
The VLDB Journal (2007)
DOI 10.1007/s00778-006-0004-3

REGULAR PAPER

Nilesh Dalvi · Dan Suciu

Efficient query evaluation on probabilistic databases

Received: 29 November 2002 / Revised: 11 July 2005 / Accepted: 25 October 2005
c© Springer-Verlag 2006

Abstract We describe a framework for supporting arbitrar-
ily complex SQL queries with “uncertain" predicates. The
query semantics is based on a probabilistic model and the
results are ranked, much like in Information Retrieval. Our
main focus is query evaluation. We describe an optimiza-
tion algorithm that can compute efficiently most queries. We
show, however, that the data complexity of some queries is
#P-complete, which implies that these queries do not admit
any efficient evaluation methods. For these queries we de-
scribe both an approximation algorithm and a Monte-Carlo
simulation algorithm.

1 Introduction

Databases and Information Retrieval [3] have taken two
philosophically different approaches to queries. In data-
bases SQL queries have a rich structure and a precise seman-
tics. This makes it possible for users to formulate complex
queries and for systems to apply complex optimizations,
but users need to have a pretty detailed knowledge of the
database in order to formulate queries. For example, a single
misspelling of a constant in the WHERE clause leads to an
empty set of answers, frustrating casual users. By contrast, a
query in Information Retrieval (IR) is just a set of keywords
and is easy for casual users to formulate. IR queries offer two
important features that are missing in databases: the results
are ranked and the matches may be uncertain, i.e. the answer
may include documents that do not match all the keywords
in the query.1 While several proposals exist for extending
SQL with uncertain matches and ranked results [1, 20, 15],
they are either restricted to a single table, or, when they han-
dle join queries, adopt an ad-hoc semantics.

N. Dalvi (B) · D. Suciu
University of Washington, Seattle, WA, USA
E-mail: {nilesh, suciu}@cs.washington.edu

1 Some IR systems only return documents that contain all keywords,
but this is a feature specific to those systems, and not of the underlying
vector model used in IR.

Fig. 1 An approximate query

To illustrate the point consider the query in Fig. 1. It is
a structurally rich query, asking for an actor whose name is
like ‘Kevin’ and whose first movie with ‘High’ rating ap-
peared in the year 1995.

The two ≈ operators indicate which predicates we
intend as uncertain matches. Techniques like edit dis-
tances, ontology-based distances [14], IDF-similarity and
QF-similarity [1] can be applied to a single table: to rank
all Actor tuples (according to how well they match the
first uncertain predicate), and to rank all Film tuples. But
it is unclear how to rank the entire query. To date, no sys-
tem combines structurally rich SQL queries with uncertain
predicates and ranked results.

In this paper we propose such a system. We show that,
using the concept of possible worlds semantics, database
queries with approximate matches can be given meaning in
a principled way and a ranked list of answers can be com-
puted. Given a SQL query with uncertain predicates, we start
by assigning a probability to each tuple in the input database
according to how well it matches the uncertain predicates.
Then we derive a probability for each tuple in the answer,
and rank the answers accordingly.

An important characteristic of our approach is that
any SQL query with approximate predicates has a mean-
ing, including queries with joins, nested sub-queries, ag-
gregates, group-by, and existential/universal quantifiers.2

Queries have a probabilistic semantics, which is simple and
easy to understand by both users and implementors.

2 In this paper we restrict our discussion to SQL queries whose nor-
mal semantics is a set, not a bag or an ordered list.

–16: 523 544

/ Published online: 10 June 2006

N. Dalvi, D. Suciu

While simple, the semantics gives no indication on how
to evaluate the query. The main problem that we discuss in
this paper is query evaluation. Our approach is to represent
SQL queries in an algebra, and modify the operators to com-
pute the probabilities of each output tuple. This is called ex-
tensional semantics [26], and is quite efficient. While this
sounds simple, the problem is that it doesn’t work: the prob-
abilities computed this way are wrong in most cases, and
lead to incorrect ranking. The reason is that, even if all tuples
in the base relations are independent probabilistic events, the
tuples in the intermediate results of a query plan have often
correlated probabilities, making it impossible to compute the
new probabilities precisely. The previous workaround is to
use an intensional semantics [12, 29, 31], which represents
tuple events symbolically and, hence, tracks tuple correla-
tions precisely. However, as we show here, this approach is
too inefficient to be practical. Our approach is different: we
rewrite the query plan, searching for one where the exten-
sional evaluation is correct. We show however that certain
queries have a #P-complete data complexity under proba-
bilistic semantics, and hence do not admit a correct exten-
sional plan. While they are not frequent in practice (only 2
out of the 10 TPC/H queries fall in this category, and only
when all their predicates are uncertain), we describe two
techniques to address them: using heuristics to chose a plan
that avoids large errors, and using a Monte-Carlo simulation
algorithm, which is more expensive but can guarantee arbi-
trarily small errors.

1.1 Outline

We give motivating examples in Sect. 2, define the prob-
lem in Sect. 3, and describe our techniques in Sects. 4–9.
Section 11 reports experiments and Sect. 12 describes re-
lated work. We conclude in Sect. 13.

2 Examples

We illustrate the main concepts and techniques of this paper
with two simple examples.

2.1 Probabilistic database

In a probabilistic database each tuple has a certain proba-
bility of belonging to the database. Figure 2 shows a proba-
bilistic database D p with two tables, S p and T p: the tuples
in S p have probabilities 0.8 and 0.5, and the unique tuple in
T p has probability 0.6. We use the superscript p to empha-
size that a table or a database is probabilistic. We assume in
this example that all the tuples represent independent proba-
bilistic events.

The meaning of a probabilistic database is a probability
distribution on all database instances, which we call pos-
sible worlds, and denote pwd(D p). Figure 3a shows the

Fig. 2 A probabilistic database D p

Fig. 3 a The possible worlds for D p in Fig. 2, b a query q , and c its
possible answers

eight possible instances with non-zero probabilities, which
are computed by simply multiplying the tuple probabilities,
as we have assumed them to be independent. For example,
the probability of D2 is 0.8 ∗ (1 − 0.5) ∗ 0.6 = 0.24, since
the instance contains the tuples s1 and t1 and does not con-
tain s2.

We now illustrate query evaluation on probabilistic
databases. Consider the conjunctive query q in Fig. 3b. Its
meaning on D p is a set of possible answers, shown in
Fig. 3c. It is obtained by applying q to each deterministic
database in pwd(D p), and adding the probabilities of all
instances that return the same answer. In our example we
have q(D1) = q(D2) = q(D3) = {‘p’}, and q(D4) =
· · · = q(D8) = ∅. Thus, the probability of the answer be-
ing {‘p’} is 0.24 + 0.24 + 0.06 = 0.54, while that of the
answer ∅ is 0.46. This defines the set of possible answers,
denoted qpwd(D p). Notice that we have never used the struc-
ture of the query explicitly, but only applied it to determin-
istic databases taken from pwd(D p). Thus, one can give a
similar semantics to any query q , no matter how complex,
because we only need to know its meaning on deterministic
databases.

The set of possible answers qpwd(D p) may be very large,
and it is impractical to return it to the user. In our simple
example, there are only two possible answers, since T p has
only one tuple. In general, if T p has n tuples, there can be as

524

Efficient query evaluation on probabilistic databases

many as 2n possible answers, and it is impractical to return
them to the user.

Our approach is to compute for each possible tuple t
a probability rank that t belongs to any answer, and sort
tuples sorted by this rank. We denote this qrank(D p). In our
example this is:

qrank(D p) = D Rank
‘p’ 0.54

In this simple example qrank(D p) contains a single tu-
ple and the distinction between qpwd and qrank is blurred.
To see this distinction clearer, consider another query,
q1(x) :− S p(x, y), T p(z, u), y = z. Here qpwd

1 and qrank
1 are

given by:

qpwd
1 (D p) =

Answer Probability
{‘m’, ‘n’} 0.24
{‘m’} 0.24
{‘n’} 0.06
∅ 0.46

qrank
1 (D p) =

D Rank
‘m’ 0.48
‘n’ 0.30

For example, the rank probability of ‘m’ is obtained
as Pr({‘m’, ‘n’}) + Pr({‘m’}). While in general qpwd(D p)
may be exponentially large, qrank(D p) is simply a set of tu-
ples, which are sorted by Rank. The problem in this paper
is now to compute qrank(D p) efficiently.

2.2 Extensional query semantics

A natural attempt to compute qrank(D p) is to represent q
as a query plan then compute the probabilities of all tu-
ples in all intermediate results. For the query q in Fig. 3b,
such a plan is P = �D(S p �B=C T p), and the corre-
sponding probabilities are shown in Fig. 4. The formulas
for the probabilities assume tuple independence, are taken
from [12] and are rather straightforward (we review them
in Sect. 4). For example the probability of a joined tuple
s � t is the product of the probabilities of s and t . Clearly,
this approach is much more efficient than computing the
possible worlds qpwd(D p) and then computing qrank(D p),
but it is wrong ! It’s answer is 0.636, while it should be
0.54. The reason is that the two tuples in S p �B=C T p are
not independent events, hence the formula used in �D is
wrong.

However, let us consider an alternative plan, P ′ =
�D((�B(S p)) �B=D T p). The extensional evaluation of
this expression is shown in Fig. 5, and this time we do get
the correct answer. As we will show later, this plan will al-
ways compute the correct answer to q , on any probabilistic
tables S p, T p. In this paper we show how to find automati-
cally a plan whose extensional evaluation returns the correct

Fig. 4 Evaluation of �D(S p �B=C T p)

Fig. 5 Evaluation of �D(�B(S p) �B=C T p)

answer to a query q . Finding such a plan requires pushing
projections early (as shown in this example) and choosing
join orders carefully.

2.3 Queries with uncertain matches

While query evaluation on probabilistic databases is an im-
portant problem in itself, our motivation comes from an-
swering SQL queries with uncertain matches, and ranking
their results. We illustrate here with a simple example on the
Stanford movie database [21].

SELECT DISTINCT F.title, F.year
FROM Director D, Films F
WHERE D.did = F.did

and D.name ≈ ‘Copolla’
and F.title ≈ ‘rain man’
and F.year ≈ 1995

The predicates on the director name and the movie title
and year are here uncertain.

Our approach is to translate the query into a regu-
lar query over a probabilistic databases. Each tuple in
the table Films is assigned a probability based on how
well it matches the predicates title≈‘rain man’ and
year≈1995. Several techniques for doing this exist al-
ready, and in this paper we will adopt existing ones: see
Sect. 9. The result is a probabilistic table, denoted Filmsp.
Similarly, the uncertain predicate on Director generates a
probabilistic table Directorp. Then, we evaluate the fol-
lowing query, obtained by dropping the similarity predicates
from the original SQL query:

525

N. Dalvi, D. Suciu

SELECT DISTINCT F.title, F.year
FROM Directorp D, Filmsp F
WHERE D.did = F.did

This is similar to the query q considered earlier (Fig. 3b),
and the same extensional plan can be used to evaluate it.
Our system returns:

Title Year Rank
The Rainmaker (by Coppola) 1997 0.110
The Rain People (by Coppola) 1969 0.089
Rain Man (by Levinson) 1988 0.077
Finian’s Rainbow (by Coppola) 1968 0.069
Tucker, Man and Dream (Coppola) 1989 0.061
Rain or Shine (by Capra) 1931 0.059
.

3 Problem definition

We review here the basic definitions in probabilistic data-
bases, based on ideas taken from several papers [2, 12, 32],
and state our problem.

3.1 Basic notations

We write R for a relation name, Attr(R) for the set of its
attributes, and r ⊆ U k for a relation instance, where k is
ari ty(R) and U is a fixed, finite universe of atomic val-
ues. We denote with R̄ = R1, . . . , Rn a database schema,
and write D = r1, . . . , rn for a database instance of that
schema. We consider functional dependencies in this paper,
and denote with � a set of functional dependencies. We write
D |� � when D satisfies the functional dependencies in �.

3.2 Probabilistic events

In order to represent probabilistic events, we use a set of
symbols, AE : each e ∈ AE represents an independent prob-
abilistic event, called atomic event. We fix a probability
function Pr : AE → [0, 1], associating a probability to each
atomic event. A special symbol ⊥ ∈ AE denotes the impos-
sible event, and we define Pr(⊥) = 0.

A complex event is an expression constructed from
atomic events using the operators ∧, ∨, ¬. E denotes the set
of all complex events. For each complex event e, let Pr(e)
be its probability.

Example 1 Consider e = (s1 ∧ t1) ∨ (s2 ∧ t1), and as-
sume Pr(s1) = 0.8, Pr(s2) = 0.5, Pr(t1) = 0.6. To
compute Pr(e) we construct the truth table for e(s1, s2, t1)
and identify the entries where e is true, namely (1, 0, 1),
(0, 1, 1), (1, 1, 1). The three entries have probabilities given
by Pr(s1)(1− Pr(s2))Pr(t1) = 0.8×0.5×0.6 = 0.24, (1−
Pr(s1))Pr(s2)Pr(t1) = 0.06 and Pr(s1)Pr(s2)Pr(t1) =
0.24 respectively. Then Pr(e) is their sum, 0.54.

This method of computing probabilities generalizes to
any complex event e(s1, . . . , sk) which is a function of
atomic events s1, . . . , sk . But it is important to notice that
this algorithm is exponential in k, the number of atomic
events, because the size of the truth table for e(s1, . . . , sk)
is 2k . This cannot be avoided: it is known that computing
Pr(e) is #P-complete [36] even for complex events without
negation.

3.3 Probabilistic databases

A probabilistic relation is a relation with a distinguished
event attribute E , whose value is a complex event. We add
the superscript p to mean “probabilistic”. Thus, R p denotes
a relation name having E among it’s attributes; r p denotes
an instance of R p, i.e. where for each tuple t ∈ r p, t · E
is a complex event; R̄ p denotes a database schema where
some relations names have an E attribute; and, finally, � p

denotes a set of functional dependencies over R̄ p, where the
functional dependencies may use both regular attributes and
the event attribute. Note that we allow for a probabilistic
database schema R̄ p to consist of both probabilistic relations
and deterministic relations.

As a convenient notation, by dropping the p super-
script we mean the deterministic part, obtained by remov-
ing the event attribute. Thus, R is such that Attr(R) =
Attr(R p) − {E}, while r represents the project of r p on
all attributes other than E . The intuition is that users “see”
only R, but the system needs to access the event attribute
R p.E in order to compute correctly the probability ranks.
For a simple illustration, consider the probabilistic relation
name S p(A, B, E): then S has attributes A, B. Users care
to see a binary table S(A, B), while the system maintains
probabilistic events in S p(A, B, E).

We assume that the set of functional dependencies � p

always contains, or implies the following functional depen-
dency:

Attr(R) → R p.E

for every relation R p: this ensures that we don’t associate
two different events e1 and e2 to the same tuple t (instead,
we may want to associate e1 ∨ e2 to t).

In addition to this tabular representation of a probabilis-
tic relation, we consider a functional representation, where a
probabilistic instance r p, of type R p, is described by the fol-
lowing function eR : U k → E , where k = arity(R). When
t occurs in r p and its event is t · E = e, then eR(t) = e, oth-
erwise eR(t) = ⊥. Conversely, one can recover r p from the
function eR by collecting all tuples for which eR(t) = ⊥.

The probabilistic databases we consider have only
atomic events: complex events are introduced only during
query evaluation. If a probabilistic relation has a distinct
atomic event for each tuple, we call it a tuple-independent
probabilistic relation. For example, both the relations in
Fig. 2 are tuple-independent, where the atomic events are
s1, s2, t1 respectively.

526

Efficient query evaluation on probabilistic databases

3.4 Possible worlds database

A possible worlds relation of type R is simply a probability
distribution on the set of all deterministic relations of type
R. Similarly, a possible worlds database of schema R̄ is a
probability distribution on all possible data instances with
the given schema.

3.5 Semantics of a probabilistic database

Now, we give a simple and intuitive meaning to a proba-
bilistic relation. Consider a probabilistic relation r p of type
R p and let r be its deterministic part. The meaning of r p is
a possible worlds relation, which we denote pwd(r p) and
is defined as follows. Let eR : U k → E be the functional
representation of r p. Given s ⊆ U k , Pr(s) is defined to be
Pr(

∧
t∈s eR(t) ∧ ∧

t ∈s ¬eR(t)). Intuitively, this is the prob-
ability that exactly the tuples in s are “in” and all the others
are “out”. One can check that

∑
s⊆U k Pr(s) = 1. Also, it

follows that for s ⊆ r , Pr(s) = 0 because elements not in
r have the event ⊥. Similarly, the meaning of a probabilistic
database D p is a probability distribution on all determinis-
tic databases D, denoted pwd(D p). For an instance, D =
s1, . . . , sn and its probability is Pr(s1)Pr(s2), . . . , Pr(sn).

We discuss next how possible worlds relations interact
with functional dependencies, and focus on a single relation
name R p. Given a set of functional dependencies � p, denote
� its projection to the deterministic attributes of R p, i.e. let
� consist of those dependencies that can be derived from � p

and that do not refer to the event attribute R p · E . For exam-
ple, if R p is R p(A, B, E) and � p = {A → E, E → B},
then � = {A → B}. Consider a probabilistic instance r p

that satisfies � p (in notation: r p |� � p), and let Pr be the
probability distribution on instances induced by rp (the pos-
sible worlds relation). The question is if a relation s that does
not satisfy � can have a non-zero probability, i.e. Pr(s) > 0.
The answer is no: if Pr(s) > 0, s must be a subset of r
(which is r p without the event attribute), and, hence, must
also satisfy the functional dependencies in �.

3.6 Query semantics

Let q be a query of arity k over a deterministic schema
R̄. We define a very simple and intuitive semantics for the
query. Users think of q as normal query on a determinis-
tic database, but the database is given by a probability dis-
tribution rather than being fixed. As a result, the query’s
answer is also a probability distribution. Formally, given a
query q and a probabilistic database D p: qpwd(D p) is the
following probability distribution on all possible answers,
Prq : P(U k) → [0, 1]:

∀S ⊆ U k, Prq(S) =
∑

D|q(D)=S

Pr(D)

We call this the possible worlds semantics. This definition
makes sense for every query q that has a well defined se-
mantics on all deterministic databases.

It is impossible to return qpwd(D p) to the user. Instead,
we compute a probabilistic ranking on all tuples t ∈ U k ,
defined by the function: rankq(t)= ∑

S{Prq(S) | S ⊆
U k, t∈S}, for every tuple t ∈ U k . We denote with qrank(D p)
a tabular representation of the function rankq : this is a table
with k + 1 attributes, where the first k represent a tuple in
the query’s answer while the last attribute, called Rank is a
real number in [0, 1] representing its probability.

3.7 The query evaluation problem

This paper addresses the following problem: given schema
R̄ p, � p, a probabilistic database D p and a query q over
schema R̄, compute the probabilistic rankings qrank(D p).

3.8 Application to queries with uncertain predicates

Consider now a deterministic database D and a query q≈
that explicitly mentions some uncertain predicates. We con-
vert this problem into evaluating a deterministic query q ,
obtained by removing all uncertain predicates from q≈, on
a probabilistic database, obtained by associating a probabil-
ity Pr(t) to each tuple t based on how well t satisfies the
uncertain predicates.

3.9 Representation power of probabilistic databases

We have shown that every probabilistic database has a rep-
resentation as a possible worlds database. We show here the
converse: that probabilistic databases are powerful enough
to represent any possible distribution on databases. Recall
that in a probabilistic database, we can only store with each
tuple an event that is a boolean function of independent
atomic events.

Theorem 1 Let W be any possible worlds database, i.e. a
probability distribution on the set of data instances. Then,
there exists a probabilistic database D p such that W =
pwd(D p).

Proof We have a fixed, finite universe U . Let a1, a2, . . . be
the arities of the relations in the schema and let k = |U |a1 +
|U |a2 + · · · . Thus, k denotes the number of distinct possible
tuples. The number of possible databases is n = 2k . Let
D1, . . . , Dn be all possible data instances. W (Di) denotes
the probability of Di .

We will create n − 1 independent events E = {e1, . . . ,
en−1} with probabilities p(e1), . . . , p(en−1) and a boolean
expression fW (Di) in terms of these events for each data
instance so that the following holds: W (Di) = p(fW (Di))
for all i , and the events fW (Di) are all disjoint.

527

N. Dalvi, D. Suciu

We do it recursively. Let pL = ∑2k−1

i=0 W (Di). Consider
the distribution WL that is given by WL(Di)= W (Di)/pL
on domain {D1, . . . , D2k−1} and distribution WR given
by WR(Di)= W (Di)/(1 − pL) on the domain {D2k−1+1,
. . . , D2k }.

Recursively, represent WL and WR using 2k−1 − 1 in-
dependent variables each. Also create a new variable e with
p(e) = pL . Define

fW (Di) =
{

fWL (Di) ∧ e i ≤ 2k−1

fWR (Di) ∧ ¬(e) i > 2k−1

We see that fW uses 2k − 1 independent variables. It is
easy to verify that W (Di) = p(fW (Di)) and fW (Di) are all
disjoint events.

Finally, we create a probabilistic database as possible.
For a relation R in the schema, and for every tuple t , let
eR(t) = ∨

{Di |t∈Di .R} fW (Di). Since the events fW (Di)
are all disjoint, one can verify that when this probabilistic
database is converted to possible worlds database, we get
back W . ��

4 Query evaluation

We turn now to the central problem, evaluating qrank(D p)
for a query q , and a probabilistic database D p. Applying
the definition directly is infeasible, since it involves iterating
over a large set of database instances. Instead, we will first
review the intensional evaluation of [12], then describe our
approach in Sect. 4.3.

We restrict our discussion first to conjunctive queries,
or, equivalently select (distinct)-project-join queries. This
helps us better understand the query evaluation problem and
its complexity, and will consider more complex query ex-
pressions in Sect. 8. We use either datalog notation for our
queries q , or plans P in the select/project/product algebra3:
σ,�, ×.

4.1 Intensional query evaluation

One method for evaluating queries on probabilistic data-
bases is to use complex events. We review it here and discuss
its limitations. Start by expressing q as a query plan, using
the operators σ,�, ×. Then modify each operator to com-
pute the event attribute E in each intermediate result: denote
σ i , �i , ×i the modified operators. It is more convenient to
introduce them in the functional representation, by defining
the complex event eP (t) for each tuple t , inductively on the
query plan P , as shown in Fig. 6.

The tabular definitions for σ i , �i , ×i follow easily: σ i

acts like σ then copies the complex events from the input
tuples to the output tuples; �i associates to a tuple t the

3 Notice that � also does duplicate elimination.

Fig. 6 Intensional evaluation

Fig. 7 Intensional evaluation of �D(S p �B=C T p)

complex event e1∨· · ·∨en obtained from the complex events
of all input tuples t1, . . . , tn that project into t ; and ×i simply
associates to a product tuple (t, t ′) the complex event e ∧ e′.

Example 2 Let us consider the database D p described in
Fig. 2. Consider the query plan, P = �D(S p �B=C T p).
Figure 7 shows the intensional evaluation of the query (we
used the tuple names as atomic events). P i (D p) contains a
single tuple ‘p’ with the event (s1 ∧ t1) ∨ (s2 ∧ t1).

It can be shown that P i (D p) does not depend on the par-
ticular choice of plan P , and we denote qi (D p) the value
P i (D p) for any plan P for q , and call it the intensional se-
mantics4 of q on the probabilistic database D p. We prove
now that it is equivalent to the possible worlds semantics,
qpwd(D p).

Theorem 2 The intensional semantics and the possible
worlds semantics on probabilistic databases are equivalent
for conjunctive queries. More precisely, pwd(qi (D p)) =
qpwd(D p) for every probabilistic database D p and every
conjunctive query q.

Proof Every tuple t in qi (D p) has a complex event t · E
associated with it. pwd(qi (D p)) consists of a set of worlds,
each world assigning a truth value to the set of atomic events.
A tuple t belongs to a world in pwd(qi (D p)) if t · E is true
in that world.

qpwd(D p) also consists of a set of worlds, each assigning
a truth value to the set of atomic events. The content of a
world in qpwd(D p) is the output of q on the database defined
by that world.

4 In [12] this is the only query semantics considered.

528

Efficient query evaluation on probabilistic databases

Given a world W (i.e. a deterministic database W),
which is defined by an assignment of truth values to the
atomic variables, let qpwd(D p)[W] and pwd(qi (D p))[W]
denote the set of tuples in the corresponding worlds.

We will prove, by induction on the size of q , that for all
W , qpwd(D p)[W] = pwd(qi (D p))[W]. This will show that
both the semantics result in exactly the same possible worlds
with same probabilities.

If a query just selects a single relation, this holds trivially.
If q is a larger query, there are three possibilities:

1. q = �A(q1). Consider any world W . By induction hy-
pothesis, pwd(qi

1(D p))[W] = qpwd
1 (D p)[W]. Thus,

t ∈ qpwd(D p)[W] ⇔ t.E = true

⇔ (∨t1:�A(t1)=t t1 Ė) = true

⇔ ∃t1, �A(t1) = t,

t1 ∈ pwd
(
qi

1(D p)
)[W]

⇔ ∃t1, �A(t1) = t,

t1 ∈ qpwd
1 (D p)[W]

⇔ t ∈ qpwd(D p)[W]
2. q = σc(q1). Consider any world W . Again, we have

pwd
(
qi

1(D p)
)[W] = qpwd

1 (D p)[W]
t belongs to pwd(qi (D p))[W] iff t.E is true, i.e. t sat-
isfies σc and t belongs to pwd(qi

1(D p))[W]. Similarly, t
belongs to pwd(qi (D p))[W] iff t satisfies σc and t be-
longs to qpwd

1 (D p)[W]. Therefore, we get

pwd
(
qi (D p)

)[W] = qpwd(D p)[W]
3. q = q1 � q2. We have

pwd
(
qi

1(D p)
)[W] = qpwd

1 (D p)[W],
pwd

(
qi

2(D p)
)[W] = qpwd

2 (D p)[W]
Given a tuple t = (t1, t2) belonging to q , t.E = t1.E ∧
t2.E1. Thus,

t ∈ qpwd(D p)[W] ⇔ t.E = true

⇔ t1.E = true, t2.E = true

⇔ t1 ∈ pwd
(
qi

1(D p)
)[W],

t2 ∈ pwd
(
qi

2(D p)
)[W]

⇔ t1 ∈ qpwd
1 (D p)[W],

t2 ∈ qpwd
2 (D p)[W]

⇔ t ∈ qpwd(D p)[W]

Thus, by induction, pwd(qi (D p)) and qpwd(D p) are
equal. ��

Theorem 2 allows us to compute qrank(D p) as follows. First
compute qi (D p), then compute the probability Pr(e) for
each complex event. Then qrank(D p) = Pr(qi (D p)).

Example 3 Figure 7c shows prank(D p) for Example 2.
Pr((s1 ∧ t1) ∨ (s2 ∧ t1)) was shown in Example 1.

It is very impractical to use the intensional semantics
to compute the rank probabilities for two reasons. First, the
event expressions in qi (D p) can become very large, due to
the projections. In the worst case the size of such an ex-
pression can become of the same order of magnitude as the
database. This increases the complexity of the query opera-
tors significantly, and makes the task of an optimizer much
harder, because now the cost per tuple is not longer con-
stant. Second, for each tuple t one has to compute Pr(e) for
its event e, which is a #P-complete problem.

4.2 Extensional query evaluation

We now modify the query operators to compute probabili-
ties rather than complex events: we denote σ e, �e, ×e the
modified operators. This is much more efficient, since it in-
volves manipulating real numbers rather than event expres-
sions. We define a number PrP (t) ∈ [0, 1] for each tuple t ,
by induction on the structure of the query plan P . The in-
ductive definitions in Fig. 8 should be compared with those
in Fig. 6. Unlike the formulas in Fig. 6, the extensional oper-
ators assume that the input tuples have independent events.
Recall that eR(t) is the event associated with tuple t in rela-
tion R as defined in Sect. 3.

Again, the tabular definitions of σ e, �e, ×e follow eas-
ily: σ e acts like σ then propagates the tuples’ probabili-
ties from the input to the output, �e computes the proba-
bility of a tuples t as 1 − (1 − p1)(1 − p2), . . . , (1 − pn)
where p1, . . . , pn are the probabilities of all input tuples that
project to t , while × computes the probability of each tuple
(t, t ′) as p × p′.

We call the result, Pe(D p), the extensional semantics
of the plan P . If we know Pe(D p) = qrank(D p), then we
simply execute the plan under the extensional semantics.
But, unfortunately, this is not always the case, as we saw
in Sect. 2. Moreover, Pe(D p) depends on the particular plan
P chosen for q . Our goal is to find a plan for which the ex-
tensional semantics is correct.

Fig. 8 Extensional evaluation

529

N. Dalvi, D. Suciu

Definition 1 Given a schema R̄ p, � p, a plan P for a query
q is safe if Pe(D p) = qrank(D p) for all instances D p of that
schema.

We show next how to find a safe plan.

4.3 The safe-plan optimization algorithm

Recall that a probabilistic database schema R̄ p may consists
both of probabilistic relation names, which have an event at-
tribute E , and deterministic relation names. Consider a con-
junctive query q; we use the following notations:

– Rels(q) = {R1, . . . , Rk} all relation names occurring in
q . We assume that each relation name occurs at most
once in the query (more on this in Sect. 8).

– PRels(q) = the probabilistic relation names in q ,
PRels(q) ⊆ Rels(q).

– Attr(q) = all attributes in all relations in q . To disam-
biguate, we denote attributes as Ri .A.

– Head(q) = the set of attributes that are in the output of
the query q . Head(q) ⊆ Attr(q).

For a simple illustration, consider the three relations
R p(A, B, C, E), S(D, F), T (G, H, K) and the query:

q(A, F) :− R p(A, B, C), S(D, F), T (G, H, K),

A = D, D = H, F = K

Then Rels(q) = {R p, S, T }, PRels(q) = {R p}, Attr(q) =
{A, B, C, D, F, G, H, K } and Head(q) = {A, F}.

Let q be a conjunctive query. We define the induced
functional dependencies � p(q) on Attr(q):

– Every FD in � p is also in � p(q).
– For every join predicate Ri · A = R j · B, both Ri · A →

R j · B and R j · B → Ri · A are in � p(q).
– For every selection predicate Ri · A = c, ∅ → Ri · A is

in � p(q).

We seek a safe plan P , i.e. one that computes the prob-
abilities correctly. For that each operator in P must be safe,
i.e. compute correct probabilities: we define this formally
next.

Let q1, q2 be two queries, and let op ∈ {σ,�, ×}
be a relational operator. Consider the new query
op(q1, q2) (or just op(q1) when op is unary). We say
that ope is safe if ope(Pr(qi

1(D p)), Pr(qi
2(D p))) =

Pr(opi (qi
1(D p)), qi

2(D p)) (and similarly for unary oper-
ators), ∀D p s.t. D p |� � p. In other words, op is safe if,
when given correct probabilities for its inputs ope computes
correct probabilities for the output tuples.

Theorem 3 Consider a database schema where all the
probabilistic relations are tuple-independent. Let q, q ′ be
conjunctive queries that do not share any relation name.
Then,

1. σ e
c is always safe in σc(q).

2. ×e is always safe in q × q ′.
3. �e

A1,...,Ak
is safe in �A1,...,Ak (q) iff for every R p ∈

P Rels(q) the following can be inferred from � p(q):

A1, . . . , Ak, R p.E → Head(q) (1)

Proof

1. Follows trivially from definition.
2. Since we assume all relations in the query to be dis-

tinct, the complex events in the output of q and q ′
comprise of distinct atomic events. Thus, given a tuple
tjoin = (t, t ′) ∈ q ×q ′, Pr(tjoin · E) = Pr(t.E ∧ t ′.E) =
Pr(t.E)Pr(t ′.E). So, the join operator is safe. The in-
dependence assumed by the operator indeed holds.

3. For each output tuple t of the project, consider the set St
of input tuples that map to t . The operator is safe if for
each such t , the complex events corresponding to tuples
in St are independent. Thus, among all tuples having the
same value for A1, . . . Ak , no atomic event (i.e. R p · E
for some probabilistic relation R p) occurs in two of them
having different values of Head(q). Thus, the following
functional dependency must hold for each R p.

A1, . . . , Ak, R p.E → Head(q)

Note that we can replace R p.E in Eq. (1) by Attr(R p),
since for tuple-independent relations, R p.E → Attr(R p)
and Attr(R p) → R p.E always hold. ��

Obviously, a plan P consisting of only safe operators is
safe. As we prove below, the converse also holds.

Theorem 4 Let P be a safe relational algebra plan for a
query q consisting of selects, projects and joins. Then, all
operators in p are safe.

Proof We will prove the following statement: If P is a plan
for a query q that has at least one unsafe operator and t is
any tuple that can be produced by q , there is a database D p

such that Pe(D p) consists of a single tuple t with incorrect
probability.

First, it is easy to see that for any plan P and database
D p, Pe(D p) ≥ qrank(D p). This is because the only opera-
tors that are unsafe are projects, and it is easy to see that they
can only overestimate the probabilities. Thus, there can only
be one-sided errors in the probabilities.

We will prove the theorem by induction on the size of
the plan.

If P returns a single relation, its safe and the assertion
holds trivially.

Consider a larger plan P and assume it is safe. There are
three cases:

1. P = q1 � q2. Since P is unsafe, at least one of q1 and
q2 is unsafe. W.L.O.G, assume q1 is unsafe. Given any
tuple t = (t1, t2), a database can be constructed such
that q1 results in a single tuple t1 with incorrect prob-
ability. Since PrP (t1, t2) = Prq1(t1) ∗ Prq2(t2), for the

530

Efficient query evaluation on probabilistic databases

final probability to be correct, both Prq1(t1) and Prq2(t2)
have to be correct (since errors can only be one-sided).
Thus, we have constructed a database that results in a
single tuple t with incorrect probability.

2. P = �A(q1). If q1 is safe, the final project operator
must be unsafe and hence, by definition, there exists a
database where the final result is incorrect. If t is any tu-
ple in the output whose probability is incorrect, we can
restrict the database to produce only the tuple t (whose
probability is still incorrect).

If q1 is not safe, there is a database on which q1 pro-
duces a single tuple with incorrect probability. Thus, the
final project also produces a single tuple whose proba-
bility is still incorrect.

3. P = σc(q1). Consider any tuple t that satisfies the con-
dition c and create a database on which q1 produces t
with incorrect probability. Thus, σc(q1) also produces a
single tuple with incorrect probability.

We explain safe plans with an example below. ��
Example 4 Continuing the example in Sect. 2, assume that
both S p and T p are tuple-independent probabilistic rela-
tions. Hence � p is:

S p.A, S p.B → S p.E

T p.C, T p.D → T p.E

S p.E → S p.A, S p.B

T p.E → T p.C, T p.D

The last two functional dependencies follow from the fact
that a tuple-independent relation has a distinct atomic event
for each tuple. Consider the plan �D(S p �B=C T p). We
have shown in Fig. 4 that, when evaluated extensionally, this
plan is incorrect. We explain here the reason: the operator
�e

D is not safe. An intuitive justification can be seen imme-
diately by inspecting the relation S p �i

B=C T p in Fig. 7a.
The two complex events share the common atomic event t1,
hence they are correlated probabilistic events, while the for-
mula for �e

D only works when these events are independent.
We show how to detect formally that �e

D is unsafe. We need
to check:

T p.D, S p.E → S p.A, S p.B, T p.C, T p.D

T p.D, T p.E → S p.A, S p.B, T p.C, T p.D

The first follows from � p and from the join condition B =
C , which adds S p.B → T p.C and T p.C → S p.B. But the
second fails: T p.D, T p.E → S p.A.

Example 5 Continuing the example, consider now the plan
�D(�B(S p) �B=C T p). We will prove that �e

D is safe. For
that we have to check:

T p.D, S p.E → S p.B, T p.C, T p.D

T p.D, T p.E → S p.B, T p.C, T p.D

Both hold, hence �e
D is safe. Similarly, �e

B is safe in
�B(S p), which means that the entire plan is safe.

Before we describe our algorithm for finding a safe plan,
we need some terminology.

Definition 2 (Separate relations) Let q be a conjunctive
query. Two relations Ri , R j ∈ Rels(q) are called connected
if the query contains a join condition Ri .A = R j .B and ei-
ther Ri .A or Ri .B is not in Head(q). The relations Ri , R j
are called separate if they are not connected.

Definition 3 (Separation) Two sets of relations �i and � j
are said to form a separation for query q iff

1. They partition the set Rels(q)
2. For any pair of relations Ri and R j such that Ri ∈ �i

and R j ∈ � j , they are separate.

Algorithm 1 is our optimization algorithm for finding a
safe plan. It proceeds top-down, as follows. First, it tries to
do all safe projections late in the query plan. When no more
late safe projections are possible for a query q , it tries to
perform a join �c instead, by splitting q into q1 �c q2. Since
�c is the last operation in the query plan, all attributes in
c must be in Head(q). Hence, Rels(q1) and Rels(q2) must
form a separation.

To find a separation, we construct a graph G(q) which
we call the constraint graph. The nodes of G(q) are Rels(q)
and the edges are all pairs (Ri , R j) of connected relations,
i.e. s.t. q contains some join condition Ri ·A = R j .B with ei-
ther Ri .A or R j .B not in Head(q). Find the connected com-
ponents of G(q), and choose q1 and q2 to be any partition
of these connected components: this defines Rels(qi) and
Attr(qi) for i = 1, 2. Define Head(qi) = Head(q)∩Attr(qi),
for i = 1, 2. If G(q) is a connected graph, then the query
has no safe plans (more on this below). If G(q) has multi-
ple connected components, then we have several choices for
splitting q . If q has a safe plan at all, then we will show that
all these choices lead to a safe plan; hence we can deploy
any standard cost based optimizations algorithm that works
in top-down fashion to select the cheapest plan among sev-
eral possibilities.5 More on this in Sect. 6.

Finally, the algorithm terminates when no more projec-
tions are needed. The remaining join and/or selection opera-
tors can be done in any order.

Example 6 Continuing the example in Sect. 2, consider the
original query in Fig. 3b, which we rewrite now as:

q(D) :− S p(A, B), T p(C, D), B = C

Here Attr(q) = {A, B, C, D} and Head(q) = {D}. The
algorithm first considers the three attributes A, B, C in
Attr(q) − Head(q), trying to see if they can be projected
out late in the plan. A cannot be projected out. Indeed, the
corresponding qA is:

qA(A, D) :− S p(A, B), T p(C, D), B = C

5 It is also possible to adapt our algorithm to work with a bottom-up
optimizer.

531

N. Dalvi, D. Suciu

Algorithm 1 SAFE-PLAN(q)
1: if Head(q) = Attr(q) then
2:
3: return any plan P for q
4: (P is projection-free, hence safe)
5: end if
6: for A ∈ (Attr(q) − Head(q)) do
7: let qA be the query obtained from q
8: by adding A to the head variables
9: if �Head(q)(qA) is a safe operator then

10:
11: return �Head(q)(SAFE-PLAN(qA))
12: end if
13: end for
14: Split q into q1 �c q2
15: s.t. ∀R1 ∈ Rels(q1) R2 ∈ Rels(q2)
16: R1, R2 are separated.
17:
18: if no such split exists then
19:
20: return error(“No safe plans exist”)
21: end if
22:
23: return SAFE-PLAN(q1) �c SAFE-PLAN(q2)

and �e
D is unsafe in �D(qA) because T p.D, T p.E →

S p.A, as we saw in Example 4. However, B and C can be
projected out. By successively doing the projections, we get
the plan for q as �D(�B D(qBC)), where:

qBC (B, C, D) :− S p(A, B), T p(C, D), B = C

Now we process qBC , where Attr(qBC) = {A, B, C, D},
Head(qBC) = {B, C, D}. No projection is possible, but we
can split the query into q1 �B=C q2 where q1, q2 are:

q1(B) :− S p(A, B)

q2(C, D) :− T p(C, D)

The split qBC = q1 �B=C q2 is indeed possible since both
B and C belong to Head(qBC). Continuing with q1, q2, we
are done in q2, while in q1 we still need to project out A,
q1 = �B(S p), which is safe since B, S p.E → A. Putting
everything together gives us the following safe plan:

P ′ = �D(�DB((�B(S p) �B=C T p))

The plan can be further optimized. For instance, it can be
shown that the projection �DB is redundant in the above
join. We discuss the optimization of safe plans in details in
Sect. 6.

We state now the soundness of our algorithm: the proof
follows easily from the fact that all projection operators are
safe. We prove in the next section that the algorithm is also
complete.

Proposition 1 The SAFE-PLAN optimization algorithm is
sound, i.e. any plan it returns is safe.

Proof Define the size of the query q to be |Rels(q)| +
|Attr(q)| − |Head(q)|. We will prove the proposition by in-
duction on the size of the query.

Algorithm 1 returns a plan in the following three cases:

1. It returns at line 2. In this case, the plan consists only of
joins and selects, and hence, is safe.

2. It returns at line 9. Note that qA is smaller in size that
q . By induction, SAFE-PLAN(qA) is safe. Also, by def-
inition, the final project operator is safe. Thus, the algo-
rithm returns a safe plan.

3. The algorithm returns at line 16. q1 and q2 are both
smaller that q . By induction, both SAFE-PLAN(q1) and
SAFE-PLAN(q1) are safe plans. These plans are then
connected by a join operator, which is always safe. So
the returned plan is safe. ��

4.4 Completeness of safe-plan algorithm

We have shown that SAFE-PLAN algorithm is sound. We
next prove that it is complete, i.e., if the query is safe, the
algorithm finds a safe plan for it.

We start with few basic results about extensional evalua-
tion.

Lemma 1 Under extensional evaluation, for any query q,

�e
A

(
�e

A∪B(q)
) = �e

A(q)

Proof These two expressions have the same output tuples.
We only have to show that the tuples have the same proba-
bility in both expressions.

Consider a tuple t belonging to �A(�A∪B(q)). Then,

1 − Pr�A(�A∪B (q))(t)

=
∏

(t ′|�A(t ′)=t)

(
1 − Pr�A∪B (q)(t

′)
)

=
∏

(t ′|�A(t ′)=t)

∏

(t ′′|�A∪B (t ′′)=t ′)
(1 − Prq(t ′′))

=
∏

(t ′′|�A(t ′′)=t)

(1 − Prq(t ′′))

= 1 − Pr�A(q)

This proves the lemma. ��
Lemma 2 Consider a query q and let A be any attribute in
Head(q). If �(Head(q)\A)(q) has a safe plan, q also has a
safe plan.

Proof Let P be a safe plan for query �(Head(q)−A)(q). By
Lemma 1, we can assume that each project operator in P
removes exactly one attribute. Consider the project operator
op in P that removes A. Create a new plan P ′ with op re-
moved from P . We will now show that this plan is safe for
q . Since P is a safe plan, every project operator satisfies the
condition in Theorem 3 given by Eq. (1). For the operators
in P ′ that are not ancestors of op, Eq. (1) remains same. So
they are still safe. For the operators in P ′ that are ancestors
of op, A gets added to the left of Eq. (1). So the functional
dependencies still hold and the operators are still safe. Thus,
a safe plan exists for q . ��

532

Efficient query evaluation on probabilistic databases

Lemma 3 Consider a plan P1 = �A(q1 � q2), where q1
and q2 are queries and Heads(q1) ⊆ A. Also, let A contain
all the attributes used in the join between q1 and q2. Let
P2 = q1 � (�A∩Heads(q2)(q2)). Then P1 is safe implies that
P2 is safe.

Proof First, P2 is a valid plan because A contains all the
attributes that are used in the final join.

Since �A(q1 � q2) is safe, the following can be inferred
from � p(q1 � q2) for each R p ∈ PRels(q1 � q2):

A, R p.E → Heads(q1 � q2)

The above can be rewritten as

Heads(q1), A ∩ Heads(q2), R p.E (2)

→ Heads(q1) ∪ Heads(q2)

We know that plans q1 and q2 are safe. Thus, to show
that P2 is safe, we only need to show that the project oper-
ator �A∩Heads(q2)(q2) is safe. So, for each R p ∈ PRels(q2),
� p(q2) must imply the following:

A ∩ Heads(q2), R p.E → Heads(q2) (3)

Let �join be the set of FDs introduced by the final join.
Then, � p(q1 � q2) = � p(q1) ∪ � p(q2) ∪ �join. Since A
contains all the attributes that occur in �join, �join does not
help in inferring Eq. (2). Thus, � p(q1) ∪ � p(q2) imply Eq.
(2) and hence the following:

Heads(q1), A ∩ Heads(q2), R p.E → Heads(q2)

But now, since �join is not present, Heads(q1) and � p(q1)
have no contribution in the above equation. Thus, � p(q2)
alone implies Eq. (3).

This shows that P2 is a safe plan. ��
Theorem 5 Let q be a query that has a separation (S, T).
Then, if q has a safe plan, there must be another safe plan
of the form PS � PT such that PRels(PS) = S and
PRels(PT) = T (where the join may contain a set of se-
lect conditions).

Proof We will prove this by induction on the size of the
query. The base step corresponding to queries over a sin-
gle relation holds trivially. Let P be a safe plan for q . There
are three cases:

1. The top operator on P is a join. Thus, P can be writ-
ten as P1 � P2. Let q1 and q2 be the queries corre-
sponding to the plans P1 and P2. It is easy to see that
(PRels(P1) ∩ S, PRels(P1) ∩ T) form a separation for
q1. By induction, there is a safe plan PS1 � PT 1 for q1
where S1 = PRels(P1) ∩ S and T 1 = PRels(P1) ∩ T .
Similarly, there is a safe plan PS2 � PT 2 for q2 where
S2 = P Rels(P2) ∩ S and T 2 = P Rels(P2) ∩ T . Thus,
the following is a safe plan for q:

(PS1 � PS2) � (PT 1 � PT 2)

The safety of the about plan follows from the safety of
the individual subplans and the safety of the join opera-
tors.

2. The top operator on P is a select. Thus, P can be written
as σc(P ′). Let q ′ be the query corresponding to the plan
P ′. (S, T) is still a separation for q ′. By induction, there
is a safe plan P ′

S � P ′
T for q ′. By simply adding the

select condition to the top join, we get a safe plan as
required.

3. The top operator on P is a project. Thus, P can be writ-
ten as �A(P ′). Let q ′ be the query corresponding to P ′.
Note that (S, T) is still a separation for q ′. By induc-
tion hypothesis, there is a safe plan for q ′ of the form
P ′

S � P ′
T . Also, A can be written as the disjoint union

of AS and AT , where AS are attributes of relations from
S and AT are attributes of T . Thus, the following plan is
safe for q:

�(AS ,AT)(P ′
S,P ′

T)

Using Lemma 1, we get the following equivalent safe
plan:

�AS ,AT

(
�Heads(P ′

S)∪AT
(P ′

S � P ′
T)

)

We observe that Lemma 3 is applicable to the plan
(�Heads(P ′

S)∪AS
(P ′

S � P ′
T)) since (S, T) is a separation.

Thus, the following equivalent plan is also safe:

�AS (P ′
S � (�AT (P ′

T)))

Another application of Lemma 3 yields the following
plan

(�AS (P ′
S)) � (�AT (P ′

T))

Setting PS = �AS (P ′
S) and PT = �AT (P ′

T), we get the
required result.

The theorem then follows from the principle of
induction. ��
Theorem 6 Algorithm SAFE-PLAN is complete.

Proof Let q be the given query. Suppose it has an attribute
A belonging to Attr(q) − Head(q) such that the operator
�Head(q)(qA) is a safe operator, where qA is as defined in the
algorithm. Then, by Lemma 2, q has a safe plan if and only
if qA has a safe plan. So the algorithm recursively solves for
qA. On the other hand, suppose there is no such attribute A.
This implies that in any safe plan, the final operator cannot
be a project operator as it is not safe. So a safe plan must con-
sist of a join of two subplans. These two subplans must form
a separation because after they are joined, there is no projec-
tion. Hence, there must exist a separation for q . If not, the
algorithm correctly returns false. Otherwise, by Theorem 5,
it is sufficient to solve each of the subproblems correspond-
ing to the separation separately. This completes the proof of
completeness of the algorithm. ��

533

N. Dalvi, D. Suciu

5 Complexity analysis

We show here a fundamental result on the complexity of
query evaluation on probabilistic databases. It forms a sharp
separation of conjunctive queries into queries with low and
high data complexity, and shows that our optimization algo-
rithm is complete.

The data complexity of a query q is the complexity of
evaluating qrank(D p) as a function of the size of D p. If q has
a safe plan P , then its data complexity is in PTIME, because
all extensional operators are in PTIME. We start by showing
that, for certain queries, the data complexity is #P-complete.
#P is the complexity class of some hard counting problems.
Given a boolean formula ϕ, counting the number of satisfy-
ing assignments, denote it #ϕ, is #P-complete [36]. (Check-
ing satisfiability, #ϕ>0, is NP-complete.) The data com-
plexity of any conjunctive query is #P , since qrank(D p) =
Pr(qi (D p)). The following is a variant of a result on query
reliability by Gradel et al. [13].

Theorem 7 Consider the following conjunctive query on
three probabilistic tables:

q() : −L p(x), J (x, y), R p(y)

Here L p, R p are extensional probabilistic tables and J is
deterministic.6 The data complexity for q is #P-hard.

We used here a more standard datalog notation for con-
junctive queries. In our notation the query becomes: q :
−L p(A), J (B, C), R p(D), A = B, C = D.

Proof (Sketch) Provan and Ball [27] showed that comput-
ing #ϕ is #P-complete even for bipartite monotone 2-
DNF boolean formulas ϕ, i.e. when the propositional vari-
ables can be partitioned into X = {x1, . . . , xm} and Y =
{y1, . . . , yn} s.t. ϕ = C1∨, . . . , ∨Cl where each clause Ci
has the form x j ∧ yk , x j ∈ X, yk ∈ Y . (The satisfiability
problem, #ϕ > 0, is trivially true.). Given ϕ, construct the
instance D p where L p is X , R p is Y and J is the set of
pairs (x j , yk) that occur in some clause Ci . Assign indepen-
dent probability events to tuples in L p, R p, with probabili-
ties 1/2. Then qrank(D p) returns a single tuple, with prob-
ability #ϕ/2m+n . Thus, computing qrank(D p) is at least as
hard as computing #ϕ. ��

We state now the main theoretical result in this paper.
We consider it to be a fundamental property of query eval-
uation on probabilistic databases. First, we need some nota-
tions. Given a set of attributes S ⊆ Attr(q), we denote with
S+ = {A ∈ Attr(q) | � p(q) � S → A}, i.e. the set of
attributes A such that S → A can be inferred from � p(q).
We say that S determines A if A ∈ S+. For each relation
R, denote Attr0(R) = (Attr(R))+ − (Head(q))+. That is,
Attr0(R) consists of all attributes that are determined by R
but not by Head(q). 7

6 Allowing J to be deterministic strengthens the result. The theorem
remains true if J is probabilistic.

7 In general, Attr(R) and Attr0(R) may overlap, without one of them
having to contain the other.

Theorem 8 (Fundamental Theorem of Queries on
Probabilistic DBs) Consider a schema R̄ p, � p which
consists of a set of probabilistic and deterministic relations.
Let q be a conjunctive query s.t. each relation occurs at
most once. Assuming #P=PTIME the following statements
are equivalent:

1. The data complexity of q is #P-complete.
2. The SAFE-PLAN optimization algorithm fails to return a

plan.
3. There exists a sequence of relations R0, R1, . . . , Rk,

Rk+1, and attributes A1 and A2, with the following prop-
erties:
(a) R0 and Rk+1 are probabilistic
(b) Attr0(R0)∩Attr0(R1) contains A1 but Attr0(R0) does

not contain A2
(c) Attr0(Rk)∩Attr0(Rk+1) contains A2 but Attr0(Rk+1)

does not contain A1
(d) Attr0(Ri) ∩ Attr0(Ri+1) ⊆ Attr0(R0) ∪ Attr0(Rk+1)

for 1 ≤ i ≤ k − 1

Before we give the proof, let is look at some examples.

Example 7 Consider the following four queries:

q1() :− L p(A), J (B, C), R p(D), A = B, C = D

q2(U) :− L p(A), J (B, C), R p(D), A = B, C = D,

S(U, U1), U1 = A

q3() :− R p
0 (A), R1(B, C), R2(D, F), R p

3 (H),

A = B, C = D, F = H

q4() :− R p
0 (A, B), R1(C, D), R2(F, G), R p

3 (H, I)

B = D, D = G, G = I, A = C, F = H

q1 is exactly the query in Theorem 7, which we know is
unsafe. Let us show that it satisfies the condition (3) of the
above theorem.

Since Head(q1) = ∅ and � p contains only trivial func-
tional dependencies, we have Attr0(L) = {A, B}, Attr0(J) =
{A, B, C, D}, Attr0(R) = {C, D}, and condition (3) above
follows by taking A1 = A, A2 = D, R0 = L p, R1 = J ,
and R2 = R p. Indeed L p and R p are probabilistic relations,
Attr0(L)∩Attr0(J) contains A but Attr0(L) does not contain
D, and Attr0(J)∩Attr0(R) contains D but Attr0(R) does not
contain A. Also, (d) holds vacuously because k = 1 here.

If we modify q1() to q1(A, B, C, D), the query becomes
safe, since no projections are needed; this illustrates the need
to remove the head variables in the definition of Attr0.

Let us now look at q2, which is a variation of the previ-
ous query. Assume that U is a key for the relation S(U, U1).
Now, Head(q2) = {U } and (Head(q2))

+ = {U, U1, A, B},
since we have the functional dependency U → U1 and the
query equates U1, A and B. Now, Attr0(L) = ∅, Attr0(J) =
{C, D} and Attr0(L) = {C, D}. The conditions of Thm. 8
are not satisfied and in fact, the query is safe. It can be veri-
fied that the following plan is safe:

�e
U

(
S �e

U1=A L p �e
A=B

(
�e

B

(
J �e

C=D R p)))

534

Efficient query evaluation on probabilistic databases

q2 illustrates the need to take Head+ rather than Head in the
definition of Attr0.

Query q3 shows that the length of the sequence of re-
lations that satisfy condition (3) could be arbitrarily large.8

The only probabilistic relations here are R p
0 and R p

1 , and the
only sequence that satisfies Theorem 8 is R p

0 , R1, R2, R p
3 .

This query is unsafe, while if we drop any relation from the
query, it becomes safe.

Finally, query q4 shows the need for the property (d)
in condition (3). With A1 and A and A2 as H , the query
satisfies properties (a),(b) and (c) but fails (d). This query
is safe, with the following safe plan

�e{}
(
�B

(
R p

0 �e
A=C,B=D R1

)
�e

B=D

�D
(
R2 �e

F=H,G=I R p
3

))

Theorem 8 provides a sharp separation of feasible and
infeasible queries on probabilistic databases. It also shows
that all the queries that can be evaluated in polynomial time
can in fact be evaluated using a safe plan.

Before we give the proof, we need a simple result.

Lemma 4 Let q by any query and A be any attribute not in
Head(q). Let qA denote the query obtained by adding A to
the head variables. Then, �e

A(qA) is safe if A ∈ Attr0(R p)
for all R p ∈ PRels(q).

Proof For �e
A(qA) to be safe, Eq. (1) must hold. It holds

because for any probabilistic relation R p, if A ∈ Attr0(R p),
then Attr(R p) → A and hence, R p.E → A. ��

Now we prove Theorem 8.

Proof (Theorem 8)
(1) ⇒ (2) is obvious, since any safe plan has data complexity
in PTIME.
(2) ⇒ (3) Let us assume that SAFE-PLAN algorithm fails
on q . Then, it must have a sub-query q ′ such that (i) it has
no separation and (ii) for every A ∈ Attr(q ′) − Head(q ′),
�e

Head(q ′)(q
′
A) is not safe where q ′

A is the query q ′ with A
added to head.

For each attribute in Attr(q ′) − Head(q ′), by Lemma 4,
there is at least one probabilistic relation that does not de-
termine that attribute. Let A1 be the attribute that is deter-
mined by the largest number of probabilistic relations and
let R̄A1 be the set of those probabilistic relations. There is at
least one probabilistic relation not contained in R̄A1 . Let R′
be one such relation. Since the query has no separation, the
constraint graph G(q ′) (defined in Sect. 4.3) is connected. Its
easy to see that an edge between two relations R1 and R2 in
G(q ′) implies Attr0(R1) and Attr0(R2) intersect. Thus, there
is a sequence of relations R1, R2, . . . , Rk, Rk+1 = R′ such
that R1 ∈ R̄A1 and

Attr0(Ri) ∩ Attr0(Ri+1) = ∅ (1 ≤ i ≤ k) (4)

8 Corollary 1 says that when the schema contains only probabilistic
relations, we never need a sequence of relations more than three.

Consider the shortest such sequence. Let A2 be any at-
tribute in Attr0(Rk)∩ Attr0(Rk+1). There is at least one rela-
tion R0 ∈ R̄A1 that does not determine A2 (otherwise |R̄A2 |
would be strictly greater that |R̄A1 |). We claim that the se-
quence R0, R1, . . . , Rk, Rk+1 satisfies all the four proper-
ties. We have R0 and Rk+1 probabilistic, hence (a) holds. (b)
and (c) follows from our construction. If k = 1, (d) holds
vacuously. If k > 1, observe that Attr0(R0) must be disjoint
from Attr0(Ri) for i > 1, otherwise we can obtain a shorter
sequence that connects R̄A1 and R′. Similarly, Attr0(Rk+1)

must be disjoint from Attr0(Ri) for 1 ≤ i ≤ k − 1. (d)
follows from these properties.
(3) ⇒ (1) We prove this by extending the ideas in
Theorem 7. We show a reduction from the problem of count-
ing the number of assignments of bipartite monotone 2-DNF
to evaluating the query q .

Let X = {x1, . . . , xm}, Y = {y1, . . . , yn} and ϕ =
C1∨· · ·∨Cl where each clause Ci has the form x f (i)∧ y f (i).
We will construct a database as follows. Consider a single
relation RU , which we call the universal table, whose at-
tributes are the union of the attributes of all the relations
that occur in the query. We partition the attributes into four
sets: SX consists of attributes in Attr0(R0) − Attr0(Rk+1),
SY consists of Attr0(Rk+1) − Attr0(R0), S0 is (Attr0(R0) ∪
Attr0(Rk+1)) ∪ (Head(q))+, and SC consists of all the re-
maining attributes.

We populate RU with l tuples, one corresponding to each
clause, as follows: in row i , assign a value of x f (i) to all vari-
ables in SX , a value of y f (i) to variables in SY , a constant
value 0 to variables in S0 and a value of Ci to variables in SC .
From this table, construct individual tables by taking the pro-
jections on corresponding columns. For tables R0 and Rk+1,
let all events have a probability of 0.5 (which we can assign
because both of them are probabilistic) and let all other ta-
bles have events with probability 1. The resulting database
satisfies all the functional dependencies. To see why, con-
sider any FD, Ā → A′, where Ā is a set of attributes and A′
is an attribute. For this to be violated, one of the following
must hold: (i) Ā ⊆ S0 and A′ ∈ S0, (ii) Ā ⊆ S0 ∪ SX and
A′ ∈ SY , (iii) Ā ⊆ S0 ∪ SY and A′ ∈ SX . None of the three
cases is possible: S0 is equal to (Attr(R0))

+∩(Attr(Rk+1))
+,

S0 ∪ SX is (Attr(R0))
+ and S0 ∪ SY is (Attr(Rk+1))

+, and all
of these sets are closed under implication.

Claim 1 The query q, when evaluated on the above
database, returns a single tuple with all attributes 0, with
probability equal to #ϕ/2m+n.

First, since Attr0(R0) does not intersect with SC but con-
tains SX , the relation R0 will have m tuples corresponding to
m distinct values of SX attributes. We use the variable names
x1, . . . , xm to denote corresponding events. Similarly, the re-
lation Rk+1 will have n distinct tuples with events denoted
by y1, . . . , yn . Now, consider the intensional evaluation of
q that first joins everything and then projects on Head(q).
When we join all the tables back using the join conditions in
the query, we get back the RU table. This is due to the SC

535

N. Dalvi, D. Suciu

variables. Note that for 1 ≤ i < k, Attr0(Ri) ∩ Attr0(Ri+1)
must contain at least one attribute from the set SC because
of the property (d). Thus, SC attributes connect a tuple xi
in R0 with y j in Rk+1 if and only if (xi ∧ y j) is a clause in
ϕ. The join results in precisely l tuples, with complex events
corresponding to the clauses in ϕ. When we project this ta-
ble on Head(q), since Head(q) ⊆ S0, we get just one tuple
whose complex event is the formula ϕ. Since all truth as-
signments have the same probability, the probability of ϕ is
#ϕ/2m+n . ��
Corollary 1 Consider the special case of Theorem 8 where
all relations are probabilistic, i.e. there are no deterministic
relations. Then, condition (3) of the theorem can be replaced
by the following simpler condition:

3′. There exists three relations R0, R1 and R2, and attributes
A1 and A2, s.t. Attr0(R0)∩Attr0(R1) contains A1 but not
A2, and Attr0(R1) ∩ Attr0(R2) contains A2 but not A1.

Proof It is easy to check that (3′) above implies (3) in
Theorem 8. To prove in the other direction, consider the
sequence R0, R1, . . . , Rk, Rk+1 in (3). We will show that
R0, R1 and R2 satisfy the properties above. If k = 1,
this holds trivially. If k > 1, let A′

2 be any attribute in
Attr0(R1) ∩ Attr0(R2) − Attr0(R0), which exists by prop-
erty (d). Thus, Attr0(R0) ∩ Attr0(R1) contains A1 but not
A′

2, and Attr0(R1) ∩ Attr0(R2) contains A′
2 but not A1. ��

When � p is empty, i.e. there are no functional dependen-
cies expect for the trivial dependencies, Corollary 1 gives
us a very elegant characterization of the queries with #P-
complete complexity. A query is #P-complete, if it con-
tains the following pattern (shown in datalog notation), with
x, y ∈ Head(q)

q(. . .) :− R0(x, . . .), R1(x, y, . . .), R2(y, . . .), . . .

If such a pattern can not be found in the query, the data com-
plexity of the query is PTIME.

6 Query optimization

We have shown in Sect. 4 that the relational algebra oper-
ators can be modified to compute the probabilities, and we
introduced three new operators: σ e, �e and �e. Further, we
saw that different relational algebra plans for the same query
can give different answers under extensional semantics, and
only a subset of plans are safe, i.e. give correct answers. In
this section, we consider the problem of finding an efficient
safe plan using a cost-based optimizer. Recall that the SAFE-
PLAN algorithm in Sect. 4.3 only gives us one safe plan. Tra-
ditional query optimizers start from one query plan and use
relational algebra equivalences to search for alternate plans.
However, σ e, �e and �e do not satisfy the traditional equiv-
alences.9 For instance, �e and �e do not commute. There-

9 Contrast this with the intensional operators σ i , �i and �i defined
in Sect. 4.1. It is shown in [12] that these operators satisfy all the equiv-
alences that traditional operators satisfy.

fore, we give a set of transformation rules for these operators
that can be used to search for alternate safe plans.

A transformation rule takes a relational algebra plan
consisting of these extensional operators and produces a new
plan. We say that a transformation rule is sound if, when ap-
plied to a safe plan, it results in a safe plan.10 Below are
some transformation rules:

Rule 1 [Join Commutativity] Extensional joins are commu-
tative

R �e S ⇔ S �e R

Rule 2 [Join Associativity] Extensional joins are associa-
tive

R �e (S �e T) ⇔ (R �e S) �e T

Rule 3 [Cascading Projections] Successively eliminat-
ing attributes from a relation is equivalent to simply
eliminating all but the attributes retained by the last
projection

�e
A

(
�e

A∪B(R)
) ⇔ �e

A(R)

Rule 4 [Pushing Projections Below a Join] A projection
can be pushed below a join if it retains all the attributes
used in the join.

�e
A(R �e S) ⇒ (

�e
A1

(R)
)

�e (
�e

A2
(S)

)

where A1 and A2 are the attributes in R and S retained
by the projection.

Rule 5 [Lifting Projections Up a Join] A Projection can not
always be lifted up a join. The following transformation
rule can be applied only when the top �e operator in the
resulting plan satisfies the Eq. (1) of Theorem 3.
(
�e

A(R)
)

�e S ⇒ �e
A∪Attrs(S)(R �e S)

Theorem 9 The transformation rules described above are
sound.

The soundness of Rules 1 and 2 can be verified easily,
Rules 3 and 4 follow from Lemma 1 and Lemma 3 respec-
tively, while Rule 5 is sound by definition. We haven’t shown
the rules involving σ e operator, but it behaves exactly like
the traditional select operator and commutes with project,
join and other select operators.

Next, we study the completeness of the rules. Ideally,
we would like to traverse the space of all safe plans using
the above transformation rules. Given two plans P1 and P2,
let P1 ⇒∗ P2 denote the statement that P2 can be obtained
from P1 by a sequence of the above transformation rules.
Note that Rules 1, 2 and 3 can be applied in either direction.
Also, if P2 can be obtained from P1 by applying Rule 4,

10 A sound transformation rule applied to an unsafe plan may result
in a plan that is not equivalent to it. We only require that the rule pro-
duce equivalent plans when applied to safe plans.

536

Efficient query evaluation on probabilistic databases

then P1 can be obtained back from P2 by applying Rule 5.
The rule will be applicable because P1, being a safe plan,
will satisfy the conditions of Rule 5. Hence, we have the
following result.

Lemma 5 For two safe plans P1 and P2, if P1 ⇒∗ P2, then
P2 ⇒∗ P1.

This makes ⇒∗ an equivalence relation. To emphasize
this, we will use the notation P1 ⇔∗ P2 to denote that either
plan be transformed into the other. We next prove our main
result for query optimization which says that the transfor-
mation rules are complete, i.e. any safe plan can be reached
from any other safe plan using these transformations.

Theorem 10 Let P1 and P2 be two safe plans for a query
q. Then, P1 ⇔∗ P2.

Proof First, using Rule 3 in the reverse direction in both P1
and P2, we ensure that every �e operator removes exactly
one attribute. Now, we use induction on the size of the plans.

Suppose the topmost operator in P1 is a �e operator
that removes the attribute A. Let qA be the query obtained
from q by adding A to the head variables. Then, P1 =
�e

Heads(q)(P ′
1), where P ′

1 is a safe plan for query qA. Con-
sider the operator in P2 that removes the attribute A (it need
not be the top operator in P2). Let P ′

2 be the plan obtained
by removing this operator from P2. As shown in the proof of
Lemma 2, P ′

2 is a safe plan for the query qA. By induction
hypothesis, P ′

1 ⇔∗ P ′
2 and hence,

P1 = �e
Heads(q)(P

′
1) ⇔∗ �e

Heads(q)(P
′
2)

Note that �e
Heads(q)(P ′

2) is a plan that looks exactly like P2

except that it removes the attribute A as a final operation.
Using successive applications of Rule 4, we can push this
operation down to its original place in P2 (its always safe to
push a projection down). Thus, �e

Heads(q)(P ′
2) ⇔∗ P2, which

proves that P1 ⇔∗ P2.
If the topmost operator in P2 is a �e, we can again apply

the same argument. So lets assume that both of them have a
�e as the top operator. Let the top join in P1 split the rela-
tions into sets S and T , and let the corresponding subplans
be PS and PT . Thus, P1 = PS �e PT . S and T must form a
separation for q since there are no projections after the join.
Similarly, let the top join in P2 split the relations into S1 ∪T1
and S2∪T2, where S1, S2 ⊆ S and T1, T2 ⊆ T . Again, S1∪T1
and S2 ∪ T2 form a separation. Let P2 = PS1T1 �e PS2T2 .
Denote qS1T1 the query represented by the plan PS1T1 . S1 and
T1 form a separation for qS1T1 , since S and T form a sepa-
ration. By Thm. 5, qS1T1 has an equivalent safe plan of the
form PS1 � PT1 , where PS1 only refers to relations in S1
and PT1 only refers to relations in T1. By induction hypoth-
esis, PS1T1 ⇔∗ PS1 � PT1 . Using similar argument, we get
PS2T2 ⇔∗ PS2 � PT2 for some plans PS2 and PT2 . We have

P2 = PS1T1 �e PS2T2

⇔∗ (PS1 �e PT1) �e (PS2 �e PT2)

⇔∗ (PS1 �e PS2) �e (PT1 �e PT2)

The last equivalence uses the Rules 1 and 2 to reorder the
joins. We again use induction hypothesis on these subplans
to get (PS1 �e PS2) ⇔∗ PS and (PT1 �e PT2) ⇔∗ PT . This
proves that P1 ⇔∗ P2. ��

7 Unsafe plans

When a query’s data complexity is #P-complete, then
SAFE-PLAN fails to return a plan. Since this can indeed hap-
pen in practice, we address it and propose two solutions.

7.1 Least unsafe plans

Here we attempt to pick a plan that is less unsafe than oth-
ers, i.e. minimizes the error in computing the probabilities.
Recall from Eq. (1) that �e

A1,...,Ak
is safe in �e

A1,...,Ak
(q)

iff A1, . . . , Ak, R p · E → Head(q) for every R p. Let
B̄ = {A1, . . . , Ak, R p · E} ∩ Attr(R p) (hence R p · E ∈ B̄)
and C̄ = Head(q) ∩ Attr(R p). Define R p

fanout to be the
expected number of distinct values of C̄ for a fixed value
of the attributes B̄. In a relational database system, it is
possible to estimate this value using statistics on the ta-
ble R p. Define the degree of unsafety of �e

A1,...,Ak
to be

maxR p∈PREL(Q)(R p
fanout −1). Thus, a safe project has degree

of unsafety 0. Also, the higher the degree of unsafety, the
higher is the expected error that would result from using the
extensional semantics for that project operator.

We modify Algorithm 1 to cope with unsafe queries.
Recall that the algorithm tries to split a query q into two
subqueries q1, q2 s.t. all their join attributes are in Head(q).
Now we relax this: we allow joins between q1 and q2 on
attributes not in Head(q), then project out these attributes.
These projections will be unsafe, hence we want to mini-
mize their degree of unsafety. To do that, we pick q1, q2 to
be a minimum cut of the graph, where each edge represent-
ing a join condition is labeled with the degree of unsafety of
the corresponding project operation.11 The problem of find-
ing minimum cut is polynomial time solvable as a series of
network flow problems or using the algorithm of Stoer and
Wagner [33].

7.2 Monte-Carlo approximations

As an alternative, we present now an algorithm based on a
Monte-Carlo simulation, which runs in polynomial time and
approximates the probabilities to arbitrary precision.

Given a conjunctive query q over probabilistic relations
R p

1 , R p
2 , . . . , R p

k , let q ′ be the query obtained from q by
making it return all the variables in its body, i.e. Head(q ′) =
Attr(q ′) = Attr(q) and q = �Head(q)(q ′). Also, let q ′ return

11 The estimator of R p
fanout should make sure that the estimated value

is 0 only when the FD holds, otherwise the algorithm may favor ‘ex-
pected’ safe plans over truly safe plans.

537

N. Dalvi, D. Suciu

all event attributes Ē = R p
1 · E , . . ., R p

k · E . Evaluate q ′
over the database (without any probability calculations) and
group the tuples in the answer based on the values of their
attributes Head(q). Consider one such group, and assume
it has n tuples t1, . . . , tn . The group defines the following
complex event expression:

∨n
i=1 Ci , where each Ci has the

form e1 ∧ · · ·∧ ek . We need to compute its probability, since
this will be the probability of one tuple in qrank(D p). We
are back to the problem of evaluating the probabilities of
complex events, but now these events Ci are in disjunctive
normal form (DNF). Before we describe the techniques to
evaluate the probabilities of DNF formulas, let us look at an
example.

Consider the probabilistic database given in Fig. 2 and
the query in Fig. 3b. We have

q(u) : S p(x, y), T p(z, u), y = z

We create a new query q ′ that returns all the variables in its
body, which is as follows:

q(u, x, y, z) : S p(x, y), T p(z, u), y = z

When we evaluate it over the probabilistic database, we get
the following result:

x y z u E
‘m’ 1 1 ‘p’ s1 ∧ t1
‘n’ 1 1 ‘p’ s2 ∧ t1

Observe that since the new query returns all the variables in
its body, there are no projections and every event is a con-
junction of atomic events. We do a final projection at the
end, giving us a single tuple {‘p’} whose event is the DNF
expression (s1 ∧ t1) ∨ (s2 ∧ t1).

The problem of evaluating the probability of a boolean
expression, even when restricted to DNF formulas, is #P-
complete [36]. However, it can be approximated efficiently
using the Monte Carlo algorithm described by Karp [18]:
given a DNF formula with N clauses and any ε and δ, the
algorithm runs in time O(N/ε2 ln 1/δ), and guarantees that
the probability of the error being greater that ε is less than δ.

In our case, N for a given output tuple is the number
of tuples that got merged during the final projection to pro-
duce the output tuple. The simulation algorithm runs in time
linear in N and hence, linear in the size of the intermedi-
ate result before the final projection. As a final note, if N is
very small, an exact algorithm may be applied in place of the
simulation. This choice can be made independently for each
output tuple.

8 Extensions

8.1 Relations with repeated events

The various results and the query evaluation technique
we have described so far assume that all the events in

probabilistic relations are distinct. However, there are sev-
eral scenarios that require multiple tuples sharing a com-
mon event. Consider a relation Casts(actorname,
filmname) and a query with an approximate predicate
Casts.actorname ≈ · · · . Given two tuples with the
same actor name, the user either wants both of them or
none of them. Thus, a common event should be associ-
ated with both the tuples, rather than each one of them in-
dependently satisfying the predicate. This choice also af-
fects the probabilities of the resulting tuples. Suppose the
user simply wants to return a list of actors (with the predi-
cate Casts.actorname ≈ · · ·). If an actor that approx-
imately matches the predicate appears 100 times in the re-
lation with independent events, its final probability in the
answer would be very high. On the other hand, if the same
event is given to all these tuples, the final probability will not
depend on how many times the actor appears in the database.

Fortunately, handling repeated events is easy in our
framework. A user can specify them by using functional de-
pendencies involving the event attributes. In the above exam-
ple, the query predicate induces the following dependency:
Casts.actorname → Casts.E. For the query evalua-
tion algorithms to work, we can use the following four-step
procedure:

1. Normalize the schema we create a virtual schema that
represents the same data in normalized form, such
that no probabilistic table has repeated events. This is
achieved as follows: for each probabilistic table T P

where the events in T P .E are not unique, we decompose
it into two tables, a deterministic table T1 and a proba-
bilistic table T P

2 . T P
2 stores all the distinct events of T P .

It also has an attribute E I D that stores a unique iden-
tifier for each distinct event. T1 is the deterministic part
of T P along with an extra attribute E I D that refers to
the corresponding events in T2. Thus, joining T1 and T P

2
gives us back the original table T P . This decomposition
achieves our objective: the new schema represents the
same data and further, every probabilistic table in it has
unique events. Note that this is only a virtual schema: we
do not transform the data into the new schema.

2. Translate original query into new schema this is easy,
every occurrences of T P in the query is replaced by the
join T1 �EID T P

2 (this is done for each T P that is de-
composed in step 1).

3. Find a safe plan using our query evaluation algorithm,
we find a safe plan P ′ for the translated query over the
new schema.

4. Translate back to original schema we translate the safe
plan P ′ into a plan P over original schema. We replace
each occurrence of T1 and T P

2 with a plan that compute
them from T P using projections. These projections will
not be probabilistic projections but normal projections
without any probability calculations.

We illustrate this procedure with an example. Consider
two probabilistic relations R P(A, B) and S P(C, D).R P has
all distinct events while S P has a distinct event for each

538

Efficient query evaluation on probabilistic databases

value of D. Thus, we have {S P .E → S.C} and {S P .C →
S.E}. Now, consider the query

q(x) : −R P(x, y), S P(y, z)

To find a safe plan, first we create a new schema.
We decompose S P into two relations, S1(C, D, EID) and
S P

2 (EID). Thus, the following holds in the new schema:
{S1.EID → S1.C} and S1.C → S1.EID}. Next we translate
q into a query q ′ over the new schema. We have

q ′(x) : −R P(x, y), S1(y, z, eid), S P
2 (eid)

Using the SAFE-PLAN algorithm given in Sect. 4.3, we
get the following plan for q ′

P ′ = �A
(
R P �P

B=C

(
�B,E I D(S1) �E I D S P

2

))

Finally, we substitute S P
2 with a plan that projects S P on

E and substitute S P
1 with a plan that projects S P on A,B and

E .
Note that repeated events provide, in a limited way, sup-

port for specifying dependencies between tuples. Supporting
arbitrary dependencies between tuples in an efficient manner
is beyond the scope of this paper.

8.2 Additional operators

So far, we have limited our discussion to conjunctive
queries, or, equivalently to the algebra consisting of σ ,
� and ×. We show now how to extend these techniques
to ∪, −, γ (union, difference, groupby-aggregate). A large
fragment of SQL queries, including queries with nested
sub-queries, aggregates, group-by and existential/universal
quantifiers can be expressed in this logical algebra [35].
(We omit δ (duplicate elimination) since we only consider
queries with set semantics, i.e. δ is implicit after every pro-
jection and union.) Figure 9 describe the extensional seman-
tics for these operators, using the functional notation.

The treatment of union and set difference operators with
intensional semantics is given in [12]. Similarly, aggre-
gate queries have been considered by Sadri [30] and Ross
et al. [28] using possible worlds approach. Our aim, as with
conjunctive queries, it to study when the cheap extensional
evaluation can be used in place of the expensive possible
worlds approach. The following theorem gives sufficient

Fig. 9 Extensional semantics for union, set difference, min, max

conditions under which it is safe to use the extensional se-
mantics for these operators.

Theorem 11 Let q, q ′ be conjunctive queries.

1. ∪e is safe in q ∪e q ′ if PRels(q) ∩ PRels(q ′) = φ.
2. −e is safe in q ∩e q ′ if PRels(q) ∩ PRels(q ′) = φ.
3. γ Ā,agg(B) is safe in γ Ā,agg(B)(q) if � Ā(q) is safe, where

agg is min or max, i.e. they have the same condition for
safety as the projection operator.

The conditions are intuitive. For instance, in q ∪e q ′,
if PRels(q) and PRels(q ′) do not contain a common rela-
tion, then the complex events in q and q ′ will be indepen-
dent, and hence, the extensional semantics will work. The
conditions are not necessary: q and q ′ may contain a com-
mon relation, but with disjoint SELECT clauses on that re-
lation, so that the common relation does not contribute the
same events to q and q ′. While a more detailed condition
can be worked out, there is a much bigger and challeng-
ing open problem: is there a dichotomy result, analogous to
Theorem 8, for queries with these operators? In other words,
if there is no extensional plan for a query, does it mean that
the query has high complexity?

In the case of SUM, the aggregated attribute may take
values that are not in the input table. For instance, consider
a simple SUM query over a single probabilistic table with 50
tuples. There are 250 possible worlds defined by this table
and each world can potentially have a distinct value of the
sum. In the true spirit of the possible worlds semantics, all
of these 250 sums should be returned as the answer along
with their probabilities. Instead, it may be more useful to the
user if we simply compute the expected value of the sum.
Both of these two semantics has been considered in the lit-
erature. Computing the expected value of the sum is much
easier, using the linearity of expectations. According to the
linearity of expectations, if there are tuples t1, . . . , tk with
probabilities p1, . . . , pk and values v1, . . . , vk , then the ex-
pected value of the sum is p1v1 + · · · + pkvk . This holds
irrespective of whether the tuples are independent or not, so
it also applies to tuples from an intermediate result. Thus,
once the input to the SUM operator has been evaluated, us-
ing either a safe plan or simulation, the expected value of
sum can easily be computed. The COUNT aggregate can be
treated in a similar fashion.

8.2.1 Having clause

A HAVING clause with MIN or MAX aggregate does not pose
additional difficulty, because once the aggregate has been
computed for each group, the HAVING clause gets translated
into a simple SELECT condition. This does not work for SUM
and COUNT, since we only compute their expected values.
Processing a HAVING clause with SUM or COUNT efficiently
is a much harder problem and beyond the scope of this work.

539

N. Dalvi, D. Suciu

8.2.2 Self-joins

All of our techniques apply in the presence of self-joins
involving deterministic tables. However, they do not work
when there is a self-join involving a probabilistic table. We
argue that a query q≈ with uncertain predicates rarely results
in self-join, even if the same table R occurs twice in q≈. For
instance, consider the query

R(x, y, z), R(x ′, y′, z′), x = x ′, y ≈′ ABC ′, z′ ≈′ DEF′

The query would have a self join between two occurrences
of R, each being probabilistic because of the uncertain predi-
cates. However, because of the different uncertain predicates
on the two occurrences, the system will make two proba-
bilistic “copies”: R p

1 and R p
2 . Thus, there is no self-join in

the resulting query.
Nevertheless, self-joins are important from the perspec-

tive of probabilistic databases in general. A self-join does
not rule out a safe extensional plan. A self-join is safe when
tuples are guaranteed not to join with themselves. For in-
stance, if a query contains a self-join between R P renamed
as R1 and R2, conditions like (R1.id < R2.id) or (R1.t ype
= A and R2.t ype = B) makes sure that no tuple in R P joins
with itself. Even when tuples join with themselves, queries
can have a safe plan. For instance, consider the query

q(x, y, z) : − R P(x, y), R P(x, z)

It can be written as the union of following two queries:

q1(x, y, y) : − R P(x, y)

q2(x, y, z) : − R P(x, y), R P (y, z), y = z

Now, both the queries can be evaluated using a safe plan
(q2 has safe plan because tuples do not join with them-
selves), and the results can be combined. Such a decomposi-
tion is not always possible. A complete dichotomy result for
queries with self-joins seems challenging and we leave it as
an open problem.

Of course, the Monte-Carlo simulation algorithm works
fine even in the presence of self-joins.

8.2.3 Extending the optimization algorithm

SAFE-PLAN is extended to handle each block of conjunctive
queries separately. As an example, the query in Sect. 1,
asking for an actor whose name is like ‘Kevin’ and whose
first ‘successful’ movie appeared in 1995, has a safe plan as
shown below:

�name(A �actorid
(σyear=1995(γactorid,min(year)(�actorid,yearC)))

9 Atomic predicates

Our main motivation is executing a query with uncertain
predicates q≈ on a deterministic database D. As we saw,
our approach is to apply the uncertain predicates first, and
generate a probabilistic database D p, then evaluate q (with-
out the uncertain predicates). We discuss here briefly some
choices for the uncertain predicates proposed in the litera-
ture. All proposals have a notion of closeness between two
data values. This is domain dependent and can be classified
into three categories:

Syntactic closeness This applies to domains with proper
nouns, like people’s names. Edit distances, q-grams
and phonetic similarity can be employed. The excel-
lent surveys on string matching techniques by Zobel and
Dart [39] and Navarro [22] describe more than 40 tech-
niques and compare them experimentally. Navarro also
has a discussion on the probability of string matching.
In our system, we used the 3-g distance, which is the
number of triplets of consecutive letters common to both
words.

Semantic closeness This applies to domains that have a se-
mantic meaning, like film categories. A user query for
the category ‘musical’ should match films of category
’opera’. Semantic distance can be calculated by using
TF/IDF or with ontologies like Wordnet [37]. We do not
support them in our system currently.

Numeric closeness This applies to domains like price and
age. Distance can be just the difference of the values.

Depending on the semantics of the attributes, the dis-
tance metric to use can be specified a priori for each at-
tribute. Once distances are defined between two values of an
attribute, they need to be meaningfully converted into prob-
abilities. One way of converting is to fit a distribution curve
on the distances. An example is a Gaussian curve centered
around the distance 0 where it takes value 1. The variance of
the Gaussian curve, which reflects the importance given to
the match on that attribute, can be set depending on the do-
main or user preferences. In our experiments, we used fixed,
query independent values, for the variances. An ideal sys-
tem should use metrices based on user studies or learn from
relevance feedbacks but developing techniques for these is
beyond the scope of this work.

Finally, one issue is when to generate new probabil-
ity events. For example consider the uncertain predicate
Product.category ≈ . . . and assume there are two
products with the same category. Should they result in two
independent probabilistic events with the same probabilities,
or in the same probabilistic events? Both choices are possi-
ble in our system. In the first case the functional dependency
is Productp.key → Productp.E while in the second
the FD is Productp.category → Productp.E . In the
latter case, we will have a relation with repeated events and
will need to use the techniques of Sect. 8.1 to generate safe
plans.

540

Efficient query evaluation on probabilistic databases

10 Prototype

Based on the theory of probabilistic databases that we have
developed, we return to the problem of building a system
that can support complex SQL queries with uncertain predi-
cates.

Our query language is an extension of standard SQL that
has an ≈ operator. Figure 1 shows an example. Our system
for supporting these queries have several salient features.
First, it is implemented as a middleware. It works on top of
any off-the-shelf database engine containing relational data.
Secondly, it does not require altering either the schema of
the data in the database. Finally, given an uncertain query,
it does not create a new instance of probabilistic database.
Rather, it rewrites the query into a new standard SQL query
that is (i) safe, (ii) contains all the probability calculations
embedded in the query using various aggregates and (iii) can
be directly executed by any engine to return the tuples along
with probabilities.

We describe the above process with the help of an exam-
ple. Consider the following SQL query

SELECT Films.year
FROM Films, Casts
WHERE Films.filmid = Casts.filmid

and Films.name ≈ ‘FILM’
and Casts.actor ≈ ‘ACTOR’

Using the uncertain predicate Films.name ≈
‘FILM’, we need to convert the Films table into a
probabilistic table. Assume we have a function MATCH
stored in the database that given two film names outputs a
probability score of their match. Then, the following SQL
query represents the probabilistic Films relation

SELECT Films.year,
MATCH(Films.name, ‘FILM’) as prob

FROM Films

Similarly, we can create a SQL statement for a proba-
bilistic Casts relation. Now, the following plan is a safe
plan for the query:

πyear(
(πFilms.year,Films.filmid) �filmid (πCasts.filmid))

We convert this plan back into a SQL query with prob-
ability calculations as shown in Fig. 10. Note that although
standard database engines do not have a PRODUCT aggre-
gate, it can be implemented using the following transforma-
tion:

PRODUCT(A) ≡ POWER(10, SUM (LOG (A)))

This technique of SQL rewriting can be applied to any query
plan in general. Recursively, a SQL statement is generated
for each node where the last attribute refers to the probability
of the tuples and parent nodes nest the SQL queries of their
children.

Fig. 10 The final SQL rewriting

11 Experiments

We performed some preliminary evaluation of our proba-
bilistic query evaluation framework, addressing four ques-
tions. How often does the SAFE-PLAN optimization algo-
rithm fail to find a plan? What is the performance of safe
plans, when they exists? Are naive approaches to query eval-
uation perhaps almost as good as a safe plan? And how ef-
fectively can we handle queries that do not have safe plans?

We did not modify the relational engine, but instead
implemented a middleware. SQL queries with approxi-
mate predicates were reformulated into “extensional” SQL
queries, using the techniques described in this paper, and
calls to a TSQL function computing 3-g distances. These
queries were then executed by the relational engine and re-
turned both tuples and probabilities. We used Microsoft SQL
Server.

We used the TPC-H benchmark, with a database of 0.1
GB. We modified all queries by replacing all the predicates
in the WHERE clause with uncertain matches. The constants
in the queries were either misspelled or made vague. For
instance, a condition like part.container = ‘PROMO
PLATED GREEN’ was replace with part.container
≈ ‘GREEN PLATE’. When executed exactly, all modified
queries returned empty answers.

All of the following experiments were carried on the first
10 of the 22 TPC-H queries. We found other queries to be
not very interesting for applying uncertain predicates, since
most of them involve complex aggregates.

1. Frequency of unsafe queries In our first experiment, we
wanted to see how many queries do not have safe plans.
Out of the 10 TPC-H queries, 8 turned out to have safe
plans. Q7 and Q8 were the only query that were unsafe.
These also become safe if not all of their predicates are
uncertain.

2. Performance Next, we measured the running times for
the eight queries that have safe plans, shown in Fig. 11.
All times are wall-clock. The first column is the run-
ning time of the safe plan. The second column represents
an optimization where at each intermediate stage, tuples
with zero probability are discarded. This optimization

541

N. Dalvi, D. Suciu

0

5000

10000

15000

20000

25000

30000

Q1 Q2 Q3 Q4 Q5 Q6 Q9 Q10

R
un

ni
ng

 T
im

e(
m

s)

Queries

Running Times of Safe TPC-H Queries

Safe Plan
Optimized Query

Bare Query

Fig. 11 TPC-H query running times

0

20

40

60

80

100

120

140

160

Q2 Q3 Q5 Q9 Q10

A
ve

ra
ge

 E
rr

or
(%

)

Queries

Errors on Safe Queries

Fig. 12 Errors on safe TPC queries

does not affect the final answer and as we can see from
the graph, it brings about considerable savings for some
queries. This also suggests the use of other optimizations
like an early removal of tuples with low probabilities if
the user is only interested in tuples with high probability.
The third column in the graph shows the time for running
safe queries without taking into account the computation
time for the uncertain predicate, which, in our case, is
the 3-g distance. The graphs show that most of the time
is spent in computing the uncertain predicate (for Q3,
this accounts for almost all of the running time). It sug-
gests that significant improvements can be achieved if
the predicates are supported by the engine itself.

3. Naive approaches In the next experiment we calculated
the error produced by a naive extensional plan. We con-
sidered the naive plan that leaves all project operators
(and the associated duplicate elimination) at the end of
the plan, which are typical plans produced by database
optimizers. The error was calculated as below: for each
tuple, we measured the percentage error in its probabil-
ity relative to the correct probability, and we took the
average over all tuples. Figure 12 shows the percentage
relative error of naive plans. We only considered the 8
queries that have safe plans. The naive plans for Q1, Q4,
Q6 were already safe, hence had no errors (and SAFE-
PLAN indeed returned the same plan): these queries are
not shown. Queries Q3, Q5 and Q10 had large errors
with Q5 showing an average error of 150% in the tuple
probabilities. Queries Q2 and Q9 had negligible errors.

Thus, while some naive plans were bad, others were rea-
sonable. But, in general, naive plans can be arbitrarily
bad. However, we argue that the low extra complexity
of searching for a safe plan is a price worth paying in
order to avoid the (admittedly rare) possibility of arbi-
trarily large errors.

However, since we are only interested in ranking the
results, not in the actual probabilities, it is worth ask-
ing whether high errors in the probabilities translate into
high ranking results. We plotted the recall graphs for
queries Q3 and Q10 (for which the naive plan produced
only medium errors). We defined recall as the fraction
of answers ranked among top N by the naive plan that
should actually have been in top N . We plotted this as a
function of N . Figures 13 and 14 show the recall graphs.
By definition, the recall approaches to 1 when N ap-
proaches the total number of possible tuples in the an-
swer. However, as the graphs show, the recall was bad
for small values of N . A user looking for top 50 or 100
answers to Q3 would miss half of the relevant tuples. For
smaller values of N (say, 10) the naive approach misses
80% of the relevant tuples.

4. Unsafe Queries Finally, we tested our approach to han-
dle queries with no safe plans on Q7 and Q8. We ran the
Monte Carlo simulation to compute their answer prob-
abilities and used them as baseline. Figure 15 shows
the errors in evaluating them with a naive plan and the
least unsafe plan (using min-cut, Sect. 7). The graphs
show that the plan chosen by the optimizer was better, or
significantly better than a naive one. Still, from two data

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 100 200 300 400 500 600 700 800 9001000

R
ec

al
l

Number of Answers

Clever Plan versus Naive Plan for Q3

Fig. 13 Recall plot for Q3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 9001000

R
ec

al
l

Number of Answers

Clever Plan versus Naive Plan for Q10

Fig. 14 Recall plot for Q10

542

Efficient query evaluation on probabilistic databases

0

5

10

15

20

25

30

Q7 Q8 QQ

A
ve

ra
ge

 E
rr

or
(%

)

Queries

Errors on Unsafe Queries

Naive Plan
Optimal Break

Fig. 15 Errors on unsafe queries

points it is hard to judge the improvement over a naive
plan. To see a third data point we wrote a new unsafe
query, Q Q, where the relation lineitem is joined with
orders and suppliers. Here the fanout is larger,
and the difference between the naive plan and the op-
timal break is more pronounced.

12 Related work

There are various probabilistic systems for relation data-
bases that have been proposed in the literature and they can
primarily be classified into two classes: extensional and in-
tensional. The extensional systems [4, 5, 8, 19] are very
efficient when they work, but they have to make simplify-
ing assumptions or impose some restrictions to get around
the problem of high complexity. For instance, Cavallo and
Pittarelli [5] start by assuming that tuples in the same rela-
tions represent disjoint events. Barbara et al. [4] generalize
Cavallo and Pittarelli’s model, where tuples are independent
and attributes may be inaccurate (leading to disjoint events).
However, their system has a requirement that every relation
must have a set of deterministic attributes forming the key of
that relation. Dey and Sarkar [8] improve upon this model al-
lowing arbitrary keys, but allow only those projections that
contain the key. Thus, none of these systems can correctly
handle arbitrary conjunctive queries. The Probview system
[19] takes a different approach: it does not assume indepen-
dence while combining probabilities, but requires strategies
from users to combine them. Also, it works with interval
probabilities instead of point probabilities.

The intensional systems [12, 29–32, 38] manipulate
symbolic events rather than raw probabilities, and are based
on the possible worlds semantics. Originally put forward
by Kripke for modal logics, possible worlds semantics is
commonly used in AI for representing knowledge with un-
certainties. Detailed discussions on extensional and inten-
sional systems can be found in the book by Pearl [26].
In context of relational databases, intensional semantics
have been used by Sadri [29–32] to compute the reliabil-
ity of answers to the queries, where the information in the
database comes from multiple information sources of vary-

ing reliability. In this framework, the system stores a vec-
tor with each tuple that identifies the sources contribut-
ing to the tuple, and these vectors are manipulated as the
query is evaluated. Fuhr and Rolleke [12] define a proba-
bilistic relational algebra that generalizes the standard re-
lational algebra for tuples with probabilistic events. Zi-
manyi [38] formalize probabilistic databases by means of
logic theories based on a probabilistic first-order language.
In knowledge representation, Halpern et al. [2, 10] have
shown the use of possible worlds semantics to assign de-
grees of beliefs to statements based of the probabilities in
the knowledge base. Note that intensional semantics are
impractical to use when the number of sources of uncer-
tainties is very large, which is the case with approximate
queries where every tuple can be viewed as an indepen-
dent source of uncertainty. Our work, on the other hand,
gives a characterization of queries where intensional se-
mantics can be replaced by the cheaper extensional seman-
tics.

There is also work on supporting probabilities in other
models of databases. Ng and Subrahmaniam [23] extend de-
ductive databases with probabilities and give fixed point se-
mantics to logic programs annotated with probabilities, but
they use absolute ignorance to combine event probabilities.
An alternate model for uncertainty is considered by Cheng
et al. [7] that is more suitable for sensor databases. They con-
sider attributes (which are typically sensor readings) whose
values is given by a probability distribution function and
show how simple queries can be efficiently evaluated over
such databases. Probabilistic models have also been consid-
ered for XML data under independence [24], under arbitrary
distributions [17] and with interval probabilities [16]. There
is also work on probabilistic object bases [9] and probabilis-
tic logics for schema mappings [25].

There are also several non-probabilistic approaches to
imprecise queries. Keyword searches in databases are dis-
cussed in [6, 14, 15]. Fagin [11] gives an algorithm to rank
objects based on its scores from multiple sources: this ap-
plies only to a single table. The VAGUE system [20] sup-
ports queries with vague predicates, but the query seman-
tics are ad hoc, and apply only to a limited SQL fragments.
Chaudhuri et al. [1] consider ranking query results auto-
matically: this also applies to a single table. Theobald and
Weikum [34] describe a query language for XML that sup-
ports approximate matches with relevance ranking based on
ontologies and semantic similarity.

13 Conclusions and future work

In this paper, we considered the problem of evaluating
queries over probabilistic databases according to the possi-
ble worlds semantics. We showed that by choosing suitable
execution plans for queries, extensional semantics can be
used to evaluate a certain class of queries. We further showed
that this class is precisely the class of queries that have
polynomial time data complexity. Our theoretical results

543

N. Dalvi, D. Suciu

capture the fundamental properties of query complexity on
probabilistic databases, and lead to efficient evaluation tech-
niques. We showed how this approach can be used to eval-
uate arbitrarily complex SQL queries with uncertain predi-
cates.

There are several problems that emerge from this work
and remain open. Given any conjunctive query that is al-
lowed to have self joins, can we decide if its data complex-
ity is polynomial time? Is there still a dichotomy of queries
into PTIME and #P-complete classes when self joins are al-
lowed? What is the complexity of query evaluation with ag-
gregates like SUM, COUNT, MIN and MAX and with HAVING
clauses? Apart from these questions, there are engineering
issues that need to be resolved. We need to examine the im-
plications for a relational engine: what functionality does a
relational engine need to provide for an efficient implemen-
tation of probabilistic databases? Another interesting prob-
lem is to develop algorithms for top-K answers to the prob-
abilistic queries.

References

1. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated rank-
ing of database query results. CIDR (2003)

2. Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D.: From statistical
knowledge bases to degrees of belief. Artif. Intell. 87(1/2), 75–143
(1996)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval.
Addison-Wesley (1999)

4. Barbará, D., Garcia-Molina, H., Porter, D.: The management of
probabilistic data. IEEE Trans. Knowl. Data Eng. 4(5), 487–502
(1992)

5. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases.
VLDB 71–81 (1987)

6. Chaudhuri, S., Das, G., Narasayya, V.: Dbexplorer: A system for
keyword search over relational databases. In: Proceedings of the
18th International Conference on Data Engineering. San Jose,
USA (2002)

7. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating proba-
bilistic queries over imprecise data. SIGMOD 551–562 (2003)

8. Dey, D., Sarkar, S.: A probabilistic relational model and algebra.
ACM Trans. Database Syst. 21(3), 339–369 (1996)

9. Eiter, T., Lu, J.J., Lukasiewicz, T., Subrahmanian, V.S.: Proba-
bilistic object bases. ACM Trans. Database Syst. 26(3), 264–312
(2001)

10. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and proba-
bility. In: Theoretical Aspects of Reasoning about Knowledge, pp.
277–293. San Francisco (1988)

11. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. PODS 102–113 (2001)

12. Fuhr, N., Rolleke, T.: A probabilistic relational algebra for the
integration of information retrieval and database systems. ACM
Trans. Inf. Syst. 15(1), 32–66 (1997)

13. Gradel, E., Gurevich, Y., Hirch, C.: The complexity of query reli-
ability. PODS 227–234 (1998)

14. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank:
Ranked keyword search over xml documents. SIGMOD 16–27
(2003)

15. Hristidis, V., Papakonstantinou, Y.: Discover: Keyword search in
relational databases. In: Proceedings of the 28th Internatinal Con-
ference Very Large Data Bases, VLDB (2002)

16. Hung, E., Getoor, L., Subrahmanian, V.S.: Probabilistic interval
xml. ICDE (2003)

17. Hung, E., Getoor, L., Subrahmanian, V.S.: Pxml: A probabilistic
semistructured data model and algebra. ICDE (2003)

18. Karp, R., Luby, M.: Monte-carlo algorithms for enumeration and
reliability problems. STOC (1983)

19. Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.:
Probview: a flexible probabilistic database system. ACM Trans.
Database Syst. 22(3), 419–469 (1997)

20. Motro, A.: Vague: a user interface to relational databases that per-
mits vague queries. ACM Trans. Inf. Syst. 6(3), 187–214 (1988)

21. Movie database: http://kdd.ics.uci.edu/database-s/movies/movies.
html

22. Navarro, G.: A guided tour to approximate string matching. ACM
Comput. Surv. 33(1), 31–88 (2001)

23. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming.
Inf. Comput. 101(2), 150–201 (1992)

24. Nierman, A., Jagadish, H.V.: ProTDB: Probabilistic data in XML.
VLDB (2002)

25. Nottelmann, H., Fuhr, N.: Combining DAML+OIL, XSLT and
probabilistic logics for uncertain schema mappings in MIND.
ECDL (2003)

26. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (1988)

27. Provan, J.S., Ball, M.O.: The complexity of counting cuts and
of computing the probability that a graph is connected. SIAM J.
Comput. 12(4), 777–788 (1983)

28. Ross, R., Subrahmanian, V., Grant, J.: Aggregate operators in
probabilistic databases. J. ACM 52(1), 54–101 (2005)

29. Sadri, F.: Reliability of answers to queries in relational databases.
TKDE 3(2), 245–251 (1991)

30. Sadri, F.: Aggregate operations in the information source tracking
method. Theor. Comput. Sci. 133(2), 421–442 (1994)

31. Sadri, F.: Information source tracking method: Efficiency issues.
TKDE 7(6), 947–954 (1995)

32. Sadri, F.: Integrity constraints in the information source tracking
method. IEEE Transactions on Knowledge and Data Engineering
7(1), 106–119 (1995)

33. Stoer, M., Wagner, F.: A simple min cut algorithm. Algorithms–
ESA ‘94 pp. 141–147 (1994)

34. Theobald, A., Weikum, G.: The xxl search engine: ranked re-
trieval of xml data using indexes and ontologies. SIGMOD 615–
615 (2002)

35. Ullman, J.D., Widom, J.: First Course in Database Systems, 2nd
ed. Prentice Hall (1997)

36. Valiant, L.: The complexity of enumeration and reliability prob-
lems. SIAM J. Comput. 8, 410–421 (1979)

37. Wordnet 2.0: A lexical database for the english language:
http://www.cogsci.princeton.edu/ wn/ (2003)

38. Zimanyi, E.: Query evaluation in probabilistic databases. Theor.
Comput. Sci. 171(1/2), 179–219 (1997)

39. Zobel, J., Dart, P.W.: Phonetic string matching: Lessons from in-
formation retrieval. In: Research and Development in Information
Retrieval, pp. 166–172 (1996)

544

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

