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ABSTRACT
Online Transaction Processing (OLTP) databases include a suite
of features — disk-resident B-trees and heap files, locking-based
concurrency control, support for multi-threading — that were
optimized for computer technology of the late 1970’s. Advances
in modern processors, memories, and networks mean that today’s
computers are vastly different from those of 30 years ago, such
that many OLTP databases will now fit in main memory, and
most OLTP transactions can be processed in milliseconds or less.
Yet database architecture has changed little.

Based on this observation, we look at some interesting variants of
conventional database systems that one might build that exploit
recent hardware trends, and speculate on their performance
through a detailed instruction-level breakdown of the major com-
ponents involved in a transaction processing database system
(Shore) running a subset of TPC-C. Rather than simply profiling
Shore, we progressively modified it so that after every feature
removal or optimization, we had a (faster) working system that
fully ran our workload. Overall, we identify overheads and opti-
mizations that explain a total difference of about a factor of 20x
in raw performance. We also show that there is no single “high
pole in the tent” in modern (memory resident) database systems,
but that substantial time is spent in logging, latching, locking, B-
tree, and buffer management operations.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems — transaction process-
ing; concurrency.

General Terms
Measurement, Performance, Experimentation.

Keywords
Online Transaction Processing, OLTP, main memory transaction
processing, DBMS architecture.

1. INTRODUCTION
Modern general purpose online transaction processing (OLTP)
database systems include a standard suite of features: a collection
of on-disk data structures for table storage, including heap files
and B-trees, support for multiple concurrent queries via locking-
based concurrency control, log-based recovery, and an efficient
buffer manager. These features were developed to support trans-
action processing in the 1970’s and 1980’s, when an OLTP data-
base was many times larger than the main memory, and when the
computers that ran these databases cost hundreds of thousands to
millions of dollars.

Today, the situation is quite different. First, modern processors
are very fast, such that the computation time for many OLTP-
style transactions is measured in microseconds. For a few thou-
sand dollars, a system with gigabytes of main memory can be
purchased. Furthermore, it is not uncommon for institutions to
own networked clusters of many such workstations, with aggre-
gate memory measured in hundreds of gigabytes — sufficient to
keep many OLTP databases in RAM.

Second, the rise of the Internet, as well as the variety of data
intensive applications in use in a number of domains, has led to a
rising interest in database-like applications without the full suite
of standard database features. Operating systems and networking
conferences are now full of proposals for “database-like” storage
systems with varying forms of consistency, reliability, concur-
rency, replication, and queryability [DG04, CDG+06, GBH+00,
SMK+01].

This rising demand for database-like services, coupled with dra-
matic performance improvements and cost reduction in hard-
ware, suggests a number of interesting alternative systems that
one might build with a different set of features than those pro-
vided by standard OLTP engines.

1.1 Alternative DBMS Architectures
Obviously, optimizing OLTP systems for main memory is a good
idea when a database fits in RAM. But a number of other data-
base variants are possible; for example:

• Logless databases. A log-free database system might either
not need recovery, or might perform recovery from other sites
in a cluster (as was proposed in systems like Harp [LGG+91],
Harbor [LM06], and C-Store [SAB+05]).

• Single threaded databases. Since multi-threading in OLTP
databases was traditionally important for latency hiding in the
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face of slow disk writes, it is much less important in a mem-
ory resident system. A single-threaded implementation may be
sufficient in some cases, particularly if it provides good per-
formance. Though a way to take advantage of multiple proces-
sor cores on the same hardware is needed, recent advances in
virtual machine technology provide a way to make these cores
look like distinct processing nodes without imposing massive
performance overheads [BDR97], which may make such
designs feasible.

• Transaction-less databases. Transactional support is not
needed in many systems. In particular, in distributed Internet
applications, eventual consistency is often favored over trans-
actional consistency [Bre00, DHJ+07]. In other cases, light-
weight forms of transactions, for example, where all reads are
required to be done before any writes, may be acceptable
[AMS+07, SMA+07].

In fact, there have been several proposals from inside the data-
base community to build database systems with some or all of the
above characteristics [WSA97, SMA+07]. An open question,
however, is how well these different configurations would per-
form if they were actually built. This is the central question of
this paper.

1.2 Measuring the Overheads of OLTP
To understand this question, we took a modern open source data-
base system (Shore — see http://www.cs.wisc.edu/shore/) and
benchmarked it on a subset of the TPC-C benchmark. Our initial
implementation — running on a modern desktop machine — ran
about 640 transactions per second (TPS). We then modified it by
removing different features from the engine one at a time, pro-
ducing new benchmarks each step of the way, until we were left
with a tiny kernel of query processing code that could process
12700 TPS. This kernel is a single-threaded, lock-free, main
memory database system without recovery. During this decompo-
sition, we identified four major components whose removal sub-
stantially improved the throughput of the system:

Logging. Assembling log records and tracking down all changes
in database structures slows performance. Logging may not be
necessary if recoverability is not a requirement or if recoverabil-
ity is provided through other means (e.g., other sites on the net-
work).

Locking. Traditional two-phase locking poses a sizeable over-
head since all accesses to database structures are governed by a
separate entity, the Lock Manager.

Latching. In a multi-threaded database, many data structures
have to be latched before they can be accessed. Removing this
feature and going to a single-threaded approach has a noticeable
performance impact.

Buffer management. A main memory database system does not
need to access pages through a buffer pool, eliminating a level of
indirection on every record access.

1.3 Results
Figure 1 shows how each of these modifications affected the bot-
tom line performance (in terms of CPU instructions per TPC-C
New Order transaction) of Shore. We can see that each of these

subsystems by itself accounts for between about 10% and 35% of
the total runtime (1.73 million instructions, represented by the
total height of the figure). Here, “hand coded optimizations” rep-
resents a collection of optimizations we made to the code, which
primarily improved the performance of the B-tree package. The
actual instructions to process the query, labelled “useful work”
(measured through a minimal implementation we built on top of a
hand-coded main-memory B-tree package) is only about 1/60th of
that. The white box below “buffer manager” represents our ver-
sion of Shore after we had removed everything from it — Shore
still runs the transactions, but it uses about 1/15th of the instruc-
tions of the original system, or about 4 times the number of
instructions in the useful work. The additional overheads in our
implementation are due to call-stack depth in Shore and the fact
that we could not completely strip out all references to transac-
tions and the buffer manager.

1.4 Contributions and Paper Organization
The major contributions of this paper are to 1) dissect where time
goes inside of a modern database system, 2) to carefully measure
the performance of various stripped down variants of a modern
database system, and 3) to use these measurements to speculate
on the performance of different data management systems — for
example, systems without transactions or logs — that one could
build.

The remainder of this paper is organized as follows. In Section 2
we discuss OLTP features that may soon become (or are already
becoming) obsolete. In Section 3 we review the Shore DBMS, as
it was the starting point of our exploration, and describe the
decomposition we performed. Section 4 contains our experimen-
tation with Shore. Then, in Section 5, we use our measurements
to discuss implications on future OLTP engines and speculate on
the performance of some hypothetical data management systems.
We present additional related work in Section 6 and conclude in
Section 7.
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2. TRENDS IN OLTP
As mentioned in the introduction, most popular relational
RDBMSs trace their roots to systems developed in the 1970’s,
and include features like disk-based indexing and heap files, log-
based transactions, and locking-based concurrency control. How-
ever, 30 years have passed since these architectural decisions
were made. At the present time, the computing world is quite dif-
ferent from when these traditional systems were designed; the
purpose of this section is to explore the impact of these differ-
ences. We made a similar set of observations in [SMA+07].

2.1 Cluster Computing
Most current generation RDBMSs were originally written for
shared memory multi-processors in the 1970’s. Many vendors
added support for shared disk architectures in the 1980’s. The last
two decades have seen the advent of Gamma-style shared nothing
databases [DGS+90] and the rise of clusters of commodity PCs
for many large scale computing tasks. Any future database system
must be designed from the ground up to run on such clusters.

2.2 Memory Resident Databases
Given the dramatic increase in RAM sizes over the past several
decades, there is every reason to believe that many OLTP systems
already fit or will soon fit into main memory, especially the
aggregate main memory of a large cluster. This is largely because
the sizes of most OTLP systems are not growing as dramatically
as RAM capacity, as the number of customers, products, and
other real world entities they record information about does not
scale with Moore’s law. Given this observation, it makes sense
for database vendors to create systems that optimize for the com-
mon case of a memory resident system. In such systems, opti-
mized indices [RR99, RR00] as well as eschewing disk-optimized
tuple formats and page layouts (or lack thereof) [GS92] are
important to consider.

2.3 Single Threading in OLTP Systems
All modern databases include extensive support for multi-thread-
ing, including a collection of transactional concurrency control
protocols as well as extensive infiltration of their code with latch-
ing commands to support multiple threads accessing shared struc-
tures like buffer pools and index pages. The traditional
motivations for multi-threading are to allow transaction process-
ing to occur on behalf of one transaction while another waits for
data to come from disk, and to prevent long-running transactions
from keeping short transactions from making progress. 

We claim that neither of these motivations is valid any more.
First, if databases are memory resident, then there are never any
disk waits. Furthermore, production transaction systems do not
include any user waits — transactions are executed almost exclu-
sively through stored procedures. Second, OLTP workloads are
very simple. A typical transaction consists of a few index lookups
and updates, which, in a memory resident system, can be com-
pleted in hundreds of microseconds. Moreover, with the bifurca-
tion of the modern database industry into a transaction processing
and a warehousing market, long running (analytical) queries are
now serviced by warehouses. 

One concern is that multi-threading is needed to support
machines with multiple processors. We believe, however, that this
can be addressed by treating one physical node with multiple pro-

cessors as multiple nodes in a shared-nothing cluster, perhaps
managed by a virtual machine monitor that dynamically allocates
resources between these logical nodes [BDR97].

Another concern is that networks will become the new disks,
introducing latency into distributed transactions and requiring the
re-introduction of transactions. This is certainly true in the gen-
eral case, but for many transaction applications, it is possible to
partition the workload to be “single-sited” [Hel07, SMA+07],
such that all transactions can be run entirely on a single node in a
cluster.

Hence, certain classes of database applications will not need sup-
port for multi-threading; in such systems, legacy locking and
latching code becomes unnecessary overhead.

2.4 High Availability vs. Logging
Production transaction processing systems require 24x7 availabil-
ity. For this reason, most systems use some form of high avail-
ability, essentially using two (or more) times the hardware to
ensure that there is an available standby in the event of a failure. 

Recent papers [LM06] have shown that, at least for warehouse
systems, it is possible to exploit these available standbys to facili-
tate recovery. In particular, rather than using a REDO log, recov-
ery can be accomplished by copying missing state from other
database replicas. In our previous work we have claimed that this
can be done for transaction systems as well [SMA+07]. If this is
in fact the case, then the recovery code in legacy databases
becomes also unnecessary overhead.

2.5 Transaction Variants
Although many OLTP systems clearly require transactional
semantics, there have recently been proposals — particularly in
the Internet domain — for data management systems with relaxed
consistency. Typically, what is desired is some form of eventual
consistency [Bre00, DHJ+07] in the belief that availability is
more important than transactional semantics. Databases for such
environments are likely to need little of the machinery developed
for transactions (e.g., logs, locks, two-phase commit, etc.).

Even if one requires some form of strict consistency, many
slightly relaxed models are possible. For example, the widespread
adoption of snapshot isolation (which is non-transactional) sug-
gests that many users are willing to trade transactional semantics
for performance (in this case, due to the elimination of read
locks).

And finally, recent research has shown that there are limited
forms of transactions that require substantially less machinery
than standard database transactions. For example, if all transac-
tions are “two-phase” — that is, they perform all of their reads
before any of their writes and are guaranteed not to abort after
completing their reads — then UNDO logging is not necessary
[AMS+07, SMA+07].

2.6 Summary
As our references suggest, several research groups, including
Amazon [DHJ+07], HP [AMS+07], NYU [WSA97], and MIT
[SMA+07] have demonstrated interest in building systems that
differ substantially from the classic OTLP design. In particular,
the MIT H-Store [SMA+07] system demonstrates that removing
all of the above features can yield a two-order-of-magnitude



speedup in transaction throughput, suggesting that some of these
databases variants are likely to provide remarkable performance.
Hence, it would seem to behoove the traditional database vendors
to consider producing products with some of these features
explicitly disabled. With the goal of helping these implementers
understand the performance impact of different variants they may
consider building, we proceed with our detailed performance
study of Shore and the variants of it we created.

3. SHORE
Shore (Scalable Heterogeneous Object Repository) was devel-
oped at the University of Wisconsin in the early 1990’s and was
designed to be a typed, persistent object system borrowing from
both file system and object-oriented database technologies
[CDF+94]. It had a layered architecture that allowed users to
choose the appropriate level of support for their application from
several components. These layers (type system, unix compatibil-
ity, language heterogeneity) were provided on top of the Shore
Storage Manager (SSM). The storage manager provided features
that are found in all modern DBMS: full concurrency control and
recovery (ACID transaction properties) with two-phase locking
and write-ahead logging, along with a robust implementation of
B-trees. Its basic design comes from ideas described in Gray’s
and Reuter’s seminal book on transaction processing [GR93],
with many algorithms implemented straight from the ARIES
papers [MHL+92, Moh89, ML89].

Support for the project ended in the late 1990’s, but continued for
the Shore Storage Manager; as of 2007, SSM version 5.0 is avail-
able for Linux on Intel x86 processors. Throughout the paper we
use “Shore” to refer to the Shore Storage Manager. Information
and source code of Shore is available online1. In the rest of this
section we discuss the key components of Shore, its code struc-
ture, the characteristics of Shore that affect end-to-end perfor-
mance, along with our set of modifications and the effect of these
modifications to the code line.

3.1 Shore Architecture
There are several features of Shore that we do not describe as
they are not relevant to this paper. These include disk volume
management (we pre-load the entire database in main memory),
recovery (we do not examine application crashes), distributed
transactions, and access methods other than B-trees (such as R-
trees). The remaining features can be organized roughly into the
components shown in Figure 2.

Shore is provided as a library; the user code (in our case, the
implementation of the TPC-C benchmark) is linked against the
library and must use the threads library that Shore also uses. Each
transaction runs inside a Shore thread, accessing both local user-
space variables and Shore-provided data structures and methods.
The methods relevant to OLTP are those needed to create and
populate a database file, load it into the buffer pool, begin, com-
mit, or abort a transaction, and perform record-level operations
such as fetch, update, create, and delete, along with the associated
operations on primary and secondary B-tree indexes.

Inside the transaction body (enclosed by begin and commit state-
ments) the application programmer uses Shore’s methods to
access the storage structures: the file and indexes, along with a
directory to find them. All the storage structures use slotted pages
to store information. Shore’s methods run under the transaction
manager which closely interacts with all other components.
Accessing the storage structures involves calls to the Log Man-
ager, the Lock Manager, and the Buffer Pool Manager. These
invocations always happen through a concurrency control layer,
which oversees shared and mutually exclusive accesses to the
various resources. This is not a separate module; rather, through-
out the code, all accesses to shared structures happen by acquiring
a latch. Latches are similar to database locks (in that they can be
shared or exclusive), but they are lightweight and come with no
deadlock detection mechanisms. The application programmers
need to ensure that latching will not lead to deadlock.

Next, we discuss the thread architecture and give more details on
locking, logging, and the buffer pool management. 

Thread support. Shore provides its own user-level, non-preemp-
tive thread package that was derived from NewThreads (origi-
nally developed at the University of Washington), providing a
portable OS interface API. The choice of the thread package had
implications for the code design and behavior of Shore. Since
threads are user-level, the application runs as a single process,
multiplexing all Shore threads. Shore avoids blocking for I/O by
spawning separate processes responsible for I/O devices (all pro-
cesses communicate through shared memory). However, applica-
tions cannot take direct advantage of multicore (or SMP) systems,
unless they are built as part of a distributed application; that,
however, would add unnecessary overhead for multicore CPUs,
when simple, non-user level threading would be sufficient.

Consequently, for the results reported throughout this paper, we
use single-threaded operation. A system that uses multithreaded
operation would consume a larger number of instructions and
CPU cycles per transaction (since thread code would need to be
executed in addition to transactional code). Since the primary
goal of the paper is to look at the cost in CPU instructions of var-
ious database system components, the lack of a full multi-thread-
ing implementation in Shore only affects our results in that we1. http:// www.cs.wisc.edu/shore/
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Figure 2. Basic components in Shore (see text for 
detailed description).
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begin at a lower starting point in total CPU instructions when we
begin removing system components.

Locking and logging. Shore implements standard two-phase
locking, with transactions having standard ACID properties. It
supports hierarchical locking with the lock manager escalating up
the hierarchy by default (record, page, store, volume). Each trans-
action keeps a list of the locks it holds, so that the locks can be
logged when the transaction enters the prepared state and released
at the end of the transaction. Shore also implements write ahead
logging (WAL), which requires a close interaction between the
log manager and the buffer manager. Before a page can be
flushed from the buffer pool, the corresponding log record might
have to be flushed. This also requires a close interaction between
the transaction manager and the log manager. All three managers
understand log sequence numbers (LSNs), which serve to identify
and locate log records in the log, timestamp pages, identify the
last update performed by a transaction, and find the last log
record written by a transaction. Each page bears the LSN of the
last update that affected that page. A page cannot be written to
disk until the log record with that page’s LSN has been written to
stable storage.

Buffer Manager. The buffer manager is the means by which all
other modules (except the log manager) read and write pages. A
page is read by issuing a fix method call to the buffer manager.
For a database that fits in main memory, the page is always found
in the buffer pool (in the non-main memory case, if the requested
page is not in the buffer pool, the thread gives up the CPU and
waits for the process responsible for I/O to place the page in the
buffer pool). The fix method updates the mapping between page
IDs and buffer frames and usage statistics. To ensure consistency
there is a latch to control access to the fix method. Reading a
record (once a record ID has been found through an index
lookup) involves 

1. locking the record (and page, per hierarchical locking), 

2. fixing the page in the buffer pool, and

3. computing the offset within the page of the record’s tag. 

Reading a record is performed by issuing a pin / unpin method
call. Updates to records are accomplished by copying out part or
all of the record from the buffer pool to the user’s address space,

performing the update there, and handing the new data to the stor-
age manager.

More details on the architecture of Shore can be found at the
project’s web site. Some additional mechanisms and features are
also described in the following paragraphs, where we discuss our
own modifications to Shore.

3.2 Removing Shore Components
Table 1 summarizes the properties and characteristics of modern
OLTP systems (left column) that allow us to strip certain func-
tionality from a DBMS (right column). We use these optimiza-
tions as a guideline for modifying Shore. Due to the tight
integration of all managers in Shore, it was not possible to cleanly
separate all components so that they could be removed in an arbi-
trary order. The next best thing was to remove features in an
order dictated by the structure of the code, allowing for flexibility
whenever possible. That order was the following:

1. Removing logging.

2. Removing locking OR latching.

3. Removing latching OR locking.

4. Removing code related to the buffer manager.

In addition, we found that the following optimizations could be
performed at any point:

• Streamline and hardcode the B-tree key evaluation logic, as is
presently done in most commercial systems.

• Accelerate directory lookups.
• Increase page size to avoid frequent allocations (subsumed by

step 4 above).
• Remove transactional sessions (begin, commit, various

checks).
Our approach to implementing the above-mentioned actions is
described next. In general, to remove a certain component from
the system, we either add a few if-statements to avoid executing
code belonging to that component, or, if we find that if-statements
add a measurable overhead, we rewrite entire methods to avoid
invoking that component altogether.

Remove logging. Removing logging consists of three steps. The
first is to avoid generating I/O requests along with the time asso-
ciated to perform these requests (later, in Figure 7, we label this
modification “disk log”). We achieve this by allowing group com-
mit and then increasing the log buffer size so that it is not flushed
to disk during our experiments. Then, we comment out all func-
tions that are used to prepare and write log records (labeled “main
log” in Figure 7). The last step was to add if-statements through-
out the code to avoid processing Log Sequence Numbers (labeled
“LSN” in Figure 7).

Remove locking (interchangeable with removing latching). In
our experiments we found that we could safely interchange the
order of removing locking and latching (once logging was already
removed). Since latching is also performed inside locking, remov-
ing one also reduces the overhead of the other. To remove locking
we first changed all Lock Manager methods to return immedi-
ately, as if the lock request was successful and all checks for
locks were satisfied. Then, we modified methods related to pin-

Table 1: Possible set of optimizations for OLTP

OLTP properties and 
new platforms DBMS modification

logless architectures remove logging

partitioning, commutativity remove locking
(when applicable)

one transaction at a time
single thread,

remove locking,
remove latching

main memory resident remove buffer manager,
directory

transaction-less databases avoid transaction bookkeeping



ning records, looking them up in a directory, and accessing them
through a B-tree index. In each case, we eliminated code paths
related to ungranted lock requests.

Remove latching (interchangeable with removing locking).
Removing latching was similar to removing locking; we first
changed all mutex requests to be immediately satisfied. We then
added if-statements throughout the code to avoid requests for
latches. We had to replace B-tree methods with ones that did not
use latches, since adding if-statements would have increased
overhead significantly because of the tight integration of latch
code in the B-tree methods.

Remove buffer manager calls. The most widespread modifica-
tion we performed was to remove the buffer manager methods,
once we knew that logging, locking, and latching were already
disabled. To create new records, we abandoned Shore’s page allo-
cation mechanism and instead used the standard malloc library.
We call malloc for each new record (records no longer reside in
pages) and use pointers for future accesses. Memory allocation
can potentially be done more efficiently, especially when one
knows in advance the sizes of the allocated objects. However, fur-
ther optimization of main memory allocation is an incremental
improvement relative to the overheads we are studying, and is left
for future work. We were not able to completely remove the page
interface to buffer frames, since its removal would invalidate
most of the remaining Shore code. Instead, we accelerated the
mappings between pages and buffer frames, reducing the over-
head to a minimum. Similarly, pinning and updating a record will
still go through a buffer manager layer, albeit a very thin one (we
label this set of modifications “page access” in Figure 7).

Miscellaneous optimizations. There were four optimizations we
made that can be invoked at any point during the process of
removing the above-mentioned components. These were the fol-
lowing. (1) Accelerating the B-tree code by hand-coding node
searches to optimize for the common case that keys are uncom-
pressed integers (labeled “Btree keys” in Figures 5-8). (2) Accel-
erating directory lookups by using a single cache for all
transactions (labeled “dir lookup” in Figure 7). (3) Increasing the
page size from the default size of 8KB to 32KB, the maximum
allowable in Shore (labeled “small page” in Figure 7). Larger
pages, although not suitable for disk-based OLTP, can help in a
main-memory resident database by reducing the number of levels
in a B-tree (due to the larger node size), and result in less fre-
quent page allocations for newly created records. An alternative
would be to decrease the size of a B-tree node to the size of a
cache line as proposed in [RR99], but this would have required
removing the association between a B-tree node and a Shore
page, or reducing a Shore page below 1KB (which Shore does not
allow). (4) Removing the overhead of setting up and terminating
a session for each transaction, along with the associated monitor-
ing of running transactions, by consolidating transactions into a
single session (labeled “Xactions” in Figure 7). 

Our full set of changes/optimizations to Shore, along with the
benchmark suite and documentation on how to run the experi-
ments are available online2.

Next, we move to the performance section of the paper.

4. PERFORMANCE STUDY
The section is organized as follows. First we describe our variant
of the TPC-C benchmark that we used (Section 4.1). In Section
4.2 we provide details of the hardware platform, the experimen-
tal setup, and the tools we used for collecting the performance
numbers. Section 4.3 presents a series of results, detailing Shore
performance as we progressively apply optimizations and remove
components.

4.1 OLTP Workload
Our benchmark is derived from TPC-C [TPCC], which models a
wholesale parts supplier operating out of a number of warehouses
and their associated sales districts. TPC-C is designed to repre-
sent any industry that must manage, sell, or distribute a product
or service. It is designed to scale as the supplier expands and new
warehouses are created. The scaling requirement is that each
warehouse must supply 10 sales districts, and each district must
serve 3000 customers. The database schema along with the scal-
ing requirements (as a function of the number of warehouses W)
is shown in Figure 3. The database size for one warehouse is
approximately 100 MB (we experiment with five warehouses for
a total size of 500MB).

TPC-C involves a mix of five concurrent transactions of different
types and complexity. These transactions include entering orders
(the New Order transaction), recording payments (Payment),
delivering orders, checking the status of orders, and monitoring
the level of stock at the warehouses. TPC-C also specifies that
about 90% of the time the first two transactions are executed. For
the purposes of the paper, and for better understanding the effect
of our interventions, we experimented with a mix of only the first
two transactions. Their code structure (calls to Shore) is shown in
Figure 4. We made the following small changes to the original
specifications, to achieve repeatability in the experiments:

New Order. Each New Order transaction places an order for 5-15
items, with 90% of all orders supplied in full by stocks from the
customer’s “home” warehouse (10% need to access stock belong-
ing to a remote warehouse), and with 1% of the provided items
being an invalid one (it is not found in the B-tree). To avoid vari-
ation in the results we set the number of items to 10, and always
serve orders from a local warehouse. These two changes do not2. http://db.cs.yale.edu/hstore/

Figure 3. TPC-C Schema.
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0 or 1 new
orders /
order

5-15 order-line entries /
order



affect the throughput. The code in Figure 4 shows the two-phase
optimization mentioned in Section 2.5, which allows us to avoid
aborting a transaction; we read all items at the beginning, and if
we find an invalid one we abort without redoing changes in the
database.

Payment. This is a lightweight transaction; it updates the cus-
tomer’s balance and warehouse/district sales fields, and generates
a history record. Again, there is a choice of home and remote
warehouse which we always set to the home one. Another ran-
domly set input is whether a customer is looked up by name or
ID, and we always use ID.

4.2 Setup and Measurement Methodology
All experiments are performed on a single-core Pentium 4
3.2GHz, with 1MB L2 cache, hyperthreading disabled, 1GB
RAM, running Linux 2.6. We compiled with gcc version 3.4.4
and O2 optimizations. We use the standard linux utility iostat to
monitor disk activity and verify in the main memory-resident
experiments there is no generated disk traffic. In all experiments
we pre-load the entire database into the main memory. Then we
run a large number of transactions (40,000). Throughput is mea-
sured directly by dividing wall clock time by the number of com-
pleted transactions.

For detailed instruction and cycle counts we instrument the
benchmark application code with calls to the PAPI library
[MBD+99] http://icl.cs.utk.edu/papi/, which provides access to
the CPU performance counters. Since we make a call to PAPI
after every call to Shore, we have to compensate for the cost of
PAPI calls when reporting the final numbers. These had an
instruction count of 535-537 and were taking between 1350 and
1500 cycles in our machine. We measure each call to Shore for
all 40,000 transactions and report the average numbers.

Most of the graphs reported in the paper are based on CPU
instruction counts (as measured through the CPU performance
counters) and not wall clock time. The reason is that instruction
counts are representative of the total run-time code path length,

and they are deterministic. Equal instruction counts among differ-
ent components can of course result in different wall clock execu-
tion times (CPU cycles), because of different microarchitectural
behavior (cache misses, TLB misses, etc.). In Section 4.3.4 we
compare instruction counts to CPU cycles, illustrating the compo-
nents where there is high micro-architectural efficiency that can
be attributed to issues like few L2 cache misses and good instruc-
tion-level parallelism.

Cycle count, however, is susceptible to various parameters, rang-
ing from CPU characteristics, such as cache size/associativity,
branch predictors, TLB operation, to run-time variables such as
concurrent processes. Therefore it should be treated as indicative
of relative time breakdown. We do not expand on the issue of
CPU cache performance in this paper, as our focus is to identify
the set of DBMS components to remove that can produce up to
two orders of magnitude better performance for certain classes of
OLTP workloads. More information on the micro-architectural
behavior of database workloads can be found elsewhere [Ail04].

Next, we begin the presentation of our results.

4.3 Experimental Results
In all experiments, our baseline Shore platform is a memory-resi-
dent database that is never flushed to disk (the only disk I/O that
might be performed is from the Log Manager). There is only a
single thread executing one transaction at a time. Masking I/O (in
the case of disk-based logging) is not a concern as it only adds to
overall response time and not to the instructions or cycles that the
transaction has actually run. 

We placed 11 different switches in Shore to allow us to remove
functionality (or perform optimizations), which, during the pre-
sentation of the results, we organize into six components. For a
list of the 11 switches (and the corresponding components) and
the order we apply them, see Figure 7. These switches were
described in more detail in Section 3.2 above. The last switch is
to bypass Shore completely and run our own, minimal-overhead
kernel, which we call “optimal” in our results. This kernel is basi-
cally a memory-resident, hand-built B-tree package with no addi-
tional transaction or query processing functionality.

4.3.1  Effect on Throughput
After all of these deletions and optimizations, Shore is left with a
code residue, which is all CPU cycles since there is no I/O what-
soever; specifically, an average of about 80 microseconds per
transaction (for a 50-50 mix of New Order and Payment transac-
tions), or about 12,700 transactions per second.

In comparison, the useful work in our optimal system was about
22 microseconds per transaction, or about 46,500 transactions per
second. The main causes of this difference are a deeper call stack
depth in our kernel, and our inability to remove some of the trans-
action set up and buffer pool calls without breaking Shore. As a
point of reference, “out of the box” Shore, with logging enabled
but with the database cached in main memory, provides about 640
transactions per second (1.6 milliseconds per transaction),
whereas Shore running in main memory, but without log flushing
provides about 1,700 transactions per second, or about 588 micro-
seconds per transaction. Hence, our modifications yield a factor
of 20 improvement in overall throughput.

New Order
begin
for loop(10)
.....Btree lookup(I), pin
Btree lookup(D), pin
Btree lookup (W), pin
Btree lookup (C), pin
update rec (D)
for loop (10)
.....Btree lookup(S), pin
.....update rec (S)
.....create rec (O-L)
.....insert Btree (O-L)
create rec (O)
insert Btree (O)
create rec (N-O)
insert Btree (N-O)
insert Btree 2ndary(N-O)
commit

Payment
begin
Btree lookup(D), pin
Btree lookup (W), pin
Btree lookup (C), pin
update rec (C)
update rec (D)
update rec (W)
create rec (H)
commit

Figure 4. Calls to Shore’s methods for New Order and 
Payment transactions.



Given these basic throughput measurements, we now give
detailed instruction breakdowns for the two transactions of our
benchmark. Recall that the instruction and cycle breakdowns in
the following sections do not include any impact of disk opera-
tions, whereas the throughput numbers for baseline Shore do
include some log write operations.

4.3.2  Payment
Figure 5 (left side) shows the reductions in the instruction count
of the Payment transaction as we optimized B-tree key evalua-
tions and removed logging, locking, latching, and buffer manager
functionality. The right part of the figure shows, for each feature
removal we perform, its effect on the number of instructions
spent in various portions of the transaction’s execution. For the
Payment transaction, these portions include a begin call, three B-
tree lookups followed by three pin/unpin operations, followed by
three updates (through the B-tree), one record creation and a com-

mit call. The height of each bar is always the total number of
instructions executed. The right-most bar is the performance of
our minimal-overhead kernel.

Our B-tree key evaluation optimizations are reportedly standard
practice in high-performance DBMS architectures, so we per-
form them first because any system should be able to do this.
Removing logging affects mainly commits and updates, as those
are the portions of the code that write log records, and to a lesser
degree B-tree and directory lookups. These modifications remove
about 18% of the total instruction count.

Locking takes the second most instructions, accounting for about
25% of the total count. Removing it affects all of the code, but is
especially important in the pin/unpin operations, the lookups, and
commits, which was expected as these are the operations that
must acquire or release locks (the transaction already has locks on
the updated records when the updates are performed).
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Latching accounts for about 13% of the instructions, and is pri-
marily important in the create record and B-tree lookup portions
of the transaction. This is because the buffer pool (used in create)
and B-trees are the primary shared data structures that must be
protected with latches.

Finally, our buffer manager modifications account for about 30%
of the total instruction count. Recall that with this set of modifi-
cations, new records are allocated directly with malloc, and page
lookups no longer have to go through the buffer pool in most
cases. This makes record allocation essentially free, and substan-
tially improves the performance of other components that perform
frequent lookups, like B-tree lookup and update.

At this point, the remaining kernel requires about 5% (for a 20x
performance gain!) of the total initial instruction count, and is
about 6 times the total instructions of our “optimal” system. This
analysis leads to two observations: first, all six of the major com-
ponents are significant, each accounting for 18 thousand or more
instructions of the initial 180 thousand. Second, until all of our
optimizations are applied, the reduction in instruction count is not
dramatic: before our last step of removing the buffer manager, the
remaining components used about a factor of three fewer instruc-
tions than the baseline system (versus a factor of 20 when the
buffer manager is removed).

4.3.3  New Order
A similar breakdown of the instruction count in the New Order
transaction is shown in Figure 6; Figure 7 shows a detailed
accounting of all 11 modifications and optimizations we per-
formed. This transaction uses about 10 times as many instructions
as the Payment transaction, requiring 13 B-tree inserts, 12 record
creation operations, 11 updates, 23 pin/unpin operations, and 23
B-tree lookups. The main differences in the allocation of instruc-
tions to major optimizations between New Order and Payment are

in B-tree key code, logging, and locking. Since New Order adds
B-tree insertions in the mix of operations, there is more relative
benefit to be had by optimizing the key evaluation code (about
16%). Logging and locking now only account for about 12% and
16% of the total instructions; this is largely because the total frac-
tion of time spent in operations where logging and locking per-
form a lot of work is much smaller in this case.

The buffer manager optimizations still represent the most signifi-
cant win here, again because we are able to bypass the high over-
head of record creation. Looking at the detailed breakdown in
Figure 7 for the buffer manager optimization reveals something
surprising: changing from 8K to 32K pages (labelled “small
page”) provides almost a 14% reduction in the total instruction
count. This simple optimization — which serves to reduce the
frequency of page allocations and decrease B-tree depth — offers
a sizeable gain.

4.3.4  Instructions vs. Cycles
Having looked at the detailed breakdown of instruction counts in
the Payment and New Order transactions, we now compare the
fraction of time (cycles) spent in each phase of the New Order
transaction to the fraction of instructions used in each phase. The
results are shown in Figure 8. As we noted earlier, we do not
expect these two fractions to be identical for a given phase,
because cache misses and pipeline stalls (typically due to
branches) can cause some instructions to take more cycles than
others. For example, B-tree optimizations reduce cycles less than
they reduce instructions, because the Shore B-tree code overhead
we remove is mainly offset calculations with few cache misses.
Conversely, our residual “kernel” uses a larger fraction of cycles
than it does instructions, because it is branch-heavy, consisting
mostly of function calls. Similarly, logging uses significantly
more cycles because it touches a lot of memory creating and writ-
ing log records (disk I/O time is not included in either graph).
Finally, locking and the buffer manager consume about the same
percentage of cycles as they do instructions. 
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5. IMPLICATIONS FOR FUTURE OLTP 
ENGINES 
Given the performance results in the previous section, we revisit
our discussion of future OLTP designs from Section 2. Before
going into the detailed implications of our results for the design
of various database subsystems, we make two high level observa-
tions from our numbers:

• First, the benefit of stripping out any one of the components
of the system has a relatively small benefit on overall perfor-
mance. For example, our main memory optimizations
improved the performance of Shore by about 30%, which is
significant but unlikely to motivate the major database ven-
dors to re-engineer their systems. Similar gains would be
obtained by eliminating just latching or switching to a single-
threaded, one-transaction-at-a-time approach.

• The most significant gains are to be had when multiple opti-
mizations are applied. A fully stripped down system provides
a factor of twenty or more performance gain over out-of-the-
box Shore, which is truly significant. Note that such a system
can still provide transactional semantics, if only one transac-
tion is run at a time, all transactions are two phase, and recov-
ery is implemented by copying state from other nodes in the
network. Such a system is very, very different from what any
of the vendors currently offers, however.

5.1 Concurrency Control
Our experiments showed a significant contribution (about 19% of
cycles) of dynamic locking to total overhead. This suggests that
there is a large gain to be had by identifying scenarios, such as
application commutativity, or transaction-at-a-time processing,
that allow concurrency control to be turned off. However, there
are many DBMS applications which are not sufficiently well-
behaved or where running only one transaction at a time per site
will not work. In such cases, there is an interesting question as to
what concurrency control protocol is best. Twenty years ago, var-
ious researchers [KR81, ACL87] performed exhaustive simula-
tions that clearly showed the superiority of dynamic locking
relative to other concurrency control techniques. However, this
work assumed a disk-based load with disk stalls, which obviously
impacts the results significantly. It would be highly desirable to
redo these sorts of simulation studies with a main memory work-
load. We strongly suspect that some sort of optimistic concur-
rency control would be the prevailing option.

5.2 Multi-core Support
Given the increasing prevalence of many-core computers, an
interesting question is how future OLTP engines should deal with
multiple cores. One option is to run multiple transactions concur-
rently on separate cores within a single site (as it is done today);
of course, such parallelism requires latching and implies a num-
ber of resource allocation issues. Our experiments show that
although the performance overhead of latching is not particularly
high (10% of cycles in the dominant transaction, New Order), it
still remains an obstacle in achieving significant performance
improvements in OLTP. As technologies (such as transactional
memory [HM93]) for efficiently running highly concurrent pro-

grams on multicore machines mature and find their way into
products, it will be very interesting to revisit new implementa-
tions for latching and reassess the overhead of multithreading in
OLTP.

A second option is to use virtualization, either at the operating
system or DBMS level, to make it appear that each core is a sin-
gle-threaded machine. It is unclear what the performance implica-
tions of that approach would be, warranting a careful study of
such virtualization. A third option, complementary to the other
two, is to attempt to exploit intra-query parallelism, which may
be feasible even if the system only runs one transaction at a time.
However, the amount of intra-query parallelism available in a
typical OLTP transaction is likely to be limited. 

5.3 Replication Management
The traditional database wisdom is to support replication through
a log-shipping based active-passive scheme; namely, every object
has an “active” primary copy, to which all updates are first
directed. The log of changes is then spooled over the network to
one or more “passive” backup sites. Recovery logic rolls the
remote database forward from the log. This scheme has several
disadvantages. First, unless a form of two-phase commit is used,
the remote copies are not transactionally consistent with the pri-
mary. Hence, reads cannot be directed to replicas if transaction-
consistent reads are required. If reads are directed to replicas,
nothing can be said about the accuracy of the answers. A second
disadvantage is that failover is not instantaneous. Hence, the stall
during failures is longer than it needs to be. Third, it requires the
availability of a log; our experiments show that maintaining a log
takes about 20% of total cycles. Hence, we believe it is interest-
ing to consider alternatives to active-passive replication, such as
an active-active approach.

The main reason that active-passive replication with log shipping
has been used in the past is that the cost of rolling the log forward
has been assumed to be far lower than the cost of performing the
transaction logic on the replica. However, in a main memory
DBMS, the cost of a transaction is typically less than 1 msec,
requiring so few cycles that it is likely not much slower than
playing back a log. In this case, an alternate active-active archi-
tecture appears to make sense. In this case, all replicas are
“active” and the transaction is performed synchronously on all
replicas. The advantage of this approach is nearly instantaneous
failover and there is no requirement that updates be directed to a
primary copy first. Of course, in such a scenario, two-phase com-
mit will introduce substantial additional latency, suggesting that
techniques to avoid it are needed — perhaps by performing trans-
actions in timestamp order.

5.4 Weak Consistency
Most large web-oriented OLTP shops insist on replicas, usually
over a WAN, to achieve high availability and disaster recovery.
However, seemingly nobody is willing to pay for transactional
consistency over a WAN. As noted in Section 2, the common
refrain in web applications is “eventual consistency” [Bre00,
DHJ+07]. Typically, proponents of such approach advocate
resolving inconsistencies through non-technical means; for exam-
ple, it is cheaper to give a credit to a customer who complains



than to ensure 100% consistency. In other words, the replicas
eventually become consistent, presumably if the system is qui-
esced.

It should be clear that eventual consistency is impossible without
transaction consistency under a general workload. For example,
suppose transaction 1 commits at site 1 and aborts or is lost at site
2. Transaction 2 reads the result of transaction 1 and writes into
the database, causing the inconsistency to propagate and pollute
the system. That said, clearly, there must be workloads where
eventual consistency is achievable, and it would be an interesting
exercise to look for them, since, as noted above, our results sug-
gest that removing transactional support — locking and logging
— from a main memory system could yield a very high perfor-
mance database.

5.5 Cache-conscious B-trees
In our study we did not convert Shore B-trees to a “cache-con-
scious” format [RR99, RR00]. Such an alteration, at least on a
system without all of the other optimizations we present, would
have only a modest impact. Cache-conscious research on B-trees
targets cache misses that result from accessing key values stored
in the B-tree nodes. Our optimizations removed between 80% to
88% of the time spent in B-tree operations, without changing the
key access pattern. Switching from a stripped-down Shore to our
minimal-overhead kernel — which still accesses the same data —
removed three quarters of the remaining time. In other words, it
appears to be more important to optimize other components, such
as concurrency control and recovery, than to optimize data struc-
tures. However, once we strip a system down to a very basic ker-
nel, cache misses in the B-tree code may well be the new
bottleneck. In fact, it may be the case that other indexing struc-
tures, such as hash tables, perform better in this new environ-
ment. Again, these conjectures should be carefully tested.

6. RELATED WORK
There have been several studies of performance bottlenecks in
modern database systems. [BMK99] and [ADH+99] show the
increasing contribution of main memory data stalls to database
performance. [MSA+04] breaks down bottlenecks due to conten-
tion for various resources (such as locks, I/O synchronization, or
CPU) from the client’s point of view (which includes perceived
latency due to I/O stalls and preemptive scheduling of other con-
current queries). Unlike the work presented here, these papers
analyze complete databases and do not analyze performance per
database component. Benchmarking studies such as TPC-B
[Ano85] in the OLTP space and the Wisconsin Benchmark
[BDT83] in general SQL processing, also characterize the perfor-
mance of complete databases and not that of individual OLTP
components.

Additionally, there has been a large amount of work on main
memory databases. Work on main memory indexing structures
has included AVL trees [AHU74] and T-trees [LC86]. Other tech-
niques for main memory applicability appear in [BHT87]. Com-
plete systems include TimesTen [Tim07], DataBlitz [BBK+98],
and MARS [Eic87]. A survey of this area appears in [GS92].
However, none of this work attempts to isolate the components of
overhead, which is the major contribution of this paper.

7. CONCLUSIONS
We performed a performance study of Shore motivated by our
desire to understand where time is spent in modern database sys-
tems, and to help understand what the potential performance of
several recently proposed alternative database architectures might
be. By stripping out components of Shore, we were able to pro-
duce a system that could run our modified TPC-C benchmark
about 20 times faster than the original system (albeit with sub-
stantially reduced functionality!). We found that buffer manage-
ment and locking operations are the most significant contributors
to system overhead, but that logging and latching operations are
also significant. Based on these results, we make several interest-
ing observations. First, unless one strips out all of these compo-
nents, the performance of a main memory-optimized database (or
a database without transactions, or one without logging) is
unlikely to be much better than a conventional database where
most of the data fit into RAM. Second, when one does produce a
fully stripped down system — e.g., that is single threaded, imple-
ments recovery via copying state from other nodes in the net-
work, fits in memory, and uses reduced functionality transactions
— the performance is orders of magnitude better than an unmodi-
fied system. This suggests that recent proposals for stripped down
systems [WSA97, SMA+07] may be on to something.
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