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Abstract: For the past year, we have been assembling 
requirements from a collection of scientific data base users 
from astronomy, particle physics, fusion, remote sensing, 
oceanography, and biology.  The intent has been to specify a 
common set of requirements for a new science data base 
system, which we call SciDB.  In addition, we have 
discovered that very complex business analytics share most of 
the same requirements as “big science”. 

We have also constructed a partnership of companies to fund 
the development of SciDB, including eBay, the Large 
Synoptic Survey Telescope (LSST), Microsoft, the Stanford 
Linear Accelerator Center  (SLAC) and Vertica.  Lastly, we 
have identified two “lighthouse customers” (LSST and eBay) 
who will run the initial system, once it is constructed. 

In this paper, we report on the requirements we have 
identified and briefly sketch some of the SciDB design. 

I INTRODUCTION 

XLDB-1 in October 2007 brought together a collection of 
“big science” and commercial Internet users with extreme data 
base requirements.  Also present were a collection of vendors 
and David DeWitt and Michael Stonebraker.  The users 
complained about the inadequacy of current commercial 
DBMS offerings.  DeWitt and Stonebraker countered with the 
fact that various researchers in the DBMS community have 
been working on science databases for years and have even 
built prototypes (e.g. Sequoia 2000 with Postgres [1], Paradise 
[2], the Sloan Digital Sky Survey [3], and extensions to 
MonetDB [4]).  Moreover, they also said “if you can define a 
common set of requirements across several science 
disciplines, then we will try to build it.” 

The result was a meeting at Asilomar in March 2008 between 
a collection of science users and a collection of DBMS 
researchers to define requirements, followed by a more 
detailed design exercise over the summer.  Additional use 
cases were solicited, and parallel fund raising was carried out. 

This paper presents the results of this requirements exercise in 
Section 2 and sketches some of the SciDB design.  
Intermingled are a collection of research topics that require 
attention.  It concludes with summary of the state of the 
project in Section 3. 

 

II REQUIREMENTS 

These requirements come from particle physics (the LHC 
project at CERN, the BaBar project at SLAC and Fermilab), 
biology and remote sensing applications (Pacific Northwest 
National Laboratory), remote sensing (University of 
California at Santa Barbara), astronomy (Large Synoptic 
Survey Telescope), oceanography (Oregon Health & Science 
University and the Monterey Bay Aquarium Research 
Institute), and eBay. 

There is a general realization in these communities that the 
past practice (build custom software for each new project 
from the bare metal on up) will not work in the future.  The 
software stack is getting too big, too hard to build and too 
hard to maintain.  Hence, the community seems willing to get 
behind a single project in the DBMS area.  They also realize 
that science DBMSs are a “zero billion dollar” industry.  
Hence, getting the attention of the large commercial vendors 
is simply not going to occur. 

2.1 Data Model 

While most scientific users can use relational tables and have 
been forced to do so by current systems, we can find only a 
few users for whom tables are a natural data model that 
closely matches their data. Few are satisfied with SQL as the 
interface language.  Although the Sloan Digital Sky Survey 
has been very successful in the astronomy area, they had 
perhaps the world’s best support engineer (Jim Gray) helping 
them.  Also, a follow-on project, PanSTARRS, is actively 
engaged in extending the system to meet their needs [5].  

The Sequoia 2000 project realized in the mid 1990s that their 
users wanted an array data model, and that simulating arrays 
on top of tables was difficult and resulted in poor 
performance.  A similar conclusion was reached in the ASAP 
prototype [6] which found that the performance penalty of 
simulating arrays on top of tables was around two orders of 
magnitude.  It appears that arrays are a natural data model for 
a significant subset of science users (specifically astronomy, 
oceanography, fusion and remote sensing). 

Moreover, a table with a primary key is merely a one-
dimensional array.  Hence, an array data model can subsume 
the needs of users who are happy with tables. 
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Seemingly, biology and genomics users want graphs and 
sequences.  They will be happy with neither a table nor an 
array data model.  Chemistry users are in the same situation. 

Lastly, users with solid modelling applications want a mesh 
data model [7] and will be unhappy with tables or arrays.  The 
net result is that “one size will not fit all”, and science users 
will need a mix of specialized DBMSs.  

Our project is exploring an array data model, primarily 
because it makes a considerable subset of the community 
happy and is easier to build than a mesh model.  We support a 
multi-dimensional, nested array model with array cells 
containing records, which in turn can contain components that 
are multi-dimensional arrays. 

Specifically, arrays can have any number of dimensions, 
which may be named.  Each dimension has contiguous integer 
values between 1 and N (the high-water-mark). Each 
combination of dimension values defines a cell.   Every cell 
has the same data type(s) for its value(s), which is one or more 
scalar values, and/or ones or more arrays.  An array A with 
dimensions I and J and values x and y would be addressed as: 

A[ 7, 8] — indicates the contents of the (7, 8)th cell 
A[I = 7, J = 8] — more verbose notation for the (7, 8)th cell 
A[7, 8].x — indicates the x value of the contents of the 
    (7, 8)th cell 

Like SQL an array can be defined, and then multiple instances 
can be created.  The basic syntax for defining an array is: 

 define ArrayType ({name =Type-1}) ({dname}) 

The dimensions of the array, which must be integer-valued, 
are inside the second (…).  The value(s) of the array are inside 
the first (…).  Each value has a name and a data type, which 
can be either an array or a scalar.  

For example, consider a 2-D remote sensing array with each 
element consisting of 3 different types of sensors, each of 
which generates a floating-point value.     

This can be defined by specifying: 

 define Remote (s1 = float, s2 = float, s3 = float) (I, J) 

A physical array can be created by specifying the high water 
marks in each dimension.  For example, to create Remote as 
an array of size 1024 by 1024 one would use the statement 

 create My_remote as Remote [1024,1024] 

It is acceptable to create a basic array that is unbounded in one 
or more dimensions, for example 

create My_remote_2 as Remote [*, *] 

Unbounded arrays can grow without restriction in dimensions 
with a * as the specified upper bound. 

Enhanced arrays, to be presently described, will allow basic 
arrays to be scaled, translated, have irregular (ragged) 
boundaries, and have non-integer dimensions. To discuss 

enhanced arrays, we must first describe user-defined 
functions. 

SciDB will also support POSTGRES-style user-defined 
functions (methods, UDFs), which must be coded in C++, 
which is the implementation language of SciDB.  As in 
POSTGRES, UDFs can internally run queries and call other 
UDFs.  We will also support user-defined aggregates, again 
POSTGRES-style.  
UDFs can be defined by specifying the function name, its 
input and output signatures and the code to execute the 
function.  For example, a function, Scale10, to multiply the 
dimensions of an array by 10 would be specified as: 
Define function Scale10 (integer I, integer J)  

returns (integer K, integer L)  
file_handle 

The indicated file_handle would contain object code for the 
required function.  SciDB will link the required function into 
its address space and call it as needed. 
UDFs can be used to enhance arrays, a topic to which we now 
turn. Any function that accepts integer arguments can be 
applied to the dimensions of an array to enhance the array by 
transposition, scaling, translation, and other co-ordinate 
transformations. 

For example, applying Scale10 to a basic array would be 
interpreted as applying the function to the dimension values of 
each cell to produce an enhanced array.  Hence: 

Enhance My_remote with Scale10  

has the intended effect.  In this case the (I, J) co-ordinate 
system of the basic array, My_remote, continues to work.  In 
addition the (K, L) co-ordinate system from Scale10 also 
works. To distinguish the two systems, SciDB uses [ ..] to 
address basic dimensions and { …} to address enhanced ones.  
Hence, the basic ones are addressed: 

A [7, 8] or A[I = 7, J = 8] 

while the enhanced ones are addressed as: 

A{20, 50} or A {K = 20, L = 50}. 

Some arrays are irregular, i.e. they do not have integer 
dimensions, and some are defined in a particular co-ordinate 
system, for example Mercator geometry.  Enhancing arrays 
with more complex UDFs can deal with both situations. 

Consider a UDF that accepts a vector of integers and outputs a 
value for each dimension of some data type, T.  If, for 
example, a one-dimensional array is irregular, i.e. has co-
ordinates 16.3, 27.6, 48.2, …, then a UDF function can 
convert from the contiguous co-ordinate system in a basic 
array to the irregular one above.   

Hence, an array can be enhanced with any number of UDFs.  
Each one adds pseudo-coordinates to an array. Such co-
ordinates do not have to be integer-valued and do not have to 
be contiguous. Our array model does not dictate how pseudo-
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coordinates are implemented.  Some possibilities are as part of 
the cell data, as a separate data structure, or with a functional 
representation (if the pseudo-coordinate can be calculated 
from the integer index). 

Addressing array cells of an irregular array can use either the 
integer dimensions: 

A [7, 8] or A[I = 7, J = 8] 

or the mapped ones: 

A{16.3, 48.2} or A {name-1 = 16.3, name-2 = 48.2} 

Lastly, if the dimension is in some well-known co-ordinate 
system, e.g. Mercator-latitude, then the output of an array 
enhancement is simply this data type. 

When dimensions have “ragged” edges, we can enhance a 
basic array with a shape function to define this class of arrays.  
A shape function is a user-defined function with integer 
arguments and a pair of integer outputs. 
A shape function must be able to return low-water and high-
water marks when one dimension is left unspecified, e.g. 
shape-function (A[I, *]) would return the maximum high-
water mark and the minimum low-water mark for dimension I.  
In addition, the shape of an individual slice can be returned by 
specifying shape-function (A[7,*]). 

To find out whether or not a given cell (e.g., [7,7]) is present 
in a 2-dimensional array A, we use the function Exists? [A, 7, 
7] which returns true if [7,7] is present and false otherwise. 
An array can be enhanced with a shape function with the 
following syntax 

Shape array_name with shape_function. 
Notice that a shape function can define “raggedness” both in 
the upper and lower bounds.  Hence, arrays that digitize 
circles and other complex shapes are possible.  If shape 
functions can be simplified to have only upper bound 
raggedness, then the syntax can be simplified somewhat.  In 
addition, it is not possible to use a shape function to indicate 
“holes” in arrays.  If this is a desirable feature, we can easily 
add this capability. 
Every basic array can have at most one shape function, and 
SciDB will come with a collection of built-in shape functions.  
In many applications the shape function for a given dimension 
does not depend on the value for other dimensions.  In this 
case shape is separable into a collection of shape function for 
the individual dimensions.  Hence shape-function is really 
(shape-function (I), shape-function (J)).  In this case, the user 
would have to define a composite shape function that 
encapsulates the individual ones. 

2.2 SciDB Operations 

In this section, we describe some of the operators that 
accompany our data model.  Since our operators fall into two 
broad categories, we illustrate each category with a few 
examples rather than listing all of them.  

2.2.1 Structural Operators 

The first operator category creates new arrays based purely on 
the structure of the inputs.  In other words, these operators are 
data-agnostic.  Since these operators do not necessarily have 
to read the data values to produce a result, they present 
opportunity for optimization. 

The simplest example in this category is an operator that we 
call Subsample.  Subsample takes two inputs, an array A and a 
predicate over the dimensions of A.  The predicate must be a 
conjunction of conditions on each dimension independently.  
Thus, the predicate “X = 3 and Y < 4” is legal, while the 
predicate “X = Y” is not.  Subsample then selects a “subslab” 
from the input array. The output will always have the same 
number of dimensions as the input, but will generally have a 
smaller number of dimension values. 

As an example, consider a 2-dimensional array F with 
dimensions named X and Y.  We can write Subsample(F, 
even(X)) which would produce an output containing the slices 
along the X-dimension with even index values.  The slices are 
concatenated in the obvious way and the index values are 
retained.   
Reshape is a more advanced structural operator.  This operator 
converts an array to a new array with a different shape that 
can include more or fewer dimensions, possibly with new 
dimension names, but the same number of cells.  For example, 
a 2x3x4 array can become a 2x6x2 array, or an 8x3 array or a 
1-dimensional array of length 24. 
For example, if G is a 2x3x4 array with dimensions X, Y and 
Z, we can get an 8x3 array as: 

 Reshape(G, [X, Z, Y], [U = 1:8, V = 1:3]) 

The second and third arguments are lists of index specifiers.  
The first one says that we should first imagine that G is 
linearized by iterating over X most slowly and Y most 
quickly.  The second list says that we take the resulting 1-
dimensional array and form 8 groups of 1-dimensional arrays 
of length-3 (contiguous pieces from the linearized result), with 
dimensions named U and V. 
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Figure 1 - Example Sjoin 

Finally, we define a Structured-Join (or Sjoin) operator that 
restricts its join predicate to be over dimension values only.  
In the case of an Sjoin on an m-dimensional array and an n-
dimensional array that involves only k dimensions from each 
of the arrays in the join predicate, the result will be an (m + n 
– k)-dimensional array with concatenated cell tuples wherever 
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the JOIN-predicate is true.  Figure 1 shows an Sjoin over two 
1-dimensional arrays.  The result is also a 1-dimensional array 
with concatenated data values in the matching index positions. 

Other structural operators include add dimension, remove 
dimension, concatenate, and cross product. 
2.2.2 Content-Dependent Operators 

The next category involves operators whose result depends on 
the data that is stored in the input array. 

A simple example of this kind of operator is Filter.  Filter 
takes an array A and a predicate P over the data values that are 
stored in the cells of A.  The argument list to the predicate 
must be of the same type as the cells in A.  Filter returns an 
array with the same dimensions as A.  If v is a vector of 
dimension values, A(v) will contain A(v) if P(A(v)) evaluates 
to true, otherwise it will contain NULL. 

Aggregate is another example of a data dependent operator.  
Aggregate takes an n-dimensional array A, a list of k grouping 
dimensions G, and an aggregate function Agg as arguments. 
Note that the Aggregate function take an argument that is an 
(n-k)-dimension array since there will one such array for each 
combination of the grouping dimension values. 
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Figure 2 - An Aggregate Operation 

As an example, the left side of  Figure 2 shows a 2-
dimensional input array A to which we apply an aggregate 
operator that groups on y and returns the SUM of the values in 
the non-grouped dimensions, in this case x.  As shown in the 
figure, the operation Aggregate (H, {Y}, Sum(*)) will produce 
the array on the right side of the figure.  Note that the data 
attributes cannot be used for grouping since it is not always 
possible to determine a meaningful assignment of index 
values for the result.   
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Figure 3 - Example Cjoin 

We also define a content-based Join (or Cjoin) that only that 
restricts its join predicate to be over data values only. In the 
case of a Cjoin on an m-dimensional array and an n-
dimensional array, the result will be an (m + n)-dimensional 
array with concatenated cell tuples wherever the JOIN-
predicate was true. 

Figure 3 shows an example of a Cjoin on the same input 
arrays as in the previous Sjoin example (see Figure 1).  In this 
case, the result is a 2-dimensional array with multiple index 
values corresponding to the source dimension values from the 
original arrays.  Thus, cell [1,1] in the result corresponds to 
data that came from dimension value 1 in both of the inputs.  
The contents is a concatenated tuple for those cases where the 
Cjoin predicate is true.  For cases in which this predicate is 
false, the result array contains a NULL. 

Other examples of data-dependent operators include Apply 
and Project. 

2.3 Extendibility 

The key science operations are rarely the popular table 
primitives, such as Join.  Instead, science users wish to regrid 
arrays and perform other sophisticated computations and 
analytics.  Hence, the fundamental arrays operations in SciDB 
are user-extendable.  In the style of Postgres, users can add 
their own array operations.  Similarly, users can add their own 
data types to SciDB. 

2.4 Language Bindings 

There is no consensus on a single programming language for 
access to a DBMS.  Instead, there are many users who want 
persistence of large arrays in C++, and are partial to the 
interfaces in object-oriented DBMSs such as Object Design 
and Objectivity.  Other users are committed to Python and 
want a Python-specific interface.  Furthermore, both 
MATLAB [8] and IDL [9] are also popular. 

To support these disparate languages, SciDB will have a 
parse-tree representation for commands.  Then, there will be 
multiple language bindings.  These will map from the 
language-specific representation to this parse tree format.  In 
the style of Ruby-on-Rails [10], LINQ [11] and Hibernate 
[12], these language bindings will attempt to fit large array 
manipulation cleanly into the target language using the control 
structures of the language in question.   

In our opinion, the data-sublanguage approach epitomized by 
ODBC and JDBC has been a huge mistake by the DBMS 
community, since it requires a programmer to write lots of 
interface code.  This is completely avoided by the language 
embedding approach we advocate. 

2.5 No Overwrite 

Most scientists are adamant about not discarding any data.  If 
a data item is shown to be wrong, they want to add the 
replacement value and the time of the replacement, retaining 
the old value for provenance (lineage) purposes.  As such, 
they require a no-overwrite storage manager, in contrast to 
most commercial systems today, which overwrite the old 
value with a new one. 

Postgres [13] contained a no-overwrite storage manager for 
tables.  In SciDB, no-overwrite is even easier to support.  
Specifically, arrays can be optionally declared as updatable.  
All arrays can be loaded with new values.  Afterwards, cells in 
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an updatable array can receive new values; however, scientists 
do not want to perform updates in place. To support this 
concept, a history dimension must be added to every 
updatable array.   

An initial transaction adds values into appropriate cells for 
history = 1.  The first subsequent SciDB transaction adds new 
values in the appropriate cells for history = 2.  New values can 
be either updates or insertions.  A delete operation removes a 
cell from an array and in the obvious implementation based on 
deltas, one would insert a deletion-flag as the delta, indicating 
the value has been deleted.  Thereafter, every transaction adds 
new array values for the next value of the history dimension.   

It is possible to enhance the history dimension with a mapping 
between the integers noted above and wall clock time, so that 
the array can be addressed using conventional time, and 
SciDB will provide an enhancement function for this purpose. 

As such, a user who starts at a particular cell, say [x=2, y=2, 
history=1] and travels along the history dimension by 
incrementing the history dimension value ([x=2, y=2, 
history=2], etc.) will see the history of activity to the cell 
[2,2].  Enhancement functions for updatable arrays must be 
cognizant of this extra dimension. 

A variant of Remote, capable of capturing a time series of 
measurements, might be: 

 define updatable Remote_2  
      (s1 = float, s2 = float, s3 = float)  (I, J, history) 

 create  my_remote_2 as Remote_2 [1024, 1024, *]  
Of course, the fact that Remote is declared to be updatable 
would allow the system to add the History dimension 
automatically. 
 

2.6 Open Source 

It appears impossible to get any traction in the science 
community unless the DBMS is open source.   The main 
reasons why the scientific community dislikes closed-source 
software include (a) a need for multi-decade support required 
by large science projects, (b) an inability to recompile the 
entire software stack at will and (c) difficulties with 
maintaining closed-source software within large 
collaborations encompassing tens or even hundreds of 
institutes.   

Seemingly, the LHC project was so badly burned by its 
experience in the 1990’s with commercial DBMSs, that it has 
“poisoned the well”.  We view the widespread application of 
closed-source DBMSs in this community as highly unlikely. 

As such SciDB is an open source project.  Because the science 
community wants a commercial strength DBMS, we have 
started a non-profit foundation (SciDB, Inc.) to manage the 
development of the code. 

2.7  Grid Orientation 

LSST expects to have 55 petabytes of raw data.  It goes 
without saying that a DBMS that expects to store LSST data 

must run on a grid (cloud) of shared-nothing [14] computers.  
Conventional DBMSs such as Teradata, Netezza, DB2, and 
Vertica have used this architecture for years, employing the 
horizontal partitioning of tables that was first explored in 
Gamma [14].  Gamma supported both hash-based and range-
based partitioning on an attribute or collection of attributes.  
Hence, the main question is how to do partitioning in SciDB.   

For example, LSST and PanSTARRS have a substantial 
component of their workload that is to survey the entire sky 
on a regular basis.  For these applications, dividing the co-
ordinate system for the sky into fixed partitions will probably 
work well.   

Most satellite imagery has the same characteristic; namely the 
entire earth is scanned periodically.  Again, a fixed 
partitioning scheme will probably work well. 

In contrast, any science experimentation that is “steerable” 
will be non-uniform.  For example, it is generally recognized 
that the mid-equatorial pacific is not very interesting, and 
many studies do not consider it.  On the other hand, during El 
Nino or La Nina events, it is very interesting.   

It would obviously be much easier to use a fixed partitioning 
scheme in SciDB.  However, there will be a class of 
applications that cannot be load-balanced using such a tactic.  
Hence, in SciDB we allow the partitioning to change over 
time.  In this way, a first partitioning scheme is used for time 
less than T and a second partitioning scheme for time > T.   

Like C-Store [15] and H-store [16], we plan an automatic data 
base designer which will use a sample workload to do the 
partitioning.  This designer can be run periodically on the 
actual workload, and suggest modifications. 

 

Although dynamic partitioning makes joins harder because 
data movement to support the execution of the join is more 
elaborate, the advantages of load balancing and data 
equalization across nodes seems to outweigh the 
disadvantages. 

One research problem we plan to consider is the co-
partitioning of multiple arrays with a common co-ordinate 
system.  Such arrays would all be partitioned the same way, so 
that comparison operations including joins do not require data 
movement.   

2.8 Storage Within a Node 

Within a node, the storage manager must decompose a 
partition into disk blocks.  Most data will come into SciDB 
through a streaming bulk loader.  We assume that the input 
stream is ordered by some dominant dimension – often time.  
SciDB will divide the load stream into site-specific 
substreams.  Each one will appear in the main memory of the 
associated node.  When main memory is nearly full, the 
storage manager will form the data into a collection of 
rectangular buckets, defined by a stride in each dimension, 
compress the bucket and write it to disk.  Hence, within a 
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node an array partition is divided into variable size rectangular 
buckets.  An R-tree [18] keeps track of the size of the various 
buckets.  In a style similar to that employed by Vertica, a 
background thread can combine buckets into larger ones as an 
optimization. 

Optimization of the storage management layer entails 
deciding: 

• When to change the partitioning criteria between 
sites 

• How to form an input stream into buckets 
• How and when to merge disk buckets into larger 

ones 
• What compression algorithms to employ 

The SciDB research team will address these research issues in 
parallel with an implementation. 

2.9 “In Situ” Data 

A common complain from scientists is “I am looking forward 
to getting something done, but I am still trying to load my 
data”.  Put differently, the overhead of loading data is very 
high, and may dominate the value received from DBMS 
manipulation.   

As such, SciDB must be able to operate on “in situ” data, 
without requiring a load process.  Our approach to this issue is 
to define a self-describing data format and then write adaptors 
to various popular external formats, for example HDF-5 [19] 
or NetCDF [20].  If an adaptor exists for the user’s data or if 
he is willing to put it in the SciDB format mentioned above, 
then he can use SciDB without a load stage. 

Of course, “in situ” data will not have many DBMS services, 
such as recovery since it is under user control and not DBMS 
control. 

2.10 Integration of the Cooking Process 

Most scientific data comes from instruments observing a 
physical process of some sort.  For example, in remote sensing 
applications, imagery is collected from satellite or airborne 
observation.  Such sensor readings enter a cooking process 
whereby raw information is cooked into finished information.  
Cooking entails converting sensor information into standard 
data types, correcting for calibration information, correcting 
for cloud cover, etc.   

There are two schools of thought concerning cooking.  One 
school suggests loading raw data into a DBMS and then 
performing all cooking inside the DBMS.  In this way 
accurate provenance information can be recorded.  The other 
school of thought suggests cooking the data externally, 
employing custom hardware if appropriate.  In some 
applications, the cooking process is under the control of a 
separate group, with little interaction with the storage group.  
With this sort of organization, cooking external to the DBMS 
is often chosen.  However, when there is a single group in 
control of both processes, then cooking in the DBMS has 
many advantages. 

The goal of SciDB will be to enable cooking inside the engine 
if the user desires.  All that is required is a strong enough data 
manipulation capability so that it is possible. 

2.11 Named Versions 

A requirement of most science users is the concept of named 
versions.  Consider the following example.  The cooking 
algorithm of most remote sensing data sets includes picking 
an observation for a particular “cell” of the earth’s surface 
from those available from several passes of the satellite.  In 
other words, a single composite image is constructed from 
several satellite passes.  Often, the observation selected is the 
one with least cloud cover.  However, a scientist with a 
particular study area and goal might want a different 
algorithm.  For example, he might want the observation when 
the satellite is closest to being directly overhead.  In other 
words, he wants a different cooking step for part of the data.  
Scientists desiring a different calibration algorithm for an 
instrument have essentially the same use case.  

Such users want a data set that is the same as a “parent” data 
set for much of the study region, but different in a portion.  
The easiest way to support this functionality is with named 
versions.  At a specific time, T, a user will be able to construct 
a version V from a base array A with a SciDB command.  A 
new array is defined for V and the time T is recorded.  At time 
T, the version V is identical to A.  Since V is stored as a delta 
off its parent A, it consumes essentially no space, and the new 
array is empty. 

Thereafter, any modifications to V go into this array, and the 
delta will record the divergence of V from A.  When the 
SciDB execution engine desires a value of a cell in V, it will 
first look in the delta array for V for the most recent value 
along the history dimension.  If there is no value in V, it will 
then look for the most recent value along the history 
dimension in A.   

In turn, if A is a version, it will repeat this process until it 
reaches a base array. In general, hanging off any base array is 
a tree of named versions, each with its delta recorded. 

Notice that, as described previously,  any updatable array is 
time-travelled using an extra history dimension.  In this way, 
the history of values of any cell is accessible.  Named versions 
extend this capability by supporting the time travel of a tree of 
named alternatives to a given cell. 

2.12 Provenance 

A universal requirement from scientists was repeatability of 
data derivation.  Hence, they wish to be able to recreate any 
array A, by remembering how it was derived.  For a sequence 
of processing steps inside SciDB, one merely needs to record 
a log of the commands that were run to create A.  For arrays 
that are loaded externally, scientists want a metadata 
repository in which they can enter programs that were run 
along with their run-time parameters, so that that a record of 
provenance is available. 
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The search requirements for this repository and log are 
basically: 

1. For a given data element D, find the collection of 
processing steps that created it from input data. 

2. For a given data element D, find all the 
“downstream” data elements whose value is 
impacted by the value of D. 

When a scientist notices a data element that he suspects is 
wrong, he wants to track down the cause of the possible error.  
This is the first requirement, i.e. trace backwards through the 
derivation process to find where the error originated. 

Assuming the scientist ascertains that the data element is 
wrong and finds the culprit in the derivation process, then he 
wants to rerun (a portion of) the derivation to generate a 
replacement value or values.  Of course, this re-derivation will 
not overwrite old data, but will produce new value(s) at the 
current time.  Then, the scientist needs to ascertain how far 
“downstream” the errant data has propagated, so he can 
perform downstream re-derivation.   The second requirement 
is used to find out how far a mistake has spread, once D is 
found to be faulty. 

Recording the log and establishing a metadata repository is 
straightforward.  The hard part is to create a provenance query 
language and efficient implementation.  Although one could 
use Trio [21] as an exemplar, the space cost of recording item-
level derivations is way too high.   

An alternate approach for backward derivation is to look at the 
time of the update that produced the item in question.  That 
identifies the command that produced the item from the 
provenance log.  One can then rerun the update in a special 
executor mode that will record all items that contributed to the 
incorrect item.   Repeating this process will trace backwards 
to produce the desired result.   

Tracing forward is less efficient.  If one wants to find all items 
that are derived from the contents of a specific cell, C, with 
dimension index values V1, …Vk, then one can run 
subsequent commands in the provenance log in a modified 
form.  Specifically, one wants to add the qualification  

And dimension-1 = V1  

And dimension-2 = v2 

… 

And dimension-k = Vk. 

to the first command.  This will produce a collection of 
directly affected values.  For each such value, one must run 
the next command in the provenance log to find the next set of 
values.  This process must be iterated forward until there is no 
further activity. A named version can be created to hold the 
results of these updates.   

This solution requires no extra space at all, but has a 
substantial running time.  Of course, one can cache these 
named versions in case the derivation is run again at a later 

time.  This amounts to storing a portion of the Trio item level 
data structure and re-deriving the portions that are not stored.  
An interesting research issue is to find a better solution that 
can easily morph between the minimal storage solution above 
and the Trio solution. 

2.13 Uncertainty 

Essentially all scientific data is imprecise, and without 
exception science researchers have requested a DBMS that 
supports uncertain data elements.  Of course, current 
commercial RDBMSs are oriented toward business users, 
where there is a much smaller need for this feature.  Hence, 
commercial products do not support uncertainty. 

In talking with many science users, there was near universal 
consensus on requirements in this area.  They requested a 
simple model of uncertainty, namely normal distributions for 
data elements.  In effect, they requested “error bars” (standard 
deviations) for data elements and an executor that would 
perform interval arithmetic when combining uncertain 
elements.  Some researchers have requirements for a more 
sophisticated model, but there was no agreement on which one 
to use.  Hence, we were repeatedly requested to build in 
support for normal distributions, leaving more complex error 
modelling to the user’s application. 

Hence, SciDB will support “uncertain x” for any data type x 
that is available in the engine.  Of course, this requires two 
values for any data element, rather than one.  However, every 
effort will be made to effectively code data elements in an 
array, so that arrays with the same error bounds for all values 
will require negligible extra space. 

Over time, we will revisit this decision, and perhaps build in 
support for a more sophisticated definition of uncertainty. 

There is another aspect to uncertain data, exemplified by the 
data base design for the PanSTARRS telescope project [5].  
During the cooking process the “best” location of an observed 
object is calculated.  However, this location has some error, 
and the actual object location may be elsewhere.  

To deal with this kind of error, the PanSTARRS DBAs have 
identified the maximum possible location error.   Since they 
have a fixed partitioning schema between nodes, they can 
redundantly place an observation  in multiple partitions if the 
observation is close to a partition boundary.  

In this way, they ensure that “uncertain” spatial joins can be 
performed without moving data elements.  In SciDB, this 
would surface as uncertainty concerning what array cell an 
item was in.  We expect to extend the SciDB error model to 
deal with this situation. 

2.14 Non-Science Usage 

A surprising observation is that the above requirements apply 
more broadly than just for science applications. 

For example, eBay records a click stream log of relevant 
events from its websites.  One of their use cases is “how 
relevant is the keyword search engine?”  In other words, an 
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eBay user can type a collection of keywords into the eBay 
search box, for example “pre-war Gibson banjo”.  eBay 
returns a collection of items that it believes match the search 
request.  The user might click on item 7, and then follow a 
sub-tree of links under this item.  Returning to the top level, 
the user might then click on item 9 and follow a similar sub-
tree under this item.  After this, the user might exit the system 
or type another search request.  From this log, eBay wishes to 
extract, the fact that items 7 and then 9 were touched, and that 
their search strategy for pre-war Gibson banjos is flawed, 
since the top 6 items were not of interest.  Not only is it 
important which items have been clicked through, it is even 
more important to be able to analyse the user-ignored content. 
E.g., how often did a particular item get surfaced but was 
never clicked on? 

As eBay’s web pages and algorithms get more and more 
dynamic in nature, traditional weblog analysis cannot provide 
the required insight as no page or search result is static. As 
such, deep information about the content present, at the time 
the user visited, needs to be collected and processed during 
the analysis. 

This application is nearly impossible in current RDBMSs; 
however, it can be effectively modelled as a one-dimensional 
array (i.e. a time series) with embedded arrays to represent the 
search results at each step.  A collection of simple user 
defined functions complement the built-in search capabilities 
of SciDB to effectively support this use case. 

Such time series analysis becomes multi-dimensional in 
nature. The combination of an array based data model coupled 
with constructs of uncertainty will provide a new platform for 
Web 3.0 type analytics on petabytes of information. 

2.15 A Science Benchmark 

Over the years there have been many benchmarks proposed 
for various application domains, including the Wisconsin 
benchmark for conventional SQL functionality [22], the 
Bucky benchmark for object-relational applications [23], the 
Linear Road benchmark for stream processing [24] and the 
various TPC benchmarks.  To focus the DBMS community on 
science requirements, we are almost finished with a science 
benchmark.  We expect to publish the specifications for this 
collection of tasks during Q1/2009. 

III SUMMARY 

We are committed to building SciDB and have commitments 
of resources from eBay, LSST, Microsoft, SLAC and Vertica.  
We will also try to get NSF to help out, and are in various 
stages of talks with others. 

We have recruited an initial programming team, and have 
started a non-profit foundation to manage the project.  At this 
time (December 2008), we are nearing a “critical mass” of 
financial support that will allow us to start building in earnest.  

We expect to have a usable system for scientists within two 
years. 
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