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Abstract 
In a relational data warehouse with many tables, the 

number of possible and promising indexes exceeds human 

comprehension and requires automatic index tuning. While 

monitoring and reactive index tuning have been proposed, 

adaptive indexing focuses on adapting the physical data-

base layout for and by actual queries. 

“Database cracking” is one such technique. Only if and 

when a column is used in query predicates, an index for the 

column is created; and only if and when a key range is que-

ried, the index is optimized for this key range. The effect is 

akin to a sort that is adaptive and incremental. This sort is, 

however, very inefficient, particularly when applied on 

block-access devices. In contrast, traditional index creation 

sorts data with an efficient merge sort optimized for block-

access devices, but it is neither adaptive nor incremental. 

We propose adaptive merging, an adaptive, incremen-

tal, and efficient technique for index creation. Index opti-

mization focuses on key ranges used in actual queries. The 

resulting index adapts more quickly to new data and to new 

query patterns than database cracking. Sort efficiency is 

comparable to that of traditional B-tree creation. Nonethe-

less, the new technique promises better query performance 

than database cracking, both in memory and on block-

access storage. 

Categories and subject descriptors 
E.2 Data storage representations – arrays, sorted trees. 

Keywords 
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1 Introduction 
In a relational data warehouse with a hundred tables 

and a thousand columns, billions of indexes are possible, in 

particular if partial indexes, indexes on computed columns, 
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and materialized views with their indexes are considered. 

Thus, index selection is a central, classic, and very hard 

problem in physical database design. Too few or the wrong 

indexes force many queries to scan large parts of the data-

base; too many indexes force high update costs. Unpredict-

able ad-hoc queries exacerbate the problem. 

One approach is to focus on enabling very fast scans, 

e.g., using shared scans and columnar storage formats, an 

approach suitable to high-bandwidth high-latency devices 

such as traditional disk drives and disk arrays. Low-latency 

database storage such as flash memory will likely re-

energize research into index-based query processing. 

Another approach is to tune indexes in response to the 

actual workload. Contemporary index selection tools rely 

on monitoring database requests and their execution plans, 

occasionally invoking creation or removal of indexes on 

tables and views. Such tools tend to suffer from three 

weaknesses. First, the interval between monitoring and 

index creation can exceed the duration of a specific request 

pattern; in which case there is no benefit to those tools. 

Second, even if that is not the case, there is no index sup-

port during this interval, so data access during the interval 

is wasted with respect to index creation, and eventual index 

creation imposes an additional load that interferes with 

query execution. Last, but not least, traditional indexes on 

tables cover all rows equally, even if some rows are needed 

often and some never. For example, recent business trans-

actions are queried more often than those years ago, ex-

treme price fluctuations are more interesting than stable 

prices, etc. Even where it is possible to limit an index, e.g., 

using a partial index or a materialized view, it is often dif-

ficult or impossible to predict the key ranges to focus on. 

Database cracking [IKM 07a, KM 05] has pioneered 

focused, incremental, automatic optimization of the repre-

sentation of a data collection − the more often a key range 

is queried, the more its representation is optimized. This 

optimization occurs entirely automatically, as a side effect 

of queries over key ranges not yet fully optimized. 

 
Figure 1. A column store partitioned by database cracking. 

For example, after the column store illustrated in Fig-

ure 1 has been queried with range boundary values c, g, m, 

s, and u, all key values below c have been assigned to sto-
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rage locations to the far left, followed by all key values 

between c and g, etc. When a new query with range boun-

daries j and y is processed, the values below g are ignored, 

the values between g and m are partitioned with pivot value 

j, the values between m and u are returned as query results 

without partitioning or sorting, and the values above u are 

partitioned with pivot value y. Subsequent queries continue 

to partition these key ranges. 

Database cracking was a distinct innovation when it 

was proposed, but it also has some weaknesses. First, data-

base cracking requires many steps to reach the final repre-

sentation for a key range, even if no further cracking is 

applied to minimal partitions smaller than a pre-determined 

size, say 4 MB. Thus, optimization of newly loaded data 

and adaptation to a new focus of query activity are much 

slower and more expensive than they ought to be. Second, 

the efficiency of transforming an initial data representation 

into a fully optimized one depends on the query pattern, 

i.e., the sequence in which boundary keys and thus pivot 

values are introduced. Third, search efficiency never reach-

es that of a traditional index if cracking leaves unsorted 

minimal partitions, say 4 MB. While a traditional index 

permits binary search with log2(N) comparisons among N 

records, the expected cost for a linear search in an unsorted 

minimal partition is N/2 comparisons (assuming foreknow-

ledge of precisely one match). For example, with 65,000 

records in a partition (4 MB ÷ 60 B), the difference is 16 

versus 32,500 comparisons or a factor 2,000. Fourth, data-

base cracking seems to work well for in-memory databases 

but not for block-access storage. 

In this paper, we introduce adaptive merging, a new 

technique that overcomes these weaknesses. It combines 

the efficiency of traditional B-tree creation with the adap-

tive and incremental behavior of database cracking. It dif-

fers from database cracking as it is based on merging (as in 

a merge sort) rather than on partitioning (as used in quick-

sort). The performance advantages of adaptive merging are 

substantial both during adaptation when the focus of query 

activity shifts to a new key range and during individual 

queries against a fully optimized data representation. 

2 Prior work 
Our design relies on multiple directions of prior work. 

Section 2.1 covers approaches that monitor execution and 

periodically evaluate what indexes are appropriate for a 

running workload. Section 2.2 reviews database cracking, 

the only other approach we know of that continually adapts 

index structures to reflect a running workload. Finally, Sec-

tion 2.3 describes one of multiple mechanisms well-suited 

to providing an underlying storage mechanism for imple-

menting our adaptive merging approach. 

2.1 Automatic index selection 
As indexes are crucial to query performance in most 

database systems, the problem of selecting the best index 

set is as old as physical data independence. Most previous 

approaches have focused on automating decisions of which 

indexes to create, merge, or drop [BC 07, CN 07, FST 88, 

H 76, S 74]. Both index tuning and index creation costs are 

added to the database workload. Once a decision is made, it 

affects all key ranges in an index. For example, Bruno and 

Chaudhuri maintain a set of statistics about incoming que-

ries, use them to identify and evaluate existing and candi-

date indexes, and then explicitly create or drop target in-

dexes [BC 07]. They do not consider partial indexes, nor do 

they support partially completing an index to focus efforts 

on the key ranges of interest in the query workload, and to 

avoid effort spent on other key ranges. 

The recognition that some data items are more heavily 

queried than others has led to the concept of partial indexes 

[S 89, SS 95]. A generalization is the concept of materia-

lized views and their indexes. This results in further in-

creases in the complexity and run-time of index tuning. 

The present research is orthogonal to the contents of 

indexes as it focuses on mechanisms for dynamic creation, 

optimization, and maintenance of a general search struc-

ture. We propose a mechanism that, like database cracking, 

can automatically create and refine index structures as re-

quired by the current pattern of selection queries. Note that 

our approach is complementary to “monitor queries then 

build indexes” approaches, in that our method could be 

invoked when observations indicate a potential benefit. 

That is to say, adaptive indexing could provide mechanisms 

and could be guided by the observe-and-tune techniques 

proposed in those earlier research efforts. 

2.2 Database cracking 
Database cracking, which combines features of both 

automatic index selection and partial indexes, is the only 

other proposal we have seen for refining index structures as 

a side effect of unpredictable dynamically-arriving queries. 

When a column is used in a predicate for the first time, a 

cracker index is created by copying all data values in the 

appropriate column from the table‟s primary data structure. 

When the column is used in the predicate of another query, 

the cracker index is refined as long as a finer granularity of 

key ranges is advantageous. 

The keys in a cracker index are partitioned into disjoint 

key ranges and unsorted within each. As illustrated in Fig-

ure 2, each range query analyzes the cracker index, scans 

the key ranges that fall entirely within the query range, and 

uses the two end points of the query range to further parti-

tion the appropriate two key ranges. Thus, in most cases, 

each partitioning step creates two new sub-partitions using 

logic very similar to the partitioning step in quicksort 

[H 61]. A range is partitioned into 3 new sub-partitions if 

both end points fall into the same key range. This happens 

in the first partitioning step in a cracker index (because 

there is only one key range encompassing all key values) 

but unlikely thereafter [IKM 07a]. 



 

 
Figure 2. Partitioning in a cracker index. 

Figure 2 illustrates how database cracking refines the 

array of key values in a cracker index. Each character 

represents a record; the character is its key value. In this 

small example, each vowel appears twice and each conso-

nant once. The top box shows the initial cracker index im-

mediately after copying. The center box shows the cracker 

index after a range query for keys d through g. Both end 

points are included in the new center partition. The bottom 

box shows the partitions after a subsequent range query for 

key range f through j. The two new boundary keys are used 

to further refine two partitions. Partition sizes are very un-

evenly distributed. 

Key ranges never queried are never partitioned or op-

timized. This is a crucial advantage of adaptive indexing 

over traditional indexes including those created by most 

external tuning tools. On the other hand, each individual 

data record is moved many times during the incremental 

transformation from the un-optimized initial representation 

to the fully optimized final representation. 

As the core operation of database cracking is very sim-

ilar to partitioning in quicksort [H 61]. In an in-memory 

database, it performs very well. As each key value in the 

database must be compared with the boundary key of the 

query predicate, it adds very little to the elapsed time of 

each query. In a sense, database cracking is designed to 

achieve the maximal benefit in the data organization with-

out slowing down in-memory scans, i.e., to maximize the 

benefit that can be achieved “for free.” 

With block-access devices like disk and flash storage, 

it probably performs like quicksort in virtual memory, 

which database systems do not use. For block-access sto-

rage, database developers have long favored external merge 

sort and B-tree indexes. As shown in Section 4, adaptive 

merging performs well over block access storage, requiring 

an order of magnitude fewer queries than database cracking 

to optimize an optimized index for a query set. 

2.3 Partitioned B-trees 
Our search for an adaptive indexing technique suitable 

for block-access storage led us to an algorithm based on 

merging rather than on partitioning and to a data structure 

known as partitioned B-trees [G 03], which are variants of 

traditional B-tree indexes [BM 72]. Our proposal applies to 

hash indexes if those are B-trees on hash values and to mul-

ti-dimensional indexes if those use a space-filling curve 

such as UB-trees [B 97]; whether it applies to other hash 

indexes and other multi-dimensional indexes is left to fu-

ture research. It applies to indexes on block-access devices 

such as traditional disks and flash storage as well as to in-

memory indexes optimized for CPU caches. Finally, it ap-

plies to both primary and secondary B-tree indexes, includ-

ing multi-column (“compound”) B-tree indexes, i.e., to the 

vast majority of indexes used in practice today. 

Partitioned B-trees differ from traditional B-trees as 

they add an artificial leading key field. Distinct values in 

this field define partitions within the B-tree. Partitions ap-

pear and disappear due to record insertion and deletion, 

with no catalog modification. Records with the same value 

in this field can be searched as efficiently as in a traditional 

B-tree. The desired steady state is to have only a single 

partition. Temporary additional partitions enable optimiza-

tions during index creation, roll-in (loading), and roll-out 

(purging). Moreover, external merge sort can store runs in 

B-tree partitions with benefits for deep read-ahead, pause-

and-resume, dynamic resource management, etc. Reorgani-

zation and optimization from multiple partitions to a single 

one uses the same merge logic as traditional merge sort. 

 
Figure 3. Partitioned B-tree and search pattern. 

Figure 3 illustrates a partitioned B-tree (the root at the 

top and leaves along the bottom) with partitions (each a 

sequence of shaded boxes indicating key ranges) identified 

by an artificial leading key field in each record (shown as 

Partition #). A query enumerates the partitions and searches 

each one. In the most naïve implementation, a root-to-leaf 

probe is required to find the next actual value in the artifi-

cial leading key field and another probe is required to apply 

the query predicate within the partition [LJB 95]. The 

number of probes can be reduced to one per partition. 

The fact that adaptive merging exploits partitioned B-

trees is incidental; our starting point was a quest to find a 

technique that is self-tuning similar to database cracking 

but with better query execution performance both during 

index optimization and when querying the final data struc-

ture. The introduction of partitioned B-trees [G 03] sug-

gested some related techniques but did not suggest optimiz-

ing key ranges as a side effect of query execution, the core 

of both database cracking and adaptive merging. 

3 Adaptive merging 
Adaptive merging, the technique introduced here, aims 

to combine efficient merge sort with adaptive and incre-
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mental index optimization. Like database cracking, it re-

quires a flexible underlying storage structure for partially 

and locally optimized index states. Partitioned B-trees ap-

pear to be an ideal choice. 

The essence of partitioned B-trees, as described above, 

is to use standard B-trees to persist intermediate states dur-

ing an external merge sort, to provide efficient search at all 

times even before B-tree optimization is complete, and thus 

to separate run generation and merging into independent 

activities with arbitrary intermediate delay. Partitioned B-

trees can also capture intermediate states during index crea-

tion, data loading, view materialization, etc. 

The essence of adaptive merging is to exploit parti-

tioned B-trees in a novel way, namely to focus merge steps 

on those key ranges that are relevant to actual queries, to 

leave records in all other key ranges in their initial places, 

and to integrate the merge logic as side effect into query 

execution. Thus, adaptive merging is like database cracking 

as it is similarly adaptive and incremental but they differ 

fundamentally as one relies on merging whereas the other 

relies on partitioning, resulting in substantial differences in 

the speed of adaption to new query patterns. 

The differences in query performance are due to data 

being kept sorted at all times in a B-tree. The difference in 

reorganization performance, i.e., the number of queries 

required before a key range is fully optimized, is primarily 

due to merging with a high fan-in as opposed to partition-

ing with a low fan-out of 2 or 3. The following sections 

explain in more detail. 

3.1 Index selection 
For index selection, our design copies the heuristic 

from database cracking: When a column is used in a predi-

cate for the first time, a new index is created by copying 

appropriate values. Refinements such as external guidance 

which indexes to avoid and which ones to choose with 

priority in queries with multiple predicates, partial indexes, 

multi-column indexes, consideration of other predicates 

and their desirable indexes, etc. apply quite similarly to 

both techniques. The record formats are also similar unless 

compression is used, e.g., for duplicate key values. 

The ordering of data records in an initial copy, howev-

er, are quite different due to partitioning in database crack-

ing versus merging in our approach. 

3.2 Initial index creation 
The initial format of a partitioned B-tree consists of 

many partitions. Each partition is sorted, but the partitions 

most likely overlap in their key ranges. Subsequent merg-

ing brings the B-tree closer to a single sort sequence in a 

single partition, as described later. 

The initial creation of a new partitioned B-tree per-

forms run generation using an in-memory algorithm such 

as quicksort or replacement selection. The advantage of the 

latter is the opportunity for runs larger than the memory 

allocation during initial index creation. Each run forms a 

partition in the new B-tree. 

 
Figure 4. Appending partitions during initial index creation. 

Figure 4 illustrates the data movement during initial 

index creation. Boxes with the same shading indicate the 

same key range. A run generation algorithm such as quick-

sort is used to append as many partitions as necessary. 

Their number depends primarily on input size and memory 

allocation but also on sort algorithm and any incidental 

correlation between the sort order in the data source and in 

the new index. 

 
Figure 5. Unsorted input and initial sorted partitions. 

Figure 5 shows a concrete example, with the same data 

as shown in Figure 2. The upper box shows the input, en-

tirely unsorted. The lower box shows the initial index, i.e., 

records and partitions within a partitioned B-tree. A “,” 

(comma) separates sorted partitions. Run generation during 

copying produces runs of 6 records in this small example. 

Search performance immediately after index creation 

depends on the count (and thus the average size) of the 

partitions in the partitioned B-tree, as does the break-even 

point between probing each partition with a traditional B-

tree search and an end-to-end scan of the index. For exam-

ple, if scan bandwidth is 100 MB/s and each probe takes 

20 ms, partitions larger than 100 MB/s × 20 ms = 2 MB 

ought to be probed rather than scanned, corresponding to a 

modest memory allocation of 1 MB during run generation 

by replacement selection. Note that the “lock footprint” can 

be smaller during probing than during scanning, further 

favoring probing over scans. Modern flash storage also 

favors probing over scans. Nonetheless, scanning is always 

possible if desired, e.g., in order to exploit shared scans. 

3.3 Incremental index optimization 
When a column is used in a predicate for the second 

time, an appropriate index exists, albeit not yet fully opti-

mized and merged into a single partition. In this situation, a 

query must find its required records within each partition, 

typically by probing within B-tree for the low end of the 

query range and then scanning to the high end. 
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Instead of just scanning the desired key range one par-

tition at a time, however, the query might as well scan mul-

tiple partitions in an interleaved way, merge these multiple 

sorted streams into a single sorted stream, write those 

records into a new partition within the partitioned B-tree, 

and also return those records as the query result. The data 

volume touched and moved is that of the query result. 

 
Figure 6. Partitioned B-tree before and after a query. 

Figure 6 illustrates merging and data movement during 

the second query. The top half shows the B-tree when the 

query starts. In processing the query, records satisfying the 

query predicate are automatically merged into the new par-

tition, as shown in the bottom half of Figure 6. Ideally, a 

single merge step suffices to merge records from all exist-

ing partition into a single, final partition. 

 
Figure 7. Merging as side effect of query execution. 

Figure 7 continues the concrete example of Figure 5, 

using the same data and range queries as Figure 2. The top 

box shows sorted partitions after run generation. The center 

box shows the partitions after a range query for keys d 

through g. A subsequent query for key range e through f 

would access only the new partition. The bottom box 

shows the partitions after subsequent range query for keys f 

through j. Some of this range can be answered from the 

merged partition and some of it causes additional merge 

activity. Note that the smallest among the original sorted 

partitions vanishes as side effect of the second query. Also 

note that the merge activity during the second and third 

queries inserts data into the same partition. This is easily 

possible as their merge steps focus on disjoint key ranges. 

If all existing partitions can be merged to form a single 

partition in a single step, i.e., the number of initial parti-

tions is smaller than the merge fan-in as limited by the 

memory allocation available for merging, then the query 

may leave the keys within its query range in a single loca-

tion comparable to a traditional, fully optimized B-tree 

index. 

If the query range of the third query is a subset of that 

of the second query, the third query can search as efficient-

ly in a partitioned B-tree as in a traditional B-tree. If the 

query ranges of the second and third queries do not overlap, 

it leaves its result behind in the same format as the second 

query for the benefit of the future queries. In this case, mul-

tiple queries can merge their output into the same new par-

titions. 

Actually, this logic applies to individual key ranges. If 

the range predicates of the second and third queries overlap 

partially, the third query needs to split its key range into 

overlapping and non-overlapping sub-ranges. For overlap-

ping key ranges, the third query finds all data in a single 

location comparable to a traditional B-tree. For non-

overlapping key ranges, it probes all existing partitions, 

extracts the required records, merges them, and moves 

them to a new partition, as shown in Figure 6. 

All subsequent queries also must analyze their range 

predicates for overlap with prior queries and the merge 

effort they applied to the index. Once all records within a 

key range have been merged into a single partition, subse-

quent queries in that key range work and perform like que-

ries using a traditional B-tree index. 

Key ranges without query activity are never reorga-

nized or merged. Those keys remain in the initial runs pro-

duced by run generation. Thus, as in database cracking, no 

effort is wasted on inactive key ranges after the initial copy 

step. By adaptively merging only those key ranges actually 

queried, and by performing merge steps as side effects of 

query execution, adaptive merging preserves the main 

strength of database cracking. The main difference is in the 

speed of adaptation, i.e., the number of times each record is 

moved before it is in its final location. 

If more than a single merge step is required to trans-

form the B-tree index from many initial partitions into a 

single final partition, each key range must be searched and 

merged by multiple queries before it is in its final, com-

pletely optimized format. 

The number of merge steps for each key range is 

equivalent to the merge depth in an external merge sort, 

i.e., logF (W) for W initial runs merged with fan-in F. With 

the memory sizes of modern computers, sort operations 

with a single merge step are common, and sort operations 

with more than two merge levels are quite unusual. Just as 

in external merge sort with optimized merge patterns, the 
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merge depth may not be uniform for all records and thus 

the average merge depth might be a fraction, e.g., 1¾. 

In fact, the number of merge steps per record is a key 

difference between database cracking and adaptive merg-

ing. The merge fan-in can easily exceed 100, whereas the 

partitioning fan-out in database cracking is usually 2 or 3, 

limited by the number of new partitioning keys available in 

any one range query. Thus, database cracking may move 

each record many times before its final place is found. The 

exact number depends on the size of partitions to which no 

further cracking is applied and the size of the initial parti-

tions in the proposed design. 

For example, if the size of the cracked index is 1 GB, 

if partitions smaller than 4 MB are no further partitioned, 

and the partitioning fan-out is 2, no further partitioning is 

required for a key range after log2 (1GB ÷ 4MB) = log2 256 

= 8 partitioning steps affecting this key range – even more 

if skew is an issue. In partitioned B-trees with adaptive 

merging, if the average size of the initial runs is 16 MB and 

the merge fan-in is 64, then the number of merge levels is 

log64 (1 GB ÷ 16 MB) = log64 64 = 1. In other words, in this 

example, database cracking moves each record 8 times 

before its final location is found, whereas adaptive merging 

requires just a single move. Other numeric examples pro-

duce similar differences as long as the merge fan-in is 

much larger than 2. 

3.4 Table of contents 
As in database cracking, an auxiliary data structure is 

required to retain information about reorganization efforts 

already completed. In fact, the set of keys is the same in the 

auxiliary data structures for database cracking and for 

adaptive merging. The information associated with those 

keys differs. In database cracking, the start position of the 

partition with the given key is indicated. In adaptive merg-

ing, the data structure indicates the range of identifiers for 

partitions with records in the given key range. 

For example, suppose that run generation creates runs 

with identifiers 1 through 1,000. All key ranges can be 

found in this set of partitions. After a key range has been 

merged once, say with merge fan-in of 32, records within 

this key range can be found in partitions 1,001 through 

1,032 but not longer in partitions 1 through 1,000. A key 

range merged twice can be found only in partition 1,033. 

Query performance in such key ranges equals traditional B-

trees. 

3.5 Transaction support 
As the proposed structure is a B-tree, even if an artifi-

cial leading key field is added, all traditional methods for 

concurrency control, logging, and recovery apply. 

In addition, key prefixes could be locked, a generaliza-

tion of Tandem‟s “generic locks” [G 07]. When a conflict 

arises, a merge step can be committed immediately because 

merge operations do not change the contents of the index, 

only its representation. 

The logging volume during merge operations can be 

reduced to allocation-only logging. In this mode of opera-

tion, the page contents are not logged during merge steps, 

neither deletions in the merge inputs nor insertions in the 

merge output. Deletion of individual records can be imple-

mented as updates from valid records to “ghost” records 

(also known as pseudo-deleted records). A single small log 

record suffices for multiple records. Deletion of entire pag-

es can be captured by a single small log record. Insertion of 

new pages requires that the new pages be flushed to disk 

before the data sources for the page contents are erased, 

i.e., before committing a merge step. 

3.6 Updates 
For insertions, deletions, and record modifications, 

there are each multiple alternative techniques. In each case, 

the first technique is similar to traditional techniques whe-

reas the second one is optimized for efficient completion of 

many small transactions. 

Insertions can be placed either into the final target par-

tition or they can be gathered in a new partition dedicated 

to gathering insertions. This partition ought to remain in the 

buffer pool such that all insertions only update in-memory 

data structures (other than the recovery log). Multiple new 

partitions may be added over time. 

Deletions can either search for the appropriate record 

in the index, in whatever partition it might be found, or 

they insert “anti-matter” quite similar to the “negative” 

records employed during maintenance of materialized 

views and during online index creation. 

Modifications of existing records can be processed ei-

ther as traditional updates after an appropriate search or 

they can be processed as pairs of deletion and insertion, 

with alternative processing techniques as outlined above. 

If insertions, deletions, or updates create new partitions 

in a B-tree, i.e., introduce new partition identifiers, those 

partitions and their key ranges must be reflected in the table 

of contents such that subsequent queries search in all ap-

propriate partitions. 

3.7 Variations 
Several variations and optimizations are possible 

beyond the design described so far. This section lists some 

ideas; we have not yet analyzed them for their true practical 

value or their precise performance effects. 

First, the basic idea seems well suited to capturing and 

indexing continuous streams, in particular if multiple inde-

pendent indexes are desired for a single stream. Incoming 

records are always appended to all indexes in partitions 

formed by run generation. Continuous “trickle updates” in 

data warehouses are a special case of streams that can be 

indexed using the proposed techniques.  



 

Second, the general technique applies not only to disk-

based databases but also to databases on flash devices and 

even to in-memory databases. The resulting differences are 

quantitative rather than qualitative. For example, due to 

very fast access latency, smaller page sizes are optimal for 

flash devices, resulting in higher merge fan-in with a fixed 

memory allocation and thus fewer merge levels from initial 

runs to a final, fully optimized B-tree [G 07b]. For in-

memory databases, optimization of cache faults leads to run 

generation within the cache and explicit merge steps to 

form memory-sized indexes [NBC 95].  

Third, partitioned B-trees are useful not only for effi-

cient search but also for efficient query execution with 

merge joins, “order by” clauses, etc. The final merge activi-

ty in the query is precisely equivalent to B-tree optimiza-

tion, and the merge output can replace the previous parti-

tions with a single, fully optimized partition. For orderings 

on B-tree fields other than the leading field, a general me-

chanism comparable to MDAM [LJB 95] seems possible 

but has not yet been described in the literature. 

Fourth, adaptive merging in combination with parti-

tioned B-trees provides mechanisms for dynamically ad-

justing query costs for the purpose of workload manage-

ment. During index creation, it is possible at any time to 

defer the remaining key range within the data source. 

Doing so speeds up the current query but leaves the new 

index only partially populated. During index optimization, 

it is possible at any time to reduce the fan-in of merge steps 

or to interrupt all merge activity in order to defer some 

merge effort to later queries. Doing so frees up memory 

(merge input buffers) and speeds up the current query but 

fails to optimize the key range for subsequent queries. 

Fifth, B-tree optimization and partition merging does 

not depend on queries. Instead, any idle capacity can be 

used to optimize a partitioned B-tree for future queries. 

Adaptive merging can focus on those key ranges that have 

been queried once but are not yet fully optimized. Database 

cracking, in contrast, cannot exploit prior queries during 

idle times because it requires a new partitioning key for 

each additional step. 

Finally, instead of merging the precise key range of a 

query, the logic could be modified to consume entire B-tree 

leaves. Space management would become simpler and 

more efficient, whereas the table of contents would become 

more complex. Consequently, determining the required 

partitions during query execution would also be more com-

plex. As a compromise, one can extend a query range to the 

next “short enough” separator key, quite similar to the key 

optimizations in suffix truncation (compression) [BU 77]. 

For example, if the query range starts with “Smith,” the 

merge could start with “Sm”. Even an equality query could 

merge an appropriate key range, for example all keys start-

ing with “Sm”. If suffix truncation is applied during B-tree 

construction, the probability is high that merge range coin-

cides with boundaries between leaf pages in all input parti-

tions. In fact, such a policy might be very useful to avoid 

an excessive number of small merge steps and thus to en-

sure efficient adaptation of an index to a new query pattern. 

If multiple merge levels are required, the heuristics might 

differ among the levels in order to avoid repeatedly search-

ing a large number of initial partitions. The experiment 

below extends each merge range in both directions to a 

multiple of the largest power of two smaller than the width 

of the query range. 

4 Performance evaluation 
Here, we focus on a comparison of database cracking 

and adaptive merging. These two adaptive indexing tech-

niques can be compared experimentally with concise, fo-

cused experiments. A comparison with index tuning tech-

niques that run workload analysis and index creation exter-

nally and in addition to query execution requires a com-

plete system, a representative physical database design as 

starting point, and a representative workload, all of which 

are not available to us at this time.  

Our first experiment simulates 50 queries against a 

random permutation of the integers 0 to 9,999,999. Each 

query requests a random range of 1 value to 20% of the 

domain; 10% on average. Cracking stops with partitions of 

1,000 values. Initial runs in the partitioned B-tree are 

created with a workspace of 100,000 records, for 51 initial 

partitions. The merge fan-in is sufficient to complete all B-

tree optimization in a single merge level. 

 
Figure 8. Database cracking and adaptive merging. 

Figure 8 shows the overhead effort of database crack-

ing and of adaptive merging. Each query must scan records 

to produce its output; those are not reflected in the diagram 

and must be added to compute the total effort. The cost 

scale in Figure 8 is logarithmic. Note that our cost metric is 

focused on movements in the memory hierarchy and on the 

number of records touched; it does not reflect the number 

of comparisons. Both techniques essentially implement sort 

algorithms O (N log N) comparisons. 

Database cracking 

Adaptive merging 



 

The upper curve shows database cracking. It reflects 

the behavior known from an earlier performance study 

[IKM 07a]. The first query partitions the entire domain and 

thus its overhead is high. The overhead then decreases 

slowly. Each range query provides two more boundary 

keys between partitions; thus, the number of partitions in a 

cracker index is about twice the number of queries 

processed so far. Dividing 10,000,000 records into parti-

tions no larger than 1,000 records requires at least 9,999 

partitioning keys. With at most two new partitioning keys 

per query, partitioning requires at least 5,000 queries. 

The lower curve shows adaptive merging. It converges 

much faster than database cracking. Merging is practically 

complete after about 40 queries, meaning the B-tree is fully 

optimized. In all subsequent queries, search performance 

equals that of a traditional B-tree. When each query scans 

precisely the key range needed as query output, the over-

head is zero (shown as 1 due to the logarithmic scale). 

With a smaller memory allocation during run genera-

tion or during merging, multiple merge levels would have 

been required. For example, convergence would take twice 

as long with a merge fan-in of only 8 and thus 2 merge 

levels. Nonetheless, even 100 queries for full convergence 

would be much faster than database cracking with its strict 

binary partitioning and thousands of queries prior to steady 

state. Overhead and convergence rate also depend on the 

sizes of query ranges as well as skew. 

An alternative perspective on the experiment of Figure 

8 focuses on the “sortedness” of intermediate states of the 

index, which may be measured in the number of “adjacent 

inversions,” i.e., neighboring keys with the wrong order 

relationship. Database cracking enforces no sort order with-

in each partition; thus, each query reduces the number of 

adjacent inversions only at the new boundaries between 

partitions, at most two per range query. Adaptive merging 

permits adjacent inversions only between partitions, and 

thus even the initial state immediately after run generation 

has relatively few adjacent inversions. 

A third perspective focuses on the relative rather than 

the absolute overhead in query execution. Key ranges for 

queries were chosen between 1 value and 20% of the do-

main, with an average of 10% of the domain or 1,000,000 

distinct values, equal to 1,000,000 records in this database. 

Thus, an overhead of 100,000 records is equal to an extra 

scan effort of 10% on average, which might seem accepta-

ble in an adaptive indexing technique. From this point of 

view, database cracking might reach acceptable perfor-

mance after about a dozen queries. Adaptive merging, on 

the other hand, always scans only as much data as is re-

quired for the query at hand. Merging, if required, can 

achieve very high bandwidth if the units of disk transfer are 

sufficiently large, e.g., 1 MB or more. 

Figure 9 shows the same experiment as Figure 8 but 

run over a workload of 5,000 queries. Each data point 

shows the average of 1% of the workload or 50 queries. 

Database cracking slowly reduces the overhead per query, 

although it takes many queries before incremental index 

optimization ceases. Adaptive merging leaves a fully opti-

mized B-tree after less than 50 queries. 

 
Figure 9. Long query sequence. 

If the average query range is small, however, this ar-

gument might no longer pertain. For example, if the aver-

age query requests only 0.1% (rather than 10%) of the do-

main, it takes hundreds of queries to achieve acceptable 

overhead on average, with no guarantee for the worst case. 

Note that the convergence rate of database cracking should 

barely affected by the width of the ranges in the queries – 

each query introduces two new partition boundaries. 

 
Figure 10. Small query ranges. 

Figure 10 shows the average per-query overhead for 

queries with small ranges. Query predicates range from 1 

value to 0.2% of the domain, or 0.1% on average. In other 

words, this is the same experiment as the prior one except 

that the average query result size equals 10,000 records 

rather than 1,000,000 records. Database cracking and its 

convergence behavior are not affected by the query size; 

two new partition boundaries with each range query require 

about 5,000 queries to divide an index with 10,000,000 

unique values into minimal partitions of 1,000 records. 

Adaptive merging 
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Adaptive merging requires more queries than in the prior 

experiment, but it still optimizes the B-tree over about 

1,250 queries (25% of 5,000 queries). 

In fact, for the speed of index optimization to be simi-

lar in database cracking and adaptive merging, the queries 

would have to be point queries rather than range queries. If 

key ranges to be merged are rounded as proposed above as 

an obvious improvement to the basic technique, it always 

finishes the index faster than database cracking. 

 
Figure 11. Very small query ranges. 

Figure 11 shows the same experiment again with aver-

age query result size of 100 rather than 10,000 records. The 

convergence behavior of database cracking is again un-

changed, as expected. The convergence rate of adaptive 

merging would suffer without an implementation heuristic 

we found necessary. Inspired by B-trees on block-access 

devices, our implementation merges a larger key range than 

is required by the query at hand. Rounding depends on the 

size of the workspace and the prescribe merge fan-in, based 

on the assumption that the merge fan-in as the quotient of 

workspace size and block size. With this optimization, 

adaptive merging finishes optimization of the B-tree with 

less than 2,500 queries (50% of 5,000 queries). 

 
Figure 12. Small memory allocation. 

Figure 12 illustrates the effect of a small memory allo-

cation. This experiment equal that of Figure 8 except for 

the workspace size, the merge fan-in, and the number of 

queries in the workload. Compared to the prior experiment, 

both the workspace during run generation and the fan-in 

during merge steps are reduced by a factor of 10. The 

workload consists of 200 queries to illustrate the effects. 

Database cracking is very little affected – it is not designed 

to exploit a large memory even when memory is readily 

available. Adaptive merging requires more effort than in 

the experiment of Figure 8. Each record must go through 3 

merge steps before reaching its proper place in the final 

partition. Nonetheless, adaptive merging converges towards 

the final index format with fewer moves per record than 

database cracking. In other words, among the two adaptive 

indexing schemes, adaptive merging requires much less 

reorganization effort, whether or not memory is plentiful. 

 
Figure 13. Small query focus. 

Finally, Figure 13 illustrates the effect of all queries 

focusing on the same fraction of the domain, i.e., the case 

in which adaptive indexing methods are supposed to shine. 

Here, all queries focus on the 1,000,000 key values in the 

center of the domain. Otherwise, this experiment equals 

that of Figure 8. Both adaptive indexing techniques per-

form better than in the base case shown in Figure 8. How-

ever, database cracking imposes more overhead than adap-

tive merging because it takes many queries before the 

cracker index attains its final form whereas adaptive merg-

ing converges after only 35 queries due to sorted runs and 

merging with high fan-in. Moreover, the overhead of data-

base cracking exhibits occasional spikes when a query key 

forces partitioning of the keys above or below the query 

focus. For example, if the highest key of interest in all que-

ries so far is 5,490,000, a new query with range boundary 

of 5,491,000 forces partitioning of all records and key up to 

the 10,000,000. 
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5 Summary and conclusions 
In summary, database cracking and adaptive merging 

offer a promising alternative to traditional index tuning that 

relies on monitoring, offline what-if analyses, and long-

running index creation utilities that can disrupt processing 

of the current workload. 

While database cracking was designed for in-memory 

arrays, adaptive merging enables automatic creation and 

incremental improvements of indexes in large data ware-

houses on “external” block-access storage. It uses a stan-

dard data structure, B-trees, with only a few non-traditional 

improvements. First, an artificial leading key field permits 

creation and removal of partitions by insertion and deletion 

of records with specific partition identifiers; well-known B-

tree access algorithms permit efficient search in such parti-

tioned B-trees. Second, index creation is divided into run 

generation and merging. Both can be side effects of query 

execution or other scans over the data. Run generation uses 

a single pass over the future index records and results in a 

complete, coherent, and searchable B-tree index, even if it 

is not yet fully optimized. Third, query execution may op-

timize such an index by merging the key ranges required to 

answer actual queries, with no effort spent on any unused 

key ranges. Fourth, those non-optimized key ranges are 

automatically in a format that can readily be searched and 

optimized later if the query pattern changes. 

The described techniques have design goals very simi-

lar to database cracking, namely automatic and adaptive 

index selection as well as incremental optimization of in-

dexes focused on key ranges of interest in actual queries. 

The fundamental difference between the two approaches is 

the reliance on partitioning in database cracking and on 

merging in the new techniques. Well-known related algo-

rithms are partitioning as used in quicksort and merging as 

used in external merge sort. The primary difference in the 

efficiency of the two techniques is that partitioning (using 

actual boundary keys of query ranges) is inherently limited 

to a partitioning fan-out of 2 or 3 whereas the merge fan-in 

is limited only by the available memory and thus can easily 

be in the 100s. With the number of partitioning or merging 

steps required to transform an initial index into the final, 

fully optimized index inversely proportional to the loga-

rithm of the fan-out or fan-in, database cracking might 

move each data record 5-10 times more often than adaptive 

merging. Thus, adaptive merging requires less overall ef-

fort and adapts to changes in the query pattern much more 

rapidly than database cracking. Furthermore, like tradition-

al B-trees and external merge sort, adaptive merging ap-

plied to partitioned B-trees is well suited to block-access 

storage. 

Since partitioned B-trees are more similar to traditional 

B-trees than they are different, partitioned B-trees includ-

ing adaptive merge strategies apply not only to B-trees with 

single-column search keys but also to multi-column “com-

pound” B-trees as well as to B-trees on computed columns, 

e.g., B-trees on hash values or on space-filling curves such 

as UB-trees [B 97]. It seems that partitioned B-trees and 

adaptive merging applies in all cases in which traditional 

B-trees can be used. 

Our plan for future work includes a more detailed ex-

perimental evaluation and research into incremental space 

reclamation by dropping obsolete or unused indexes. We 

will also investigate the trade-offs between index tuning 

prior to data loading (to save on in-database reorganiza-

tion), traditional index tuning after observing a workload, 

and incremental index tuning using database cracking or 

adaptive merging. Finally, we recently presented a preview 

of this work to the team that developed database cracking  

at CWI, and agreed to a joint performance evaluation. 

Acknowledgements 
Martin Kersten and his research group invented data-

base cracking, and the present research and design were 

sparked directly by his keynote at ICDE 2008. We particu-

larly thank Stratos Idreos and Stefan Manegold for review-

ing a draft of this paper, including our understanding of 

database cracking. Hans Zeller provided valuable feedback 

on our initial thoughts in May 2008. Barb Peters suggested 

several improvements in the text. 

6 References 
[B 97] Rudolf Bayer: The Universal B-tree for multidimen-

sional indexing: general concepts. WWCA 1997: 198-

209. 

[BC 07] Bruno, N. and Chaudhuri, S. 2007. Physical design 

refinement: The „merge-reduce‟ approach. ACM 

Trans. Database Syst. 32, 4 (Nov. 2007), 28. 

[BM 72] Rudolf Bayer, Edward M. McCreight: Organiza-

tion and maintenance of large ordered indices. Acta 

Inf. 1: 173-189 (1972). 

[BM 93] Jon Louis Bentley, M. Douglas McIlroy: Engi-

neering a sort function. Softw., Pract. Exper. 23(11): 

1249-1265 (1993). 

[BU 77] Rudolf Bayer, Karl Unterauer: Prefix B-trees. 

ACM TODS 2(1): 11-26 (1977). 

[CN 07] Surajit Chaudhuri, Vivek R. Narasayya: Self-

tuning database systems: A decade of progress. VLDB 

2007: 3-14. 

[FST 88] Sheldon J. Finkelstein, Mario Schkolnick, Paolo 

Tiberio: Physical database design for relational data-

bases. ACM TODS 13(1): 91-128 (1988). 

[G 03] Goetz Graefe: Sorting and indexing with partitioned 

B-trees. CIDR 2003. 

[G 06] Goetz Graefe: Implementing sorting in database 

systems. ACM Comput. Surv. 38(3): (2006). 

[G 07] Goetz Graefe: Hierarchical locking in B-tree index-

es. BTW 2007: 18-42. 



 

[G 07b] Goetz Graefe: The five-minute rule twenty years 

later, and how flash memory changes the rules. Da-

MoN 2007: 6. 

[H 61] C. A. R. Hoare: Algorithm 64: Quicksort. Comm. 

ACM 4(7): 321 (1961). 

[H 76] Theo Härder: Selecting an optimal set of secondary 

indices. ECI 1976: 146-160. 

[IKM 07a] Stratos Idreos, Martin L. Kersten, Stefan Mane-

gold: Database cracking. CIDR 2007: 68-78 

[IKM 07b] Stratos Idreos, Martin L. Kersten, Stefan Mane-

gold: Updating a cracked database. SIGMOD 2007: 

413-424. 

[IKN 08a] Milena Ivanova, Martin L. Kersten, Niels Nes: 

Self-organizing strategies for a column-store database. 

EDBT 2008: 157-168. 

[IKN 08b] Milena Ivanova, Martin L. Kersten, Niels Nes: 

Adaptive segmentation for scientific databases. ICDE 

2008: 1412-1414. 

[KM 05] Martin L. Kersten, Stefan Manegold: Cracking 

the database store. CIDR 2005. 

[LJB 95] Harry Leslie, Rohit Jain, Dave Birdsall, Hedieh 

Yaghmai: Efficient search of multi-dimensional B-

trees. VLDB 1995: 710-719. 

[NBC 95] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, 

Jim Gray, David B. Lomet: AlphaSort: A Cache-

Sensitive Parallel External Sort VLDB J. 4(4): 603-627 

(1995). 

[S 74] Michael Stonebraker: The choice of partial inver-

sions and combined indices. International Journal of 

Computer and Information Sciences, 3(2), June 1974. 

[S 89] Michael Stonebraker: The case for partial indexes. 

SIGMOD Record 18(4): 4-11 (1989). 

[SS 95] Praveen Seshadri, Arun N. Swami: Generalized 

partial indexes. ICDE 1995: 420-427. 

 

 

Adaptive 

merging 


