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Abstract 
Schema matching is a critical step in many applica-
tions, such as XML message mapping, data warehouse 
loading, and schema integration. In this paper, we 
investigate algorithms for generic schema matching, 
outside of any particular data model or application. We 
first present a taxonomy for past solutions, showing 
that a rich range of techniques is available. We then 
propose a new algorithm, Cupid, that discovers map-
pings between schema elements based on their names, 
data types, constraints, and schema structure, using a 
broader set of techniques than past approaches. Some 
of our innovations are the integrated use of linguistic 
and structural matching, context-dependent matching 
of shared types, and a bias toward leaf structure where 
much of the schema content resides. After describing 
our algorithm, we present experimental results that 
compare Cupid to two other schema matching systems. 
 
This is an extended version of a paper published at the 
27th VLDB Conference [7]. 

1 Introduction 
Match is a schema manipulation operation that takes two 
schemas as input and returns a mapping that identifies 
corresponding elements in the two schemas. Schema 
matching is a critical step in many applications: in E-
business, to help map messages between different XML 
formats; in data warehouses, to map data sources into 
warehouse schemas; and in mediators, to identify points 
of integration between heterogeneous databases.  

Schema matching is primarily studied as a piece of 
these other applications. For example, schema integration 
uses matching to find similar structures in heterogeneous 
schemas, which are then used as integration points 
[1,3,12]. Data translation uses matching to find simple 
data transformations [10]. Given the importance of XML 
message mapping, we expect to see match solutions to 
appear next in this context. 

Schema matching is challenging for many reasons. 
Most importantly, even schemas for identical concepts 
may have structural and naming differences. Schemas 
may model similar but non-identical content. They may 
be expressed in different data models. They may use 
similar words to have different meanings. And so on. 

Today, schema matching is done manually by domain 
experts, sometimes using a graphical tool [8]. At best, 
some tools can detect exact matches automatically − even 
minor name and structure variations lead them astray. 

Like [4], we believe that Match is such a pervasive, 
important and difficult problem that it should be studied 
independently. Moreover, we believe it is critical to such 
a wide variety of tools that it should be built as an inde-
pendent component. Thus, it must be generic, meaning 
that it can apply to many different data models and 
application domains. To support these positions, in this 
paper we offer the following contributions: a taxonomy of 
approaches used by different applications, to show the 
complexity of the solution space; a new match algorithm 
that uses more powerful techniques than past approaches 
and is generic across data models and application areas; 
and experimental comparisons of our implementation 
with others, to show the benefits of our approach and a 
way of evaluating other implementations in the future. 

Ultimately, we see Match as a key component of a 
general-purpose system for managing models [2]. By 
model, we mean a complex structure that describes a de-
sign artifact such as database schema, XML schema, 
UML model, workflow definition, or web-site map. The 
vision of Model Management is a system that manipulates 
models generically, to match and merge them, and invert 
and compose mappings between them. This paper focuses 
on just one piece of that vision, the Match operation.  

The rest of the paper is organized as follows. We 
define the schema matching problem in Section 2. Section 
3 looks at past solutions, presents a taxonomy for schema 
matching techniques, and reviews systems that use them. 
Section 4 summarizes our approach in a new match algo-
rithm, Cupid, whose details are described in Sections 5-8. 
Section 9 reports on experiments comparing Cupid with 
two other algorithms. Section 10 is the conclusion. 

2 The Schema Matching Problem 
A schema consists of a set of related elements, such as 
tables, columns, classes, or XML elements or attributes. 
The result of a Match operation is a mapping. A mapping 
consists of a set of mapping elements, each of which 
indicates that certain elements of schema S1 are related to 
certain elements of schema S2. For example, a mapping 
between purchase order schemas PO and Porder could 
include a mapping element that relates element 
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Figure 1 Two Schemas to be Matched  
Lines.Item.Line to element Items.Item.Item- Number. 

In general, a mapping element may also have an 
associated expression that specifies its semantics (called a 
value correspondence in [9]). For example, m’ s expres-
sion might be “Lines.Item.Line=Items.Item.ItemNumber.”  
We do not treat such expressions in this paper. Rather, we 
only address mapping discovery, which returns mapping 
elements that identify related elements of the two 
schemas. Since we are not concerned with mapping 
expressions, we treat mappings as non-directional. 

The related problem of query discovery operates on 
mapping expressions to obtain queries for actual data 
translation. Both types of discovery are needed. Each is a 
rich and complex problem that deserves independent 
study. Query Discovery is already recognized as an inde-
pendent problem, where it is usually assumed that a 
mapping either is given [9] or is trivial [14]. 

Schema matching is inherently subjective. Schemas 
may not completely capture the semantics of the data they 
describe, and there may be several plausible mappings 
between two schemas (making the concept of a single best 
mapping ill-defined). This subjectivity makes it valuable 
to have user input to guide the match and essential to have 
user validation of the result. This guidance may come via 
an initial mapping, a dictionary or thesaurus, a library of 
known mappings, etc. Thus, the goal of schema matching 
is: Given two input schemas in any data model and, 
optionally, auxiliary information and an input-mapping, 
compute a mapping between schema elements of the two 
input schemas that passes user validation. 

3 A Taxonomy of Matching Techniques 
Schema matchers can be characterized by the following 
orthogonal criteria (a longer survey based on this 
taxonomy appears in [13]): 

� Schema vs. Instance based – Schema-based matchers 
consider only schema information, not instance data 
[1,12]. Schema information includes names, descriptions, 
relationships, constraints, etc. Instance-based matchers 
either use meta-data and statistics collected from data 
instances to annotate the schema [9], or directly find cor-
related schema elements, e.g. using machine learning  [5].  

� Element vs. Structure granularity – An element-level 
matcher computes a mapping between individual schema 
elements, e.g. an attribute matcher [6]. A structure-level 
matcher compares combinations of elements that appear 
together in a schema, e.g. classes or tables whose attribute 
sets only match approximately [1]. 

� Linguistic based – A linguistic matcher uses names of 
schema elements and other textual descriptions. Name 

matching involves: putting the name into a canonical form 
by stemming and tokenization; comparing equality of 
names; comparing synonyms and hypernyms using gener-
ic and domain-specific thesauri; and matching sub-strings. 
Information retrieval (IR) techniques can be used to com-
pare descriptions that annotate some schema elements.  

� Constraint based – A constraint-based matcher uses 
schema constraints, such as data types and value ranges, 
uniqueness, required-ness, cardinalities, etc. It might also 
use intraschema relationships such as referential integrity. 

� Matching Cardinality – Schema matchers differ in the 
cardinality of the mappings they compute. Some only pro-
duce 1:1 mappings between schema elements. Others 
produce n:1 mappings, e.g. one that maps the combination 
of DailyWages and WorkingDays in the source schema to 
MonthlyPay in the target. 

� Auxiliary information – Schema matchers differ in their 
use of auxiliary information sources such as dictionaries, 
thesauri, and input match-mismatch information. Reusing 
past match information can also help, for example, to 
compute a mapping that is the composition of mappings 
that were performed earlier. 

� Individual vs. Combinational – An individual matcher 
uses a single algorithm to perform the match. Combina-
tional matchers can be one of two types: Hybrid matchers 
use multiple criteria to perform the matching [1,6,10]. 
Composite matchers run independent match algorithms on 
the two schemas and combine the results [5]. 

We now look at some published implementations in 
light of the above taxonomy. 

The SEMINT system is an instance-based matcher 
that associates attributes in the two schemas with match 
signatures [6]. These consist of 15 constraint-based and 5 
content-based criteria derived from instance values and 
normalized to the [0,1] interval, so each attribute is a point 
in 20-dimensional space. Attributes of one schema are 
clustered with respect to their Euclidean distance. A 
neural network is trained on the cluster centers and then is 
used to obtain the most relevant cluster for each attribute 
of the second schema. SEMINT is a hybrid element-level 
matcher. It does not utilize schema structure, as the latter 
cannot be mapped into a numerical value.  

The DELTA system groups all available meta-data 
about an attribute into a text string and then applies IR 
techniques to perform matching [4]. Like SEMINT, it 
does not make much use of schema structure. 

The LSD system uses a multi-level learning scheme to 
perform 1:1 matching of XML DTD tags [5]. A number 
of base learners that use different instance-level matching 
schemes are trained to assign tags of a mediated schema 
to data instances of a source schema. A meta-learner com-
bines the predictions of the base learners. LSD is thus a 
multi-strategy instance-based matcher. 

The SKAT prototype implements schema-based 
matching following a rule-based approach [11]. Rules are 
formulated in first-order logic to express match and 
mismatch relationships and methods are defined to derive 



 

new matches. It supports name matching and simple 
structural matches based on is-a hierarchies. 

 The TranScm prototype uses schema matching to 
drive data translation [10]. The schema is translated to an 
internal graph representation. Multiple handcrafted 
matching rules are applied in order at each node. The 
matching is done top-down with the rules at higher-level 
nodes typically requiring the matching of descendants. 
This top-down approach performs well only when the top-
level structures of the two schemas are quite similar. It 
represents an element-level and schema-based matcher. 

The DIKE system integrates multiple ER schemas by 
exploiting the principle that the similarity of schema ele-
ments depends on the similarity of elements in their 
vicinity [12]. The relevance of elements is inversely 
proportional to their distance from the elements being 
compared, so nearby elements influence a match more 
than ones farther away. Linguistic matching is based on 
manual inputs. 

ARTEMIS, the schema integration component of the 
MOMIS mediator system, matches classes based on their 
name affinity and structure affinity [1,3]. MOMIS has a 
description logic engine to exploit constraints. The classes 
of the input schemas are clustered to obtain global classes 
for the mediated schema. Linguistic matching is based on 
manual inputs using an interface with WordNet [16]. 

Both DIKE and ARTEMIS are hybrid schema-based 
matchers utilizing both element- and structure-level infor-
mation. We give more details about them in Section 9.  

4 The Cupid Approach 
The prototypes of the previous section illustrate, and in 
many cases were the original source of, the matching 
approaches described in our taxonomy. However, each of 
them is an incomplete solution, exploiting at most a few 
of the techniques in our taxonomy. This is not really a 
criticism. Each of them was either a test of one particular 
approach or was not designed to solve the schema match-
ing problem per se, and therefore made matching compro-
mises in pursuit of its primary mission (usually schema 
integration). However, the fact remains that none of them 
provide a complete general-purpose schema matching 
component. We believe that the problem of schema 
matching is so hard, and the useful approaches so diverse, 
that only by combining many approaches can we hope to 
produce truly robust functionality. 

In the rest of this paper, we explain our new schema 
matching component, Cupid. In addition to being generic, 
our solution has the following properties: 
• It includes automated linguistic-based matching. 
• It is both element-based and structure-based. 
• It is biased toward similarity of atomic elements (i.e. 

leaves), where much schema semantics is captured. 
• It exploits internal structure, but is not overly misled 

by variations in that structure. 
• It exploits keys, referential constraints and views. 

• It makes context-dependent matches of a shared type 
definition that is used in several larger structures. 

• It generates 1:1 or 1:n mappings, although this is an 
artifact of the final stage of the algorithm and could 
be adjusted if desired. 

Cupid shares some general approaches with past algo-
rithms, though not the algorithms themselves, such as: 
rating match quality in the [0,1] interval, clustering 
similar terms (SEMINT), and matching structures based 
on local vicinity (DIKE, ARTEMIS). The Cupid approach 
is schema-based and not instance-based. 

To explain the algorithm, we first restrict ourselves to 
hierarchical schemas. Thus, we model the interconnected 
elements of a schema as a schema tree. A simple relation-
al schema is an example of a schema tree; a schema con-
tains tables, which contains columns. An XML schema 
with no shared elements is another example; elements 
contain sub-elements, which in turn contain other sub-
elements or attributes. Later in the paper, we enrich the 
model to capture more semantics, making it quite generic. 

We summarize the overall algorithm below in a run-
ning example. We want to match the two XML schemas, 
PO and Purchase Order, in Figure 2. The schemas are en-
coded as graphs, where nodes represent schema elements. 
Although even a casual observer can see the schemas are 
very similar, there is much variation in naming and struc-
ture that makes algorithmic matching quite challenging. 
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Figure 2 Purchase Order  Schemas 

 Like previous approaches [1,3,5,6,12], we attack the 
problem by computing similarity coefficients between ele-
ments of the two schemas and then deducing a mapping 
from those coefficients. The coefficients, in the [0,1] 
range, are calculated in two phases. The first phase, called 
linguistic matching, matches individual schema elements 
based on their names, data types, domains, etc. We use a 
thesaurus to help match names by identifying short-forms 
(Qty for Quantity), acronyms (UoM for UnitOfMeasure) 
and synonyms (Bill and Invoice). The result is a linguistic 
similarity coefficient, lsim, between each pair of elements.  

The second phase is the structural matching of schema 
elements based on the similarity of their contexts or 
vicinities. For example, Line is mapped to ItemNumber 
because their parents, Item, match and the other two 
children of Item already match. The structural match 
depends in part on linguistic matches calculated in phase 
one. For example, City and Street under POBillTo match 
City and Street under InvoiceTo, rather than under 
DeliverTo, because Bill is a synonym of Invoice but not of 



 

Deliver. The result is a structural similarity coefficient, 
ssim, for each pair of elements.  

The weighted similarity (wsim) is a mean of lsim and 
ssim: wsim = wstruct × ssim + (1-wstruct) × lsim, where the 
constant wstruct is in the range 0 to1.  

In the third phase (mapping generation), a mapping is 
created by choosing pairs of schema elements with 
maximal weighted similarity.  

In the next three sections, we describe the linguistic 
phase, structural matching phase, and mapping generation 
in more detail. We then extend the algorithm beyond tree 
structures in Section 8. 

5 Linguistic Matching 
The first phase of schema matching is based primarily on 
schema element names. In the absence of data instances, 
such names are probably the most useful source of infor-
mation for matching. We also make modest use of data 
types and schema structure in this phase. Linguistic 
matching proceeds in three steps: normalization, 
categorization and comparison. 

5.1 Normalization 
Many semantically similar schema element names contain 
abbreviations, acronyms, punctuation, etc. that make them 
syntactically different. To make them comparable, Cupid 
normalizes them into sets of name tokens, as follows: 
• Tokenization – The names are parsed into tokens by a 
customizable tokenizer using punctuation, upper case, 
special symbols, digits, etc. E.g. POLines → { PO, Lines} . 
• Expansion – Abbreviations and acronyms are 
expanded, e.g. { PO, Lines}  → { Purchase, Order, Lines} .  
• Elimination – Tokens that are articles, prepositions or 
conjunctions are marked to be ignored during comparison. 
• Tagging – A schema element that has a token related 
to a known concept is tagged with the concept name, e.g. 
elements with tokens Price, Cost and Value are all 
associated with the concept Money.  

The abbreviations, acronyms, ignored words, and 
concepts are determined by a thesaurus lookup. The 
thesaurus can include terms used in common language as 
well as domain-specific references, e.g. specialized terms 
used in purchase orders. 

Each name token is also marked as being one of five 
token types: number, special symbol (e.g. #), common 
word (prepositions and conjunctions), concept (as 
explained earlier) or content (all the rest). 

5.2 Categorization 
Next, Cupid clusters schema elements belonging to the 
two schemas into categories. A category is a group of ele-
ments that can be identified by a set of keywords, which 
are derived from concepts, data types, and element names. 
E.g. the category money includes each schema element 
that is associated with money (i.e. “money”  appears in its 
name or it is tagged with the concept of Money). 

The purpose of categorization is to reduce the number 
of element-to-element comparisons. By clustering similar 

elements into categories, we need only compare those that 
belong to compatible categories. Two categories are com-
patible if their respective sets of keywords are “name 
similar”  (defined below). 

Categories and keywords are determined as follows: 
� Concept tagging – a category per unique concept tag 
in the schema. 

� Data types – a category for each broad data type, e.g. 
all elements with a numeric data type are grouped 
together in a category with the keyword Number. (Like all 
categorization criteria, data types are used primarily to 
prune the matching and do not contribute significantly to 
the linguistic similarity result.) 

� Container – A schema element that “contains”  other 
elements defines a category. For example, Street and City 
are contained by Address and hence can be grouped into a 
category with keyword Address. Containment is described 
in more detail in Section 7.1. 

We construct separate categories for each schema. For 
each element we insert it into an existing category (same 
data type, same concept, or same container) if possible, or 
otherwise create new categories. Notice that each schema 
element can belong to multiple categories. 

Name Similar ity 
The similarity of two name tokens t1 and t2, sim(t1, t2), is 
looked up in a synonym and hypernym thesaurus. Each 
thesaurus entry is annotated with a coefficient in the range 
[0,1] that indicates the strength of the relationship. In the 
absence of such entries, we match sub-strings of the 
words t1 and t2 to identify common prefixes or suffixes.  

The name similarity (ns) of two sets of name tokens T1 
and T2 is the average of the best similarity of each token 
with a token in the other set. It is calculated as follows: 
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Two categories are compatible if the name similarity of 
their token sets exceeds a given threshold, thns. 

5.3 Comparison 
Next, we calculate the linguistic similarity of each pair of 
elements from compatible categories. Linguistic similarity 
is based on the name similarity of elements, which is 
computed as a weighted mean of the per-token-type name 
similarity (each token is one of five types). If T1i and T2i 
are the tokens of elements m1 and m2 of type i, the name 
similarity of m1 and m2 is computed as follows:  

�
=

+
�

×

�
×

=
∈

∈
1where,

|)
2

||
1

|(

)
2

,
1

(

),( 21 iw

i
T

i
T

i
w

i
T

i
Tns

i
w

mmns

TokenTypei

TokenTypei  

Content and concept tokens are assigned a greater weight, 
(wi) since these token types are more relevant than 
numbers and conjunctions, prepositions, etc. 

The linguistic similarity (lsim) is computed by scaling 
the name similarity of the model elements by the 
maximum similarity of categories to which they belong: 
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where C1 and C2 are the sets of categories to which m1 and 
m2 belong, respectively. 

The result of this phase is a table of linguistic 
similarity coefficients between elements in the two 
schemas. The similarity is assumed to be zero for schema 
elements that do not belong to any compatible categories.  

6 Structure Matching 
In this section we present a structure matching algorithm 
for hierarchical schemas, i.e. tree structures. For each pair 
of schema elements the algorithm computes a structural 
similarity, ssim  a measure of the similarity of the 
contexts in which the elements occur in the two schemas. 
From ssim and lsim, the weighted similarity wsim is 
computed, as described in Section 4. 

The TreeMatch algorithm in Figure 3 is based on the 
following intuitions: 
(a) Atomic elements (leaves) in the two trees are similar 
if they are individually (linguistic and data type) similar, 
and if elements in their respective vicinities (ancestors and 
siblings) are similar. 
(b) Two non-leaf elements are similar if they are 
linguistically similar, and the subtrees rooted at the two 
elements are similar. 
(c) Two non-leaf schema elements are structurally simi-
lar if their leaf sets are highly similar, even if their imme-
diate children are not. This is because the leaves represent 
the atomic data that the schema ultimately describes. 

Figure 3 describes the basic tree-matching algorithm 
that exploits the above intuition.   

 TreeMatch(SourceTree S, TargetTree T) 
     for each s ∈S, t ∈T where s,t are leaves    
          set  ssim (s,t) = datatype-compatibility(s,t) 
    S’ = post-order(S), T’ = post-order(T) 
    for each s in S’ 
        for each t in T’ 
            compute ssim(s,t) = structural-similarity(s,t) 
            wsim(s,t)  = wstruct.ssim(s,t) +  (1-wstruct).lsim (s,t) 
            if  wsim(s,t)  > thhigh 
              increase-struct-similarity(leaves(s),leaves(t),cinc) 
            if  wsim(s,t)  < thlow 
              decrease-struct-similarity(leaves(s),leaves(t),cdec)  

Figure 3 The Tree M atch Algor ithm 
The structural similarity of two leaves is initialized to 

the type compatibility of their corresponding data types. 
This value ([0,0.5]) is a lookup in a compatibility table. 
Identical data types have a compatibility of 0.5. (A max of 
0.5 allows for later increases in structural similarity.) 

The elements in the two trees are then enumerated in 
post-order, which is uniquely defined for a given tree. 
Both the inner and outer loops are executed in this order.  

The first step in the loop computes the structural simi-
larity of two elements. For leaves, this is just the value of 
ssim that was initialized in the earlier loop. When one of 
the elements is not a leaf, the structural similarity is 
computed as a measure of the number of leaf level 

matches in the subtrees rooted at the elements that are be-
ing compared (intuition (c)). We say that a leaf in one 
schema has a strong link to a leaf in the other schema if 
their weighted similarity exceeds a threshold thaccept. This 
indicates a potentially acceptable mapping. We estimate 
the structural similarity as the fraction of leaves in the two 
subtrees that have at least one strong link (and are hence 
mappable) to some leaf in the other subtree, i.e.: 
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where leaves(s) = set of leaves in the subtree rooted at s. 
We chose not to compute a 1-1 bipartite matching (used in 
[12]) as it is computationally expensive and would 
preclude m:n mappings (that often make sense). 

If the two elements being compared are highly similar, 
i.e. if their weighted similarity exceeds the threshold 
thhigh, we increase the structural similarity (ssim) of each 
pair of leaves in the two subtrees (one from each schema) 
by the factor cinc (ssim not to exceed 1). The rationale is 
that leaves with highly similar ancestors occur in similar 
contexts. So the presence of such ancestors should rein-
force their structural similarity. For example, in Figure 2, 
if POBillTo is highly similar to InvoiceTo, then the struc-
tural similarity of their leaves City-Street would be 
increased, to bind them more tightly than to other City-
Street pairs. For similar reasons, if the weighted similarity 
is less than the threshold thlow, we decrease the structural 
similarities of leaves in the subtrees by the factor cdec. The 
linguistic similarity, however, remains unchanged. 

The similarity computation has a mutually recursive 
flavor. Two elements are similar if their leaf sets are simi-
lar. The similarity of the leaves is increased if they have 
ancestors that are similar. The similarity of intermediate 
substructure also influences leaf similarity: if the subtree 
structures of two elements are highly similar, then 
multiple element pairs in the subtrees will be highly 
similarity, which leads to higher structural similarity of 
the leaves (due to multiple similarity increases). The post-
order traversals ensure that before two elements e1 and e2 
are compared, all the elements in their subtrees have 
already been compared. This ensures that e1’s and e2’ s 
leaves capture the similarity of e1’ s and e2’s intermediate 
subtree structure before e1 and e2 are compared.  

The structural similarity of two nodes with a large 
difference in the number of leaves is unlikely to be very 
good. Such comparisons lead to a large number of 
element similarities that are below the threshold thlow. We 
prevent this by only comparing elements that have a 
similar number of leaves in their subtrees (say within a 
factor of 2). In addition to only comparing relevant 
elements, such a pruning step decreases the number of 
element pairs that need to be compared. 

Instead of using leaves, we could consider only the 
immediate descendants of the elements being compared. 
Using the leaves for measuring structural similarity identi-



 

fies most matches that this alternative scheme would. In 
addition, using the leaves ensures that schemas that have a 
moderately different sub-structure (e.g. nesting of 
elements) but essentially the same data content (similar 
leaves) are correctly matched. 

The post-order traversal results in a bottom-up match-
ing of the two schemas. Such an approach is more expen-
sive than top-down matching [10], because a top-down 
approach can use high-level mismatches to prune away 
attempts to match lower-level descendants. But, a bottom-
up approach is more conservative and is able to match 
moderately varied schema structures. A top-down 
approach is optimistic and will perform poorly if the two 
schemas differ considerably at the top level.  

7 Mapping Generation 
The output of schema matching is a set of mapping 
elements, which were described in Section 2. Mapping 
elements are generated using the computed linguistic and 
structural similarities. In the simplest case we might just 
need leaf-level mapping elements. For each leaf element t 
in the target schema, if the leaf element s in the source 
schema with highest weighted similarity to t is acceptable 
(wsim(s, t) ≥ thaccept), then a mapping element from s to t 
is returned. This resulting mapping may be 1:n, since a 
source element may map to many target elements. 

The exact nature of a mapping is often dependent on 
requirements of the module that accepts these mappings. 
For example, Query Discovery might require a 1:1 
mapping instead of the 1:n mapping returned by the naïve 
scheme above. Such requirements need to be captured by 
a data-model-specific or tool-specific mapping-generator 
that takes the computed similarities as input. 

To generate non-leaf mappings, we need a second 
post-order traversal of the two schemas to re-compute the 
similarities of non-leaf elements. This is because the 
updating of leaf similarities during tree-match may affect 
the structural similarity of non-leaf nodes after they were 
first calculated. After this re-calculation, a scheme similar 
to leaf-level mapping generation can be used. 

The mapping that is produced by the scheme described 
above consists of a list of mapping elements or 
correspondences. A further step would be to enrich the 
structure of the map itself. For example, the mapping 
element between two XML-elements e1 and e2 would 
have as its sub-elements the mappings elements between 
matching XML-attributes of e1 and e2. Such a mapping 
would be consistent with the vision of model management 
as outlined in [2], which proposed treating both schemas 
and mappings as similar objects (models). However, we 
defer such treatment to future work. 

8 Extending to General Schemas 
8.1 Schema Graphs 
The schemas we have looked at so far are trees. Real-
world schemas are rarely trees, since they share sub-
structure and have referential constraints. To extend our 

techniques to these cases, we first present a generic 
schema model that captures more semantics, leading to 
non-tree schemas. We then extend our match algorithm to 
use it by handling shared types and referential constraints. 

In our generic schema model, a schema is a rooted 
graph whose nodes are elements. We will use the terms 
nodes and elements interchangeably. In a relational 
schema, the elements are tables, columns, user-defined 
types, keys, etc. In an XML schema the elements are 
XML elements and attributes (and simpleTypes, complex-
Types, and keys/keyrefs in XML Schema (XSD) [17]).  

Elements are interconnected by three types of relation-
ships, which together lead to non-tree schema graphs. The 
first is containment, which models physical containment 
in the sense that each element (except the root) is contain-
ed by exactly one other element. (Containment also has 
delete propagation semantics, though we do not use that 
property here.) E.g. a table contains its columns, and is 
contained by its relational schema. An XML attribute is 
contained by an XML element. The schema trees we have 
used so far are essentially containment hierarchies.  

A second type of relationship is aggregation. Like 
containment, it groups elements, but is weaker (allows 
multiple parents and has no delete propagation). E.g. a 
compound key aggregates columns of a table. Thus, a 
schema graph need not be a tree (a column can have two 
parents: a table and a compound key). 

The third type of relationship is IsDerivedFrom, which 
abstracts IsA and IsTypeOf relationships to model shared 
type information. Schemas that use them can be arbitrary 
graphs (e.g. cycles due to recursive types). In XSD, an 
IsDerivedFrom relationship connects an XML element to 
its complex type. In OO models, IsDerivedFrom connects 
a subtype to its supertype. IsDerivedFrom shortcuts con-
tainment: if an element e IsDerivedFrom a type t, then t’s 
members are implicitly members of e. E.g. if USAddress 
specializes Address, then an element Street contained by 
Address is implicitly contained by USAddress too. 

8.2 Matching Shared Types 
When matching schemas expressed in the above model, 
the linguistic matching process that we described earlier is 
unaffected. We may, however, choose not to linguistically 
match certain elements, e.g. those with no significant 
name, such as keys. Structure matching is affected. Before 
this step, we convert the schema to a tree, for two reasons: 
to reuse the structure matching algorithm for schema trees 
and to cope with context-dependent mappings. 

An element, such as a shared type, can be the target of 
many IsDerivedFrom relationships. Such an element e 
might map to different elements relative to each of e’s 
parents. For example, reconsider the XML schemas in 
Figure 2. Suppose we change the PurchaseOrder schema 
so that Address is a shared element, referenced by both 
DeliverTo and InvoiceTo. POShipTo.Street and POBill-
To.Street now both map to Address.Street in Purchase-
Order, but for each of them the mapping needs to qualify 



 

Address.Street to be in the context of either DeliverTo or 
InvoiceTo. Including both of the mappings without their 
contexts is ambiguous, e.g. complicating query discovery. 
Thus, context-dependent mappings are needed. We 
achieve this by expanding the schema into a schema tree. 

There can be many paths of IsDerivedFrom and 
containment relationships from the root of a schema to an 
element e. Each path defines a context, and thus is a can-
didate for a different mapping for e. By converting a 
schema to a tree, we can materialize all such paths. To do 
this, the algorithm, shown in Figure 4, does a pre-order 
traversal of the schema, creating a private copy of the 
subschema rooted at the target t of each IsDerivedFrom 
for each of t’s parents  essentially type substitution.  

schema_tree  = construct_schema_tree(schema.root, NULL)
construct_schema_tree(Schema Element current_se,
                                      Schema Tree Node current_stn)
     If current_se is the root or current_se was reached 

through a containment relationship
          If current_se is not_instantiated then return current_stn
          new_stn = new schema tree node corresponding to current_se
          set new_stn as a child of current_stn
          current_stn = new_stn
     for each outgoing containment or isDerivedFrom relation
          new_se = schem element that is the target of the relationship
          construct_schema_tree(new_se, current_stn)
     return current_stn

Figure 4 Schema Tree Construction 
For each element we add a schema tree node whose 

successors are the nodes corresponding to elements 
reachable via any number of IsDerivedFrom relationships 
followed by a single containment. Some elements are 
tagged not-instantiated (e.g. keys) during the schema tree 
construction and are ignored during this process.  

We now have a representation on which we can run 
the TreeMatch algorithm of Section 6.  

The similarities computed are now in terms of schema 
tree nodes. The resulting output mappings identify similar 
elements, qualified by contexts. This results in more 
expressive and less ambiguous mappings.  

Schema tree construction fails if a cycle of contain-
ment and IsDerivedFrom relationships is present. Such 
cycles are the result of recursive type definitions. We do 
not have a complete solution for this case and defer 
treatment of cyclic schemas as future work.  

In Section 8.4, we describe optimizations to mitigate 
the increased computation costs due to the expanded tree. 

8.3 Matching Referential Constraints 
Referential integrity constraints are supported in most 
data models. A foreign key in a relational schema is a 
referential integrity constraint. So are ID/IDREF pairs in 
DTDs, and key-keyref pairs in XSD.  

Referential constraints are represented by RefInt 
elements in our model. Referential constraints are directed 
from a source (e.g. foreign key column) to a target (e.g. 
primary key that the foreign key refers to). Such RefInt 
elements aggregate the source, and reference the target of 
such relationship (“reference”  is a new relationship type). 
E.g. the modeling of a foreign key is shown in Figure 5. 

 SQL Table A SQL Table B 

Foreign key 

ForeignKeyColumn PrimaryKeyColumn 

 Containment Containment 

Aggregates References 
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Aggregates References 

 
Figure 5 RefInts in SQL Schemas and XM L DTDs 

The aggregates relationship is 1:n. For example, a 
compound foreign key aggregates its constituent columns. 
The foreign key references the single compound primary 
key element of the target table  (which aggregates the key 
columns of that table). The 1:n nature of the reference 
relationship allows a single IDREF attribute to reference 
multiple IDs in an XML DTD. 

We augment the schema tree with nodes that model 
referential constraints. The description below is for rela-
tional schemas, but a similar approach applies elsewhere. 

We interpret referential constraints as potential join 
views. For each foreign key, we introduce a node that 
represents the join of the participating tables (see Figure 
6). This reifies the referential constraint as a node that can 
be matched. Intuitively, it makes sense since the referen-
tial constraint implies that the join is meaningful. Notice 
that the join view node has as its children the columns 
from both the tables. The common ancestor of the two 
tables is made the parent of the new join view node.  

Purchase Order Customer

OrderID

ProductName
CustomerID

Order-Customer-fk

Address

CustomerID
Name

Purchase Order Customer

OrderID

ProductName
CustomerID

Order-Customer-fk

Address

CustomerID
Name  

Figure 6 Augmenting the Schema Tree 

These augmented nodes have two benefits. First, if two 
pairs of tables in the two schemas are related by similar 
referential constraints, then when the join views for the 
constraints are matched, the structural similarities of those 
tables’  columns are increased. This improves the 
structural match. Second, this enables the discovery of 
mappings between a join view in one schema and, a single 
table or other join views in the second schema. 

The additional join view nodes create a directed acyc-
lic graph (DAG) of schema paths. Since the inverse-topo-
logical ordering of a DAG (equivalent to post-order for a 
tree) is not unique, the algorithm is not Church-Rosser, 
i.e. the final similarities depend on the order in which 
nodes are compared. To make it Church-Rosser, we could 
add more ordering constraints. E.g. we could compare the 
RefInt nodes after the table nodes. However, determining 
which ordering would be best is still an open problem.  

If a table has multiple foreign keys, we add one node 
for each of them. We also have the option of adding a 
node for each combination of these foreign keys (valid 
join views). However, we choose not to, in the interest of 
maintaining tractability. Similarly, the join view node that 



 

is added may also have a foreign key column (of the 
target table). We could expand these further thus 
escalating expansion of referential constraints, but choose 
not to, both for computation reasons and due to the lower 
relevance of tables at further distances. 

8.4 Other Features 

We now discuss some other features of Cupid.  
� Optionality: Elements of semi-structured schemas may 
be marked as optional, e.g. non-required attributes of 
XML-elements. To exploit this knowledge, the leaves 
reachable from a schema tree node n are divided into two 
classes: optional and required. A leaf is optional if it has 
at least one optional node on each path from n to the leaf. 
The structural similarity coefficient expression is changed 
to reduce the weight of optional leaves that have no strong 
links (they are not considered in both the numerator and 
denominator of ssim). Therefore, nodes are penalized less 
for unmappable optional leaves than unmappable required 
leaves, so the matching is more tolerant to the former. 

� Views: View definitions are treated like referential 
constraints. A schema tree node is added whose children 
are the elements specified in the view. This represents a 
common context for these elements and can be matched 
with views or tables of the other schema. 

� Initial mappings: The matcher uses a user-supplied 
initial mapping to help initialize leaf similarities prior to 
structural matching (cf. Section 2). The linguistic 
similarity of elements marked as similar in the initial map 
is initialized to a predefined maximum value. Such a hint 
can lead to higher structural similarity of ancestors of the 
two leaves, and hence a better overall match. The user can 
make corrections to a generated result map, and then re-
run the match with the corrected input map, thereby 
generating an improved map. Thus, initial maps are a way 
to incorporate user interaction in the matching process. 

� Lazy expansion: Recall that schema tree construction 
expands elements into each possible context, much like 
type substitution. This expansion duplicates elements, 
leading to repeated comparisons of identical subtrees, e.g. 
in the example used in section 8.2, the Address element is 
duplicated in multiple contexts within the PurchaseOrder 
schema and each of these duplicates is compared separate-
ly to elements of PO. We can avoid these duplicate 
comparisons by a lazy schema tree expansion, which 
compares elements of the schema graph before converting 
it to a tree. The elements are enumerated in inverse 
topological order of containment and IsDerivedFrom 
relationships. After comparing an element that is the 
target t of multiple IsDerivedFrom and containment 
relationships, multiple copies of the subtree rooted at t are 
made, including the structural similarities computed so 

far. This works because when two nodes are compared for 
the first time, their similarity depends only on that of their 
subtrees. Similarly, the similarity of the leaves would 
reflect only those nodes that have already been traversed 
thus far. Hence the computed similarity values will 
remain the same as in the case when the schema is 
expanded a priori. We thus avoid identical recomputation 
for the context-dependent copies of the subtree.  

� Pruning leaves: In a deeply nested schema tree with a 
large number of elements, an element e high in the tree 
has a large number of leaves. These leaves increase the 
computation time, even though many of them are irrele-
vant for matching e. Therefore, it may be better to consi-
der only nodes in a subtree of depth k rooted at node e 
(pruning the leaves). 

While comparing nearly identical schemas, it might 
seem wasteful to compare the leaves. To avoid this, the 
immediate children of the nodes are first compared. If a 
very good match is detected, then the leaf level similarity 
computation is skipped. 

9 Comparative Study 
In this section we compare the performance of Cupid with 
two other schema matching prototypes, DIKE [12] and 
MOMIS [1], using simple canonical examples and real 
world schemas. The only prior published evaluation we 
know of is a comparison of the SEMINT and DELTA 
systems on US Air Force database schemas [4]. 

The three systems – Cupid, DIKE and MOMIS – are 
roughly comparable, in that they are purely schema-based 
and do element-level and structure-level matching. Cupid 
and MOMIS also have a linguistics-based matching-
component, though these components are significantly 
different. The three systems differ in their structure 
matching algorithms. A quantitative comparison of these 
systems is not possible for two reasons: (i) matching is an 
inherently subjective operation, and (ii) DIKE and 
MOMIS were designed with a primary goal of schema 
integration, so some of their features are biased towards 
integration, e.g. the type conflict resolution in DIKE, and 
the class level matching in MOMIS. Still, we believe 
experimental evaluation is essential to make progress on 
this hard problem.   

The Cupid prototype, presented in Sections 4-8, cur-
rently operates on XML and relational schemas. The 
output mappings are displayed by BizTalk Mapper [8], 
which then compiles them into XSL translation scripts. In 
Table 1 we give a brief description of the criteria for 
setting the different thresholds and parameters used in the 
algorithm and present some typical values for them.  
 



 

 
Parameter Description Typical Value 

thns 

Name similarity threshold for determining compatible categories. The choice of value is 
not critical, as it is used merely for pruning the number of element-to-element linguistic 
comparisons. 

0.5 

thhigh 
If wsim(s,t) ≥ thhigh then increase the structural similarity between all pairs of leaves in the 
two subtrees rooted at s and t. Should be greater than thaccept. 

0.6 

thlow 
If wsim(s,t) ≤thlow then decrease the structural similarity between all pairs of leaves in the 
two subtrees rooted at s and t. Should be less than thaccept. 

0.35 

cinc 

The multiplicative factor by which leaf structural similarities are increased. Typically a 
function of maximum schema depth or depth to which nodes are considered for structural 
similarity. 

1.2 

cdec The multiplicative factor by which leaf structural similarities are decreased. Typically 
about cinc

-1 0.9 

thaccept wsim(s,t) ≥ thaccept for s and t to have strong link or be a valid mapping element 0.5 

wstruct 
Structural similarity contribution to wsim. Typically this value is different for leaves and 
non-leaves – lower for leaf-leaf pairs than for non-leaf pairs. 

0.5-0.6 

Table 1 Typical Threshold Parameter  Values

Table 2 Compar ison based on Canonical Example

The DIKE system [12] operates on ER models. The 
input includes a Lexical Synonymy Property Dictionary 
(LSPD) that contains linguistic similarity coefficients 
between elements in the two schemas. The schemas are 
interpreted as graphs with entities, relationships and attri-
butes as nodes. The similarity coefficient of two nodes is 
initialized to a combination of their LSPD entry, data 
domains and keyness. This coefficient is re-evaluated 
based on the similarity of nodes in their corresponding 
vicinities  nodes further away contribute less. Conflict 
resolution is also performed on the schemas, e.g. an 
attribute might be converted to an entity to get a better 
integrated schema. The output is an integrated schema, 
and an abstracted schema (a simplification of the former). 

The MOMIS mediator system [1] accepts schemas as 
class definitions. The WordNet system [16] is used to 
obtain name affinities among schema elements. For each 
element name, the user chooses an appropriate word form 
in WordNet and narrows down its possible meanings to 
the most relevant ones. The description-logic-based ODB-
Tools [1] is used to infer name affinities from inter-class 

relationships in the schema. ARTEMIS [3], the schema-
mapping component of MOMIS, computes the structural 
affinity for all pairs of classes based on their name affinity 
and their respective class attributes. The classes of the 
input schemas are clustered into global classes of the 
mediated schema, based on their name and structural 
affinities. The attributes of clustered classes are fused, if 
possible, to determine the exact global class definitions. 

9.1 Canonical Examples 
We compared the matching performance of the three tools 
on canonical examples that try to isolate their matching 
properties. The test schemas used were object-oriented 
schemas with a small number of class definitions. For 
DIKE we used a corresponding ER schema. In DIKE, we 
consider schema elements to be mapped to each other if 
the corresponding entities and attributes are merged 
together in the abstracted schema. Similarly, in MOMIS 
we consider schema elements to be mapped to each other 
if the corresponding classes are clustered into a single 
global class and the corresponding attributes are fused 
together. 

 Description Cupid DIKE 
MOMIS-

ARTEMISβ 

1 Identical schemas  Y Y Y 
2 Atomic elements with same names, but different data typesχ Y Y Y 

3 
Atomic elements with same data types, but different names (a prefix or suffix is 
added)   

Y Yα Y 

4 Different class names, but atomic elements same names and data types Y Y Y 
5 Different Nesting of the data – similar schemas with nested and flat structures Y Y N 
6 Type Substitution or Context dependent mapping  Y N N 
α - LSPD entries have to 
added to identify 
corresponding elements 

β - for each name the corresponding matching entry in the 
WordNet dictionary has to be chosen to ensure correct 
mappings 

χ - data type 
compatibility tables 
are used by each tool 



 

We performed the following tests of the sensitivity of 
the different tools to data types, names, nesting and type 
substitution. The results are summarized in Table 2. We 
use the terms atomic elements and attributes 
interchangeably in the following examples. 
1. Identical schemas. The two schemas, Schema1 and 
Schema2, have a single class: Customer 
(Customer_Number: integer (key), Name: string, 
Address: string). Cupid correctly identifies the 
corresponding elements, even without any thesaurus 
information. DIKE duplicates the key attribute (two 
copies in the abstracted schema) even though it has the 
same name and data type. For MOMIS, the correct senses 
of the schema element names have to be chosen, 
especially the class name, for the identical classes to be 
clustered together.  
2. Atomic elements with identical name, but 
different data types. The telephone attribute is added to 
both classes: as a string in Schema1, and as an integer in 
Schema2. The matching is performed by the three 
systems in the same way as in (1). All the systems make 
use of data type compatibility tables for this purpose. 
While these tables are accessible and tunable in the case 
of Cupid and MOMIS, they are hidden in DIKE.  
3. Atomic elements with the same data types, but 
slightly different names. A prefix or suffix is added to 
each of the names in schema 2 – Address becomes Street-
Address, Name becomes CustomerName, etc. The 
linguistic matcher in Cupid is tolerant of name variations, 
and is able to perform the matching correctly. LSPD 
entries associating the corresponding exact element names 
are needed for DIKE to perform the integration correctly. 
The corresponding attribute pairs are mapped in MOMIS 
only if the user explicitly adds a synonym relationship 
between each corresponding element.  
4. Different class names, but the atomic elements 
have the same names and data types. In Schema2, the 
class name is changed to Person. Since the leaf-level 
comparisons are unaffected, Cupid is able to determine 
the correct mappings. DIKE merges the entities together 
even without an LSPD entry. For MOMIS, Person is 
identified as a hypernym of Customer (after correct senses 
are chosen) by WordNet, and the classes are clustered 
together.  
 
 
 

5. Different nesting of schema elements.  
Nested-Schema:  
       Customer  (SSN, Telephone, Name (FirstName,  
                             LastName), Address (Street, City,  
                             State, Zip))  
Flat-Schema:  
       Customer  (SSN, Telephone, FirstName, LastName,  
                           Street, City, State, Zip) 
Cupid is able to find the correct mapping, but the 
difference in nesting is reflected in lower similarity 
coefficient values. DIKE creates a single entity with all 
the attributes merged correspondingly. MOMIS clusters 
the two Customer classes together, but not the two other 
classes.  
6. Type Substitution and Context Dependent 
mappings.  
Schema 1:  
   PurchaseOrder (OrderNumber, ProductName,  
                               ShippingAddress: Address,  
                              BillingAddress: Address) 
   Address (Name, Street, City, Zip, Telephone) 
Schema 2:  
   PurchaseOrder (OrderNumber, ProductName,  
                               ShippingAddress: ShipTo,  
                              BillingAddress: BillTo).  
ShipTo and BillTo are defined identically to Address, but 
as separate classes/entities. Cupid is able to determine the 
correct mappings – the Name, Street, etc. of 
ShippingAddress in schema 1 are mapped to those of 
ShipTo in schema 2, and so on. For DIKE the results vary 
depending on intermediate user interaction. The 
PurchaseOrder entities are integrated together, but 
ShippingAddress and BillingAddress are either kept 
separate (as required) or merged into one relationship. 
MOMIS clusters the two PurchaseOrder classes together, 
but the other three classes are in independent clusters.  

We make a few observations based on these canonical 
examples: 
1. Cupid is able to overcome some differences in 
schema element names due to the normalization 
performed as part of the linguistic matching. This requires 
user effort for the other tools. 
2. Cupid is robust with respect to different nestings of 
schema elements due to its reliance on leaves rather than 
on intermediate structure. DIKE is also able to handle 
different nestings due to its entity merging operation. 
3. Cupid is the only tool that can disambiguate context 
dependent mappings. The results for DIKE are heavily 
dependent on the user feedback. 
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Figure 7 Purchase Order  Schemas

CIDX →→→→ Excel element mappings Cupid DIKE M OM IS – ARTEM IS 
POHeader → Header Yes Yes Yes 
Item → Item Yes Yes 
POLines → Items Yes Yes 

The two Item elements and the Items element in a 
single cluster. POLines is in its own cluster. 

POBillTo→InvoiceTo Yes No 
POShipTo→DeliverTo Yes No 

Clustered together with the Address element 

Contact→Contact Yes Yes Yes 

PO→PurchaseOrder Yes Yes 
Yes, classes clustered, but corresponding elements 
not mapped. 

Table 3 M apping Compar ison for  CIDX-EXCEL Example 

9.2 Real world example 
We used two XML purchase orders, CIDX and Excel, 
from www.BizTalk.org (see Figure 7). We chose these 
particular schemas because, while somewhat similar, 
they also have XML elements with differences in 
nesting, some missing elements, non-matching data 
types and slightly different names. For DIKE, we had to 
remodel the schemas as an appropriate ER model. 

The linguistic input to the systems differed as 
follows. For MOMIS the best possible meanings were 
chosen for each of the schema elements. For Cupid, the 
thesauri had a total of 4 abbreviations (UOM, PO, Qty, 
Num) and 2 synonymy entries (Invoice,Bill; 
Ship,Deliver) that were relevant to the example. For 
DIKE, we added linguistic similarity entries (in the 
LSPD) that were similar to the linguistic similarity 
coefficients computed by Cupid. 

The XML-element level mapping inferred by the 
three systems is summarized in Table 3. We make the 
following observations about the mappings: 
1. DIKE: The abstracted schema depends on the choice 
of equivalent ER models for these XML schemas. We 
first chose to model the root elements and all XML-
elements that had any attributes, as entities (and so 

DeliverTo and InvoiceTo are relationships). In the 
abstracted schema that results, entities POShipTo  and 
Address are merged into a single entity, and the entities 
PO, POBillTo and PurchaseOrder are merged into 
another entity. There are three relationships between 
these two entities (named PO-POShipTo, InvoiceTo and 
DeliverTo). We believe that some but not all the desired 
mapping was achieved –POShipTo and POBillTo are 
(correctly) not merged together, but there are multiple 
relationships between these entities. The XML-
attributes within the entities are matched according to 
the LSPD entries. 

As an alternative, we chose to model POShipTo, 
POBillTo, POLines, POHeader and Contact as entities 
in the CIDX ER model with a single PO relationship 
involving all of them. In the Excel ER model Header, 
Address, Contact and Item are entities. PurchaseOrder 
is a single entity. DeliverTo and InvoiceTo are ternary 
relationships between PurchaseOrder, Address and 
Contact. Item is a relationship between PurchaseOrder 
and Item with a single attribute. DIKE correctly 
identifies mappings POBillTo→InvoiceTo and PO-
ShipTo→DeliverTo, but not POLines→Items. The 
entities POBillTo, POShipTo and Address are merged 



 

into one entity that has two relationships, InvoiceTo and 
DeliverTo, with the PurchaseOrder entity. Again in this 
case it is difficult to say whether the desired mapping 
was in fact computed. 
2. MOM IS: In ARTEMIS, the five classes 
(POShipTo, POBillTo, InvoiceTo DeliverTo, Address) 
are clustered together, but the corresponding elements 
in the PO and PurchaseOrder cluster are not mapped to 
each other. Hence we believe that it did not achieve the 
desired mapping. This might be because, unlike Cupid, 
MOMIS does not perform context dependent matching. 
Not all possible attribute level matches are performed: 
e.g. the Street(1…4) attributes in the two schemas are 
not mapped 1:1 (though their meanings in WordNet are 
the same, the names themselves are distinct, and hence 
we would expect them to match correctly). The XML-
element Items was clustered with the Item classes (and 
not POLines).  Since attribute matching is done only 
within global clusters (after the clusters have been 
decided), the XML-attribute itemCount (in Items) was 
matched with Quantity (in Item).  
3. Cupid: Cupid identifies all the correct XML-attrib-
ute matching pairs (leaves in the example). Cupid is the 
only one to identify CIDX.line to correspond to 
Excel.itemNumber (there were no supporting thesaurus 
entries). This matching was based purely on the data-
type and structural matching. In addition, there are two 
false positives (e.g. CIDX.contactName is mapped to 
both Excel.contactName and Excel.companyName). 
This is due to the naïve mapping-generator; for every 
XML attribute in the target schema it returns the best 

matching XML attribute in the source (whether or not 
the latter was already mapped). The data types and 
elements in the vicinity of these XML-attributes 
strongly match and thus these mappings are reported. 
This demonstrates the need for a more sophisticated 
scheme to generate mappings from the similarity 
values. The XML-element mappings in Table 3 are 
reported based on their respective structural similarity 
values. 

We tried to demonstrate further the utility of 
exploiting referential constraints as join nodes. For this 
purpose we used a second example, whose goal was to 
map a relational schema RDB to a Star data warehouse 
schema (see Figure 8). A good mapping would map the 
join of Territories and Region to Geography, 
Customers to Customers, Products to Products, and 
Orders or OrderDetails (or a join of the two) to Sales.  
1. DIKE: In the absence of any linguistic 
information, DIKE identifies the two Products entities 
to be the same, the OrderDetails entity is merged with 
the Sales and Time entities, and Region is merged with 
Geography. The Customers entities are also merged 
when LSPD entries corresponding to their respective 
attributes are added. 
2. MOM IS clusters the two Products and two 
Customers classes together. The attribute (table 
column) matches in these two cases are correct except 
that the StateOrProvince and State columns are not 
matched. The other two possible matching tables are 
not clustered. 
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3. Cupid matches the join of Orders and 
OrderDetails to the Sales table. The columns of the two 
Products and two Customers tables are matched. The 
columns of the Geography table are mapped to those of 
Region, Territory and their join table: RegionID and 
TerritoryID map to the columns of the Territory-Region 
table. The three PostalCode columns in the Star 
Schema are all mapped to the Customers.PostalCode 
column in the RDB schema. This is desirable, since a 
Query Discovery module can then get the PostalCode 
column in each case by joining the corresponding tables 
with Customers. There were no relevant synonym and 
hypernym entries in the thesaurus. 

None of systems matched the CustomerName 
column in the star schema to either the 
ContactFirstName or ContactLastName columns of 
Customers in RDB. This matching would have been 
possible if there had existed a synonymy entry for 
(Customer:Contact) in the thesaurus. 

9.3 Experimental Conclusions 

We draw the following conclusions from our 
experiments. 
1.  L inguistic matching of schema element names 
results in useful mappings. Cupid performs simple 
token manipulation to be tolerant to variations in 
element names. Unlike Cupid, DIKE and MOMIS 
expect identical names for matching schema elements 
in the absence of linguistic input (via LSPD or the user 
interface to WordNet respectively). MOMIS uses the 
description logic based ODB tools to infer name 
affinities within a single schema (by exploiting object 
hierarchies and referential constraints), and also infers 
additional name affinities by transitive closure 
calculations — both are helpful features. 
2. The thesaurus plays a crucial role in linguistic 
matching. The effect of dropping the thesaurus varies. 
With Cupid, the resulting mapping is comparatively 
poor in the CIDX-Excel example, but it is unchanged in 
the Star-RDB example. The WordNet interface of 
MOMIS provides a useful tool for the user to pick from 
alternative meanings in a thesaurus, but can be a bit 
restrictive (only one applicable word form). The sense 
of a word is often domain-specific; e.g. the correct 
sense of Header does not exist in WordNet, and the 
synonym has to be manually added. The tokenization 
done by Cupid, followed by stemming, can aid in the 
automatic selection of possible word meanings during 
name matching (done by the user in MOMIS) and make 
it easier to use off-the-shelf thesauri. A robust solution 
will need a module to incrementally learn synonyms 
and abbreviations from mappings that are performed 
over time. 
3. Using linguistic similar ity with no structure 
similar ity, Cupid cannot distinguish between the 
instances of a single XML-attribute in multiple contexts 

(there are 18 such XML attributes in the CIDX-Excel 
example). So, to make a fair evaluation of the utility of 
just the linguistic similarity, we compared elements in 
the two schemas using just their complete path names 
(from the root) in their schema trees. While in the 
CIDX-Excel example only 2 of the correct matching 
XML attribute pairs went undetected, there were as 
many as 7 false positive mappings. In the RDB-Star 
example only 68% of the correct mappings were 
detected, because the names could only include the 
table and column names. 
4. Granular ity of similar ity computation. The 
ultimate goal in MOMIS is a mediated schema, so 
mappings are performed at a class level granularity. As 
we have seen, class-level similarity computation can 
sometimes lead to non-optimal mappings. Single 
classes might be nested or normalized differently (with 
referential constraints) in different schemas.  
5. Using the leaves in the schema tree for  the 
structural similar ity computation allows the Cupid 
approach to match similar schemas that have different 
nesting. Also, reporting mappings in terms of leaves 
allows a sophisticated query discovery module to 
generate the correct queries for data transformations.  
6. Incorporating structure information beyond the 
immediate vicinity of a schema element leads to better 
matching. Thus, in the CIDX-Excel example, Cupid is 
able to match POBillTo, POShipTo and POLines to 
InvoiceTo, DeliverTo and Items respectively. For the 
same reason, DIKE finds many of the matches. 
ARTEMIS tries to incorporate such information using 
the ODB-Tools during the name affinity computation.  
7. Context-dependent mappings generated by con-
structing schema trees are useful when inferring 
different mappings for the same element in different 
contexts. 
8. Per formance parameters. Some of the mapping 
results for these tools might not be the best achievable 
by them, in that improvements may be possible by 
adjusting few of their parameters. Tuning performance 
parameters in some cases requires expert knowledge of 
these tools. Thus auto-tuning is an open problem, and a 
requirement for a robust solution. 
9. User  Interaction. Schema matching is a very 
subjective operation and hence user interaction is a 
crucial resource. One of the drawbacks of the current 
approaches is the limited means of capturing user 
interaction, e.g. in Cupid this is restricted to initial 
mappings that are supplied at the beginning of the 
matching procedure. Some useful future work would be 
to design a comprehensive way of incorporating user 
interaction. 

10 Summary and Future Work 
In this paper, we studied schema matching as an inde-
pendent problem. We provided a survey and taxonomy 
of past approaches. We presented a new algorithm that 



 

improves on past methods in many respects, for 
example, by including a substantial linguistic matching 
step and by biasing matches by leaves of a schema. We 
implemented the algorithm as an independent 
component. And we compared our implementation to 
two others. This demonstrated the strengths of our 
approach and is a possible model for future algorithm 
comparisons.  

While we believe we have made progress on the 
schema-matching problem, we do not claim to have 
solved it. A truly robust solution needs to include other 
techniques, such as machine learning applied to 
instances, natural language technology, and pattern 
matching to reuse known matches. Some of the 
immediate challenges for further work include: 
integrating Cupid transparently with an off-the-shelf 
thesaurus; using schema annotations (textual 
descriptions of schema elements in the data dictionary) 
for the linguistic matching; and automatic tuning of the 
control parameters. Scalability analysis and testing are 
necessary to study the performance on large-sized 
schemas. And much more comparative analysis of algo-
rithms is needed. Our long-term goal is to enhance 
Cupid to make it a truly general-purpose schema 
matching component that can be used in systems for 
schema integration, data migration, etc. The work 
reported here is just one step along what we expect will 
be a very long research path. 
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