, pause-

and-resume, dynamic resource management, etc. Reorgani-

zation and optimization from multiple partitions to a single

one uses the same merge logic as traditional merge sort.

Figure 3. Partitioned B-tree and search pattern.

Figure 3 illustrates a partitioned B-tree (the root at the

top and leaves along the bottom) with partitions (each a

sequence of shaded boxes indicating key ranges) identified

by an artificial leading key field in each record (shown as

Partition #). A query enumerates the partitions and searches

each one. In the most naïve implementation, a root-to-leaf

probe is required to find the next actual value in the artifi-

cial leading key field and another probe is required to apply

the query predicate within the partition [LJB 95]. The

number of probes can be reduced to one per partition.

The fact that adaptive merging exploits partitioned B-

trees is incidental; our starting point was a quest to find a

technique that is self-tuning similar to database cracking

but with better query execution performance both during

index optimization and when querying the final data struc-

ture. The introduction of partitioned B-trees [G 03] sug-

gested some related techniques but did not suggest optimiz-

ing key ranges as a side effect of query execution, the core

of both database cracking and adaptive merging.

3 Adaptive merging
Adaptive merging, the technique introduced here, aims

to combine efficient merge sort with adaptive and incre-

Partition #1 #3 #4

hbnecoyulzqutgjwvdokimreapxafsi

bcaa,egdef,hnoyulzqutjwvokimrpxsi

bcaa,egde,f,hjii,noyulzqutwvokmrpxs

mental index optimization. Like database cracking, it re-

quires a flexible underlying storage structure for partially

and locally optimized index states. Partitioned B-trees ap-

pear to be an ideal choice.

The essence of partitioned B-trees, as described above,

is to use standard B-trees to persist intermediate states dur-

ing an external merge sort, to provide efficient search at all

times even before B-tree optimization is complete, and thus

to separate run generation and merging into independent

activities with arbitrary intermediate delay. Partitioned B-

trees can also capture intermediate states during index crea-

tion, data loading, view materialization, etc.

The essence of adaptive merging is to exploit parti-

tioned B-trees in a novel way, namely to focus merge steps

on those key ranges that are relevant to actual queries, to

leave records in all other key ranges in their initial places,

and to integrate the merge logic as side effect into query

execution. Thus, adaptive merging is like database cracking

as it is similarly adaptive and incremental but they differ

fundamentally as one relies on merging whereas the other

relies on partitioning, resulting in substantial differences in

the speed of adaption to new query patterns.

The differences in query performance are due to data

being kept sorted at all times in a B-tree. The difference in

reorganization performance, i.e., the number of queries

required before a key range is fully optimized, is primarily

due to merging with a high fan-in as opposed to partition-

ing with a low fan-out of 2 or 3. The following sections

explain in more detail.

3.1 Index selection
For index selection, our design copies the heuristic

from database cracking: When a column is used in a predi-

cate for the first time, a new index is created by copying

appropriate values. Refinements such as external guidance

which indexes to avoid and which ones to choose with

priority in queries with multiple predicates, partial indexes,

multi-column indexes, consideration of other predicates

and their desirable indexes, etc. apply quite similarly to

both techniques. The record formats are also similar unless

compression is used, e.g., for duplicate key values.

The ordering of data records in an initial copy, howev-

er, are quite different due to partitioning in database crack-

ing versus merging in our approach.

3.2 Initial index creation
The initial format of a partitioned B-tree consists of

many partitions. Each partition is sorted, but the partitions

most likely overlap in their key ranges. Subsequent merg-

ing brings the B-tree closer to a single sort sequence in a

single partition, as described later.

The initial creation of a new partitioned B-tree per-

forms run generation using an in-memory algorithm such

as quicksort or replacement selection. The advantage of the

latter is the opportunity for runs larger than the memory

allocation during initial index creation. Each run forms a

partition in the new B-tree.

Figure 4. Appending partitions during initial index creation.

Figure 4 illustrates the data movement during initial

index creation. Boxes with the same shading indicate the

same key range. A run generation algorithm such as quick-

sort is used to append as many partitions as necessary.

Their number depends primarily on input size and memory

allocation but also on sort algorithm and any incidental

correlation between the sort order in the data source and in

the new index.

Figure 5. Unsorted input and initial sorted partitions.

Figure 5 shows a concrete example, with the same data

as shown in Figure 2. The upper box shows the input, en-

tirely unsorted. The lower box shows the initial index, i.e.,

records and partitions within a partitioned B-tree. A “,”

(comma) separates sorted partitions. Run generation during

copying produces runs of 6 records in this small example.

Search performance immediately after index creation

depends on the count (and thus the average size) of the

partitions in the partitioned B-tree, as does the break-even

point between probing each partition with a traditional B-

tree search and an end-to-end scan of the index. For exam-

ple, if scan bandwidth is 100 MB/s and each probe takes

20 ms, partitions larger than 100 MB/s × 20 ms = 2 MB

ought to be probed rather than scanned, corresponding to a

modest memory allocation of 1 MB during run generation

by replacement selection. Note that the “lock footprint” can

be smaller during probing than during scanning, further

favoring probing over scans. Modern flash storage also

favors probing over scans. Nonetheless, scanning is always

possible if desired, e.g., in order to exploit shared scans.

3.3 Incremental index optimization
When a column is used in a predicate for the second

time, an appropriate index exists, albeit not yet fully opti-

mized and merged into a single partition. In this situation, a

query must find its required records within each partition,

typically by probing within B-tree for the low end of the

query range and then scanning to the high end.

hbnecoyulzqutgjwvdokimreapxafsi

bcehno,lquuyz,dgjtvw,eikmor,aafpsx,i

#1 #2 #3 #4

…

… data source … quicksort

Instead of just scanning the desired key range one par-

tition at a time, however, the query might as well scan mul-

tiple partitions in an interleaved way, merge these multiple

sorted streams into a single sorted stream, write those

records into a new partition within the partitioned B-tree,

and also return those records as the query result. The data

volume touched and moved is that of the query result.

Figure 6. Partitioned B-tree before and after a query.

Figure 6 illustrates merging and data movement during

the second query. The top half shows the B-tree when the

query starts. In processing the query, records satisfying the

query predicate are automatically merged into the new par-

tition, as shown in the bottom half of Figure 6. Ideally, a

single merge step suffices to merge records from all exist-

ing partition into a single, final partition.

Figure 7. Merging as side effect of query execution.

Figure 7 continues the concrete example of Figure 5,

using the same data and range queries as Figure 2. The top

box shows sorted partitions after run generation. The center

box shows the partitions after a range query for keys d

through g. A subsequent query for key range e through f

would access only the new partition. The bottom box

shows the partitions after subsequent range query for keys f

through j. Some of this range can be answered from the

merged partition and some of it causes additional merge

activity. Note that the smallest among the original sorted

partitions vanishes as side effect of the second query. Also

note that the merge activity during the second and third

queries inserts data into the same partition. This is easily

possible as their merge steps focus on disjoint key ranges.

If all existing partitions can be merged to form a single

partition in a single step, i.e., the number of initial parti-

tions is smaller than the merge fan-in as limited by the

memory allocation available for merging, then the query

may leave the keys within its query range in a single loca-

tion comparable to a traditional, fully optimized B-tree

index.

If the query range of the third query is a subset of that

of the second query, the third query can search as efficient-

ly in a partitioned B-tree as in a traditional B-tree. If the

query ranges of the second and third queries do not overlap,

it leaves its result behind in the same format as the second

query for the benefit of the future queries. In this case, mul-

tiple queries can merge their output into the same new par-

titions.

Actually, this logic applies to individual key ranges. If

the range predicates of the second and third queries overlap

partially, the third query needs to split its key range into

overlapping and non-overlapping sub-ranges. For overlap-

ping key ranges, the third query finds all data in a single

location comparable to a traditional B-tree. For non-

overlapping key ranges, it probes all existing partitions,

extracts the required records, merges them, and moves

them to a new partition, as shown in Figure 6.

All subsequent queries also must analyze their range

predicates for overlap with prior queries and the merge

effort they applied to the index. Once all records within a

key range have been merged into a single partition, subse-

quent queries in that key range work and perform like que-

ries using a traditional B-tree index.

Key ranges without query activity are never reorga-

nized or merged. Those keys remain in the initial runs pro-

duced by run generation. Thus, as in database cracking, no

effort is wasted on inactive key ranges after the initial copy

step. By adaptively merging only those key ranges actually

queried, and by performing merge steps as side effects of

query execution, adaptive merging preserves the main

strength of database cracking. The main difference is in the

speed of adaptation, i.e., the number of times each record is

moved before it is in its final location.

If more than a single merge step is required to trans-

form the B-tree index from many initial partitions into a

single final partition, each key range must be searched and

merged by multiple queries before it is in its final, com-

pletely optimized format.

The number of merge steps for each key range is

equivalent to the merge depth in an external merge sort,

i.e., logF (W) for W initial runs merged with fan-in F. With

the memory sizes of modern computers, sort operations

with a single merge step are common, and sort operations

with more than two merge levels are quite unusual. Just as

in external merge sort with optimized merge patterns, the

bcehno,lquuyz,dgjtvw,eikmor,aafpsx,i

bchno,lquuyz,jtvw,ikmor,aapsx,i,deefg

bcno,lquuyz,tvw,kmor,aapsx,deefghiij

#1 #2 #3 #4

#1 #2 #3 #4 #5

merge depth may not be uniform for all records and thus

the average merge depth might be a fraction, e.g., 1¾.

In fact, the number of merge steps per record is a key

difference between database cracking and adaptive merg-

ing. The merge fan-in can easily exceed 100, whereas the

partitioning fan-out in database cracking is usually 2 or 3,

limited by the number of new partitioning keys available in

any one range query. Thus, database cracking may move

each record many times before its final place is found. The

exact number depends on the size of partitions to which no

further cracking is applied and the size of the initial parti-

tions in the proposed design.

For example, if the size of the cracked index is 1 GB,

if partitions smaller than 4 MB are no further partitioned,

and the partitioning fan-out is 2, no further partitioning is

required for a key range after log2 (1GB ÷ 4MB) = log2 256

= 8 partitioning steps affecting this key range – even more

if skew is an issue. In partitioned B-trees with adaptive

merging, if the average size of the initial runs is 16 MB and

the merge fan-in is 64, then the number of merge levels is

log64 (1 GB ÷ 16 MB) = log64 64 = 1. In other words, in this

example, database cracking moves each record 8 times

before its final location is found, whereas adaptive merging

requires just a single move. Other numeric examples pro-

duce similar differences as long as the merge fan-in is

much larger than 2.

3.4 Table of contents
As in database cracking, an auxiliary data structure is

required to retain information about reorganization efforts

already completed. In fact, the set of keys is the same in the

auxiliary data structures for database cracking and for

adaptive merging. The information associated with those

keys differs. In database cracking, the start position of the

partition with the given key is indicated. In adaptive merg-

ing, the data structure indicates the range of identifiers for

partitions with records in the given key range.

For example, suppose that run generation creates runs

with identifiers 1 through 1,000. All key ranges can be

found in this set of partitions. After a key range has been

merged once, say with merge fan-in of 32, records within

this key range can be found in partitions 1,001 through

1,032 but not longer in partitions 1 through 1,000. A key

range merged twice can be found only in partition 1,033.

Query performance in such key ranges equals traditional B-

trees.

3.5 Transaction support
As the proposed structure is a B-tree, even if an artifi-

cial leading key field is added, all traditional methods for

concurrency control, logging, and recovery apply.

In addition, key prefixes could be locked, a generaliza-

tion of Tandem‟s “generic locks” [G 07]. When a conflict

arises, a merge step can be committed immediately because

merge operations do not change the contents of the index,

only its representation.

The logging volume during merge operations can be

reduced to allocation-only logging. In this mode of opera-

tion, the page contents are not logged during merge steps,

neither deletions in the merge inputs nor insertions in the

merge output. Deletion of individual records can be imple-

mented as updates from valid records to “ghost” records

(also known as pseudo-deleted records). A single small log

record suffices for multiple records. Deletion of entire pag-

es can be captured by a single small log record. Insertion of

new pages requires that the new pages be flushed to disk

before the data sources for the page contents are erased,

i.e., before committing a merge step.

3.6 Updates
For insertions, deletions, and record modifications,

there are each multiple alternative techniques. In each case,

the first technique is similar to traditional techniques whe-

reas the second one is optimized for efficient completion of

many small transactions.

Insertions can be placed either into the final target par-

tition or they can be gathered in a new partition dedicated

to gathering insertions. This partition ought to remain in the

buffer pool such that all insertions only update in-memory

data structures (other than the recovery log). Multiple new

partitions may be added over time.

Deletions can either search for the appropriate record

in the index, in whatever partition it might be found, or

they insert “anti-matter” quite similar to the “negative”

records employed during maintenance of materialized

views and during online index creation.

Modifications of existing records can be processed ei-

ther as traditional updates after an appropriate search or

they can be processed as pairs of deletion and insertion,

with alternative processing techniques as outlined above.

If insertions, deletions, or updates create new partitions

in a B-tree, i.e., introduce new partition identifiers, those

partitions and their key ranges must be reflected in the table

of contents such that subsequent queries search in all ap-

propriate partitions.

3.7 Variations
Several variations and optimizations are possible

beyond the design described so far. This section lists some

ideas; we have not yet analyzed them for their true practical

value or their precise performance effects.

First, the basic idea seems well suited to capturing and

indexing continuous streams, in particular if multiple inde-

pendent indexes are desired for a single stream. Incoming

records are always appended to all indexes in partitions

formed by run generation. Continuous “trickle updates” in

data warehouses are a special case of streams that can be

indexed using the proposed techniques.

Second, the general technique applies not only to disk-

based databases but also to databases on flash devices and

even to in-memory databases. The resulting differences are

quantitative rather than qualitative. For example, due to

very fast access latency, smaller page sizes are optimal for

flash devices, resulting in higher merge fan-in with a fixed

memory allocation and thus fewer merge levels from initial

runs to a final, fully optimized B-tree [G 07b]. For in-

memory databases, optimization of cache faults leads to run

generation within the cache and explicit merge steps to

form memory-sized indexes [NBC 95].

Third, partitioned B-trees are useful not only for effi-

cient search but also for efficient query execution with

merge joins, “order by” clauses, etc. The final merge activi-

ty in the query is precisely equivalent to B-tree optimiza-

tion, and the merge output can replace the previous parti-

tions with a single, fully optimized partition. For orderings

on B-tree fields other than the leading field, a general me-

chanism comparable to MDAM [LJB 95] seems possible

but has not yet been described in the literature.

Fourth, adaptive merging in combination with parti-

tioned B-trees provides mechanisms for dynamically ad-

justing query costs for the purpose of workload manage-

ment. During index creation, it is possible at any time to

defer the remaining key range within the data source.

Doing so speeds up the current query but leaves the new

index only partially populated. During index optimization,

it is possible at any time to reduce the fan-in of merge steps

or to interrupt all merge activity in order to defer some

merge effort to later queries. Doing so frees up memory

(merge input buffers) and speeds up the current query but

fails to optimize the key range for subsequent queries.

Fifth, B-tree optimization and partition merging does

not depend on queries. Instead, any idle capacity can be

used to optimize a partitioned B-tree for future queries.

Adaptive merging can focus on those key ranges that have

been queried once but are not yet fully optimized. Database

cracking, in contrast, cannot exploit prior queries during

idle times because it requires a new partitioning key for

each additional step.

Finally, instead of merging the precise key range of a

query, the logic could be modified to consume entire B-tree

leaves. Space management would become simpler and

more efficient, whereas the table of contents would become

more complex. Consequently, determining the required

partitions during query execution would also be more com-

plex. As a compromise, one can extend a query range to the

next “short enough” separator key, quite similar to the key

optimizations in suffix truncation (compression) [BU 77].

For example, if the query range starts with “Smith,” the

merge could start with “Sm”. Even an equality query could

merge an appropriate key range, for example all keys start-

ing with “Sm”. If suffix truncation is applied during B-tree

construction, the probability is high that merge range coin-

cides with boundaries between leaf pages in all input parti-

tions. In fact, such a policy might be very useful to avoid

an excessive number of small merge steps and thus to en-

sure efficient adaptation of an index to a new query pattern.

If multiple merge levels are required, the heuristics might

differ among the levels in order to avoid repeatedly search-

ing a large number of initial partitions. The experiment

below extends each merge range in both directions to a

multiple of the largest power of two smaller than the width

of the query range.

4 Performance evaluation
Here, we focus on a comparison of database cracking

and adaptive merging. These two adaptive indexing tech-

niques can be compared experimentally with concise, fo-

cused experiments. A comparison with index tuning tech-

niques that run workload analysis and index creation exter-

nally and in addition to query execution requires a com-

plete system, a representative physical database design as

starting point, and a representative workload, all of which

are not available to us at this time.

Our first experiment simulates 50 queries against a

random permutation of the integers 0 to 9,999,999. Each

query requests a random range of 1 value to 20% of the

domain; 10% on average. Cracking stops with partitions of

1,000 values. Initial runs in the partitioned B-tree are

created with a workspace of 100,000 records, for 51 initial

partitions. The merge fan-in is sufficient to complete all B-

tree optimization in a single merge level.

Figure 8. Database cracking and adaptive merging.

Figure 8 shows the overhead effort of database crack-

ing and of adaptive merging. Each query must scan records

to produce its output; those are not reflected in the diagram

and must be added to compute the total effort. The cost

scale in Figure 8 is logarithmic. Note that our cost metric is

focused on movements in the memory hierarchy and on the

number of records touched; it does not reflect the number

of comparisons. Both techniques essentially implement sort

algorithms O (N log N) comparisons.

Database cracking

Adaptive merging

The upper curve shows database cracking. It reflects

the behavior known from an earlier performance study

[IKM 07a]. The first query partitions the entire domain and

thus its overhead is high. The overhead then decreases

slowly. Each range query provides two more boundary

keys between partitions; thus, the number of partitions in a

cracker index is about twice the number of queries

processed so far. Dividing 10,000,000 records into parti-

tions no larger than 1,000 records requires at least 9,999

partitioning keys. With at most two new partitioning keys

per query, partitioning requires at least 5,000 queries.

The lower curve shows adaptive merging. It converges

much faster than database cracking. Merging is practically

complete after about 40 queries, meaning the B-tree is fully

optimized. In all subsequent queries, search performance

equals that of a traditional B-tree. When each query scans

precisely the key range needed as query output, the over-

head is zero (shown as 1 due to the logarithmic scale).

With a smaller memory allocation during run genera-

tion or during merging, multiple merge levels would have

been required. For example, convergence would take twice

as long with a merge fan-in of only 8 and thus 2 merge

levels. Nonetheless, even 100 queries for full convergence

would be much faster than database cracking with its strict

binary partitioning and thousands of queries prior to steady

state. Overhead and convergence rate also depend on the

sizes of query ranges as well as skew.

An alternative perspective on the experiment of Figure

8 focuses on the “sortedness” of intermediate states of the

index, which may be measured in the number of “adjacent

inversions,” i.e., neighboring keys with the wrong order

relationship. Database cracking enforces no sort order with-

in each partition; thus, each query reduces the number of

adjacent inversions only at the new boundaries between

partitions, at most two per range query. Adaptive merging

permits adjacent inversions only between partitions, and

thus even the initial state immediately after run generation

has relatively few adjacent inversions.

A third perspective focuses on the relative rather than

the absolute overhead in query execution. Key ranges for

queries were chosen between 1 value and 20% of the do-

main, with an average of 10% of the domain or 1,000,000

distinct values, equal to 1,000,000 records in this database.

Thus, an overhead of 100,000 records is equal to an extra

scan effort of 10% on average, which might seem accepta-

ble in an adaptive indexing technique. From this point of

view, database cracking might reach acceptable perfor-

mance after about a dozen queries. Adaptive merging, on

the other hand, always scans only as much data as is re-

quired for the query at hand. Merging, if required, can

achieve very high bandwidth if the units of disk transfer are

sufficiently large, e.g., 1 MB or more.

Figure 9 shows the same experiment as Figure 8 but

run over a workload of 5,000 queries. Each data point

shows the average of 1% of the workload or 50 queries.

Database cracking slowly reduces the overhead per query,

although it takes many queries before incremental index

optimization ceases. Adaptive merging leaves a fully opti-

mized B-tree after less than 50 queries.

Figure 9. Long query sequence.

If the average query range is small, however, this ar-

gument might no longer pertain. For example, if the aver-

age query requests only 0.1% (rather than 10%) of the do-

main, it takes hundreds of queries to achieve acceptable

overhead on average, with no guarantee for the worst case.

Note that the convergence rate of database cracking should

barely affected by the width of the ranges in the queries –

each query introduces two new partition boundaries.

Figure 10. Small query ranges.

Figure 10 shows the average per-query overhead for

queries with small ranges. Query predicates range from 1

value to 0.2% of the domain, or 0.1% on average. In other

words, this is the same experiment as the prior one except

that the average query result size equals 10,000 records

rather than 1,000,000 records. Database cracking and its

convergence behavior are not affected by the query size;

two new partition boundaries with each range query require

about 5,000 queries to divide an index with 10,000,000

unique values into minimal partitions of 1,000 records.

Adaptive merging

Database cracking

Adaptive merging

Database cracking

Adaptive merging requires more queries than in the prior

experiment, but it still optimizes the B-tree over about

1,250 queries (25% of 5,000 queries).

In fact, for the speed of index optimization to be simi-

lar in database cracking and adaptive merging, the queries

would have to be point queries rather than range queries. If

key ranges to be merged are rounded as proposed above as

an obvious improvement to the basic technique, it always

finishes the index faster than database cracking.

Figure 11. Very small query ranges.

Figure 11 shows the same experiment again with aver-

age query result size of 100 rather than 10,000 records. The

convergence behavior of database cracking is again un-

changed, as expected. The convergence rate of adaptive

merging would suffer without an implementation heuristic

we found necessary. Inspired by B-trees on block-access

devices, our implementation merges a larger key range than

is required by the query at hand. Rounding depends on the

size of the workspace and the prescribe merge fan-in, based

on the assumption that the merge fan-in as the quotient of

workspace size and block size. With this optimization,

adaptive merging finishes optimization of the B-tree with

less than 2,500 queries (50% of 5,000 queries).

Figure 12. Small memory allocation.

Figure 12 illustrates the effect of a small memory allo-

cation. This experiment equal that of Figure 8 except for

the workspace size, the merge fan-in, and the number of

queries in the workload. Compared to the prior experiment,

both the workspace during run generation and the fan-in

during merge steps are reduced by a factor of 10. The

workload consists of 200 queries to illustrate the effects.

Database cracking is very little affected – it is not designed

to exploit a large memory even when memory is readily

available. Adaptive merging requires more effort than in

the experiment of Figure 8. Each record must go through 3

merge steps before reaching its proper place in the final

partition. Nonetheless, adaptive merging converges towards

the final index format with fewer moves per record than

database cracking. In other words, among the two adaptive

indexing schemes, adaptive merging requires much less

reorganization effort, whether or not memory is plentiful.

Figure 13. Small query focus.

Finally, Figure 13 illustrates the effect of all queries

focusing on the same fraction of the domain, i.e., the case

in which adaptive indexing methods are supposed to shine.

Here, all queries focus on the 1,000,000 key values in the

center of the domain. Otherwise, this experiment equals

that of Figure 8. Both adaptive indexing techniques per-

form better than in the base case shown in Figure 8. How-

ever, database cracking imposes more overhead than adap-

tive merging because it takes many queries before the

cracker index attains its final form whereas adaptive merg-

ing converges after only 35 queries due to sorted runs and

merging with high fan-in. Moreover, the overhead of data-

base cracking exhibits occasional spikes when a query key

forces partitioning of the keys above or below the query

focus. For example, if the highest key of interest in all que-

ries so far is 5,490,000, a new query with range boundary

of 5,491,000 forces partitioning of all records and key up to

the 10,000,000.

Adaptive merging

Database cracking

Adaptive merging

Database cracking

Database cracking

Adaptive merging

5 Summary and conclusions
In summary, database cracking and adaptive merging

offer a promising alternative to traditional index tuning that

relies on monitoring, offline what-if analyses, and long-

running index creation utilities that can disrupt processing

of the current workload.

While database cracking was designed for in-memory

arrays, adaptive merging enables automatic creation and

incremental improvements of indexes in large data ware-

houses on “external” block-access storage. It uses a stan-

dard data structure, B-trees, with only a few non-traditional

improvements. First, an artificial leading key field permits

creation and removal of partitions by insertion and deletion

of records with specific partition identifiers; well-known B-

tree access algorithms permit efficient search in such parti-

tioned B-trees. Second, index creation is divided into run

generation and merging. Both can be side effects of query

execution or other scans over the data. Run generation uses

a single pass over the future index records and results in a

complete, coherent, and searchable B-tree index, even if it

is not yet fully optimized. Third, query execution may op-

timize such an index by merging the key ranges required to

answer actual queries, with no effort spent on any unused

key ranges. Fourth, those non-optimized key ranges are

automatically in a format that can readily be searched and

optimized later if the query pattern changes.

The described techniques have design goals very simi-

lar to database cracking, namely automatic and adaptive

index selection as well as incremental optimization of in-

dexes focused on key ranges of interest in actual queries.

The fundamental difference between the two approaches is

the reliance on partitioning in database cracking and on

merging in the new techniques. Well-known related algo-

rithms are partitioning as used in quicksort and merging as

used in external merge sort. The primary difference in the

efficiency of the two techniques is that partitioning (using

actual boundary keys of query ranges) is inherently limited

to a partitioning fan-out of 2 or 3 whereas the merge fan-in

is limited only by the available memory and thus can easily

be in the 100s. With the number of partitioning or merging

steps required to transform an initial index into the final,

fully optimized index inversely proportional to the loga-

rithm of the fan-out or fan-in, database cracking might

move each data record 5-10 times more often than adaptive

merging. Thus, adaptive merging requires less overall ef-

fort and adapts to changes in the query pattern much more

rapidly than database cracking. Furthermore, like tradition-

al B-trees and external merge sort, adaptive merging ap-

plied to partitioned B-trees is well suited to block-access

storage.

Since partitioned B-trees are more similar to traditional

B-trees than they are different, partitioned B-trees includ-

ing adaptive merge strategies apply not only to B-trees with

single-column search keys but also to multi-column “com-

pound” B-trees as well as to B-trees on computed columns,

e.g., B-trees on hash values or on space-filling curves such

as UB-trees [B 97]. It seems that partitioned B-trees and

adaptive merging applies in all cases in which traditional

B-trees can be used.

Our plan for future work includes a more detailed ex-

perimental evaluation and research into incremental space

reclamation by dropping obsolete or unused indexes. We

will also investigate the trade-offs between index tuning

prior to data loading (to save on in-database reorganiza-

tion), traditional index tuning after observing a workload,

and incremental index tuning using database cracking or

adaptive merging. Finally, we recently presented a preview

of this work to the team that developed database cracking

at CWI, and agreed to a joint performance evaluation.

Acknowledgements
Martin Kersten and his research group invented data-

base cracking, and the present research and design were

sparked directly by his keynote at ICDE 2008. We particu-

larly thank Stratos Idreos and Stefan Manegold for review-

ing a draft of this paper, including our understanding of

database cracking. Hans Zeller provided valuable feedback

on our initial thoughts in May 2008. Barb Peters suggested

several improvements in the text.

6 References
[B 97] Rudolf Bayer: The Universal B-tree for multidimen-

sional indexing: general concepts. WWCA 1997: 198-

209.

[BC 07] Bruno, N. and Chaudhuri, S. 2007. Physical design

refinement: The „merge-reduce‟ approach. ACM

Trans. Database Syst. 32, 4 (Nov. 2007), 28.

[BM 72] Rudolf Bayer, Edward M. McCreight: Organiza-

tion and maintenance of large ordered indices. Acta

Inf. 1: 173-189 (1972).

[BM 93] Jon Louis Bentley, M. Douglas McIlroy: Engi-

neering a sort function. Softw., Pract. Exper. 23(11):

1249-1265 (1993).

[BU 77] Rudolf Bayer, Karl Unterauer: Prefix B-trees.

ACM TODS 2(1): 11-26 (1977).

[CN 07] Surajit Chaudhuri, Vivek R. Narasayya: Self-

tuning database systems: A decade of progress. VLDB

2007: 3-14.

[FST 88] Sheldon J. Finkelstein, Mario Schkolnick, Paolo

Tiberio: Physical database design for relational data-

bases. ACM TODS 13(1): 91-128 (1988).

[G 03] Goetz Graefe: Sorting and indexing with partitioned

B-trees. CIDR 2003.

[G 06] Goetz Graefe: Implementing sorting in database

systems. ACM Comput. Surv. 38(3): (2006).

[G 07] Goetz Graefe: Hierarchical locking in B-tree index-

es. BTW 2007: 18-42.

[G 07b] Goetz Graefe: The five-minute rule twenty years

later, and how flash memory changes the rules. Da-

MoN 2007: 6.

[H 61] C. A. R. Hoare: Algorithm 64: Quicksort. Comm.

ACM 4(7): 321 (1961).

[H 76] Theo Härder: Selecting an optimal set of secondary

indices. ECI 1976: 146-160.

[IKM 07a] Stratos Idreos, Martin L. Kersten, Stefan Mane-

gold: Database cracking. CIDR 2007: 68-78

[IKM 07b] Stratos Idreos, Martin L. Kersten, Stefan Mane-

gold: Updating a cracked database. SIGMOD 2007:

413-424.

[IKN 08a] Milena Ivanova, Martin L. Kersten, Niels Nes:

Self-organizing strategies for a column-store database.

EDBT 2008: 157-168.

[IKN 08b] Milena Ivanova, Martin L. Kersten, Niels Nes:

Adaptive segmentation for scientific databases. ICDE

2008: 1412-1414.

[KM 05] Martin L. Kersten, Stefan Manegold: Cracking

the database store. CIDR 2005.

[LJB 95] Harry Leslie, Rohit Jain, Dave Birdsall, Hedieh

Yaghmai: Efficient search of multi-dimensional B-

trees. VLDB 1995: 710-719.

[NBC 95] Chris Nyberg, Tom Barclay, Zarka Cvetanovic,

Jim Gray, David B. Lomet: AlphaSort: A Cache-

Sensitive Parallel External Sort VLDB J. 4(4): 603-627

(1995).

[S 74] Michael Stonebraker: The choice of partial inver-

sions and combined indices. International Journal of

Computer and Information Sciences, 3(2), June 1974.

[S 89] Michael Stonebraker: The case for partial indexes.

SIGMOD Record 18(4): 4-11 (1989).

[SS 95] Praveen Seshadri, Arun N. Swami: Generalized

partial indexes. ICDE 1995: 420-427.

Adaptive

merging

