
 

 

Hekaton: SQL Server’s Memory-Optimized OLTP Engine 
Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson,  

Pravin Mittal, Ryan Stonecipher, Nitin Verma, Mike Zwilling 
Microsoft 

{cdiaconu, craigfr, eriki, palarson, pravinm, ryanston, nitinver, mikezw}@microsoft.com 
  

ABSTRACT 
Hekaton is a new database engine optimized for memory resident 
data and OLTP workloads. Hekaton is fully integrated into SQL 
Server; it is not a separate system. To take advantage of Hekaton, 
a user simply declares a table memory optimized. Hekaton tables 
are fully transactional and durable and accessed using T-SQL in 
the same way as regular SQL Server tables. A query can reference 
both Hekaton tables and regular tables and a transaction can up-
date data in both types of tables. T-SQL stored procedures that 
reference only Hekaton tables can be compiled into machine code 
for further performance improvements. The engine is designed for 
high concurrency. To achieve this it uses only latch-free data 
structures and a new optimistic, multiversion concurrency control 
technique. This paper gives an overview of the design of the 
Hekaton engine and reports some experimental results. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – relational databases, 
Microsoft SQL Server 

General Terms 
Algorithms, Performance, Design 

Keywords 
Main-memory databases, OLTP, SQL Server, lock-free data struc-
tures, multiversion concurrency control, optimistic concurrency 
control, compilation to native code.  

1. INTRODUCTION  
SQL Server and other major database management systems were 
designed assuming that main memory is expensive and data re-
sides on disk. This assumption is no longer valid; over the last 30 
years memory prices have dropped by a factor of 10 every 5 
years. Today, one can buy a server with 32 cores and 1TB of 
memory for about $50K and both core counts and memory sizes 
are still increasing. The majority of OLTP databases fit entirely in 
1TB and even the largest OLTP databases can keep the active 
working set in memory. 

Recognizing this trend SQL Server several years ago began build-
ing a database engine optimized for large main memories and 
many-core CPUs. The new engine, code named Hekaton, is tar-
geted for OLTP workloads. This paper gives a technical overview 
of the Hekaton design and reports a few performance results.  

Several main memory database systems already exist, both com-

mercial systems [5][15][18][19][21] and research prototypes 
[2][3][7][8] [16]. However, Hekaton has a number of features that 
sets it apart from the competition. 

Most importantly, the Hekaton engine is integrated into SQL 
Server; it is not a separate DBMS. To take advantage of Hekaton, 
all a user has to do is declare one or more tables in a database 
memory optimized. This approach offers customers major benefits 
compared with a separate main-memory DBMS. First, customers 
avoid the hassle and expense of another DBMS. Second, only the 
most performance-critical tables need to be in main memory; 
other tables can be left unchanged. Third, stored procedures ac-
cessing only Hekaton tables can be compiled into native machine 
code for further performance gains. Fourth, conversion can be 
done gradually, one table and one stored procedure at a time. 

Memory optimized tables are managed by Hekaton and stored 
entirely in main memory. A Hekaton table can have several in-
dexes and two index types are available: hash indexes and range 
indexes. Hekaton tables are fully durable and transactional, 
though non-durable tables are also supported. 

Hekaton tables can be queried and updated using T-SQL in the 
same way as regular SQL Server tables. A query can reference 
both Hekaton tables and regular tables and a single transaction can 
update both types of tables.  Furthermore, a T-SQL stored proce-
dure that references only Hekaton tables can be compiled into 
native machine code. This is by far the fastest way to query and 
modify data in Hekaton tables.  

Hekaton is designed for high levels of concurrency but does not 
rely on partitioning to achieve this. Any thread can access any row 
in a table without acquiring latches or locks. The engine uses 
latch-free (lock-free) data structures to avoid physical interference 
among threads and a new optimistic, multiversion concurrency 
control technique to avoid interference among transactions [9].  

The rest of the paper is organized as follows. In section 2 we out-
line the considerations and principles behind the design of the 
engine. Section 3 provides a high-level overview of the architec-
ture. Section 4 covers how data is stored, indexed, and updated. 
Section 5 describes how stored procedures and table definitions 
are compiled into native code. Section 6 covers transaction man-
agement and concurrency control while section 7 outlines how 
transaction durability is ensured. Section 8 describes garbage 
collection, that is, how versions no longer needed are handled. 
Section 9 provides some experimental results.  

Terminology: We will use the terms Hekaton table and Hekaton 
index to refer to tables and indexes stored in main memory and 
managed by Hekaton.  Tables and indexes managed by the tradi-
tional SQL Server engine will be called regular tables and regular 
indexes. Stored procedures that have been compiled to native 
machine code will simply be called compiled stored procedures 
and traditional non-compiled stored procedures will be called 
interpreted stored procedures. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SIGMOD’13, June 22-27, 2013, New York, New York, USA. 
Copyright © ACM 978-1-4503-2037-5/13/06 …$15.00. 
 

1243



 

 

2. DESIGN CONSIDERATIONS 
An analysis done early on in the project drove home the fact that a 
10-100X throughput improvement cannot be achieved by optimiz-
ing existing SQL Server mechanisms. Throughput can be in-
creased in three ways: improving scalability, improving CPI (cy-
cles per instruction), and reducing the number of instructions exe-
cuted per request.  The analysis showed that, even under highly 
optimistic assumptions, improving scalability and CPI can pro-
duce only a 3-4X improvement. The detailed analysis is included 
as an appendix. 

The only real hope is to reduce the number of instructions execut-
ed but the reduction needs to be dramatic. To go 10X faster, the 
engine must execute 90% fewer instructions and yet still get the 
work done. To go 100X faster, it must execute 99% fewer instruc-
tions. This level of improvement is not feasible by optimizing 
existing storage and execution mechanisms. Reaching the 10-
100X goal requires a much more efficient way to store and pro-
cess data. 

2.1 Architectural Principles 
So to achieve 10-100X higher throughput, the engine must exe-
cute drastically fewer instructions per transaction, achieve a low 
CPI, and have no bottlenecks that limit scalability.  This led us to 
three architectural principles that guided the design.  

2.1.1 Optimize indexes for main memory  
Current mainstream database systems use disk-oriented storage 
structures where records are stored on disk pages that are brought 
into memory as needed. This requires a complex buffer pool 
where a page must be protected by latching before it can be ac-
cessed.  A simple key lookup in a B-tree index may require thou-
sands of instructions even when all pages are in memory. 

Hekaton indexes are designed and optimized for memory-resident 
data. Durability is ensured by logging and checkpointing records 
to external storage; index operations are not logged. During re-
covery Hekaton tables and their indexes are rebuilt entirely from 
the latest checkpoint and logs.  

2.1.2 Eliminate latches and locks 
With the growing prevalence of machines with 100’s of CPU 
cores, achieving good scaling is critical for high throughput.  
Scalability suffers when the systems has shared memory locations 
that are updated at high rate such as latches and spinlocks and  
highly contended resources such as the lock manager, the tail of 
the transaction log, or the last page of a B-tree index [4][6]. 

All Hekaton’s internal data structures, for example, memory allo-
cators, hash and range indexes, and transaction map, are entirely 
latch-free (lock-free). There are no latches or spinlocks on any 
performance-critical paths in the system.  Hekaton uses a new 
optimistic multiversion concurrency control to provide transaction 
isolation semantics; there are no locks and no lock table [9].  The 
combination of optimistic concurrency control, multiversioning 
and latch-free data structures results in a system where threads 
execute without stalling or waiting. 

2.1.3 Compile requests to native code 
SQL Server uses interpreter based execution mechanisms in the 
same ways as most traditional DBMSs. This provides great flexi-
bility but at a high cost: even a simple transaction performing a 
few lookups may require several hundred thousand instructions.  

Hekaton maximizes run time performance by converting state-
ments and stored procedures written in T-SQL into customized, 

highly efficient machine code. The generated code contains exact-
ly what is needed to execute the request, nothing more. As many 
decisions as possible are made at compile time to reduce runtime 
overhead. For example, all data types are known at compile time 
allowing the generation of efficient code.  

2.2 No Partitioning 
HyPer [8], Dora [15], H-store [4], and VoltDB [21] are recent 
systems designed for OLTP workloads and memory resident data. 
They partition the database by core and give one core exclusive 
access to a partition. Hekaton does not partition the database and 
any thread can access any part of the database. We carefully eval-
uated a partitioned approach but rejected it.  

Partitioning works great but only if the workload is also 
partitionable.  If the workload partitions poorly so that transac-
tions on average touch several partitions, performance deteriorates 
quickly. It is not difficult to see why. Suppose we have a table that 
is partitioned on column A across 12 cores. The table has two 
(partitioned) indexes: an index on column A and a non-unique 
hash index on column B.  

A query that includes an equality predicate on A (the partitioning 
column) can be processed quickly because only one partition 
needs to be accessed. However, a query that is not partition 
aligned can be very expensive. Consider a query that retrieves all 
records where B = 25. Some thread TH1 picks up the query and 
begins processing it. As the search predicate is not partition 
aligned and the index for B is not unique, all 12 partitions have to 
be checked. To do so TH1 has to enqueue a lookup request for 
each partition and wait for the results to be returned.  Each request 
has to be dequeued by a receiving thread, processed, and the result 
returned.  

The overhead of constructing, sending and receiving the request 
and returning the result is much higher than the actual work of 
performing a lookup in a hash table. In a non-partitioned system, 
thread TH1 would simply do the lookup itself in a single shared 
hash table. This is certainly faster and more efficient than sending 
12 requests and doing 12 lookups. 

After building from scratch and studying closely a prototype parti-
tioned engine, we came to the conclusion that a partitioned ap-
proach is not sufficiently robust for the wide variety of workloads 
customers expect SQL Server to handle.   

3. HIGH-LEVEL ARCHITECTURE 
This section gives a high level overview of the various compo-
nents of Hekaton and the integration with SQL Server. Later sec-
tions describe the components in more detail. As illustrated in 
Figure 1, Hekaton consists of three major components. 

 The Hekaton storage engine manages user data and index-
es.  It provides transactional operations on tables of records, 
hash and range indexes on the tables, and base mechanisms 
for storage, checkpointing, recovery and high-availability. 

 The Hekaton compiler takes an abstract tree representation 
of a T-SQL stored procedure, including the queries within it, 
plus table and index metadata and compiles the procedure in-
to native code designed to execute against tables and indexes 
managed by the Hekaton storage engine. 

 The Hekaton runtime system is a relatively small compo-
nent that provides integration with SQL Server resources and 
serves as a common library of additional functionality need-
ed by compiled stored procedures. 

1244



 

 

Hekaton leverages a number of services already available in SQL 
Server. The main integration points are illustrated in Figure 1. 

 Metadata: Metadata about Hekaton tables, indexes, etc. is 
stored in the regular SQL Server catalog. Users view and 
manage them using exactly the same tools as regular tables 
and indexes. 

 Query optimization: Queries embedded in compiled stored 
procedures are optimized using the regular SQL Server opti-
mizer. The Hekaton compiler compiles the query plan into 
native code. 

 Query interop: Hekaton provides operators for accessing 
data in Hekaton tables that can be used in interpreted SQL 
Server query plans. There is also an operator for inserting, 
deleting, and updating data in Hekaton tables. 

 Transactions: A regular SQL Server transaction can access 
and update data both in regular tables and Hekaton tables. 
Commits and aborts are fully coordinated across the two en-
gines. 

 High availability: Hekaton is integrated with AlwaysOn, 
SQL Server’s high availability feature. Hekaton tables in a 
database fail over in the same way as other tables and are al-
so readable on secondary servers. 

 Storage, log: Hekaton logs its updates to the regular SQL 
Server transaction log. It uses SQL Server file streams for 
storing checkpoints.  Hekaton tables are automatically recov-
ered when a database is recovered.  

4. STORAGE AND INDEXING  
A table created with the new option memory_optimized is man-
aged by Hekaton and stored entirely in memory. Hekaton supports 
two types of indexes: hash indexes which are implemented using 
lock-free hash tables [13] and range indexes which are imple-
mented using Bw-trees, a novel lock-free version of B-trees [10].  
A table can have multiple indexes and records are always ac-
cessed via an index lookup. Hekaton uses multiversioning; an 
update always creates a new version. 

Figure 2 shows a simple bank account table containing six version 
records. Ignore the numbers (100) and text in red for now.  The 

table has three (user defined) columns: Name, City and Amount. 
A version record includes a header and a number of link (pointer) 
fields. A version’s valid time is defined by timestamps stored in 
the Begin and End fields in the header.  

The example table has two indexes; a hash index on Name and a 
range index on City. Each index requires a link field in the record. 
The first link field is reserved for the Name index and the second 
link field for the City index. For illustration purposes we assume 
that the hash function just picks the first letter of the name. Ver-
sions that hash to the same bucket are linked together using the 
first link field. The leaf nodes of the Bw-tree store pointers to 
records. If multiple records have the same key value, the dupli-
cates are linked together using the second link field in the records 
and the Bw-tree points to the first record on the chain.  

Hash bucket J contains four records: three versions for John and 
one version for Jane. Jane’s single version (Jane, Paris, 150) has a 
valid time from 15 to infinity meaning that it was created by a 
transaction that committed at time 15 and it is still valid. John’s 
oldest version (John, London, 100) was valid from time 10 to time 
20 when it was updated. The update created a new version (John, 
London, 110). We will discuss John’s last version (John, London, 
130) in a moment. 

4.1 Reads 
Every read operation specifies a logical (as-of) read time and only 
versions whose valid time overlaps the read time are visible to the 
read; all other versions are ignored. Different versions of a record 
always have non-overlapping valid times so at most one version 
of a record is visible to a read. A lookup for John with read time 
15, for example, would trigger a scan of bucket J that checks eve-
ry record in the bucket but returns only the one with Name equal 
to John and valid time 10 to 20. If the index on Name is declared 
to be unique, the scan of the buckets stops as soon as a qualifying 
record has been found.  

4.2 Updates 
Bucket L contains two records that belong to Larry. Transaction 
75 is in the process of transferring $20 from Larry’s account to 

Figure 1: Hekaton’s main components and integration 
into SQL Server. 

Figure 2: Example account table with two indexes. Trans-
action 75 has transferred $20 from Larry’s account to 
John’s account but has not yet committed. 

1245



 

 

John’s account. It has created the new versions for Larry (Larry, 
Rome, 150) and for John (John, London, 130) and inserted them 
into the appropriate buckets in the index.  

Note that transaction 75 has stored its transaction Id in the Begin 
and End fields of the new and old versions, respectively. (One bit 
in the field indicates the field’s content type.) A transaction Id 
stored in the End field prevents other transactions from updating 
the same version and it also identifies which transaction is updat-
ing the version. A transaction Id stored in the Begin field informs 
readers that the version may not yet be committed and identifies 
which transaction created the version. 

Now suppose transaction 75 commits with end timestamp 100. 
(The details of commit processing are covered in section 6.) After 
committing, transaction 75 returns to the old and new versions 
and sets the Begin and End fields, respectively, to 100. The final 
values are shown in red below the old and new versions. The old 
version (John, London, 110) now has the valid time 20 to 100 and 
the new version (John, London, 130) has a valid time from 100 to 
infinity. Larry’s record is updated in the same way. 

This example also illustrates how deletes and inserts are handled 
because an update is equivalent to a deleting an old version and 
inserting a new version. 

The system must discard obsolete versions that are no longer 
needed to avoid filling up memory. A version can be discarded 
when it is no longer visible to any active transaction. Cleaning out 
obsolete versions, a.k.a. garbage collection, is handled coopera-
tively by all worker threads. Garbage collection is described in 
more detail in section 8.  

5. PROGRAMMABILITY AND QUERY 
PROCESSING 
Hekaton maximizes run time performance by converting SQL 
statements and stored procedures into highly customized native 
code. Database systems traditionally use interpreter based execu-
tion mechanisms that perform many run time checks during the 
execution of even simple statements.   

Our primary goal is to support efficient execution of compile-
once-and-execute-many-times workloads as opposed to optimiz-
ing the execution of ad hoc queries.  We also aim for a high level 
of language compatibility to ease the migration of existing SQL 
Server applications to Hekaton tables and compiled stored proce-
dures.  Consequently, we chose to leverage and reuse technology 
wherever suitable.  We reuse much of the SQL Server T-SQL 
compilation stack including the metadata, parser, name resolution, 
type derivation, and query optimizer.  This tight integration helps 
achieve syntactic and semantic equivalence with the existing SQL 
Server T-SQL language.  The output of the Hekaton compiler is C 
code and we leverage Microsoft’s Visual C/C++ compiler to con-
vert the C code into machine code. 

While it was not a goal to optimize ad hoc queries, we do want to 
preserve the ad hoc feel of the SQL language.  Thus, a table and 
stored procedure is available for use immediately after it has been 
created.  To create a Hekaton table or a compiled stored proce-
dure, the user merely needs to add some additional syntax to the 
CREATE TABLE or CREATE PROCEDURE statement.  Code 
generation is completely transparent to the user. 

Figure 3 illustrates the overall architecture of the Hekaton compil-
er.  There are two main points where we invoke the compiler: 
during creation of a memory optimized table and during creation 
of a compiled stored procedure. 

As noted above, we begin by reusing the existing SQL Server 
compilation stack.  We convert the output of this process into a 
data structure called the mixed abstract tree or MAT.  This data 
structure is a rich abstract syntax tree capable of representing 
metadata, imperative logic, expressions, and query plans.  We 
then transform the MAT into a second data structure called the 
pure imperative tree or PIT.  The PIT is a much “simpler” data 
structure that can be easily converted to C code (or theoretically 
directly into the intermediate representation for a compiler 
backend such as Phoenix [17] or LLVM [11]).  We discuss the 
details of the MAT to PIT transformation further in Section 5.2.  
Once we have C code, we invoke the Visual C/C++ compiler and 
linker to produce a DLL.  At this point it is just a matter of using 
the OS loader to bring the newly generated code into the SQL 
Server address space where it can be executed. 

5.1 Schema Compilation 
It may not be obvious why table creation requires code genera-
tion.  The reason is that the Hekaton storage engine treats records 
as opaque objects.  It has no knowledge of the internal content or 
format of records and cannot directly access or process the data in 
records.  The Hekaton compiler provides the engine with custom-
ized callback functions for each table.  These functions perform 
tasks such as computing a hash function on a key or record, com-
paring two records, and serializing a record into a log buffer.  
Since these functions are compiled into native code, index opera-
tions such as inserts and searches are extremely efficient. 

Figure 3: Architecture of the Hekaton compiler. 

1246



 

 

5.2 Compiled Stored Procedures 
There are numerous challenging problems that we had to address 
to translate T-SQL stored procedures into C code.  Perhaps the 
most obvious challenge is the transformation of query plans into C 
code and we will discuss our approach to this problem momentari-
ly.  There are, however, many other noteworthy complications.  
For example, the T-SQL and C type systems and expression se-
mantics are very different.  T-SQL includes many data types such 
as date/time types and fixed precision numeric types that have no 
corresponding C data types.  In addition, T-SQL supports NULLs 
while C does not.  Finally, T-SQL raises errors for arithmetic 
expression evaluation failures such as overflow and division by 
zero while C either silently returns a wrong result or throws an OS 
exception that must be translated into an appropriate T-SQL error. 

These complexities were a major factor in our decision to intro-
duce the intermediate step of converting the MAT into the PIT 
rather than directly generating C code.  The PIT is a data structure 
that can be easily manipulated, transformed, and even generated 
out of order in memory.  It is much more challenging to work 
directly with C code in text form. 

The transformation of query plans into C code warrants further 
discussion.  To aid in this discussion, consider the simple T-SQL 
example in Figure 4.  This procedure retrieves a customer name, 
address, and phone number given a customer id.  The procedure 
declaration includes some additional syntax; we will explain be-
low why this syntax is required.   

As with many query execution engines, we begin with a query 
plan which is constructed out of operators such as scans, joins, 
and aggregations.  Figure 5 illustrates one possible plan for exe-
cuting our sample query.  For this example, we are naively assum-
ing that the DBA has not created an index on Customer.Id and 
that the predicate is instead evaluated via a filter operator.  In 
practice, we ordinarily would push the predicate down to the stor-
age engine via a callback function.  However, we use the filter 
operator to illustrate a more interesting outcome. 

Each operator implements a common interface so that they can be 
composed into arbitrarily complex plans.  In our case, this inter-
face consists of “get first,” “get next,” “return row,” and “return 
done.”  However, unlike most query execution engines, we do not 
implement these interfaces using functions.  Instead, we collapse 
an entire query plan into a single function using labels and gotos 
to implement and connect these interfaces.  Figure 6 illustrates 
graphically how the operators for our example are interconnected.  
Each hollow circle represents a label while each arrow represents 
a goto statement.  In many cases, we can directly link the code for 
the various operators bypassing intermediate operators entirely.  
The X’s mark labels and gotos that have been optimized out in 
just such a fashion.  In conventional implementations, these same 

scenarios would result in wasted instructions where one operator 
merely calls another without performing any useful work. 

Execution of the code represented by Figure 6 begins by transfer-
ring control directly to the GetFirst entry point of the scan opera-
tor.  Note already the difference as compared to traditional query 
processors which typically begin execution at the root of the plan 
and invoke repeated function calls merely to reach the leaf of the 
tree even when the intermediate operators have no work to do.   
Presuming the Customers table is not empty, the scan operator 
retrieves the first row and transfers control to the filter operator 
ReturnRow entry point.  The filter operator evaluates the predicate 
and either transfers control back to the scan operator GetNext 
entry point if the current row does not qualify or to the output 
operator entry point if the row qualifies.  The output operator adds 
the row to the output result set to be returned to the client and then 
transfers control back to the scan operator GetNext entry point 
again bypassing the filter operator.  When the scan operator 
reaches the end of the table, execution terminates immediately.  
Again control bypasses any intermediate operators. 

This design is extremely flexible and can support any query op-
erator including blocking (e.g., sort and group by aggregation) and 
non-blocking (e.g., nested loops join) operators.  Our control flow 
mechanism is also flexible enough to handle operators such as 
merge join that alternate between multiple input streams.  By 
keeping all of the generated code in a single function, we avoid 
costly argument passing between functions and expensive func-
tion calls.  Although the resulting code is often challenging to read 
due in part to the large number of goto statements, it is important 
to keep in mind that our intent is not to produce code for human 
consumption.  We rely on the compiler to generate efficient code.  
We have confirmed that the compiler indeed does so through in-
spection of the resulting assembly code.  

We compared this design to alternatives involving multiple func-
tions and found that the single function design resulted in the 

 

CREATE PROCEDURE SP_Example @id INT 
WITH NATIVE_COMPILATION, SCHEMABINDING,  
     EXECUTE AS OWNER 
AS BEGIN ATOMIC  
WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT,  
      LANGUAGE = 'English') 
   SELECT Name, Address, Phone  
   FROM dbo Customers WHERE Id = @id 

Figure 4: Sample T-SQL procedure. 

Figure 6: Operator interconnections for sample procedure. 

Figure 5: Query plan for sample T-SQL procedure 

1247



 

 

fewest number of instructions executed as well as the smallest 
overall binary.  This result was true even with function inlining.  
In fact, the use of gotos allows for code sharing within a single 
function.  For example, an outer join needs to return two different 
types of rows:  joined rows and NULL extended rows.  Using 
functions and inlining with multiple outer joins, there is a risk of 
an exponential growth in code size [14].  Using gotos, the code 
always grows linearly with the number of operators. 

There are cases where it does not make sense to generate custom 
code.  For example, the sort operator is best implemented using a 
generic sort implementation with a callback function to compare 
records.  Some functions (e.g., non-trivial math functions) are 
either sufficiently complex or expensive that it makes sense to 
include them in a library and call them from the generated code. 

5.3 Restrictions 
With minor exceptions, compiled stored procedures look and feel 
just like any other T-SQL stored procedures.  We support most of 
the T-SQL imperative surface area including parameter and varia-
ble declaration and assignment as well as control flow and error 
handling.  The query surface area is a bit more limited but we are 
expanding it rapidly.  We support SELECT, INSERT, UPDATE, 
and DELETE.  Queries currently can include inner joins, sort and 
top sort, and basic scalar and group by aggregation. 

In an effort to minimize the number of run time checks and opera-
tions that must be performed at execution time, we do impose 
some limitations.  First, compiled stored procedures support a 
limited set of options and the options that can be controlled must 
be set at compile time only.  This policy eliminates unnecessary 
run time checks.  Second, compiled stored procedures must exe-
cute in a predefined security context so that we can run all permis-
sion checks once at creation time.  Third, compiled stored proce-
dures must be schema bound; i.e., once a procedure is created, any 
tables referenced by that procedure cannot be dropped without 
first dropping the procedure.  This avoids acquiring costly schema 
stability locks before execution.  Fourth, compiled stored proce-
dures must execute in the context of a single transaction.  This 
requirement ensures that a procedure does not block midway 
through to wait for commit. 

5.4 Query Interop 
Compiled stored procedures do have limitations in the current 
implementation.  The available query surface area is not yet com-
plete and it is not possible to access regular tables from a com-
piled stored procedure.  Recognizing these limitations, we imple-
mented an additional mechanism that enables the conventional 
query execution engine to access memory optimized tables.  This 
feature enables several important scenarios: 

 Import and export of data to and from memory optimized 
tables using the existing tools and processes that already 
work for regular tables. 

 Support for ad hoc queries and data repair. 
 Feature completeness.  E.g., users can leverage interop to 

execute virtually any legal SQL query against memory opti-
mized tables and can use features such as views and cursors 
that are not supported in compiled stored procedures. 

 Support for transactions that access both memory optimized 
and regular tables. 

 Ease of app migration.  Existing tables can be converted to 
memory optimized tables without extensive work to convert 
existing stored procedures into compiled stored procedures. 

6. TRANSACTION MANAGEMENT 
Hekaton utilizes optimistic multiversion concurrency control 
(MVCC) to provide snapshot, repeatable read and serializable 
transaction isolation without locking. This section summarizes the 
core concepts of the optimistic MVCC implemented in Hekaton. 
Further details can be found in [9].   

A transaction is by definition serializable if its reads and writes 
logically occur as of the same time. The simplest and most widely 
used MVCC method is snapshot isolation (SI). SI does not guar-
antee serializability because reads and writes logically occur at 
different times: reads at the beginning of the transaction and 
writes at the end. However, a transaction is serializable if we can 
guarantee that it would see exactly the same data if all its reads 
were repeated at the end of the transaction. 

To ensure that a transaction T is serializable we must ensure that 
the following two properties hold. 

1. Read stability. If T reads some version V1 during its pro-
cessing, we must ensure that V1 is still the version visible to 
T as of the end of the transaction.  This is implemented by 
validating that V1 has not been updated before T commits. 
This ensures that nothing has disappeared from the view. 

2. Phantom avoidance. We must also ensure that the transac-
tion’s scans would not return additional new versions. This is 
implemented by rescanning to check for new versions before 
commit. This ensures that nothing has been added to the 
view. 

Lower isolation levels are easier to support. For repeatable read, 
we only need to guarantee read stability. For snapshot isolation or 
read committed, no validation at all is required.  

The discussion that follows covers only serializable transactions.  
For other isolation levels and a lock-based alternative technique, 
see [9]. 

6.1 Timestamps and Version Visibility 
Timestamps produced by a monotonically increasing counter are 
used to specify the following. 

 Logical Read Time: the read time of a transaction can be 
any value between the transaction’s begin time and the cur-
rent time. Only versions whose valid time overlaps the logi-
cal read time are visible to the transaction.  For all supported 
isolation levels, the logical read time of a transaction is set to 
the start time of the transaction.   

 Commit/End Time for a transaction: every transaction that 
modifies data commits at a distinct point in time called the 
commit or end timestamp of the transaction.  The commit 
time determines a transaction’s position in the serialization 
history. 

 Valid Time for a version of a record:  All records in the 
database contain two timestamps – begin and end.  The begin 
timestamp denotes the commit time of the transaction that 
created the version and the end timestamp denotes the com-
mit timestamp of the transaction that deleted the version (and 
perhaps replaced it with a new version).  The valid time for a 
version of a record denotes the timestamp range where the 
version is visible to other transactions.   

The notion of version visibility is fundamental to proper concur-
rency control in Hekaton.  A transaction executing with logical 
read time RT must only see versions whose begin timestamp is 

1248



 

 

less than RT and whose end timestamp is greater than RT. A 
transaction must of course also see its own updates. 

6.2 Transaction Commit Processing 
Once a transaction has completed its normal processing, it begins 
commit processing. 

6.2.1 Validation and Dependencies 
At the time of commit, a serializable transaction must verify that 
the versions it read have not been updated and that no phantoms 
have appeared.  The validation phase begins with the transaction 
obtaining an end timestamp. This end timestamp determines the 
position of the transaction within the transaction serialization 
history.  

To validate its reads, the transaction checks that the versions it 
read are visible as of the transaction’s end time. To check for 
phantoms, it repeats all its index scans looking for versions that 
have become visible since the transaction began. To enable vali-
dation each transaction maintains a read set, a list of pointers to 
the versions it has read, and a scan set containing information 
needed to repeat scans. While validation may sound expensive, 
keep in mind that most likely the versions visited during valida-
tion remain in the L1 or L2 cache. Furthermore, validation over-
head is lower for lower isolation: repeatable read requires only 
read validation and snapshot isolation and read committed require 
not validation at all. 

The validation phase is a time of uncertainty for a transaction.  If 
the validation succeeds the transaction is likely to commit and if it 
commits its effects must be respected by all other transactions in 
the system as if they occurred atomically as of the end timestamp.  
If validation fails, then nothing done by the transaction must be 
visible to any other transaction.   

Any transaction T1 that begins while a transaction T2 is in the 
validation phase becomes dependent on T2 if it attempts to read a 
version created by T2 or ignores a version deleted by T2.  In that 
case T1 has two choices: block until T2 either commits or aborts, 
or proceed and take a commit dependency on T2.  To preserve the 
non-blocking nature of Hekaton, we have T1 take a commit de-
pendency on T2. This means that T1 is allowed to commit only if 
T2 commits. If T2 aborts, T1 must also abort so cascading aborts 
are possible.   

Commit dependencies introduce two problems: 1) a transaction 
cannot commit until every transaction upon which it is dependent 
has committed and 2) commit dependencies imply working with 
uncommitted data and such data should not be exposed to users. 

When a transaction T1 takes a commit dependency on transaction 
T2, T2 is notified of the dependency and T1 increments its de-
pendency count. If T2 commits, it decrements the dependency 
count in T1.  If T2 rolls back, it notifies T1 that it too must roll 
back.  If T1 attempts to commit and completes its validation phase 
(which may itself acquire additional commit dependencies) and it 
still has outstanding commit dependencies, it must wait for the 
commit dependencies to clear.  If all transactions upon which T1 
is dependent commit successfully, then T1 can proceed with log-
ging its changes and completing post processing. 

To solve the second problem we introduced read barriers. This 
simply means that a transaction’s result set is held back and not 
delivered to the client while the transaction has outstanding com-
mit dependencies. The results are sent as soon as the dependencies 
have cleared. 

6.2.2 Commit Logging and Post-processing 
A transaction T is committed as soon as its changes to the data-
base have been hardened to the transaction log.  Transaction T 
writes to the log the contents of all new versions created by T and 
the primary key of all versions deleted by T. More details on log-
ging can be found in section 7. 

Once T’s updates have been successfully logged, it is irreversibly 
committed. T then begins a post-processing phase during which 
the begin and end timestamps in all versions affected by the trans-
action are updated to contain the end timestamp of the transaction.  
Transactions maintain a write-set, a set of pointers to all inserted 
and deleted versions that is used to perform the timestamp updates 
and generate the log content. 

6.2.3 Transaction Rollback 
Transactions can be rolled back at user request or due to failures 
in commit processing.  Rollback is achieved by invalidating all 
versions created by the transaction and clearing the end-timestamp 
field of all versions deleted by the transaction.  If there are any 
other transactions dependent on the outcome of the rolled-back 
transaction, they are so notified. Again the write-set of the trans-
action is used to perform this operation very efficiently. 

7. TRANSACTION DURABILITY 
While Hekaton is optimized for main-memory resident data, it 
must ensure transaction durability that allows it to recover a 
memory-optimized table after a failure.  Hekaton achieves this 
using transaction logs and checkpoints to durable storage. Though 
not covered in this paper, Hekaton is also integrated with the 
AlwaysOn component that maintains highly available replicas 
supporting failover.  

The design of the logging, checkpointing and recovery compo-
nents was guided by the following principles. 

 Optimize for sequential access so customers can spend their 
money on main memory rather than I/O devices with fast 
random access. 

 Push work to recovery time to minimize overhead during 
normal transaction execution. 

 Eliminate scaling bottlenecks.  
 Enable parallelism in I/O and CPU during recovery 

 
The data stored on external storage consists of transaction log 
streams and checkpoint streams.   

 Log streams contain the effects of committed transactions 
logged as insertion and deletion of row versions. 

 Checkpoint streams come in two forms: a) data streams 
which contain all inserted versions during a timestamp inter-
val, and b) delta streams, each of which is associated with a 
particular data stream and contains a dense list of integers 
identifying deleted versions for its corresponding data 
stream. 

The combined contents of the log and checkpoint streams are 
sufficient to recover the in-memory state of Hekaton tables to a 
transactionally consistent point in time. Before we discuss the 
details of how they are generated and used, we first summarize a 
few of their characteristics. 

 Log streams are stored in the regular SQL Server transaction 
log.  Checkpoint streams are stored in SQL Server file 
streams which in essence are sequential files fully managed 
by SQL Server.  

1249



 

 

 The log contains the logical effects of committed transactions 
sufficient to redo the transaction.  The changes are recorded 
as insertions and deletions of row versions labeled with the 
table they belong to. No undo information is logged. 

 Hekaton index operations are not logged. All indexes are 
reconstructed on recovery.  

 Checkpoints are in effect a compressed representation of the 
log. Checkpoints allow the log to be truncated and improve 
crash recovery performance. 

7.1 Transaction Logging 
Hekaton’s transaction log is designed for high efficiency and 
scale.  Each transaction is logged in a single, potentially large, log 
record. The log record contains information about all versions 
inserted and deleted by the transaction, sufficient to redo them. 

Since the tail of the transaction log is typically a bottleneck, re-
ducing the number of log records appended to the log can improve 
scalability and significantly increase efficiency.  Furthermore the 
content of the log for each transaction requires less space than 
systems that generate one log record per operation.  

Generating a log record only at transaction commit time is possi-
ble because Hekaton does not use write-ahead logging (WAL) to 
force log changes to durable storage before dirty data. Dirty data 
is never written to durable storage. Furthermore, Hekaton tries to 
group multiple log records into one large I/O; this is the basis for 
group commit and also a significant source of efficiency for 
Hekaton commit processing. 

Hekaton is designed to support multiple concurrently generated 
log streams per database to avoid any scaling bottlenecks with the 
tail of the log.  Multiple log streams can be used because serializa-
tion order is determined solely by transaction end timestamps and 
not by ordering in the transaction log. However the integration 
with SQL Server leverages only a single log stream per database 
(since SQL Server only has one). This has so far proven sufficient 
because Hekaton generates much less log data and fewer log 
writes compared with SQL Server. 

7.2 Checkpoints 
To reduce recovery time Hekaton also implements checkpointing. 
The checkpointing scheme is designed to satisfy two important 
requirements.  

 Continuous checkpointing. Checkpoint related I/O occurs 
incrementally and continuously as transactional activity ac-
cumulates. Customers complain that hyper-active checkpoint 
schemes (defined as checkpoint processes which sleep for a 
while after which they wake up and work as hard as possible 
to finish up the accumulated work) are disruptive to overall 
system performance.  

 Streaming I/O. Checkpointing relies on streaming I/O rather 
than random I/O for most of its operations. Even on SSD de-
vices random I/O is slower than sequential and can incur 
more CPU overhead due to smaller individual I/O requests.  

7.2.1 Checkpoint Files 
Checkpoint data is stored in two types of checkpoint files: data 
files and delta files. A complete checkpoint consists of multiple 
data and delta files and a checkpoint file inventory that lists the 
files comprising the checkpoint. 

A data file contains only inserted versions (generated by inserts 
and updates) covering a specific timestamp range. All versions 

with a begin timestamp within the data file’s range are contained 
in the file. Data files are append-only while opened and once 
closed, they are strictly read-only.  At recovery time the versions 
in data files are reloaded into memory and re-indexed, subject to 
filtering by delta files discussed next. 

A delta file stores information about which versions contained in 
a data file have been subsequently deleted. There is a 1:1 corre-
spondence between a delta file and a data file. Delta files are ap-
pend-only for the lifetime of the data file they correspond to.  At 
recovery time, the delta file is used as a filter to avoid reloading 
deleted versions into memory. The choice to pair one delta file 
with each data file means that the smallest unit of work for recov-
ery is a data/delta file pair leading to a recovery process that is 
highly parallelizable. 

A checkpoint file inventory tracks references to all the data and 
delta files that make up a complete checkpoint.  The inventory is 
stored in a system table. 

A complete checkpoint combined with the tail of the transaction 
log enable Hekaton tables to be recovered.  A checkpoint has a 
timestamp which indicates that the effects of all transactions be-
fore the checkpoint timestamp are recorded in the checkpoint and 
thus the transaction log is not needed to recover them. 

7.2.2 Checkpoint Process 
A checkpoint task takes a section of the transaction log not cov-
ered by a previous checkpoint and converts the log contents into 
one or more data files and updates to delta files.  New versions are 
appended to either the most recent data file or into a new data file 
and the IDs of deleted versions are appended to the delta files 
corresponding to where the original inserted versions are stored.  
Both operations are append-only and can be done buffered to 
allow for large I/Os.  Once the checkpoint task finishes processing 
the log, the checkpoint is completed with the following steps. 

1. Flush all buffered writes to the data and delta files and wait 
for them to complete. 

2. Construct a checkpoint inventory that includes all files from 
the previous checkpoint plus any files added by this check-
point.  Harden the inventory to durable storage. 

3. Store the location of the inventory in a durable location 
available at recovery time. We record it both in the SQL 
Server log and the root page of the database. 

The set of files involved in a checkpoint grows with each check-
point.  However the active content of a data file degrades as more 
and more of its versions are marked deleted in its delta file.  Since 
crash recovery will read the contents of all data and delta files in 
the checkpoint, performance of crash recovery degrades as the 
utility of each data file drops. 

The solution to this problem is to merge temporally adjacent data 
files when their active content (the percentage of undeleted ver-
sions in a data file) drops below a threshold.  Merging two data 
files DF1 and DF2 results in a new data file DF3 covering the 
combined range of DF1 and DF2.  All deleted versions, that is, 
versions identified in the DF1 and DF2’s delta files, are dropped 
during the merge.  The delta file for DF3 is empty immediately 
after the merge. 

7.3 Recovery 
Hekaton recovery starts after the location of the most recent 
checkpoint inventory has been recovered during a scan of the tail 
of the log. Once the SQL Server host has communicated the loca-

1250



 

 

tion of the checkpoint inventory to the Hekaton engine, SQL 
Server and Hekaton recovery proceed in parallel. 

Hekaton recovery itself is parallelized. Each delta file represents 
in effect a filter for rows that need not be loaded from the corre-
sponding data file. This data/delta file pair arrangement means 
that checkpoint load can proceed in parallel across multiple IO 
streams at file pair granularity. The Hekaton engine takes ad-
vantage of parallel streams for load I/O, but also creates one 
thread per core to handle parallel insertion of the data produced by 
the I/O streams. The insert threads in effect replay the transactions 
saved in the checkpoint files. The choice of one thread per core 
means that the load process is performed as efficiently as possible.  

Finally, once the checkpoint load process completes, the tail of the 
transaction log is replayed from the timestamp of the checkpoint, 
with the goal of bringing the database back to the state that existed 
at the time of the crash. 

8. GARBAGE COLLECTION 
Multiversioning systems inevitably face the question of how to 
cleanup versions that are no longer visible to running transactions.  
We refer to this activity as garbage collection. While the term 
garbage collection can conjure visions of poor performance, 
lengthy pause times, blocking, and other scaling problems often 
seen in the virtual machines for managed languages, Hekaton 
avoids these problems.  Unlike a programming language runtime 
where the notion of garbage is defined by the "reachability" of a 
pointer from any location in the process address space, in 
Hekaton, garbage is defined by a version's "visibility" – that is, a 
version of a record is garbage if it is no longer visible to any ac-
tive transaction. 

The design of the Hekaton garbage collection (GC) subsystem has 
the following desirable properties.   

• Hekaton GC is non-blocking.  Garbage collection runs con-
currently with the regular transaction workload, and never 
stalls processing of any active transaction.   

• The GC subsystem is cooperative.  Worker threads running 
the transaction workload can remove garbage when they en-
counter it.  This can save processing time as garbage is re-
moved proactively whenever it is “in the way” of a scan. 

• Processing is incremental.  Garbage collection may easily 
be throttled and can be started and stopped to avoid consum-
ing excessive CPU resources. 

• Garbage collection is parallelizable and scalable.  Multiple 
threads can work in parallel on various phases of garbage 
collection and in isolation with little to no cross-thread syn-
chronization. 

8.1 Garbage Collection Details 
The garbage collection process is described in this section to illus-
trate how these properties are achieved.   

8.1.1 GC Correctness 
First, care must be taken to identify which versions might be gar-
bage.  Potential garbage versions may be created by one of two 
processes.  First, a version becomes garbage if a) it was deleted 
(via explicit DELETE or through an UPDATE operation) by a 
committed transaction and b) the version cannot be read or other-
wise acted upon by any transaction in the system.  A second, and 
less common way for versions to become garbage is if they were 
created by a transaction that subsequently rolls back.   

The first and most important property of the GC is that it correctly 
determines which versions are actually garbage. The visibility of a 
version is determined by its begin and end timestamps.  Any ver-
sion whose end timestamp is less than the current oldest active 
transaction in the system is not visible to any transaction and can 
be safely discarded.   

A GC thread periodically scans the global transaction map to de-
termine the begin timestamp of the oldest active transaction in the 
system.  When the GC process is notified that it should begin 
collection, transactions committed or aborted since the last GC 
cycle are ordered by their end timestamps.  Any transaction T in 
the system whose end timestamp is older than the oldest transac-
tion watermark is ready for collection. More precisely, the ver-
sions deleted or updated by T can be garbage collected because 
they are invisible to all current and future transactions.   

8.1.2 Garbage Removal 
In order for a garbage version to be removed it must first be un-
linked from all indexes in which it participates.  The GC subsys-
tem collects these versions in two ways:  (1) a cooperative mech-
anism used by threads running the transaction workload, and (2) a 
parallel, background collection process. 

Since regular index scanners may encounter garbage versions as 
they scan indexes, index operations are empowered to unlink gar-
bage versions when they encounter them. If this unlinks a version 
from its last index, the scanner may also reclaim it.  This coopera-
tive mechanism is important in two dimensions.  First, it naturally 
parallelizes garbage collection in the system, and makes collection 
efficient since it piggybacks on work the scanner already did to 
locate the version.  Second, it ensures that old versions will not 
slow down future scanners by forcing them to skip over old ver-
sions encountered, for example, in hash index bucket chains.  

This cooperative process naturally ensures that 'hot' regions of an 
index are constantly maintained to ensure they are free of obsolete 
versions.  However, this process is insufficient to ensure that ei-
ther (1) 'cold' areas of an index which are not traversed by scan-
ners are free of garbage, or that (2) a garbage version is removed 
from other indexes that it might participate in.  Versions in these 
“dusty corners” (infrequently visited index regions) do not need to 
be collected for performance reasons, but they needlessly con-
sume memory and, as such, should be removed as promptly as 
possible.  Since reclamation of these versions is not time critical, 
the work to collect these versions is offloaded to a background 
GC process. 

Each version examined by the background collection process may 
potentially be removed immediately.  If the version no longer 
participates in any index (because cooperative scanners have re-
moved it) it can be reclaimed immediately. However, if GC finds 
a version that is still linked in one or more indexes, it cannot im-
mediately unlink the version since it has no information about the 
row's predecessor. In order to remove such versions, GC first 
scans the appropriate part of each index and unlinks the version, 
after which it can be removed. While scanning, it of course un-
links any other garbage versions encountered.  

8.1.3 Scalability 
Early versions of the Hekaton GC used a fixed set of threads for 
collection.  A main GC thread was responsible for processing 
garbage versions and attempting to directly unlink those that it 
could, while two auxiliary threads were used to perform the 'dusty 
corner' scans to remove versions that needed additional work.  

1251



 

 

However, under high transaction loads, we found that it was diffi-
cult to ensure that a single GC thread could maintain the neces-
sary rate of collection for a high number of incoming transactions, 
especially for those workloads that were more update/delete 
heavy.  In order to address this problem, the garbage collection 
has been parallelized across all worker threads in the system. 

A single GC process is still responsible for periodically recalculat-
ing the oldest transaction watermark and partitioning completed 
transactions accordingly.  However, once this work has been 
done, transactions that are ready for collection are then distributed 
to a set of work queues. After a Hekaton worker has acknowl-
edged its commit or abort to the user, it then picks up a small set 
of garbage collection work from its CPU-local queue, and com-
pletes that work.  This serves two scalability benefits.  First, it 
naturally parallelizes the work across CPU cores, without the 
additional overhead and complexity of maintaining dedicated 
worker threads, and second, it allows the system to self-throttle.  
By ensuring that each thread in the system that is responsible for 
user work is also responsible for GC work, and by preventing a 
user thread from accepting more transactional work until a bit of 
garbage has been collected, this scheme introduces a small delay 
in the processing of transactions in the system, making sure that 
the system does not generate more garbage versions than the GC 
subsystem can retire.  

9. EXPERIMENTAL RESULTS 
9.1 CPU Efficiency  
The Hekaton engine is significantly more efficient than the regu-
lar SQL Server engine; it processes a request using far fewer in-
structions and CPU cycles. The goal of our first experiments is to 
quantify the improvement in CPU efficiency of the core engine 
and how this depends on request size. The experiments in this 
section were run on a workstation with a 2.67GHz Intel Xeon 
W3520 processor, 6 GB of memory and an 8 MB L2 cache. 

For the experiments we created two identical tables, T1 and T2, 
with schema (c1 int, c2 int, c3 varchar(32)), each containing 1M 
rows.  Column c1 is the primary key. T1 was a Hekaton table with 
a hash index on c1 and T2 was a regular table with a B-tree index 
on c1.  Both tables resided entirely in memory. 

9.1.1 Lookup Efficiency 
We created a T-SQL procedure RandomLookups that does N 
random lookups on the primary key (column c1) and computes the 
average, min, and max of column c2. The key values are random-
ly generated using the T-SQL function RAND(). There are two 
versions of the procedure, one doing lookups in T1 and compiled 
into native code and one doing lookups in T2 using the regular 

SQL Server engine.  

As the goal was to measure and compare CPU efficiency of the 
core engines, we used another (regular) stored procedure as the 
driver for RandomLookups. The driver calls RandomLookups in a 
loop and computes the average CPU cycles consumed per call.  
The results are shown in Table 1 for different numbers of lookups 
per call. 

The speedup is 20X when doing 10 or more lookups per call. 
Expressed differently, the Hekaton engine completed the same 
work using 5% of the CPU cycles used by the regular SQL Server 
engine. The fixed overhead of the stored procedure (call and re-
turn, create and destroy transaction, etc.) dilutes the speedup for 
few lookups. For a single lookup the speedup is 10.8X.  

The absolute lookup performance is very high. Finishing 100,000 
lookups in 98.1 million cycles on a 2.67GHz core equals 2.7M 
lookups per second per core.  

9.1.2 Update Efficiency 
To measure the CPU efficiency of updates we wrote another T-
SQL procedure RandomUpdates that updates the c2 column of N 
randomly selected rows. Again, there are two versions of the pro-
cedure, one compiled into native code and updating T1, and one 
regular procedure updating T2. We varied the number of updates 
per transaction from 1 to 10,000. The results are shown in Table 
2. 

As the goal was to measure CPU efficiency and not transaction 
latency, we enabled write caching on the disk used for the transac-
tion log. With write caching disabled, we would essentially have 
measured the write latency of the disk which is not the infor-
mation we were after. CPU efficiency is largely independent of 
the type of logging device.  

The speedup is even higher than for lookups, reaching around 
30X for transactions updating 100 or more records. Even for 
transactions consisting of a single updated, the speedup was 
around 20X. In other words, Hekaton got the work done using 
between 3% and 5% of the cycles used by the regular engine. 

Again, the absolute performance is very high.10,000 updates in 
14.4 million cycles equals about 1.9M updates per second using a 
single core. 

As mentioned earlier, Hekaton generally logs less data than the 
regular SQL Server engine. In this particular case, it reduced log 
output by 57%. However, how much Hekaton logs depends on the 
record size; for large records the relative gain would be smaller. 

9.2 Scaling Under Contention 
Scalability of database systems is often limited by contention on 
locks and latches [5]. The system is simply not able to take ad-

Transac-
tion size in 
#lookups 

CPU cycles (in millions) Speedup 

Interpreted Compiled  

1 0.734 0.040 10.8X 

10 0.937 0.051 18.4X 

100 2.72 0.150 18.1X 

1,000 20.1 1.063 18.9X 

10,000 201 9.85 20.4X 

Transaction 
size in #up-
dates 

CPU cycles (in millions) Speedup 

Interpreted  Compiled 

1 0.910 0.045 20.2X 

10 1.38 0.059 23.4X 

100 8.17 0.260 31.4X 

1,000 41.9 1.50 27.9X 

10,000 439 14.4 30.5X 

Table 1: Comparison of CPU efficiency for lookups. Table 2: Comparison of CPU efficiency for updates. 

1252



 

 

Figure 7: Experiment illustrating the scalability of the Hekaton engine. 
Throughput for the regular SQL Server engine is limited by latch contention. 

vantage of additional processor cores so 
throughput levels off or even decreases. When 
SQL Server customers experience scalability 
limitations, the root cause is frequently conten-
tion.  

Hekaton is designed to eliminate lock and latch 
contention, allowing it to continue to scale with 
the number of processor cores. The next exper-
iment illustrates this behavior. This experiment 
simulates an order entry system for, say, a large 
online retailer. The load on the system is highly 
variable and during peak periods throughput is 
limited by latch contention. 

The problem is caused by a SalesOrderDetails 
table that stores data about each item ordered. 
The table has a unique index on the primary 
key which is a clustered B-tree index if the 
table is a regular SQL Server table and a hash 
index if it is Hekaton table.  The workload in 
the experiment consists of 60 input streams, 
each a mix of 50% update transactions and 50% 
read-only transactions. Each update transaction 
acquires a unique sequence number, which is 
used as the order number, and then inserts 100 
rows in the SalesOrderDetails table. A read-only transaction re-
trieves the order details for the latest order. 

This experiment was run on a machine with 2 sockets, 12 cores 
(Xeon X5650, 2.67GHz), 144GB of memory, and Gigabit Ether-
net network cards. External storage consisted of four 64GB Intel 
SSDs for data and three 80GB Fusion-IO SSDs for logs.  

Figure 7 shows the throughput as the number of cores used varies. 
The regular SQL Server engine shows limited scalability as we 
increase the number of cores used. Going from 2 core to 12 cores 
throughput increases from 984 to 2,312 transactions per second, 
only 2.3X. Latch contention limits the CPU utilization to just 40% 
for more than 6 cores.  

Converting the table to a Hekaton table and accessing it through 
interop already improves throughput to 7,709 transactions per 
second for 12 cores, a 3.3X increase over plain SQL Server. Ac-
cessing the table through compiled stored procedures improves 
throughput further to 36,375 transactions per second at 12 cores, a 
total increase of 15.7X.  

The Hekaton engine shows excellent scaling. Going from 2 to 12 
cores, throughput improves by 5.1X for the interop case (1,518 to 
7,709 transactions per second). If the stored procedures are com-
piled, throughput also improves by 5.1X (7,078 to 36,375 transac-
tions per second).  

We were wondering what the performance of the regular SQL 
Server engine would be if there were no contention. We parti-
tioned the database and rewrote the stored procedure so that dif-
ferent transactions did not interfere with each other. The results 
are shown in the row labeled “SQL with no contention”. Remov-
ing contention increased maximum throughput to 5,834 transac-
tion/sec which is still lower than the throughput achieved through 
interop. Removing contention improved scaling significantly from 
2.3X to 5.1X going from 2 cores to 12 cores.  

10. Concluding Remarks 
Hekaton is a new database engine targeted for OLTP workloads 
under development at Microsoft. It is optimized for large main 

memories and many-core processors. It is fully integrated into 
SQL Server, which allows customers to gradually convert their 
most performance-critical tables and applications to take ad-
vantage of the very substantial performance improvements offered 
by Hekaton.  

Hekaton achieves its high performance and scalability by using 
very efficient latch-free data structures, multiversioning, a new 
optimistic concurrency control scheme, and by compiling T-SQL 
stored procedure into efficient machine code. Transaction durabil-
ity is ensured by logging and checkpointing to durable storage. 
High availability and transparent failover is provided by integra-
tion with SQL Server’s AlwaysOn feature.  

As evidenced by our experiments, the Hekaton engine delivers 
more than an order of magnitude improvement in efficiency and 
scalability with minimal and incremental changes to user applica-
tions or tools.    

11. REFERENCES 
[1] Florian Funke, Alfons Kemper, Thomas Neumann: HyPer-

sonic Combined Transaction AND Query Processing. 
PVLDB 4(12): 1367-1370 (2011) 

[2] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, 
Philippe Cudré-Mauroux, Samuel Madden: HYRISE - A 
Main Memory Hybrid Storage Engine. PVLDB 4(2): 105-
116 (2010) 

[3] Martin Grund, Philippe Cudré-Mauroux, Jens Krüger, Samu-
el Madden, Hasso Plattner: An overview of HYRISE - a 
Main Memory Hybrid Storage Engine. IEEE Data Eng. Bull. 
35(1): 52-57 (2012) 

[4] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, 
Michael Stonebraker: OLTP through the looking glass, and 
what we found there. SIGMOD 2008: 981-992 

[5] IBM SolidDB, http://www.ibm.com/software/data/soliddb  

1 2 3 4 5 6

Number of cores 2 4 6 8 10 12

SQL with contention 984 1,363 1,645 1,876 2,118 2,312

SQL without contention 1,153 2,157 3,161 4,211 5,093 5,834

Interop 1,518 2,936 4,273 5,459 6,701 7,709

Native 7,078 13,892 20,919 26,721 32,507 36,375

 ‐

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

 40,000

Tr
an
sa
ct
io
n
s 
P
e
r 
Se
co
n
d
 

System throughput

1253



 

 

[6] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Ana-
stasia Ailamaki, Babak Falsafi: Shore-MT: a scalable storage 
manager for the multicore era. EDBT 2009: 24-35 

[7] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew 
Pavlo, Alex Rasin, Stanley B. Zdonik, Evan P. C. Jones, 
Samuel Madden, Michael Stonebraker, Yang Zhang, John 
Hugg, Daniel J. Abadi: H-store: a high-performance, distrib-
uted main memory transaction processing system. PVLDB 
1(2): 1496-1499 (2008) 

[8] Alfons Kemper, Thomas Neumann: HyPer: A hybrid 
OLTP&OLAP main memory database system based on vir-
tual memory snapshots. ICDE 2011: 195-206 

[9] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig 
Freedman, Jignesh M. Patel, Mike Zwilling: High-
Performance Concurrency Control Mechanisms for Main-
Memory Databases. PVLDB 5(4): 298-309 (2011) 

[10] Justin J. Levandoski, David B. Lomet, Sudipta Sengupta, 
The Bw-Tree: A B-tree for New Hardware Platforms, ICDE 
2013 (to appear). 

[11] The LLVM Compiler Infrastructure, http://llvm.org/ 

[12] Maged M. Michael. 2004. Hazard Pointers: Safe Memory 
Reclamation for Lock-Free Objects. IEEE Trans. Parallel 
Distrib. Syst. 15, 6 (June 2004), 491-504. 

[13] Maged M. Michael. 2002. High performance dynamic lock-
free hash tables and list-based sets. In Proceedings of the 
fourteenth annual ACM symposium on Parallel algorithms 
and architectures (SPAA '02): 73-82. 

[14] Thomas Neumann: Efficiently Compiling Efficient Query 
Plans for Modern Hardware. PVLDB 4(9): 539-550 (2011) 

[15] Oracle TimesTen, 
http://www.oracle.com/technetwork/products/timesten/overvi
ew/index.html  

[16] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, Ana-
stasia Ailamaki: Data-Oriented Transaction Execution. 
PVLDB 3(1): 928-939 (2010) 

[17] Phoenix compiler framework, 
http://en.wikipedia.org/wiki/Phoenix_(compiler_framework)   

[18] SAP In-Memory Computing, 
http://www.sap.com/solutions/technology/in-memory-
computing-platform/hana/overview/index.epx  

[19] Sybase In-Memory Databases, 
http://www.sybase.com/manage/in-memory-databases  

[20] Håkan Sundell, Philippas Tsiga, Lock-free deques and dou-
bly linked lists, Journal of Parallel and Distributed Compu-
ting - JPDC , 68(7): 1008-1020, (2008) 

[21] VoltDB, http://voltdb.com  

 

12. Appendix  
Building an engine that is 10 to 100 times faster than SQL Server 
today required development of fundamentally new techniques. 
The analysis below shows why the goal cannot be achieved by 
optimizing existing mechanisms. 

The performance of any OLTP system can be broken down into 
base performance and a scalability factor as follows.  

SP =  BP*SF^lg(N)  
where 
BP  = performance of a single core in business transactions,  
SF = scalability factor, 
lg(N)    = log base two of the number of cores in the system, and  
SP  = system performance in business transactions. 

BP can be expressed as the product of CPI (cycles per instruction) 
and instructions retired, IR. The equation can then be expressed as 

SP =  IR*CPI *SF ^ lg(N). 

With a CPI of less than 1.6 achieved on some common OLTP 
benchmarks, SQL Server’s runtime efficiency is fairly high for a 
commercial software system. More importantly, however, it 
means that CPI improvements alone cannot deliver dramatic per-
formance gains. Even an outstanding CPI of 0.8, for instance, 
would barely double the server’s runtime performance, leaving us 
still far short of the 10-100X goal. 

SQL Server also scales quite well. On the TPC-E benchmark it 
has a scalability factor of 1.89 up to 256 cores; that is, for every 
doubling of cores, throughput increases by a factor of 1.89.  This 
again implies that limited performance gains can be achieved by 
improving scalability. At 256 cores, SQL Server throughput in-
creases to (1.89)^8 = 162.8. With perfect scaling the throughput 
increase would be 256 but that would only improve throughput 
over SQL Server by a factor of 256/162.8 = 1.57.  

Combining the best case CPI and scalability gains improves per-
formance at most by a factor of 2*1.57 = 3.14. So even under the 
most optimistic assumptions, improving CPI and scalability can-
not yield orders-of-magnitude speedup. The only real hope is to 
drastically reduce the number of instructions executed.  

 

 

1254




