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Abstract

In large datawarehousingervironments,it is often advantageous
to provide fast,approximateanswergo complex aggr@atequeries
basedon statisticalsummariesof the full data. In this paper we
demonstratehe difficulty of providing goodapproximateanswers
for join-queriesusingonly statistics(in particular samples)from
the baserelations. We proposejoin synopsesas an effective
solution for this problemand shav how precomputingjust one
join synopsidor eachrelationsufiicesto significantlyimprove the
quality of approximateanswersfor arbitrary querieswith foreign
key joins. We presenbptimalstratejiesfor allocatingthe available
spaceamongthe variousjoin synopsesvhenthe querywork load
is known andidentify heuristicsfor the commoncasewhen the
work load is not known. We also presentefficient algorithmsfor
incrementallymaintainingjoin synopse the presencef updates
to the baserelations.Our extensie setof experimentonthe TPC-
D benchmarldatabasshaw the effectivenesf join synopsesind
variousothertechniquegproposedn this paper

1 Intr oduction

Traditionalqueryprocessindnasfocusedsolelyon providing
exactanswergo queriesjn amannethatseekgo minimize
responséime andmaximizethroughput.However, in large
data recording and warehousingervironments, providing
an exact answerto a complex query cantake minutes,or
even hours,dueto the amountof computationanddisk I/O
required.

There are a number of scenariosin which an exact
answermay not be required,and a usermay prefera fast,
approximateanswer For example,during somedrill-down
guerysequencem ad-hocdatamining, initial queriesin the
sequencare usedsolely to determinewhat the interesting

*This work was done while the authorwas at Bell Labs. Current
affiliation is Epiphary Inc., 2300 Geng Road, Suite 200, Palo Alto CA
94303.

gueriesare [HHW97]. An approximateanswercan also
providefeedbaclonhow well-posedaqueryis. Moreover, it
canprovide atentatve answelto aquerywhenthebasedata
is unavailable. Anotherexampleis whenthe queryrequests
numericalanswersandthefull precisionof theexactanswer
is notneedede.g.,atotal, average or percentagéor which
only thefirst few digits of precisionare of interest(suchas
theleadingfew digits of atotalin themillions, or thenearest
percentileof a percentage). Finally, techniquesfor fast
approximateanswerscanalsobe usedin a moretraditional
role within the queryoptimizerto estimateplan costs;such
an applicationdemandsvery fast responsetiimes but not
exactanswers.

Motivatedby theabovereasonswe studytheissueof pro-
viding approximateanswersto queriesin this paper Our
goalis to provide anestimatedesponsén ordersof magni-
tudelesstime thanthe time to computean exactanswey by
avoiding or minimizing the numberof accesseto the base
data. Our work is tailoredto the typical datawarehousing
ervironments,which have a few “central” fact tablescon-
nectedvia foreign-key relationshipgo multiple dimension
tables.In sucha scenariojt is very commonto poseaggre-
gatequerieghatjoin thefacttablewith thedimensiontables
on their respectie foreign-keys. For example,13 of the 17
queriesin the TPC-D benchmarkinvolve foreign-key joins.
In this paper we presennaovel techniquedor providing ap-
proximateanswerdgo suchqueries'.

We shaw, boththeoreticallyandempirically, thatschemes
for providing approximatgoin aggreyateshatrely onusing
randomsamplesof baserelationsalonesuffer from serious
disadwantageqSection3). Instead,we proposethe use of
precomputedsamplesof a small set of distinguishedoins
—referredto asjoin synopses-in orderto computeapprox-
imate join aggreyates(Section4). Our key contribution is
to shaw that for querieswith foreign-key joins, it is pos-
sible to provide good quality approximatejoin aggregates
usinga very small numberof join synopsesAn important
issuearising out of the use of several setsof statisticsis
the careful allocationof a limited amountof spaceamong

IWwe use the term “approximate join aggrgates” to refer to such
answers.



them. Whena queryworkloadcharacterizatiofs available,
we shov how to designan optimal allocationfor join syn-
opsesthat minimizesthe overall error in the approximate
answerscomputed. We discussheuristicallocation strate-
giesthatwork well whenthe workloadis not known (Sec-
tion 5). A critical issuein approximatequeryanswerings
that of providing confidenceboundsfor the answers.Such
boundsgive the uservaluablefeedbackon how reliablean
answeilis. In additionto discussindhow traditionalmethods
for providing confidencéboundgfor example basedn Ho-
effding boundsor theCentralLimit TheorenfHaa97) apply
to join synopseswe proposea novel empirical technique
for computingconfidenceboundsbasedon extracting sub-
samplefrom sampleqSection6). We alsoshov how join
synopsegan be incrementallymaintainedin the presence
of updateqSection7). Finally, we presenthe resultsof a
detailedexperimentalstudyon the performancef thetech-
nigueswe propose.Usingthe TPC-D benchmarkywe shav
the advantagesf join synopsesver samplesof baserela-
tionsin computingapproximategoin aggreyateswith good
confidencebounds. We also shov that join synopsesan
be maintainedefficiently andwith minimal overhead{Sec-
tion 8).

Previous work relatedto approximatequery answering
is presentedn Section9. Due to limited space,we omit
the proofs of all theoreticalresults from this paperand
refer the readerto a full versionof this paperfor all the
details|]AGPR99k.

The researclhin this paperwas conductedas part of our
efforts to developanefficientdecisionsupportsystembased
onapproximateueryansweringgalledAqua[GMP974. A
brief introductionof Aquais presentedhn the next section.

2 The Aqua System

The goal of Aquais to improve responsdimesfor queries
by avoiding accesse® the original dataaltogetherInstead,
Aqua maintainssmallersized statisticalsummariescalled
synopsenthewarehous@nduseghemto answeigueries.
Currently thesestatisticstake the form of varioustypesof
samplesand histogramson the datain the datawarehouse.
A key featureof Aquais thatthesystenmprovidesprobabilis-
tic error/confidencdoundson theanswerbasedn the Ho-
effding andChebychg formulas[AGPR99h. Currently the
systemhandlesarbitrarily complex SQL queriesapplying
aggrejateoperationgfavg, sum, count, etc. ) over
thedatain thewarehouse.
Aquahasthreekey components:

e Statistics Collection: This componentof Aqua is
responsibldor collectingall the synopsesvhich Aqua
usesto answerqueriesposedby the user In this paper
we proposenew techniquego augmenthis component
to accuratelyanswemulti-way foreignkey join queries
(Sectiord).

Approx. Answers
Conf. Bounds

Queries

Aqua

New
Data T

Data Warehouse

Figurel: The Aquaarchitecture.

e Query Rewriting: Aquaachievesresponsdime speed
upsby rewriting queriesposedby the userto insteaduse
the synopses. This moduleis responsiblefor parsing
the input SQL query and generatingan appropriately
translatedquery Additionally, the rewriting involves
appropriatescaling of certain operatorsto take into
accountthe size of the synopsesvis a vis the original
data.

e Maintenance: This components responsibldor keep-
ing the synopsesup to datein the presenceof updates
to the underlying data. In Section7, we extend our
prior work and proposenovel techniquedor incremen-
tally maintainingjoin synopses.

The high-level architectureof the Aqua systemis shavn
in Figurel. It is designedasa softwaretool thatcansit atop
ary commerciaDBMS (currently Oracle)managinga data
warehouselnitially, Aquatakesasaninput from the ware-
houseadministratotthe spaceavailablefor synopsesandif
available,hintsonimportantqueryanddatacharacteristic$.
This informationis then usedby the statisticscollectorto
precompute suitablesetof synopsesnthedata,whichare
storedasregularrelationsin the DBMS.

Figure 2 shawvs a screenshot of the currentweb user
interfacefor Aqua. It shows the actual and approximate
answersalong with error boundsfor a 4-way join query
The good quality of the approximateanswersis in part
dueto the useof join synopsego answerforeign key join
queries. The figure also shows the timestaken to generate
the two answers. Further details on Aqua are available
in [GMP97a AGPR99h AGPR99&

In the rest of the paper we motivate the need for
join synopsesand presentoptimal allocationschemesand
maintenanceéechniquegor them.

3  The Problemwith Joins

A naturalsetof synopsedor an approximatequeryengine
wouldincludeuniformrandomsample®f eachbaserelation
in the database.We refer to theseas basesamples The
use of basesamplesto estimatethe output of a join of

2Work is alsoin progresgo automaticallyextractthis informationfrom
aqueryworkloadandadaptthe statisticsdynamically
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AQUA: Approximate Query Answering System

SELECT N_NAME, COUNT(*),
FROM REGION, NATION, CUSTOMER, OORDER
WHERE C_CUSTKEY = O_CUSTKEY AND
C_NATIONKEY = N_NATIONKEY AND
N_REGIONKEY = R_REGIONKEY AND
AME = *ASIA’

. BN
SQL Query: GROUP BY N_NAME;

AVG (0_TOTALPRICE)

Submit
Clear|

Queries:

T A2 o

B |

ACTUAL
ANSWER

APPROXIMATE
ANSWER

'COUNT(*) AVG(O_TOTALPRICE)
CHINA 18490 144683.3265
INDIA 17639 1442257318
INDONESIA (17775 145205.5079
APAN 18219 144787.2551
VIETNAM 17913 1435883831

N_NAME

5 row(s) processed.

n_name |count(*)errB1 avg(o_totalprice) errB2
CHINA 18120 3700 151200 9000
INDIA 17840 (3700 [143100 8300
INDONESIA 17060 3700 (151800 9100
19340 (3700 |147200 8900
17780 (3700 [141200 9000

APAN
VIETNAM

5 row(s) processed.

Time Taken (secs) = 655.93

Time Taken (secs) = 15.95
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| %0 0@ @ 2

Figure2: AquaUserInterface

two or morerelations,however, canproducea poor quality
approximationThisis for thefollowing two reasons:

1. Non-Uniform Result Sample: In general,the join of
two uniform random base samplesis not a uniform
randomsampleof the outputof the join. In mostcases,
this non-uniformity significantly degradesthe accurag
of theanswerandthe confidencéounds.

2. Small Join Result Sizes: The join of two random
samplestypically hasvery few tuples, even when the
actualjoin selectvity is fairly high. This canleadto both
inaccurateanswersand very poor confidencebounds
sincethey critically dependonthe queryresultsize.

Considerthe first problem. In orderfor the join of the
basesamplego be a uniform randomsampleof the actual
join, the probability of arny two joined tuplesto be in the
former shouldbe the sameastheir probability in the latter.
(This is a necessarybut not a sufficient condition.) We will
usea simplecounterexampleto shav thatthisis notalways
thecase.

Considetthe(equality)join of two relationsR andS onan
attribute X. Thedistributionof X valuesin thetwo relations
are given in Figure 3. The edgesconnectjoining tuples.
Considefjoining basesampledrom R and.S. Assumethat
eachtupleis selectedor abasesamplewith probability1 /7.
From Figure 3, we seethatal anda2 arein thejoin if and
only if both a tuplesare selectedirom R andthe onea
tupleis selectedrom S. This occurswith probability 1/72,
sincethereare threetuplesthat mustbe selected. On the
otherhand,al andbl arein thejoin if andonly if the four
tuplesincidentto theseedgesareselected This occurswith

Figure3: Joinof samplegs not a sampleof joins

probability only 1/r*. This contrastswith the fact that in
a uniform randomsampleof the actualjoin, the probability
thatboth al anda2 areselectedequalsthe probability that
bothal andbl areselected.

We now highlight the secondproblem of small output
sizes. Considertwo relations,A and B, andbasesamples
comprisingof 1% of eachrelation. The size of the foreign
key join betweend andB is equalto thesizeof A. However
the expectedsizeof the join of the basesampleds .01% of
the size of A, sincefor eachtuplein A, thereis only one
tuplein B thatjoins with it, andthattupleis in the sample
for B with only a 1% probability. In general considera -
way foreign key join and & basesampleseachcomprising
1/r of thetuplesin their respectie baserelations.Thenthe
expectedsize of the join of the basesampless 1/r* of the
size of the actualjoin. In factthe bestknown confidence
interval boundsfor approximatejoin aggregyatesbasedon
basesamplesarequite pessimistiqHaa97.

Thus, it is in generalimpossibleto producegoodquality
approximateanswersusing sampleson the baserelations
alone,afactthatwe furtherdemonstratén our experiments.
Sincenearlyall queriesin the warehousingontext involve



complex querieswith large numberof (foreign-key) joins,
it is critical to solve this problem. In the next sectionwe
provide a solutionfor this problem.

4  Join Synopses

In this sectionwe presenta practicaland effective solution
for producingapproximatgoin aggreatesof good quality.
At a high level, we proposeto precomputesamplesof join
results,making quality answerspossibleeven on comple
joins. A naiveway to precomputesuchsampless to execute
all possiblejoin queriesof interestand collect samplesof
their results. However, this is not feasiblesinceit is too
expensve to computeand maintain. Our main contribution
is to shav thatby computingsample®of theresultsof asmall
setof distinguishedoins, we canobtainrandomsamplesof
all possiblgoinsin theschemaWereferto sampleof these
distinguishedoins asjoin synopses Our techniqueworks
for the starand snonflake schemagypically found in data
warehousingSch97. More preciselywe proposeasolution
for querieswith only foreignkey joins, which aredefinedas
follows.

Definition 4.1 Foreign Key Join: A 2-wayjoin r; X rs,
r1 # ro, is a foreign key join if the join attribute is a
foreign key in vy (i.e., a key in 73). For k > 3, a k-
way join is a k-way foreignkey join if there is an ordering
r1,T2,- .., 7 Of therelationsbeingjoinedthat satisfieghe
following property: for i = 2,3,...,k, s;—1 X r;isa 2-
way foreignkey join, wheee s;_; is therelation obtainedby
joining T1,72,...,Ti—1.

In orderto developthis solution,we modelthe database
schemaby a graphwith a vertex for eachbaserelationand
a directededgefrom a vertex u to a vertex v # wu if there
are one or more attributesin «’s relation that constitutea
foreign key for v’s relation. The edgeis labeledwith the
foreign key. Figure 4 shows the correspondinggraphfor
the TPC-D schemaWe restrictour attentionin this work to
agyclic (schema-)graphsyhicharecommonin warehousing
ervironments.

From the figure, it canbe seenthatC X N and L X
O X C are2-way and3-way foreignkey joins respectiely.
Note thattwo 2-way foreignkey joins involving a common
relationdoesnotimply thata 3-way join amongthemwould
alsobeaforeignkey join. For example,thoughC X N and
S X N areforeignkey joins, C X N X S is notaforeign
key join, by Definition4.1.

The key result we prove is that there is a one-one
correspondencbetweena tuplein arelationr anda tuple
in the output of any foreign key join involving r and the
relationscorrespondingo oneor moreof its descendantis
the graph. This providesus with the technicaltool for join
synopsesasampleS,. of arelationr canbeusedto produce
anotherrelation 7 (S, )—called a join synopsisof r—that
canbeusedto providerandomsample®f anyjoin involving
r andoneor more of its descendants

=\
supp

o part = ps
cust sup
part
C P S
nation
nation
N
l region
R

Figure4: Directedgraphfor the TPC-D schema.

We now moveto thetechnicaldevelopmenbf theresults.
Considerthe directedagyclic graphG correspondingo the
schemaof a databaseWe shav two key lemmasaboutthe
propertieof suchgraphs.

Lemma 4.1 Thesubgaphof G onthek nodesn anyk-way
foreignkey join mustbea connectedgubgaphwith a single
rootnode

We denotethe relationcorrespondingo the root nodeas
the sourcerelationfor the k-way foreignkey join.

Lemma4.2 Theris a 1-1 correspondencéetweertuples
in arelationr; andtuplesin anyk-wayforeignkey join with
sourcerelationr;.

From Lemmad4.1, we have that eachnode can be the
sourcerelationonly for k-way foreign key joins involving
its descendantin G. For eachrelationr, thereis some
maximumforeign key join (i.e., having the largesthnumber
of relations)with r asthe sourcerelation. For example,in
Figure4,C X N X R is themaximumforeignkey join with
sourcerelationC'.

Definition 4.2 Join synopses: For eat node u in G,
correspondingo a relationry, define 7 (u) to betheoutput
of the maximumforeign key join 7, X ry X ... X 7, with
source ry. (If uw hasno descendantéin G, thenk = 1
and J(u) = r1.) Let S, be a uniform randomsample
of r;. Definea join synopsis 7(S,), to be the output of
Sy Xy M- .- M .. Thejoin synopse®sf a schemaconsists
of 7(Sy) forall uin G. =

To emphasizéhe samplingnatureof join synopsesywe will
sometimeseferto themasjoin samples

For example,in the TPC-D schemathejoin synopsisor
R is simply a sampleof R whereador C it is thejoin of NV,
R, anda sampleof C'. Next, we shav thatthe join synopsis
of arelationcanbeusedto obtaina uniformrandomsample
for alarge setof queries.



Theorem4.3 Letry X --- X rg, k > 2, bean arbitrary
k-way foreign key join, with source relationr;. Letwu be
thenodein G correspondingo r1, andlet S, bea uniform
randomsampleof r;. Let A be the set of attributesin
r1,...,7,. Thenthefollowing aretrue:

e J(S,) is a uniform randomsampleof 7 (u), with |:S,|
tuples.(FromLemmad.2.)

o7y X --o X =7muaT(u), i€, theprojectionof 7 (u)
on the attributesin rq,...,r. (Trivially true from the
definitionof 7 (u) givenin theabovedefinition.)

o 747 (S,) isauniformrandomsampleofry; X --- X 7y,
(= maJ (u)), with |S,| tuples. (Followsfrom the above
two statements.)

Thuswe canextractfrom our synopsisa uniformrandom
sampleof the outputof ary k-way foreignkey join, & > 2.
For example,the join synopsison L in the TPC-D schema
can be usedto obtain a sampleof ary join involving L
(which s truefor mostqueriesin the benchmark) The next
lemmashaws that a single join synopsiscan be usedfor a
large numberof distinct joins, especiallyfor the starlike
schemasommonin datawarehousesHere,two joins are
distinctif they do notjoin the samesetof relations.

Lemma 4.4 From a singlejoin synopsidor a nodewhose
maximunforeignkey join hask relations,we canextracta
uniformrandomsampleof the outputof betweens — 1 and
2#—1 _ 1 distinctforeignkey joins.

Note that sinceLemma4.2 fails to apply in generalfor
ary relationotherthanthe sourcerelation,thejoining tuples
in ary relationr otherthanthe sourcerelationwill notin
generabeauniformrandomsampleof . Thusdistinctjoin
synopsesreneededor eachnode/relation.

Sincetuplesin join synopsesretheresultsof multi-way
joins,apossibleconcerristhatthey will betoolargebecause
they have mary columns. To reducethe columnsstored
for tuplesin join synopseswe can eliminate redundant
columng(for example join columns)andonly storecolumns
of interest. Small relationscan be storedin their entirety
ratherthan as part of join synopses.To further reducethe
spacerequiredfor join synopseswe canrenormalizethe
tuplesin a join synopsisinto its constituentrelationsand
remove duplicates.To theextentthatforeignkeys aremary-
to-one thiswill reducethespacealthoughthekey will then
bereplicated.Of coursewith renormalizationwhenatuple
in S, is deleted,one hasto deleteary joining tuplesin
the constituentrelationsas well. This can be done either
immediatelyor in alazy fashionin a batch. The following
lemmaplacesa boundon the size of a renormalizedjoin
Synopsis.

Lemma4.5 For any nodeu whosemaximumforeign key
join is a k-wayjoin, thenumberof tuplesin its renormalized
join synopsis7 (S,,) is at mostk|S,,|.

Example 4.1 Considerthe TPC-D scheman Figure4. In
the TPC-D benchmarkdatabasethe relations N and R,
correspondingo Nation and Region, have 25 and5 tuples
in them,respectiely. Therefore we canstorethemin their
entiretywithout consideringany sampledor them. We can
thereforeremove themfrom the graph. We areleft with the
nodesL, PS,0,C, P, andS. For eachof theserelations,
the systemneedsto storea join synopsiscorrespondingo
thejoin for which therelationis a source.

We now briefly highlight the spaceoverheadfor join
synopsesn TPC-D. The numberof relationsin the maxi-
mumforeign key join correspondindo eachof thesenodes
(denotedby the letter k above) is 6,3,2,1,1, and 1 for
L,PS,0,C,P andS respectiely. Let us now make two
simplifying assumptions(1) the size of the tuplesin each
baserelation is the same; and (2) the numberof tuples,
n, allocatedto eachof the join synopsess the same. By
Lemma4.5, the total numberof tuplesin the synopsiss at
most|N |+ |R| + ), ku|Su| = 30 + 14n. Thuswe canob-
tain, for everypossiblgoin in the TPC-D schemaa uniform
randomsampleof 1% of ead join result from a collection
of join synopseshatin total uselessthan15% of the space
neededor the original databaseNote alsothatwe canfur-
therreducethesizeof thejoin synopsesy takingadwantage
of thefactthatmary foreignkeys aremary-to-one. "

To summarizewe have showvn thatit is possibleto create
compactjoin synopsef a schemawith foreign key joins
suchthatwe canobtainarandomsamplef ary join in the
schema.ln the next section,we presenta detailedanalysis
of decidingthe sizeof thejoin synopsesakinginto account
tuplesize,queryfrequeng, etc.

5 Allocation

In this section,we presentoptimal stratgiesfor allocating
the available spaceamongthe variousjoin synopsesvhen
certain propertiesof the query work load are known and
identify heuristicsfor the commoncasewhensuchproper
tiesarenotknown.

5.1 Optimal strategies

We considerthe following high-level characterizatiorof a
set, S, of querieswith selects,aggrejates,group bys and
foreignkey joins. For eachrelation, R;, we determinethe
fraction, f;, of the queriesin S for which R; is eitherthe
sourcerelationin aforeignkey join or the solerelationin a
querywithout joins. For example,for the 17 queriesin the
TPC-D benchmark,L is the sourceor solerelationfor 14
gueriesand PS is the sourceor solerelationfor 3 queries,
andhencethe fraction f; equals14/17 for L, equals3/17
for PS, andequalszerofor all otherrelations.

We seekto selectjoin synopsigjoin sample)sizesso as
to minimize the averagerelative error over a collection of
aggrejatequeries,basedon this characterizatiorof the set
of queries.This canbe doneanalyticallyby minimizing the



averagerelative errorboundgi.e., confidencentervals)over
thecollection. Althoughthis seemgo imply thattheoptimal
samplesizeallocationis specificto thetype of errorbounds
used,we will shav thata large classof error boundsshare
a commonproperty that we will exploit for this purpose.
Namely we obsenethatthe errorboundsfor COUNT, SUM,
and AvG basedon the commonly-usedHoeffding bounds
and/or Chebychg bounds,including the new approaches
discussedn Section6, all sharethe propertythatthe error
boundsare inversely proportionalto 1/n, wheren is the
numberof tuplesin the (join) sample. (Details on these
boundsarediscussedn Section6.)

Thusthe averagerelative error boundover the queriesis
proportionatlto

fi
> (1)
2w
wheren; is thenumberof tuplesallocatedo thejoin sample
for sourcerelation R;.

Our goalis to selectthen; soasto minimize Equationl
for a given bound, N, on the total memory allotted for
join synopses. For eachsourcerelation R;, let s; be the
size of a singlejoin synopsistuple for . Thenwe require
>, nisi < N. We show thatthe optimalallocationselects
n; to beproportionalto (f;/s;)?/3:

Theorem5.1 Given N, and f; and s; for all relationsR;,

taking
\ 2/3
Si

whee N' = N/(3; #;2/3s;1/3), minimizesEquation 1
subjectto . ngs; < N.

Note that the above analysishas ignored predicatese-
lectivities. We obsenre that the relative error boundsfor
COUNT, SuM, and AvG basedon the commonly-usedo-
effding boundsand/or Chebychg bounds, including our
new approachesareeitherproportionako 1/, /gn or propor
tionalto 1/¢+/n, whereq is theselectvity. In theabsencef
a characterizatiomof the querywork loadin termsof pred-
icateselectvities, we assumehatthe selectvities areinde-
pendenbf therelations.(Incorporatinga selectvity charac-
terizationcanreadilybedone,althoughthe analysisis more
detailed.) Underthis assumptionpur analysisabove holds
goodfor ary mix of selectvities.

Finally, note that the sample sizes can be adaptedto
a changingquery load by maintainingthe frequenciesf;,
andreallocatingamongthe join samplesasthe frequencies
change.

5.2 Heuristic strategies

We next considethreestrateyiesfor allocatingjoin synopses
thatcanbeusedin theabsenc®f querywork loadinforma-
tion. Thesecanbe usedas startingpointsfor the adaptve
procedureproposedibore.

¢ Egdindividesupthespacallotted, NV, equallyamongst
therelations.Eachrelationdevotesall its allocatedspace
to join synopses.(For relationswith no descendantm
theschemathisequate$o asampleof thebaserelation.)

e Cubedin dividesup the spaceamongsthe relationsin
proportionto the cuberoot of their join synopsistuple
sizes.Eachrelationdevotesall its allocatedspaceo join
synopses.

e PropJin divides up the spaceamongstthe relations
in proportionto their join synopsistuple sizes. Each
relationdevotesall its allocatedspaceto join synopses,
and henceeachjoin synopsishasthe samenumberof
tuples.

Thus for EqJin, Cubedin, and PropJin, the numberof
tuplesfor ajoin synopsiswith tuplesizes; is inverselypro-
portional to s;, sf/3, and 1, respectiely. Whenthe error
boundsare inversely proportionalto 1/n, Cubedin mini-

mizesthe averagerelative error boundswhenall frequen-
ciesf; areassumedo beequal(Theorenb.1),andPropJin

minimizesthemaximunerrorboundwhenall frequencieg;

arenonzero.

Theseallocation stratgies using join samplescan be
comparedagainst similar strategjies that use only base
samples:(a) EqBaseis like Eqdin on basesamples,i.e.,
it devotesall its allocatedspaceto samplesof the base
relations;(b) CubeBasas like Cubedin on basesamples;
and(c) PropBasss like PropJin on basesamples.

The experimentakesultsin Section8 quantify the advan-
tage of the join samplesstratgjies over the basesamples
stratgyiesfor representatie queries.

6 ImprovedAccuracy Measures

A critical issuein approximatequeryansweringof aggreja-
tion queriesis that of providing confidenceboundsfor the
answers. There are several popular methodsfor deriving

confidenceboundsfor approximateanswersobtainedfrom

samplestheseare basedon CentralLimit Theorem(CLT)

bounds,Chebych& bounds,and/orHoeffding bounds. An

importantadwantageof usingjoin synopsess that queries
with foreignkey joins canbetreatedasquerieswithoutjoins
(i.e., single-tablequeries). Known confidenceboundsfor

single-tablequeriesare much fasterto computeand much
more accuratethan the confidenceboundsfor multi-table
guerieg(seee.g.,[Haa9q).

In thefull papefAGPR99H?, we summarizenethodgor
single-tablequeriesandthenpresenta detailedanalysisthat
demonstratethe precisetrade-ofsamongthesemethodsas
well asa methodbasedon subsamplingwhich we describe
next.

Considerthe following estimationapproach,which we
call chunking

3Seealso[GM994 for extensionsandfurtheranalysis.



1. Partition the sampledtuplesin a join synopsisinto &
subsetgsubsamples)which we call “chunks”, andfor
eachchunk j, computean estimatoy e;, basedon the
samplepointsin thechunk.

2. Reportanestimateanda boundbasedonthee;.

Previous work (see,e.g.,[AMS96]) hasshavn that confi-
dencebounddfor anestimatorcanbeimprovedby repeating
an estimationproceduremary times, and then applying a
chunking-like approach. We extend this previous work as
follows.

o Within thegenerathunkingframework, we proposeand
explore (analytically and experimentally)a numberof
alternatve proceduredor reportingan estimateandan
errorboundbasedon the chunks,including varying the
numberof chunks.We consideitwo possiblechoicesor
reportinganoverall estimatee: takingthe averageof the
e; andtakingthemedianof thee;.

e Whereagrevious work on taking the medianhasbeen
asymptoticin nature,we show the precise(i.e., non-
asymptotic)trade-ofs for whenthe guaranteedounds
for the median improve upon the bounds with no
chunking,andfor the optimal numberof chunksto use
for confidenceprobabilitiesof practicalinterest.

¢ We proposeandexplorethe useof the chunkestimators
in generatingempiricalerrorbounds asdescribechext.

Using chunking for empirical error bounds: Of-
ten, confidenceboundsderived analytically are overly pes-
simistic: the estimatedansweris closerto the exactanswer
moreoftenthanindicatedby the analyticalbound. A com-
monapproachakento verify thisis to conductmultiple tri-
als of an experimenton variousdatasets. However, this is
not entirely satishctory asthe datasetsof interestin some
applicationsmay not exhibit the good behaior of the data
setsusedin thestudy

We proposechunkingasa meango reporton multiple ex-
perimentgunontheactualqueryanddata Eachsubsample
is its own experimenton the actualqueryanddata,andthere
arevariouspossibilitieson how to reporttheseresultsto the
user In thefull paper[AGPR99B, we studythe effective-
nessof reportinga CLT boundusing the samplevariance
of the chunkestimatorspr alternatvely, reportingthe min-
imum and maximumof the chunk estimators.Otheralter
nativesincludereportingvariousquantilesof the chunkes-
timators. Thefeedbacko the useris intuitively of theform:
k independenéexperimentswererun for your query all (or
say 90%) of which fell within therange[z, y], with the av-
erage(or median)beinge. Our experimentsconfirm that
theseempiricalboundsarea goodcomplimentto traditional
guaranteethounds.

7 Maintenanceof Join Synopses

In thissectionwe focusonthemaintenancef join synopses
whenthe underlyingbaserelationsare being updated(we
considerboth insertionsand deletions. The techniqueswve
proposearesimpleto implementandrequireonly infrequent
accesdo thebaserelations.

Our algorithmfor maintaininga join synopsis7 (S,) for
eachu is asfollows. Let p, be the currentprobability for
includinganewly arriving tuplefor relationu in therandom
sampleS,,. (This probability is typically the ratio of the
numberof tuplesin S,, to the numberof tuplesin ».) Onan
insertof anew tupler into a baserelationcorrespondingo
anodeu in G, wedothefollowing. Letu X ro X --- X 7,
bethemaximumforeignkey join with sourceu. (1) We add
T to S, with probability p,,. (2) If 7 is addedto S, we
addto J(S,) thetuple {7} X ry X ... X r,. This can
be computedby performingat mostx — 1 look-upsto the
basedata,oneeachin ry,...,r,. (For ary key alreadyin
J(Su), thelook-upsfor it or ary of its “descendantsare
notneeded.)3) If 7 isaddedo S, andS,, exceedsts target
size,thenselectuniformly atrandomatupler’ to evict from
S». Removethetuplein 7 (S,) correspondingo 7.

On a deleteof a tuple 7 from u, we first determineif 7
isin S,. If 7isin S,, we deleteit from S,, andremove
thetuplein 7 (S,) correspondingo r. As in [GMP971, if
the samplebecomegoo smalldueto mary deletionsto the
samplewe repopulatehe sampleby rescanningelationu.

Note that this algorithm only performslook-upsto the
basedatawith (small) probability p,,. Also, whenatupleis
insertednto abaserelationu, we neverupdatgoin synopses
for any ancestor®f u. Suchupdatesvould be costly, since
theseoperationswould be performedfor every insertand
for eachancestorof u. Instead,we rely on the integrity
constraintdo avoid thesecostly updates.

Theorem 7.1 The above algorithm properly maintainsall
S, asuniformrandomsamplesf » and properly maintains
all join synopses7 (S.).

We assumethat updatesmay be appliedin a “batch”
mode. In suchenvironments,join synopsescan be kept
effectively up-to-dateat all timeswithout any concurreng
bottleneck.In anonline environmentin which updatesand
gueriesintermix, an approximateansweringsystemcannot
afford to maintainup-to-datesynopseshatrequireexamin-
ing every tuple (e.g., to find the minimum and maximum
value of an attribute), without creatinga concurreng bot-
tleneck. In suchenvironments,maintenances performed
only periodically Approximateanswergdependingon syn-
opseghatrequireexaminingevery tuplewould nottake into
accountthe mostrecenttrendsin the data(i.e., thoseoccur
ring sincemaintenancevaslast performed),and hencethe
accurag guaranteewould bewealened.Notethatthetech-
niguesdescribedn this sectioncanalsobe usedto compute
ajoin synopsisrom scratchin limited storagejn onescan



Tablel: Feature®f relationsin the TPC-Dbenchmark.

TableName # of Columns | Cardinality
Customer 8 45K
Lineitem 16 1800K
Nation 4 25
Order 9 450K
Part 9 60K
Partsupplier 5 240K
Region 3 5
Supplier 7 3K

of the basedatafollowed by indexed look-upson a small
fractionof thekeys.

8 Experimental Evaluation

In this section,we presentthe resultsof an experimental
evaluationof the techniquegproposedn this paper Using
datafrom the TPC-D benchmarkwe shaw the effectiveness
of our approachin providing highly accurateanswersfor
approximatgoin aggrejates.

We begin this section by describingthe experimental
testbed. We then presentresults from two classesof
experiments—accuracy experimentsand maintenanceex-
perimentsin theaccurag experimentsywe comparetheac-
curag of techniqguedbasedon join synopseso thatof tech-
niguesbasedon basesamples.The two key parametersn
this study are query selectvity andtotal spaceallocatedto
precomputegummariegsummarysize). We first compare
the techniquedor a fixed selectvity andvarying summary
sizeandthencomparethe techniquedor a fixed summary
size and varying selectvities. In the maintenancexperi-
ments,we studythe costof keepingthe join synopsesip to
datein the presencef insertions/deletionto the underlying
data. We show that join synopsesan be maintainedwith
very little overheadevenwhenupdatessignificantlychange
the characteristicef theunderlyingdata.

8.1 Experimental testbed

We ranthetestson the TPC-Ddecisionsupportbenchmark.
We used a scale factor of 0.3 for generatingour test
data. This resultsin a databasehat is approximately300
megabytes. Table 1 summarizeghe importantfeaturesof
theeightrelationsin the TPC-Ddatabase.

Our experimentswere run on a lightly loaded296MHz
UltraSFRARC-1lI machinehaving 256 megabytesof memory
andrunning Solaris5.6. All datawaskepton a local disk
with a streaminghroughputof about5MB/second.

Query model: Thequeryusedfor theaccurag experiments
is basedon query @5 in the TPC-D benchmarkand is
an aggrejatethat is computedon the join of Lineitem
Customer , Order , Supplier , Nation andRegion .
Of the six relationsinvolvedin the join, the Nation and

Region relationsare sampledin their entirety by Aqua
becaus®f theirlow cardinality This effectively reduceghe
queryto a (still complex) four-way join query.

The SQL statemenfor the queryis givenin Figure 5.
It computesthe average price of productsdelivered by
suppliersin a nation to customerswho are in the same
nation. The selectconditionstake three input parameters
— region , startdate and enddate . Theserestrict
suppliersand customergo be within a specificregion and
focuson businessconductedwithin a specifictime interval.
In the following experimentswe will vary one or more of
theseparameterso studythe performancdor variousquery
selectvities.

In this study we have focusedonly onthe hardproblemof
computingapproximateaggrejateson multi-way joins. Of
coursepursamplingresultsextendto thesimplecaseof sin-
gle tableaggreyates.Thus,dueto spaceconstraintswe do
notshaw ary resultsfor thesingletablecase Besidesthose
resultsqualitatively mirror the onespresentedn the context
of online aggregationfor singletableaggreyateHHW97].

Spaceallocation schemes: Recall from Section5 that
we proposeda numberof schemedor allocatinga given
amountof summaryspaceto enableapproximategueryan-
swering. For the casewhere certain characterization®f
the query mix were known, we presentedptimal alloca-
tion stratgiesto minimize overall error. However, for this
experimentalstudy we assumehe more realistic scenario
wherethisinformationis unavailable. Thus,we studythesix
spaceallocationschemegproposedn Section5.2, namely
EquiBase CubeBasg PropBase Equidin, Cubedin and
PropJin. For the purposesof this experiment,we focus
on the four major relationsusedin Q,, and allocatebase
samplesandjoin synopsenly on thoserelations. There-
fore, the basesampling schemeddivide up the summary
spaceamongsampleof Lineitem , Customer , Order
and Supplier , whereasthe join synopsesschemedis-
tribute the summaryspaceto join synopsegor Lineitem
(which includescolumnsfrom Customer , Order , and
Supplier ), for Customer (whichincludescolumnsfrom
Order ), for Order (whosgoin synopsigs justabasesam-
ple),andfor Supplier  (whosejoin synopsids alsoabase
sample).

Recall that PropJin gives an equal number of tuples
to the varioussamplesvhereasEquidin dividesthe space
equally Thus, among the various schemes,the source
relationin the 4-way join in Q,, Lineitem , is allocated
themostspaceby PropJin sinceit hasthelargesttupleand
theleastspaceby Equidin, while Cubedin allocatespace
in betweenthesetwo extremes. Lik ewise, amongthe base
sampleschemesPropBaseallocatesthe most spaceto the
basesampleof Lineitem , followedin orderby CubeBase
andEquiBase To avoid clutterin the graphshatfollow, we
do notplot Cubedin andCubeBas@ndonly shav numbers
for the otherfour schemes.They cover the entire rangeof
performancdor the differentschemes.



and r _name = [region] and o_orderdate

select avg(l _extendedprice) from customer, order, lineitem, supplier, nation, region
where c_custkey = o_custkey and o._orderkey = | _orderkey and | _suppkey = s_suppkey
and c_nationkey = s_nationkey and s_nationkey = n_nationkey and n_regionkey = r _regionkey

>= DATE [startdate]

and o.orderdate < DATE [enddate]

Figure5: QueryQ, usedfor accuray experimentsBasedon Query@5 from the TPC-Dbenchmark.

The experimentsalso studythe sensitvity of the various
schemesto the total summarysize allocated (parameter
SummarySizén the figures). SummarySizés varied from
0.1% to 3% of the total databasesize, varying the actual
summarysizein bytesfrom 420KBytesto 12.5MBytes.

8.2 Experimental results

In this section,we presentthe resultsof the experimental
study Thefirst two experimentscover the accurag studies
andthefinal experimentaddressethe problemof maintain-
ing join synopsesluring updatego the underlyingdata. It

shouldbe notedthatthe graphspresentedn this sectionare
a smallsubsebf theresultsthatwe obtained.Theseresults
have beenchoserbecaus¢hey demonstratéhedifferentas-
pectsof approximateueryansweringusingjoin synopses.

8.2.1

In this experiment,we studythe accurag of the four space
allocationschemesor differentvaluesof summarysize(pa-
rameterSummarySieandfor differentqueryselectvities.
We comparethe actualanswerof running query Q,, (Fig-
ure 5) on the full TPC-D databaseagainstthe approximate
answerbtainedfrom the differentschemes.

ConsiderFigure6(a). It plotsthe averageextendedprice
computedby the different schemedor varying summary
sizes.Theactualansweiis shovn asastraightline parallelto
the x-axis. Following the specificationfor query @5 in the
TPC-D benchmarkthe region parameteis setto ASIA
andthe selectionpredicateon the o_orderdate  column
to therange[1/1/94,1/1/95 ]-

Considerthe two schemeghat useonly samplesof the
baserelations,EquiBaseand PropBase Figure 6(a) shavs
thattheseschemegproduceanswersonsistentlyonly when
the summarysizeexceedsl.5% of the database(For lower
samplesizes, the join of the basesamplesis completely
empty!) In fact, it is not until 2% summarysize that the
approximateanswerproducedby them comescloseto the
actualanswer In fact, on the left end of the graph (for
smaller summarysizes), theseschemeeither produceno
outputat all (e.g., PropBasefor 1.25% synopsissize), or
produceanswerghataresignificantlydifferentfrom thereal
answer(with errorscloseto 100%in somecases).

The schemesbased on join synopses,Equibin and
PropJin, on the otherhand, not only produceoutputover
the entirerangeof summarysize studiedbut arealsofairly
accuratein estimatingthe correct answer Even for a
summarysize of 0.1% (420 Kbytes) sharedamongall the

Experiment 1: Join synopsisaccuracy

four join synopsesthe resultsfrom both the schemesare
within 14% of the actualanswer! Moreover, the variation
in the answersis lower than the variation in the answers
from basesamplingschemes.The differencebetweenthe

two types of allocation schemess further highlightedin

Table2, which shovs thenumberof tuplesin thejoin output
for the four schemesln mostcasesthe schemedasedon

join synopsegroduceat leastan orderof magnitudemore
numberof tuplesthanthe basesamplingschemesio. As

expected,PropJin is the mostaccuratesinceit assignghe

mostspaceo Lineitem , therootof the 4-way join.

Figure 6(b) studiesthe sensitvity of the four allocation
schemedor varying selectvities, with the summarysizeset
to 1.5% of the databasesize. We changethe selectvity
of query Q, by changingthe daterangein the selection
conditionon the o_orderdate  attribute. To control the
selectvity, we fixed the parameteenddate to 1/1/99
the tail end of the daterangein the TPC-D specification.
We varied the startdate parameterfrom 1/1/93 to
6/1/98 in stepsof six months. The startdate s are
shavn onthex-axiswith thecorrespondingjueryselectvity
givenin bracletsbelow.

Selectvity andsummarysizehave a similar effect on the
performanceof the basesamplingschemes.While the an-
swersreturnedby the EquiBaseand PropBasetechniques
arereasonablloseto theactualanswemwhenthe selectv-
ity is high (left endof the z-axis),theanswerdluctuatedra-
matically asthe selectvity decreasesAs expectedthejoin
synopsisschemesEquidoin and PropJoin, staycloseto the
actualanswerover the entire rangedeviating only slightly
whenthe selectvity is down to 1% on the right end of the
graph.

These graphs demonstratethe advantagesof schemes
basedon join synopsesover basesampling schemesfor
approximatgoin aggreyates.Evenwith a summarysize of
only 0.1%, join synopsesreableto provide fairly accurate
aggreyateanswers.

8.2.2

Figure 7 plots the time taken by the various stratgies to
executethe query (the y-axis is in logscale). The time to
executethe actualquery is 122 secondsand is shavn as
a straightline nearthe top of the figure. As expected,
the responsdimesincreasewith increasingsummarysize.
However, for all the sizesstudied,the executiontime for
the query using join synopsesds two ordersof magnitude
smaller! (The timesusing basesamplesare more thanan

Experiment 2: Query executiontiming
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Table2: OutputSizefor thevariousallocationschemes.

. BaseSamples JoinSynopses
SummarySiz EquiBase| PropBase| Equibin | Propbin
0.1% 0 0 6 25
1% 0 2 56 142
1.5% 12 4 104 228
2% 38 44 131 300
3% 38 108 195 453
300
100 - EquiBase —&—
PropBase -
EquiJoin [
PropJoin &

Actual

10 -

Running Time (sec)

0.1

1 1
[ 0.5 25 3

1 15 2
SummarySize (% of DB Size)

Figure7: Queryexecutiontime for variousschemes.

orderof magnitudesmallerthanthosecomputingthe actual
answel)

This experimentdemonstrateshat it is possibleto use
join synopseso obtainextremelyfastapproximateanswers
with minimal lossin accurag. This is good evidencethat
applicationssuchasdecisionsupportanddatawarehousing,
which can often tolerate maminal loss in result accuragy,
can benefit tremendouslyfrom the faster responsesof
approximategueryansweringsystems.

8.2.3  Experiment 3: Join synopsismaintenance

In this section,we shawv experimentalresultsdemonstrat-
ing thatjoin synopsegsanbe maintainedwith very minimal
overhead. Suchjoin synopsesan give very good approx-
imate answerseven when updatessignificantly changethe
natureof theunderlyingdata.We basethis sectionon a join
betweertheLineitem andOrder tables.Thequeryused
retrievestheaveragequantityof tuplesfrom theLineitem
tablethat have a particularvaluefor the o_orderstatus
column. The SQL statemenfor the queryis givenin Fig-
ure8.

We considerthe maintenanceof a join synopsis for
Lineitem astuplesareinsertedinto the Lineitem ta-
ble, usingthe algorithm of Section7. Note thatinsertions
into other tablesin the schemacan safely be ignoredin
maintainingthe Lineitem  join synopsisFigure9(a)plots
theaggreyatevaluescomputedrom join synopsesf differ-
ent sizes. Evenfor extremely small sizes,the join synop-
sisis ableto track the actualaggreyatevalue quite closely
despitesignificant changesin the data distribution. Fig-
ure 9(b) shows that maintenancef join synopsesds very
inexpensve, by plotting the averagefraction of the new
Lineitem  tuplesthat are actually insertedinto the join
synopsis. In accordancewith the algorithm of Section7,
we goto the basedataonly whenatupleis insertednto the
join synopsislt is clearfrom thefigurethatthis numberis a
smallfractionof thetotal numberof tuplesinserted.(For ex-
ample,whenmaintaininga sampleof 1000 tuplesandpro-
cessings00, 000 inserts,we go to the basedataonly 4822
times.)

8.2.4 Summary of experiments

The experimentalresultsin this sectionempirically demon-
stratethe validity of the techniquegproposedn this paper
Theresultsshav thatjoin synopsegsanbe usedto compute
approximatgoin aggrejatesextremelyquickly, andthatthe
performancef join synopsess superiorto thatof basesam-



select avg(l _quantity) from

where | _orderkey

lineitem,
o_orderkey

order
and o_orderstatus

Figure8: JoinsynopsignaintenanceueryQ,,,.
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pling schemes. Moreover, the resultsalso shav that join
synopseg&anbe maintainednexpensvely duringupdates.

In the full paper we also presentexperimentalresults
demonstratinghat our empirical error boundsare a good
complementto traditional guaranteecoundson approxi-
mateanswers.

9 RelatedWork

Statistical techniqueshave beenapplied in databasegor

more than two decadesnow, primarily inside a query
optimizer for selectvity estimation[SACt79]. However,

the application of statistical techniquesto approximate
guery answeringhas startedreceving attentiononly very

recently Below, we describehework onapproximatejuery
answeringand the work on generalstatisticaltechniques
appliedin databases.

Approximate query answering: Hellersteinet al pro-
poseda framawork for approximateanswerof aggreyation
gueriescalled online aggregation [HHW97], in which the
basedatais scannedn randomorderat querytime andthe
approximatenswelis continuouslyupdatedasthescanpro-
ceeds. Unlike Aqua, this work involvesaccessingriginal
dataat querytime, thus beingmore costly, but at the same
time, this approachprovides an option to get the fully ac-
curateanswergraduallyandit is not affectedby database
updatesHowever, the problemswith join queriesdiscussed
in this paperalsoapply to online aggrejation— basically a
large fraction of the dataneedsto be processedeforethe
errorshecometolerable. Othersystemssupportlimited on-
line aggreyation features;e.g., the Red Brick systemsup-
portsrunningCouUNT, AVG, andsum (seeHHW97]). Since

thescanorderusedto producetheseaggreationsis notran-
dom, the accurag canbe quite poor. In the APPROXIMATE
guery processardevelopedby Vrbsky andLiu [VL93], an
approximateanswelto a set-\aluedqueryis ary supersebf
theexactanswethatis asubsetf thecartesiarproduct. The
gueryprocessousesvariousclasshierarchiego iteratively
fetchblocksrelevantto the answerproducingtuplescertain
to bein theanswemhile narraving the possibleclasseshat
containtheanswer Clearly, thiswork is quitedifferentfrom
the statisticalapproachakenby usandby Hellersteinet al.

Statistical techniques: The threemajor classeof tech-
niquesusedare sampling(e.g.,[HOT88 LNS90, HNS94
LN95, HNSS95, GGMS94), histagrams (e.g., [K0o8Q
PIHS96 P0o097 APR9Y9), and parametricmodeling(e.g.,
[CR94]). A surwy of variousstatisticaltechniquess given
in thepaperby Barbaéetal[BDFT97]. GibbonsandMatias
presentaframavork for studyingsynopsisiatastructuregor
massie datasets[GM99h] and introducedtwo sampling-
basedsynopses,concise samplesand counting samples
that can be usedto obtain larger samplesfor the same
spaceand to improve approximatequery answersfor hot
list queriedGM98]. Maintenancelgorithmsexist for sam-
ples[OR92 GMP97h GM98] and histogramgGMP974.
However, thesemaintenanceéechniquesareapplicableonly
to “base” statisticsandnot to the join synopsepresentedn
this paper

10 Conclusions

In this paper we have focusedon the important problem
of computingapproximateanswergo aggregatescomputed
on multi-way joins. For datawarehousingervironments



with schemaghat involve only foreign-key joins, we have
proposedoin synopsesasa solutionto this problem. We
have shovn that schemesdasedon join synopsesprovide
better performancethan schemeshasedon basesamples
for computingapproximatejoin aggreyates. Further we
have also shown that join synopsescan be maintained
efficiently duringupdatego theunderlyingdata.Finally, we
have explored the use of empirical confidenceboundsfor
approximateanswersand have shovn thatthey area good
complemento traditionalguaranteethounds.

Approximatequery answeringis becomingincreasingly
essentialn datawarehousing@ndotherapplicationsHence,
it is importantto eliminateary fundamentalproblemsthat
limit its applicability to complex queries. This paper
identifiesonesuchproblemandpresents completesolution
to it. However, mary otherproblemsremain. Theseinclude
accuratelyapproximatinganswergo group-by rankandset-
valuedqueries.We arecurrentlyaddressingheseissuesas
partof the Aquaproject.
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