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Abstract
In large datawarehousingenvironments,it is often advantageous
to provide fast,approximateanswersto complex aggregatequeries
basedon statisticalsummariesof the full data. In this paper, we
demonstratethedifficulty of providing goodapproximateanswers
for join-queriesusingonly statistics(in particular, samples)from
the baserelations. We proposejoin synopsesas an effective
solution for this problemand show how precomputingjust one
join synopsisfor eachrelationsufficesto significantlyimprove the
quality of approximateanswersfor arbitraryquerieswith foreign
key joins. Wepresentoptimalstrategiesfor allocatingtheavailable
spaceamongthevariousjoin synopseswhenthequerywork load
is known and identify heuristicsfor the commoncasewhen the
work load is not known. We alsopresentefficient algorithmsfor
incrementallymaintainingjoin synopsesin thepresenceof updates
to thebaserelations.Our extensive setof experimentson theTPC-
D benchmarkdatabaseshow theeffectivenessof join synopsesand
variousothertechniquesproposedin this paper.

1 Intr oduction
Traditionalqueryprocessinghasfocusedsolelyonproviding
exactanswersto queries,in amannerthatseeksto minimize
responsetime andmaximizethroughput.However, in large
data recording and warehousingenvironments,providing
an exact answerto a complex query can take minutes,or
evenhours,dueto theamountof computationanddisk I/O
required.

There are a number of scenariosin which an exact
answermay not be required,anda usermay prefera fast,
approximateanswer. For example,duringsomedrill-down
querysequencesin ad-hocdatamining, initial queriesin the
sequenceareusedsolely to determinewhat the interesting��
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queriesare [HHW97]. An approximateanswercan also
providefeedbackonhow well-posedaqueryis. Moreover, it
canprovidea tentativeanswerto aquerywhenthebasedata
is unavailable.Anotherexampleis whenthequeryrequests
numericalanswers,andthefull precisionof theexactanswer
is not needed,e.g.,a total, average,or percentagefor which
only thefirst few digits of precisionareof interest(suchas
theleadingfew digitsof atotal in themillions, or thenearest
percentileof a percentage). Finally, techniquesfor fast
approximateanswerscanalsobeusedin a moretraditional
role within thequeryoptimizerto estimateplancosts;such
an applicationdemandsvery fast responsetimes but not
exactanswers.

Motivatedby theabovereasons,westudytheissueof pro-
viding approximateanswersto queriesin this paper. Our
goalis to provideanestimatedresponsein ordersof magni-
tudelesstime thanthetime to computeanexactanswer, by
avoiding or minimizing the numberof accessesto the base
data. Our work is tailoredto the typical datawarehousing
environments,which have a few “central” fact tablescon-
nectedvia foreign-key relationshipsto multiple dimension
tables.In sucha scenario,it is very commonto poseaggre-
gatequeriesthatjoin thefacttablewith thedimensiontables
on their respective foreign-keys. For example, ��� of the ���
queriesin theTPC-Dbenchmarkinvolve foreign-key joins.
In this paper, we presentnovel techniquesfor providing ap-
proximateanswersto suchqueries	 .

Weshow, boththeoreticallyandempirically, thatschemes
for providing approximatejoin aggregatesthatrely onusing
randomsamplesof baserelationsalonesuffer from serious
disadvantages(Section3). Instead,we proposethe useof
precomputedsamplesof a small set of distinguishedjoins
—referredto asjoin synopses—in orderto computeapprox-
imate join aggregates(Section4). Our key contribution is
to show that for querieswith foreign-key joins, it is pos-
sible to provide good quality approximatejoin aggregates
usinga very small numberof join synopses.An important
issuearising out of the useof several setsof statisticsis
the carefulallocationof a limited amountof spaceamong


We use the term “approximate join aggregates” to refer to such
answers.
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them.Whena queryworkloadcharacterizationis available,
we sho� w how to designan optimal allocationfor join syn-
opsesthat minimizes the overall error in the approximate
answerscomputed. We discussheuristicallocationstrate-
giesthat work well whenthe workloadis not known (Sec-
tion 5). A critical issuein approximatequeryansweringis
that of providing confidenceboundsfor the answers.Such
boundsgive the uservaluablefeedbackon how reliablean
answeris. In additionto discussinghow traditionalmethods
for providing confidencebounds(for example,basedonHo-
effdingboundsor theCentralLimit Theorem[Haa97]) apply
to join synopses,we proposea novel empirical technique
for computingconfidenceboundsbasedon extractingsub-
samplesfrom samples(Section6). We alsoshow how join
synopsescan be incrementallymaintainedin the presence
of updates(Section7). Finally, we presentthe resultsof a
detailedexperimentalstudyon theperformanceof thetech-
niqueswe propose.UsingtheTPC-Dbenchmark,we show
the advantagesof join synopsesover samplesof baserela-
tions in computingapproximatejoin aggregateswith good
confidencebounds. We also show that join synopsescan
bemaintainedefficiently andwith minimal overheads(Sec-
tion 8).

Previous work relatedto approximatequery answering
is presentedin Section9. Due to limited space,we omit
the proofs of all theoretical results from this paper and
refer the readerto a full versionof this paperfor all the
details[AGPR99b].

The researchin this paperwasconductedaspart of our
efforts to developanefficientdecisionsupportsystembased
onapproximatequeryanswering,calledAqua[GMP97a]. A
brief introductionof Aquais presentedin thenext section.

2 The Aqua System

The goal of Aqua is to improve responsetimesfor queries
by avoidingaccessesto theoriginaldataaltogether. Instead,
Aqua maintainssmaller-sizedstatisticalsummaries,called
synopses, onthewarehouseandusesthemto answerqueries.
Currently, thesestatisticstake the form of varioustypesof
samplesandhistogramson the datain the datawarehouse.
A key featureof Aquais thatthesystemprovidesprobabilis-
tic error/confidenceboundson theanswer, basedon theHo-
effding andChebychev formulas[AGPR99b]. Currently, the
systemhandlesarbitrarily complex SQL queriesapplying
aggregateoperations(avg, sum, count, etc. ) over
thedatain thewarehouse.

Aquahasthreekey components:� Statistics Collection: This componentof Aqua is
responsiblefor collectingall the synopseswhich Aqua
usesto answerqueriesposedby the user. In this paper,
we proposenew techniquesto augmentthis component
to accuratelyanswermulti-way foreignkey join queries
(Section4).
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Figure1: TheAquaarchitecture.� Query Rewriting: Aqua achievesresponsetime speed
upsby rewriting queriesposedby theuserto insteaduse
the synopses. This module is responsiblefor parsing
the input SQL query and generatingan appropriately
translatedquery. Additionally, the rewriting involves
appropriatescaling of certain operatorsto take into
accountthe size of the synopsesvis a vis the original
data.� Maintenance: This componentis responsiblefor keep-
ing the synopsesup to datein the presenceof updates
to the underlying data. In Section7, we extend our
prior work andproposenovel techniquesfor incremen-
tally maintainingjoin synopses.

The high-level architectureof the Aquasystemis shown
in Figure1. It is designedasasoftwaretool thatcansit atop
any commercialDBMS (currently, Oracle)managinga data
warehouse.Initially, Aquatakesasan input from theware-
houseadministratorthe spaceavailablefor synopsesandif
available,hintson importantqueryanddatacharacteristics.[
This information is then usedby the statisticscollector to
precomputeasuitablesetof synopseson thedata,whichare
storedasregularrelationsin theDBMS.

Figure 2 shows a screenshot of the current web user
interface for Aqua. It shows the actual and approximate
answersalong with error boundsfor a 4-way join query.
The good quality of the approximateanswersis in part
dueto the useof join synopsesto answerforeign key join
queries.The figure alsoshows the timestaken to generate
the two answers. Further details on Aqua are available
in [GMP97a, AGPR99b, AGPR99a].

In the rest of the paper, we motivate the need for
join synopsesand presentoptimal allocationschemesand
maintenancetechniquesfor them.

3 The Problem with Joins
A naturalsetof synopsesfor an approximatequeryengine
wouldincludeuniformrandomsamplesof eachbaserelation
in the database.We refer to theseas basesamples. The
use of basesamplesto estimatethe output of a join of\

Work is alsoin progressto automaticallyextractthis informationfrom
aqueryworkloadandadaptthestatisticsdynamically.
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Figure2: AquaUserInterface

two or morerelations,however, canproducea poorquality
approximation.This is for thefollowing two reasons:

1. Non-Uniform Result Sample: In general,the join of
two uniform random basesamplesis not a uniform
randomsampleof theoutputof the join. In mostcases,
this non-uniformitysignificantlydegradesthe accuracy
of theanswerandtheconfidencebounds.

2. Small Join Result Sizes: The join of two random
samplestypically hasvery few tuples, even when the
actualjoin selectivity is fairly high. Thiscanleadto both
inaccurateanswersand very poor confidencebounds
sincethey critically dependon thequeryresultsize.

Considerthe first problem. In order for the join of the
basesamplesto be a uniform randomsampleof the actual
join, the probability of any two joined tuplesto be in the
former shouldbe the sameastheir probability in the latter.
(This is a necessary, but not a sufficient condition.)We will
useasimplecounterexampleto show thatthis is notalways
thecase.

Considerthe(equality)join of two relations] and ^ onan
attribute _ . Thedistributionof _ valuesin thetwo relations
are given in Figure 3. The edgesconnectjoining tuples.
Considerjoining basesamplesfrom ] and ^ . Assumethat
eachtupleis selectedfor abasesamplewith probability �)`�a .
FromFigure3, we seethat bc� and b-d arein the join if and
only if both b tuples are selectedfrom ] and the one b
tuple is selectedfrom ^ . This occurswith probability ��`)a)e ,
sincethereare threetuplesthat must be selected. On the
otherhand, bc� and f�� arein the join if andonly if the four
tuplesincidentto theseedgesareselected.This occurswith

a

b

b

a
a

b

a1
a2

b1

R.X
S.X

Figure3: Joinof samplesis not asampleof joins

probability only �)`�a�g . This contrastswith the fact that in
a uniform randomsampleof theactualjoin, theprobability
thatboth bh� and b-d areselectedequalstheprobability that
both bh� and f�� areselected.

We now highlight the secondproblem of small output
sizes. Considertwo relations, i and j , andbasesamples
comprisingof 1% of eachrelation. The sizeof the foreign
key join betweeni and j is equalto thesizeof i . However
theexpectedsizeof the join of thebasesamplesis k lS� % of
the sizeof i , sincefor eachtuple in i , thereis only one
tuple in j that joins with it, andthat tuple is in thesample
for j with only a � % probability. In general,considera m -
way foreign key join and m basesampleseachcomprising��`)a of thetuplesin their respectivebaserelations.Thenthe
expectedsizeof the join of thebasesamplesis ��`)a)n of the
size of the actual join. In fact the bestknown confidence
interval boundsfor approximatejoin aggregatesbasedon
basesamplesarequitepessimistic[Haa97].

Thus,it is in generalimpossibleto producegoodquality
approximateanswersusing sampleson the baserelations
alone,a factthatwefurtherdemonstratein ourexperiments.
Sincenearlyall queriesin the warehousingcontext involve
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complex querieswith large numberof (foreign-key) joins,
it is critical to solve this problem. In the next sectionwe
providea solutionfor this problem.

4 Join Synopses
In this sectionwe presenta practicalandeffective solution
for producingapproximatejoin aggregatesof goodquality.
At a high level, we proposeto precomputesamplesof join
results,makingquality answerspossibleeven on complex
joins. A naivewayto precomputesuchsamplesis to execute
all possiblejoin queriesof interestandcollect samplesof
their results. However, this is not feasiblesince it is too
expensive to computeandmaintain.Our maincontribution
is to show thatby computingsamplesof theresultsof asmall
setof distinguishedjoins, we canobtainrandomsamplesof
all possiblejoinsin theschema.Wereferto samplesof these
distinguishedjoins as join synopses. Our techniqueworks
for the starandsnowflake schemastypically found in data
warehousing[Sch97]. Moreprecisely, weproposeasolution
for querieswith only foreignkey joins, which aredefinedas
follows.

Definition 4.1 Foreign Key Join: A 2-way join a 	po a [ ,a 	rqs a [ , is a foreign key join if the join attribute is a
foreign key in a 	 (i.e., a key in a [ ). For mutv� , a m -
way join is a m -way foreignkey join if there is an orderinga 	;w a [%w kEkxk w a n of the relationsbeingjoined that satisfiesthe
following property: for y s d w � w kxkEk w m , z�{}| 	 o aE{ is a 2-
wayforeignkey join, where z�{~| 	 is therelationobtainedby
joining a 	;w a [�w kxkxk w aE{}| 	 .

In orderto develop this solution,we modelthe database
schemaby a graphwith a vertex for eachbaserelationand
a directededgefrom a vertex � to a vertex � qs � if there
are one or more attributesin � ’s relation that constitutea
foreign key for � ’s relation. The edgeis labeledwith the
foreign key. Figure 4 shows the correspondinggraphfor
theTPC-Dschema.We restrictour attentionin this work to
acyclic (schema-)graphs,whicharecommonin warehousing
environments.

From the figure, it can be seenthat � o�� and � o� o � are2-way and3-way foreignkey joins respectively.
Note that two 2-way foreignkey joins involving a common
relationdoesnot imply thata3-wayjoin amongthemwould
alsobea foreignkey join. For example,though � o�� and^ o�� areforeignkey joins, � o���o ^ is not a foreign
key join, by Definition 4.1.

The key result we prove is that there is a one-one
correspondencebetweena tuple in a relation a anda tuple
in the output of any foreign key join involving a and the
relationscorrespondingto oneor moreof its descendantsin
the graph. This providesus with the technicaltool for join
synopses:asamplêI� of arelation a canbeusedto produce
anotherrelation ����^I��� —called a join synopsisof a —that
canbeusedto providerandomsamplesof anyjoin involvinga andoneor more of its descendants.
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Figure4: Directedgraphfor theTPC-Dschema.

We now moveto thetechnicaldevelopmentof theresults.
Considerthedirectedacyclic graph � correspondingto the
schemaof a database.We show two key lemmasaboutthe
propertiesof suchgraphs.

Lemma 4.1 Thesubgraphof � onthe m nodesin any m -way
foreignkey join mustbea connectedsubgraphwith a single
root node.

We denotethe relationcorrespondingto the root nodeas
thesourcerelationfor the m -way foreignkey join.

Lemma 4.2 There is a 1-1 correspondencebetweentuples
in a relation a 	 andtuplesin any m -wayforeignkey join with
sourcerelation a 	 .

From Lemma 4.1, we have that eachnode can be the
sourcerelationonly for m -way foreign key joins involving
its descendantsin � . For eachrelation a , there is some
maximumforeign key join (i.e., having the largestnumber
of relations)with a asthe sourcerelation. For example,in
Figure4, � o���o ] is themaximumforeignkey join with
sourcerelation � .

Definition 4.2 Join synopses: For each node � in � ,
correspondingto a relation a 	 , define���~�I� to betheoutput
of the maximumforeign key join a 	 o a [ o��x�E��o a�� with
source a 	 . (If � has no descendantsin � , then � s �
and ���}��� s a 	 .) Let ^I� be a uniform randomsample
of a 	 . Definea join synopsis, ���@^I�-� , to be the output of^I� o a [�o��E�x��o a � . Thejoin synopsesof a schemaconsists
of ���@^I�-� for all � in � .

To emphasizethesamplingnatureof join synopses,we will
sometimesreferto themasjoin samples.

For example,in theTPC-Dschema,thejoin synopsisfor] is simplya sampleof ] whereasfor � it is thejoin of � ,] , anda sampleof � . Next, we show thatthejoin synopsis
of a relationcanbeusedto obtainauniformrandomsample
for a largesetof queries.
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Theorem4.3 Let a 	 o��x�E��o a n , m�t d , be an arbitrarym -way¡ foreign key join, with source relation a 	 . Let � be
thenodein � correspondingto a 	 , and let ^ � bea uniform
randomsampleof a 	 . Let i be the set of attributes ina 	 w kxkEk w a n . Then,thefollowing are true:� ����^ � � is a uniform randomsampleof ���}��� , with ¢ ^ � ¢

tuples.(FromLemma4.2.)� a 	9o��x�E��o a n s�£h¤ ���}��� , i.e., the projectionof �p�~�I�
on the attributesin a 	 w kxkEk w a n . (Trivially true from the
definitionof ���~�I� givenin theabovedefinition.)� £h¤ ���@^I��� is a uniformrandomsampleof a 	Qo��E�x�So a n
( s¥£h¤ ���}��� ), with ¢ ^I��¢ tuples.(Followsfromtheabove
two statements.)

Thuswe canextractfrom our synopsisa uniformrandom
sampleof theoutputof any m -way foreignkey join, m¦t§d .
For example,the join synopsison � in the TPC-D schema
can be usedto obtain a sampleof any join involving �
(which is truefor mostqueriesin thebenchmark).Thenext
lemmashows that a single join synopsiscanbe usedfor a
large numberof distinct joins, especiallyfor the star-like
schemascommonin datawarehouses.Here, two joins are
distinct if they do not join thesamesetof relations.

Lemma 4.4 From a single join synopsisfor a nodewhose
maximumforeignkey join has � relations,wecanextract a
uniformrandomsampleof theoutputof between�©¨�� andd ��| 	 ¨�� distinctforeignkey joins.

Note that sinceLemma4.2 fails to apply in generalfor
any relationotherthanthesourcerelation,thejoining tuples
in any relation a other than the sourcerelation will not in
generalbeauniformrandomsampleof a . Thusdistinctjoin
synopsesareneededfor eachnode/relation.

Sincetuplesin join synopsesaretheresultsof multi-way
joins,apossibleconcernis thatthey will betoolargebecause
they have many columns. To reducethe columnsstored
for tuples in join synopses,we can eliminate redundant
columns(for example,join columns)andonly storecolumns
of interest. Small relationscan be storedin their entirety,
ratherthanaspart of join synopses.To further reducethe
spacerequiredfor join synopses,we can renormalizethe
tuples in a join synopsisinto its constituentrelationsand
removeduplicates.To theextentthatforeignkeysaremany-
to-one,thiswill reducethespace,althoughthekey will then
bereplicated.Of course,with renormalization,whena tuple
in ^ � is deleted,one has to deleteany joining tuples in
the constituentrelationsas well. This can be doneeither
immediatelyor in a lazy fashionin a batch. The following
lemmaplacesa boundon the size of a renormalizedjoin
synopsis.

Lemma 4.5 For any node � whosemaximumforeign key
join is a � -wayjoin, thenumberof tuplesin its renormalized
join synopsis���@^I�-� is at most ��¢ ^��c¢ .

Example 4.1 Considerthe TPC-D schemain Figure4. In
the TPC-D benchmarkdatabase,the relations � and ] ,
correspondingto Nation andRegion, have 25 and5 tuples
in them,respectively. Therefore,we canstorethemin their
entiretywithout consideringany samplesfor them. We can
thereforeremove themfrom thegraph.We areleft with the
nodes� w�ª ^ w � w � w«ª , and ^ . For eachof theserelations,
the systemneedsto storea join synopsiscorrespondingto
thejoin for which therelationis a source.

We now briefly highlight the spaceoverheadfor join
synopsesin TPC-D. The numberof relationsin the maxi-
mumforeign key join correspondingto eachof thesenodes
(denotedby the letter � above) is ¬ w � w d w � w � , and � for� w«ª ^ w � w � w�ª and ^ respectively. Let us now make two
simplifying assumptions:(1) the sizeof the tuplesin each
baserelation is the same; and (2) the numberof tuples, , allocatedto eachof the join synopsesis the same. By
Lemma4.5, the total numberof tuplesin thesynopsisis at
most ¢ � ¢/®¯¢ ]5¢«®±° � � � ¢ ^ � ¢ s ��l�®¯�E²  . Thuswecanob-
tain, for everypossiblejoin in theTPC-Dschema,auniform
randomsampleof ��³ of each join result, from a collection
of join synopsesthat in total uselessthan ��´%³ of thespace
neededfor theoriginal database!Notealsothatwe canfur-
therreducethesizeof thejoin synopsesby takingadvantage
of thefactthatmany foreignkeysaremany-to-one.

To summarize,we have shown that it is possibleto create
compactjoin synopsesof a schemawith foreign key joins
suchthatwe canobtaina randomsamplesof any join in the
schema.In the next section,we presenta detailedanalysis
of decidingthesizeof thejoin synopsestakinginto account
tuplesize,queryfrequency, etc.

5 Allocation
In this section,we presentoptimal strategiesfor allocating
the availablespaceamongthe variousjoin synopseswhen
certain propertiesof the query work load are known and
identify heuristicsfor the commoncasewhensuchproper-
tiesarenot known.

5.1 Optimal strategies

We considerthe following high-level characterizationof a
set, ^ , of querieswith selects,aggregates,group bys and
foreign key joins. For eachrelation, ]�{ , we determinethe
fraction, µ { , of the queriesin ^ for which ] { is either the
sourcerelationin a foreignkey join or thesolerelationin a
querywithout joins. For example,for the ��� queriesin the
TPC-D benchmark,� is the sourceor sole relation for �x²
queriesand ª ^ is the sourceor solerelationfor � queries,
andhencethe fraction µ){ equals �x²-` �)� for � , equals� ` �)�
for ª ^ , andequalszerofor all otherrelations.

We seekto selectjoin synopsis(join sample)sizessoas
to minimize the averagerelative error over a collectionof
aggregatequeries,basedon this characterizationof the set
of queries.This canbedoneanalyticallyby minimizing the
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averagerelativeerrorbounds(i.e.,confidenceintervals)over
thecollection.¶ Althoughthisseemsto imply thattheoptimal
samplesizeallocationis specificto thetypeof errorbounds
used,we will show thata large classof error boundsshare
a commonproperty that we will exploit for this purpose.
Namely, we observethattheerrorboundsfor COUNT, SUM,
and AVG basedon the commonly-usedHoeffding bounds
and/or Chebychev bounds,including the new approaches
discussedin Section6, all sharethe propertythat the error
boundsare inversely proportional to ·  , where  is the
numberof tuples in the (join) sample. (Details on these
boundsarediscussedin Section6.)

Thusthe averagerelative error boundover the queriesis
proportionalto ¸

{ µ){·  { w (1)

where { is thenumberof tuplesallocatedto thejoin sample
for sourcerelation ] { .

Our goal is to selectthe  { soasto minimizeEquation1
for a given bound, � , on the total memory allotted for
join synopses.For eachsourcerelation ] { , let z { be the
sizeof a single join synopsistuple for y . Thenwe require° {  { z {Q¹ � . We show that the optimalallocationselects { to beproportionalto ��µ { `;z { �º[«»«e :
Theorem5.1 Given � , and µ){ and z�{ for all relations ]¼{ ,
taking  { s �p½-� ¾ µ {zE{E¿ [/»«e
where � ½ s � `-�À°�ÁWµ Á [/»«e z Á 	º»«e�� , minimizesEquation 1
subjectto ° {  {�z�{ ¹ � .

Note that the above analysishas ignored predicatese-
lectivities. We observe that the relative error boundsfor
COUNT, SUM, and AVG basedon the commonly-usedHo-
effding boundsand/or Chebychev bounds, including our
new approaches,areeitherproportionalto ��` · Â  or propor-
tional to �)` Â ·  , whereÂ is theselectivity. In theabsenceof
a characterizationof the querywork load in termsof pred-
icateselectivities, we assumethat theselectivities areinde-
pendentof therelations.(Incorporatingaselectivity charac-
terizationcanreadilybedone,althoughtheanalysisis more
detailed.) Underthis assumption,our analysisabove holds
goodfor any mix of selectivities.

Finally, note that the samplesizes can be adaptedto
a changingquery load by maintainingthe frequenciesµ { ,
andreallocatingamongthe join samplesasthe frequencies
change.

5.2 Heuristic strategies

Wenext considerthreestrategiesfor allocatingjoin synopses
thatcanbeusedin theabsenceof querywork loadinforma-
tion. Thesecanbe usedasstartingpoints for the adaptive
procedureproposedabove.

� EqJoindividesupthespaceallotted,� , equallyamongst
therelations.Eachrelationdevotesall its allocatedspace
to join synopses.(For relationswith no descendantsin
theschema,thisequatesto asampleof thebaserelation.)� CubeJoin dividesup the spaceamongstthe relationsin
proportionto the cuberoot of their join synopsistuple
sizes.Eachrelationdevotesall its allocatedspaceto join
synopses.� PropJoin divides up the spaceamongstthe relations
in proportion to their join synopsistuple sizes. Each
relationdevotesall its allocatedspaceto join synopses,
and henceeachjoin synopsishasthe samenumberof
tuples.

Thus for EqJoin, CubeJoin, and PropJoin, the numberof
tuplesfor a join synopsiswith tuplesize z { is inverselypro-
portional to zE{ , z [«»«e{ , and � , respectively. When the error
boundsare inverselyproportionalto ·  , CubeJoin mini-
mizesthe averagerelative error boundswhen all frequen-
cies µ;{ areassumedto beequal(Theorem5.1),andPropJoin
minimizesthemaximumerrorboundwhenall frequenciesµ){
arenonzero.

Theseallocation strategies using join samplescan be
comparedagainst similar strategies that use only base
samples:(a) EqBaseis like EqJoin on basesamples,i.e.,
it devotes all its allocatedspaceto samplesof the base
relations;(b) CubeBaseis like CubeJoin on basesamples;
and(c) PropBaseis like PropJoin onbasesamples.

Theexperimentalresultsin Section8 quantifytheadvan-
tageof the join samplesstrategies over the basesamples
strategiesfor representativequeries.

6 Impr oved Accuracy Measures
A critical issuein approximatequeryansweringof aggrega-
tion queriesis that of providing confidenceboundsfor the
answers. Thereare several popularmethodsfor deriving
confidenceboundsfor approximateanswersobtainedfrom
samples;thesearebasedon CentralLimit Theorem(CLT)
bounds,Chebychev bounds,and/orHoeffding bounds.An
importantadvantageof using join synopsesis that queries
with foreignkey joinscanbetreatedasquerieswithout joins
(i.e., single-tablequeries). Known confidenceboundsfor
single-tablequeriesaremuch fasterto computeandmuch
more accuratethan the confidenceboundsfor multi-table
queries(see,e.g.,[Haa96]).

In thefull paper[AGPR99b] e , wesummarizemethodsfor
single-tablequeriesandthenpresenta detailedanalysisthat
demonstratestheprecisetrade-offsamongthesemethods,as
well asa methodbasedon subsampling,which we describe
next.

Considerthe following estimationapproach,which we
call chunking:Ã

Seealso[GM99a] for extensionsandfurtheranalysis.
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1. Partition the sampledtuples in a join synopsisinto m
subsets� (subsamples),which we call “chunks”, andfor
eachchunk Ä , computean estimator, Å Á , basedon the
samplepointsin thechunk.

2. Reportanestimateandaboundbasedon the Å Á .
Previous work (see,e.g., [AMS96]) hasshown that confi-
denceboundsfor anestimatorcanbeimprovedby repeating
an estimationproceduremany times, and then applying a
chunking-like approach.We extend this previous work as
follows.� Within thegeneralchunkingframework,weproposeand

explore (analytically and experimentally)a numberof
alternative proceduresfor reportingan estimateandan
errorboundbasedon thechunks,includingvarying the
numberof chunks.Weconsidertwo possiblechoicesfor
reportinganoverallestimateÅ : takingtheaverageof theÅ Á andtakingthemedianof the Å Á .� Whereasprevious work on taking the medianhasbeen
asymptoticin nature,we show the precise(i.e., non-
asymptotic)trade-offs for when the guaranteedbounds
for the median improve upon the bounds with no
chunking,andfor the optimal numberof chunksto use
for confidenceprobabilitiesof practicalinterest.� We proposeandexploretheuseof thechunkestimators
in generatingempiricalerrorbounds,asdescribednext.

Using chunking for empirical error bounds: Of-
ten, confidenceboundsderivedanalyticallyareoverly pes-
simistic: theestimatedansweris closerto theexactanswer
moreoften thanindicatedby theanalyticalbound. A com-
monapproachtakento verify this is to conductmultiple tri-
als of an experimenton variousdatasets. However, this is
not entirelysatisfactory, asthedatasetsof interestin some
applicationsmay not exhibit the goodbehavior of the data
setsusedin thestudy.

Weproposechunkingasameansto reportonmultipleex-
perimentsrunontheactualqueryanddata. Eachsubsample
is its own experimentontheactualqueryanddata,andthere
arevariouspossibilitieson how to reporttheseresultsto the
user. In the full paper[AGPR99b], we studythe effective-
nessof reportinga CLT boundusing the samplevariance
of thechunkestimators,or alternatively, reportingthemin-
imum andmaximumof the chunkestimators.Otheralter-
nativesincludereportingvariousquantilesof thechunkes-
timators.Thefeedbackto theuseris intuitively of theform:m independentexperimentswererun for your query, all (or
say, 90%)of which fell within therange Æ Ç w�È�É , with theav-
erage(or median)being Å . Our experimentsconfirm that
theseempiricalboundsareagoodcomplimentto traditional
guaranteedbounds.

7 Maintenanceof Join Synopses

In thissection,wefocusonthemaintenanceof join synopses
when the underlyingbaserelationsare being updated(we
considerboth insertionsanddeletions. The techniqueswe
proposearesimpleto implementandrequireonly infrequent
accessto thebaserelations.

Our algorithmfor maintaininga join synopsis�p��^I� � for
each � is as follows. Let Êc� be the currentprobability for
includinganewly arriving tuplefor relation � in therandom
sample ^I� . (This probability is typically the ratio of the
numberof tuplesin ^ � to thenumberof tuplesin � .) On an
insertof a new tuple Ë into a baserelationcorrespondingto
a node � in � , we do thefollowing. Let � o a [ oÌ�x�E�So a��
bethemaximumforeignkey join with source� . (1) We addË to ^ � with probability Ê � . (2) If Ë is addedto ^ � , we
add to ����^ � � the tuple

� Ë�� o a [ oÍ�E�x�Îo a�� . This can
be computedby performingat most ��¨Ì� look-upsto the
basedata,oneeachin a [%w kEkxk w a�� . (For any key alreadyin���@^I� � , the look-upsfor it or any of its “descendants”are
notneeded.)(3) If Ë is addedto ^I� and ^I� exceedsits target
size,thenselectuniformly at randomatuple Ë ½ to evict from^I� . Removethetuplein ���@^I� � correspondingto Ë ½ .

On a deleteof a tuple Ë from � , we first determineif Ë
is in ^ � . If Ë is in ^ � , we deleteit from ^ � , andremove
thetuple in ���@^ � � correspondingto Ë . As in [GMP97b], if
thesamplebecomestoo smalldueto many deletionsto the
sample,werepopulatethesampleby rescanningrelation � .

Note that this algorithm only performslook-ups to the
basedatawith (small)probability Êc� . Also, whena tuple is
insertedinto abaserelation� , weneverupdatejoin synopses
for any ancestorsof � . Suchupdateswould becostly, since
theseoperationswould be performedfor every insert and
for eachancestorof � . Instead,we rely on the integrity
constraintsto avoid thesecostlyupdates.

Theorem7.1 The above algorithm properly maintainsall^ � asuniformrandomsamplesof � andproperlymaintains
all join synopses���@^ � � .

We assumethat updatesmay be applied in a “batch”
mode. In such environments,join synopsescan be kept
effectively up-to-dateat all timeswithout any concurrency
bottleneck.In an onlineenvironmentin which updatesand
queriesintermix, anapproximateansweringsystemcannot
afford to maintainup-to-datesynopsesthat requireexamin-
ing every tuple (e.g., to find the minimum and maximum
valueof an attribute), without creatinga concurrency bot-
tleneck. In suchenvironments,maintenanceis performed
only periodically. Approximateanswersdependingon syn-
opsesthatrequireexaminingeverytuplewouldnot takeinto
accountthemostrecenttrendsin thedata(i.e., thoseoccur-
ring sincemaintenancewaslast performed),andhencethe
accuracy guaranteeswouldbeweakened.Notethatthetech-
niquesdescribedin this sectioncanalsobeusedto compute
a join synopsisfrom scratchin limited storage,in onescan
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Table1: Featuresof relationsin theTPC-Dbenchmark.

TableName # of Columns Cardinality
Customer 8 Ï�ÐEÑ
Lineitem 16 Ò2ÓEÔ�ÔEÑ
Nation 4 25
Order 9 Ï�ÐEÔ�Ñ
Part 9 ÕEÔ�Ñ
Partsupplier 5 ÖGÏ�Ô�Ñ
Region 3 5
Supplier 7 ×�Ñ

of the basedatafollowed by indexed look-upson a small
fractionof thekeys.

8 Experimental Evaluation

In this section,we presentthe resultsof an experimental
evaluationof the techniquesproposedin this paper. Using
datafrom theTPC-Dbenchmark,weshow theeffectiveness
of our approachin providing highly accurateanswersfor
approximatejoin aggregates.

We begin this section by describingthe experimental
testbed. We then present results from two classesof
experiments—accuracy experimentsand maintenanceex-
periments.In theaccuracy experiments,wecomparetheac-
curacy of techniquesbasedon join synopsesto thatof tech-
niquesbasedon basesamples.The two key parametersin
this studyarequeryselectivity andtotal spaceallocatedto
precomputedsummaries(summarysize). We first compare
the techniquesfor a fixed selectivity andvarying summary
sizeandthencomparethe techniquesfor a fixed summary
size and varying selectivities. In the maintenanceexperi-
ments,we studythecostof keepingthe join synopsesup to
datein thepresenceof insertions/deletionsto theunderlying
data. We show that join synopsescanbe maintainedwith
very little overheadevenwhenupdatessignificantlychange
thecharacteristicsof theunderlyingdata.

8.1 Experimental testbed

We ranthetestson theTPC-Ddecisionsupportbenchmark.
We used a scale factor of lØk � for generatingour test
data. This resultsin a databasethat is approximately�%l�l
megabytes. Table 1 summarizesthe importantfeaturesof
theeightrelationsin theTPC-Ddatabase.

Our experimentswere run on a lightly loaded296MHz
UltraSPARC-II machinehaving d�´�¬ megabytesof memory
andrunningSolaris5.6. All datawaskept on a local disk
with astreamingthroughputof about5MB/second.
Query model: Thequeryusedfor theaccuracy experiments
is basedon query ÙK´ in the TPC-D benchmarkand is
an aggregatethat is computedon the join of Lineitem ,
Customer , Order , Supplier , Nation andRegion .
Of the six relationsinvolved in the join, the Nation and

Region relationsare sampledin their entirety by Aqua
becauseof their low cardinality. Thiseffectively reducesthe
queryto a (still complex) four-wayjoin query.

The SQL statementfor the query is given in Figure 5.
It computesthe average price of products delivered by
suppliersin a nation to customerswho are in the same
nation. The selectconditionstake three input parameters
— region , startdate and enddate . Theserestrict
suppliersandcustomersto be within a specificregion and
focuson businessconductedwithin a specifictime interval.
In the following experiments,we will vary oneor moreof
theseparametersto studytheperformancefor variousquery
selectivities.

In thisstudy, wehavefocusedonly onthehardproblemof
computingapproximateaggregateson multi-way joins. Of
course,oursamplingresultsextendto thesimplecaseof sin-
gle tableaggregates.Thus,dueto spaceconstraints,we do
notshow any resultsfor thesingletablecase.Besides,those
resultsqualitatively mirror theonespresentedin thecontext
of onlineaggregationfor singletableaggregates[HHW97].

Spaceallocation schemes: Recall from Section5 that
we proposeda numberof schemesfor allocatinga given
amountof summaryspaceto enableapproximatequeryan-
swering. For the casewhere certain characterizationsof
the query mix were known, we presentedoptimal alloca-
tion strategiesto minimize overall error. However, for this
experimentalstudy, we assumethe more realistic scenario
wherethisinformationis unavailable.Thus,westudythesix
spaceallocationschemesproposedin Section5.2, namely,
EquiBase, CubeBase, PropBase, EquiJoin, CubeJoin and
PropJoin. For the purposesof this experiment,we focus
on the four major relationsusedin Ú�Û , and allocatebase
samplesandjoin synopsesonly on thoserelations. There-
fore, the basesamplingschemesdivide up the summary
spaceamongsamplesof Lineitem , Customer , Order ,
and Supplier , whereasthe join synopsesschemesdis-
tribute thesummaryspaceto join synopsesfor Lineitem
(which includescolumnsfrom Customer , Order , and
Supplier ), for Customer (whichincludescolumnsfrom
Order ), for Order (whosejoin synopsisis justabasesam-
ple),andfor Supplier (whosejoin synopsisis alsoabase
sample).

Recall that PropJoin gives an equal numberof tuples
to the varioussampleswhereasEquiJoin dividesthe space
equally. Thus, among the various schemes,the source
relation in the 4-way join in Ú Û , Lineitem , is allocated
themostspaceby PropJoin sinceit hasthelargesttupleand
theleastspaceby EquiJoin, while CubeJoin allocatesspace
in betweenthesetwo extremes.Likewise, amongthe base
sampleschemes,PropBaseallocatesthe mostspaceto the
basesampleof Lineitem , followedin orderby CubeBase
andEquiBase. To avoid clutter in thegraphsthatfollow, we
donotplot CubeJoin andCubeBaseandonly show numbers
for the other four schemes.They cover the entirerangeof
performancefor thedifferentschemes.
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select avg(l extendedprice) from customer, order, lineitem, supplier, nation, region
where c custkey = o custkey and o orderkey = l orderkey and l suppkey = s suppkey
and c nationkey = s nationkey and s nationkey = n nationkey and n regionkey = r regionkey
and r name = [region] and o orderdate ÜWÝ DATE [startdate] and o orderdate Þ DATE [enddate]

Figure5: Query Ú�Û usedfor accuracy experiments.Basedon Query ÙK´ from theTPC-Dbenchmark.

The experimentsalsostudythe sensitivity of the various
schemesto the total summarysize allocated(parameter
SummarySizein the figures). SummarySizeis varied fromlSkß��³ to ��³ of the total databasesize, varying the actual
summarysizein bytesfrom 420KBytesto 12.5MBytes.

8.2 Experimental results

In this section,we presentthe resultsof the experimental
study. Thefirst two experimentscover theaccuracy studies
andthefinal experimentaddressestheproblemof maintain-
ing join synopsesduring updatesto the underlyingdata. It
shouldbenotedthat thegraphspresentedin this sectionare
a smallsubsetof theresultsthatwe obtained.Theseresults
havebeenchosenbecausethey demonstratethedifferentas-
pectsof approximatequeryansweringusingjoin synopses.

8.2.1 Experiment 1: Join synopsisaccuracy

In this experiment,we studytheaccuracy of the four space
allocationschemesfor differentvaluesof summarysize(pa-
rameterSummarySize) andfor differentqueryselectivities.
We comparethe actualanswerof runningquery Ú�Û (Fig-
ure 5) on the full TPC-D databaseagainstthe approximate
answersobtainedfrom thedifferentschemes.

ConsiderFigure6(a). It plots theaverageextendedprice
computedby the different schemesfor varying summary
sizes.Theactualansweris shownasastraightlineparallelto
the x-axis. Following the specificationfor query Ù>´ in the
TPC-D benchmark,the region parameteris set to ASIA
and the selectionpredicateon the o orderdate column
to therange[1/1/94,1/1/95 ].

Considerthe two schemesthat useonly samplesof the
baserelations,EquiBaseandPropBase. Figure6(a) shows
that theseschemesproduceanswersconsistentlyonly when
thesummarysizeexceeds1.5%of thedatabase.(For lower
samplesizes, the join of the basesamplesis completely
empty!) In fact, it is not until 2% summarysize that the
approximateanswerproducedby themcomescloseto the
actual answer. In fact, on the left end of the graph (for
smaller summarysizes), theseschemeeither produceno
output at all (e.g., PropBasefor 1.25% synopsissize), or
produceanswersthataresignificantlydifferentfrom thereal
answer(with errorscloseto 100%in somecases).

The schemesbased on join synopses,EquiJoin and
PropJoin, on the otherhand,not only produceoutputover
the entirerangeof summarysizestudiedbut arealsofairly
accuratein estimating the correct answer. Even for a
summarysizeof 0.1% (420 Kbytes) sharedamongall the

four join synopses,the resultsfrom both the schemesare
within 14% of the actualanswer! Moreover, the variation
in the answersis lower than the variation in the answers
from basesamplingschemes.The differencebetweenthe
two types of allocation schemesis further highlighted in
Table2, whichshowsthenumberof tuplesin thejoin output
for the four schemes.In mostcases,the schemesbasedon
join synopsesproduceat leastan orderof magnitudemore
numberof tuplesthan the basesamplingschemesdo. As
expected,PropJoin is themostaccuratesinceit assignsthe
mostspaceto Lineitem , theroot of the4-way join.

Figure 6(b) studiesthe sensitivity of the four allocation
schemesfor varyingselectivities,with thesummarysizeset
to �%k ´�³ of the databasesize. We changethe selectivity
of query Ú Û by changingthe date rangein the selection
condition on the o orderdate attribute. To control the
selectivity, we fixed the parameterenddate to 1/1/99 ,
the tail end of the daterangein the TPC-D specification.
We varied the startdate parameterfrom 1/1/93 to
6/1/98 in stepsof six months. The startdate s are
shown onthex-axiswith thecorrespondingqueryselectivity
givenin bracketsbelow.

Selectivity andsummarysizehave a similar effect on the
performanceof the basesamplingschemes.While the an-
swersreturnedby the EquiBaseand PropBasetechniques
arereasonablycloseto theactualanswerwhentheselectiv-
ity is high (left endof the Ç -axis),theanswersfluctuatedra-
maticallyastheselectivity decreases.As expected,thejoin
synopsisschemes,EquiJoin andPropJoin, staycloseto the
actualanswerover the entire rangedeviating only slightly
whenthe selectivity is down to 1% on the right endof the
graph.

These graphsdemonstratethe advantagesof schemes
basedon join synopsesover basesampling schemesfor
approximatejoin aggregates.Evenwith a summarysizeof
only lØkà�)³ , join synopsesareableto provide fairly accurate
aggregateanswers.

8.2.2 Experiment 2: Query executiontiming

Figure 7 plots the time taken by the variousstrategies to
executethe query (the È -axis is in logscale). The time to
executethe actualquery is 122 secondsand is shown as
a straight line near the top of the figure. As expected,
the responsetimes increasewith increasingsummarysize.
However, for all the sizesstudied,the executiontime for
the query using join synopsesis two ordersof magnitude
smaller! (The times usingbasesamplesaremore thanan
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Table2: OutputSizefor thevariousallocationschemes.

BaseSamples JoinSynopsesSummarySize
EquiBase PropBase EquiJoin PropJoin

0.1% 0 0 6 25
1% 0 2 56 142

1.5% 12 4 104 228
2% 38 44 131 300
3% 38 108 195 453
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Figure7: Queryexecutiontime for variousschemes.

orderof magnitudesmallerthanthosecomputingtheactual
answer.)

This experimentdemonstratesthat it is possibleto use
join synopsesto obtainextremelyfastapproximateanswers
with minimal loss in accuracy. This is goodevidencethat
applicationssuchasdecisionsupportanddatawarehousing,
which can often toleratemarginal loss in result accuracy,
can benefit tremendouslyfrom the faster responsesof
approximatequeryansweringsystems.

8.2.3 Experiment 3: Join synopsismaintenance

In this section,we show experimentalresultsdemonstrat-
ing that join synopsescanbemaintainedwith very minimal
overhead.Suchjoin synopsescangive very goodapprox-
imateanswerseven whenupdatessignificantly changethe
natureof theunderlyingdata.We basethis sectionon a join
betweentheLineitem andOrder tables.Thequeryused
retrievestheaveragequantityof tuplesfrom theLineitem
tablethathave a particularvaluefor theo orderstatus
column. The SQL statementfor the queryis given in Fig-
ure8.

We consider the maintenanceof a join synopsis for
Lineitem as tuplesare insertedinto the Lineitem ta-
ble, usingthe algorithmof Section7. Note that insertions
into other tables in the schemacan safely be ignored in
maintainingtheLineitem join synopsis.Figure9(a)plots
theaggregatevaluescomputedfrom join synopsesof differ-
ent sizes. Even for extremelysmall sizes,the join synop-
sis is able to track the actualaggregatevaluequite closely
despitesignificant changesin the data distribution. Fig-
ure 9(b) shows that maintenanceof join synopsesis very
inexpensive, by plotting the averagefraction of the new
Lineitem tuples that are actually insertedinto the join
synopsis. In accordancewith the algorithm of Section7,
we go to thebasedataonly whena tupleis insertedinto the
join synopsis.It is clearfrom thefigurethatthisnumberis a
smallfractionof thetotalnumberof tuplesinserted.(For ex-
ample,whenmaintaininga sampleof �El%l�l tuplesandpro-
cessinǵ�l�l w l�l%l inserts,we go to the basedataonly ²�ã%d%d
times.)

8.2.4 Summary of experiments

Theexperimentalresultsin this sectionempiricallydemon-
stratethe validity of the techniquesproposedin this paper.
Theresultsshow that join synopsescanbeusedto compute
approximatejoin aggregatesextremelyquickly, andthatthe
performanceof join synopsesis superiorto thatof basesam-
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select avg(l quantity) from lineitem, order
where l orderkey = o orderkey and o orderstatus = F

Figure8: Joinsynopsismaintenancequery Ú¼ä .
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pling schemes.Moreover, the resultsalso show that join
synopsescanbemaintainedinexpensively duringupdates.

In the full paper, we also presentexperimentalresults
demonstratingthat our empirical error boundsare a good
complementto traditional guaranteedboundson approxi-
mateanswers.

9 RelatedWork
Statistical techniqueshave beenapplied in databasesfor
more than two decadesnow, primarily inside a query
optimizer for selectivity estimation[SACå 79]. However,
the application of statistical techniquesto approximate
query answeringhasstartedreceiving attentiononly very
recently. Below, wedescribethework onapproximatequery
answeringand the work on generalstatistical techniques
appliedin databases.

Approximate query answering: Hellersteinet al pro-
poseda framework for approximateanswersof aggregation
queriescalled online aggregation [HHW97], in which the
basedatais scannedin randomorderat querytime andthe
approximateansweris continuouslyupdatedasthescanpro-
ceeds.Unlike Aqua, this work involvesaccessingoriginal
dataat querytime, thusbeingmorecostly, but at the same
time, this approachprovidesan option to get the fully ac-
curateanswergraduallyand it is not affectedby database
updates.However, theproblemswith join queriesdiscussed
in this paperalsoapply to onlineaggregation– basically, a
large fraction of the dataneedsto be processedbeforethe
errorsbecometolerable.Othersystemssupportlimited on-
line aggregation features;e.g., the Red Brick systemsup-
portsrunningCOUNT, AVG, andSUM (see[HHW97]). Since

thescanorderusedto producetheseaggregationsis not ran-
dom,theaccuracy canbequitepoor. In the APPROXIMATE

queryprocessor, developedby Vrbsky andLiu [VL93], an
approximateanswerto a set-valuedqueryis any supersetof
theexactanswerthatis asubsetof thecartesianproduct.The
queryprocessorusesvariousclasshierarchiesto iteratively
fetchblocksrelevantto theanswer, producingtuplescertain
to bein theanswerwhile narrowing thepossibleclassesthat
containtheanswer. Clearly, thiswork is quitedifferentfrom
thestatisticalapproachtakenby usandby Hellersteinet al.

Statistical techniques: The threemajor classesof tech-
niquesusedare sampling(e.g., [HÖT88, LNS90, HNS94,
LN95, HNSS95, GGMS96]), histograms (e.g., [Koo80,
PIHS96, Poo97, APR99]), and parametricmodeling(e.g.,
[CR94]). A survey of variousstatisticaltechniquesis given
in thepaperby Barbaŕaetal [BDF å 97]. GibbonsandMatias
presentaframework for studyingsynopsisdatastructuresfor
massive datasets[GM99b] and introducedtwo sampling-
basedsynopses,concisesamplesand counting samples,
that can be used to obtain larger samplesfor the same
spaceand to improve approximatequery answersfor hot
list queries[GM98]. Maintenancealgorithmsexist for sam-
ples [OR92, GMP97b, GM98] andhistograms[GMP97b].
However, thesemaintenancetechniquesareapplicableonly
to “base”statisticsandnot to thejoin synopsespresentedin
this paper.

10 Conclusions
In this paper, we have focusedon the importantproblem
of computingapproximateanswersto aggregatescomputed
on multi-way joins. For data warehousingenvironments
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with schemasthat involve only foreign-key joins, we have
proposedjoin synopsesasa solution to this problem. We
have shown that schemesbasedon join synopsesprovide
better performancethan schemesbasedon basesamples
for computingapproximatejoin aggregates. Further, we
have also shown that join synopsescan be maintained
efficiently duringupdatesto theunderlyingdata.Finally, we
have explored the useof empirical confidenceboundsfor
approximateanswersandhave shown that they area good
complementto traditionalguaranteedbounds.

Approximatequeryansweringis becomingincreasingly
essentialin datawarehousingandotherapplications.Hence,
it is importantto eliminateany fundamentalproblemsthat
limit its applicability to complex queries. This paper
identifiesonesuchproblemandpresentsacompletesolution
to it. However, many otherproblemsremain.Theseinclude
accuratelyapproximatinganswersto group-by, rankandset-
valuedqueries.We arecurrentlyaddressingtheseissuesas
partof theAquaproject.
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