

Gener ic Schema Matching with Cupid

Jayant Madhavan1 Philip A. Bernstein Erhard Rahm1

University of Washington Microsoft Corporation University of Leipzig
jayant@cs.washington.edu philbe@microsoft.com rahm@informatik.uni-leipzig.de

August, 2001
Technical Report

MSR-TR-2001-58

Microsoft Research

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052-6399

http://www.research.microsoft.com

1 Work performed while at Microsoft Research.

Gener ic Schema Matching with Cupid
Jayant Madhavan2 Philip A. Bernstein Erhard Rahm2

University of Washington Microsoft Corporation University of Leipzig
jayant@cs.washington.edu philbe@microsoft.com rahm@informatik.uni-leipzig.de

2 Work performed while at Microsoft Research.

Abstract
Schema matching is a critical step in many applica-
tions, such as XML message mapping, data warehouse
loading, and schema integration. In this paper, we
investigate algorithms for generic schema matching,
outside of any particular data model or application. We
first present a taxonomy for past solutions, showing
that a rich range of techniques is available. We then
propose a new algorithm, Cupid, that discovers map-
pings between schema elements based on their names,
data types, constraints, and schema structure, using a
broader set of techniques than past approaches. Some
of our innovations are the integrated use of linguistic
and structural matching, context-dependent matching
of shared types, and a bias toward leaf structure where
much of the schema content resides. After describing
our algorithm, we present experimental results that
compare Cupid to two other schema matching systems.

This is an extended version of a paper published at the
27th VLDB Conference [7].

1 Introduction
Match is a schema manipulation operation that takes two
schemas as input and returns a mapping that identifies
corresponding elements in the two schemas. Schema
matching is a critical step in many applications: in E-
business, to help map messages between different XML
formats; in data warehouses, to map data sources into
warehouse schemas; and in mediators, to identify points
of integration between heterogeneous databases.

Schema matching is primarily studied as a piece of
these other applications. For example, schema integration
uses matching to find similar structures in heterogeneous
schemas, which are then used as integration points
[1,3,12]. Data translation uses matching to find simple
data transformations [10]. Given the importance of XML
message mapping, we expect to see match solutions to
appear next in this context.

Schema matching is challenging for many reasons.
Most importantly, even schemas for identical concepts
may have structural and naming differences. Schemas
may model similar but non-identical content. They may
be expressed in different data models. They may use
similar words to have different meanings. And so on.

Today, schema matching is done manually by domain
experts, sometimes using a graphical tool [8]. At best,
some tools can detect exact matches automatically − even
minor name and structure variations lead them astray.

Like [4], we believe that Match is such a pervasive,
important and difficult problem that it should be studied
independently. Moreover, we believe it is critical to such
a wide variety of tools that it should be built as an inde-
pendent component. Thus, it must be generic, meaning
that it can apply to many different data models and
application domains. To support these positions, in this
paper we offer the following contributions: a taxonomy of
approaches used by different applications, to show the
complexity of the solution space; a new match algorithm
that uses more powerful techniques than past approaches
and is generic across data models and application areas;
and experimental comparisons of our implementation
with others, to show the benefits of our approach and a
way of evaluating other implementations in the future.

Ultimately, we see Match as a key component of a
general-purpose system for managing models [2]. By
model, we mean a complex structure that describes a de-
sign artifact such as database schema, XML schema,
UML model, workflow definition, or web-site map. The
vision of Model Management is a system that manipulates
models generically, to match and merge them, and invert
and compose mappings between them. This paper focuses
on just one piece of that vision, the Match operation.

The rest of the paper is organized as follows. We
define the schema matching problem in Section 2. Section
3 looks at past solutions, presents a taxonomy for schema
matching techniques, and reviews systems that use them.
Section 4 summarizes our approach in a new match algo-
rithm, Cupid, whose details are described in Sections 5-8.
Section 9 reports on experiments comparing Cupid with
two other algorithms. Section 10 is the conclusion.

2 The Schema Matching Problem
A schema consists of a set of related elements, such as
tables, columns, classes, or XML elements or attributes.
The result of a Match operation is a mapping. A mapping
consists of a set of mapping elements, each of which
indicates that certain elements of schema S1 are related to
certain elements of schema S2. For example, a mapping
between purchase order schemas PO and Porder could
include a mapping element that relates element

PO POr der
Li nes I t ems
 I t em I t em
 Li ne I t emNumber
 Qt y Quant i t y
 Uom Uni t Of Measur e

Figure 1 Two Schemas to be Matched
Lines.Item.Line to element Items.Item.Item- Number.

In general, a mapping element may also have an
associated expression that specifies its semantics (called a
value correspondence in [9]). For example, m’ s expres-
sion might be “Lines.Item.Line=Items.Item.ItemNumber.”
We do not treat such expressions in this paper. Rather, we
only address mapping discovery, which returns mapping
elements that identify related elements of the two
schemas. Since we are not concerned with mapping
expressions, we treat mappings as non-directional.

The related problem of query discovery operates on
mapping expressions to obtain queries for actual data
translation. Both types of discovery are needed. Each is a
rich and complex problem that deserves independent
study. Query Discovery is already recognized as an inde-
pendent problem, where it is usually assumed that a
mapping either is given [9] or is trivial [14].

Schema matching is inherently subjective. Schemas
may not completely capture the semantics of the data they
describe, and there may be several plausible mappings
between two schemas (making the concept of a single best
mapping ill-defined). This subjectivity makes it valuable
to have user input to guide the match and essential to have
user validation of the result. This guidance may come via
an initial mapping, a dictionary or thesaurus, a library of
known mappings, etc. Thus, the goal of schema matching
is: Given two input schemas in any data model and,
optionally, auxiliary information and an input-mapping,
compute a mapping between schema elements of the two
input schemas that passes user validation.

3 A Taxonomy of Matching Techniques
Schema matchers can be characterized by the following
orthogonal criteria (a longer survey based on this
taxonomy appears in [13]):

� Schema vs. Instance based – Schema-based matchers
consider only schema information, not instance data
[1,12]. Schema information includes names, descriptions,
relationships, constraints, etc. Instance-based matchers
either use meta-data and statistics collected from data
instances to annotate the schema [9], or directly find cor-
related schema elements, e.g. using machine learning [5].

� Element vs. Structure granularity – An element-level
matcher computes a mapping between individual schema
elements, e.g. an attribute matcher [6]. A structure-level
matcher compares combinations of elements that appear
together in a schema, e.g. classes or tables whose attribute
sets only match approximately [1].

� Linguistic based – A linguistic matcher uses names of
schema elements and other textual descriptions. Name

matching involves: putting the name into a canonical form
by stemming and tokenization; comparing equality of
names; comparing synonyms and hypernyms using gener-
ic and domain-specific thesauri; and matching sub-strings.
Information retrieval (IR) techniques can be used to com-
pare descriptions that annotate some schema elements.

� Constraint based – A constraint-based matcher uses
schema constraints, such as data types and value ranges,
uniqueness, required-ness, cardinalities, etc. It might also
use intraschema relationships such as referential integrity.

� Matching Cardinality – Schema matchers differ in the
cardinality of the mappings they compute. Some only pro-
duce 1:1 mappings between schema elements. Others
produce n:1 mappings, e.g. one that maps the combination
of DailyWages and WorkingDays in the source schema to
MonthlyPay in the target.

� Auxiliary information – Schema matchers differ in their
use of auxiliary information sources such as dictionaries,
thesauri, and input match-mismatch information. Reusing
past match information can also help, for example, to
compute a mapping that is the composition of mappings
that were performed earlier.

� Individual vs. Combinational – An individual matcher
uses a single algorithm to perform the match. Combina-
tional matchers can be one of two types: Hybrid matchers
use multiple criteria to perform the matching [1,6,10].
Composite matchers run independent match algorithms on
the two schemas and combine the results [5].

We now look at some published implementations in
light of the above taxonomy.

The SEMINT system is an instance-based matcher
that associates attributes in the two schemas with match
signatures [6]. These consist of 15 constraint-based and 5
content-based criteria derived from instance values and
normalized to the [0,1] interval, so each attribute is a point
in 20-dimensional space. Attributes of one schema are
clustered with respect to their Euclidean distance. A
neural network is trained on the cluster centers and then is
used to obtain the most relevant cluster for each attribute
of the second schema. SEMINT is a hybrid element-level
matcher. It does not utilize schema structure, as the latter
cannot be mapped into a numerical value.

The DELTA system groups all available meta-data
about an attribute into a text string and then applies IR
techniques to perform matching [4]. Like SEMINT, it
does not make much use of schema structure.

The LSD system uses a multi-level learning scheme to
perform 1:1 matching of XML DTD tags [5]. A number
of base learners that use different instance-level matching
schemes are trained to assign tags of a mediated schema
to data instances of a source schema. A meta-learner com-
bines the predictions of the base learners. LSD is thus a
multi-strategy instance-based matcher.

The SKAT prototype implements schema-based
matching following a rule-based approach [11]. Rules are
formulated in first-order logic to express match and
mismatch relationships and methods are defined to derive

new matches. It supports name matching and simple
structural matches based on is-a hierarchies.

 The TranScm prototype uses schema matching to
drive data translation [10]. The schema is translated to an
internal graph representation. Multiple handcrafted
matching rules are applied in order at each node. The
matching is done top-down with the rules at higher-level
nodes typically requiring the matching of descendants.
This top-down approach performs well only when the top-
level structures of the two schemas are quite similar. It
represents an element-level and schema-based matcher.

The DIKE system integrates multiple ER schemas by
exploiting the principle that the similarity of schema ele-
ments depends on the similarity of elements in their
vicinity [12]. The relevance of elements is inversely
proportional to their distance from the elements being
compared, so nearby elements influence a match more
than ones farther away. Linguistic matching is based on
manual inputs.

ARTEMIS, the schema integration component of the
MOMIS mediator system, matches classes based on their
name affinity and structure affinity [1,3]. MOMIS has a
description logic engine to exploit constraints. The classes
of the input schemas are clustered to obtain global classes
for the mediated schema. Linguistic matching is based on
manual inputs using an interface with WordNet [16].

Both DIKE and ARTEMIS are hybrid schema-based
matchers utilizing both element- and structure-level infor-
mation. We give more details about them in Section 9.

4 The Cupid Approach
The prototypes of the previous section illustrate, and in
many cases were the original source of, the matching
approaches described in our taxonomy. However, each of
them is an incomplete solution, exploiting at most a few
of the techniques in our taxonomy. This is not really a
criticism. Each of them was either a test of one particular
approach or was not designed to solve the schema match-
ing problem per se, and therefore made matching compro-
mises in pursuit of its primary mission (usually schema
integration). However, the fact remains that none of them
provide a complete general-purpose schema matching
component. We believe that the problem of schema
matching is so hard, and the useful approaches so diverse,
that only by combining many approaches can we hope to
produce truly robust functionality.

In the rest of this paper, we explain our new schema
matching component, Cupid. In addition to being generic,
our solution has the following properties:
• It includes automated linguistic-based matching.
• It is both element-based and structure-based.
• It is biased toward similarity of atomic elements (i.e.

leaves), where much schema semantics is captured.
• It exploits internal structure, but is not overly misled

by variations in that structure.
• It exploits keys, referential constraints and views.

• It makes context-dependent matches of a shared type
definition that is used in several larger structures.

• It generates 1:1 or 1:n mappings, although this is an
artifact of the final stage of the algorithm and could
be adjusted if desired.

Cupid shares some general approaches with past algo-
rithms, though not the algorithms themselves, such as:
rating match quality in the [0,1] interval, clustering
similar terms (SEMINT), and matching structures based
on local vicinity (DIKE, ARTEMIS). The Cupid approach
is schema-based and not instance-based.

To explain the algorithm, we first restrict ourselves to
hierarchical schemas. Thus, we model the interconnected
elements of a schema as a schema tree. A simple relation-
al schema is an example of a schema tree; a schema con-
tains tables, which contains columns. An XML schema
with no shared elements is another example; elements
contain sub-elements, which in turn contain other sub-
elements or attributes. Later in the paper, we enrich the
model to capture more semantics, making it quite generic.

We summarize the overall algorithm below in a run-
ning example. We want to match the two XML schemas,
PO and Purchase Order, in Figure 2. The schemas are en-
coded as graphs, where nodes represent schema elements.
Although even a casual observer can see the schemas are
very similar, there is much variation in naming and struc-
ture that makes algorithmic matching quite challenging.

PurchaseOrder

DeliverTo InvoiceTo

Items

Item Address

Street CityUnitOfMeasure

Quantity

ItemNumber

ItemCount

PO

POLines

Item

Qty

UoM

Line

CountPOShipTo

StreetCity

POBillTo

StreetCity

Address

Street City

PurchaseOrder

DeliverTo InvoiceTo

Items

Item Address

Street CityUnitOfMeasure

Quantity

ItemNumber

ItemCount

PO

POLines

Item

Qty

UoM

Line

CountPOShipTo

StreetCity

POBillTo

StreetCity

Address

Street City

Figure 2 Purchase Order Schemas

 Like previous approaches [1,3,5,6,12], we attack the
problem by computing similarity coefficients between ele-
ments of the two schemas and then deducing a mapping
from those coefficients. The coefficients, in the [0,1]
range, are calculated in two phases. The first phase, called
linguistic matching, matches individual schema elements
based on their names, data types, domains, etc. We use a
thesaurus to help match names by identifying short-forms
(Qty for Quantity), acronyms (UoM for UnitOfMeasure)
and synonyms (Bill and Invoice). The result is a linguistic
similarity coefficient, lsim, between each pair of elements.

The second phase is the structural matching of schema
elements based on the similarity of their contexts or
vicinities. For example, Line is mapped to ItemNumber
because their parents, Item, match and the other two
children of Item already match. The structural match
depends in part on linguistic matches calculated in phase
one. For example, City and Street under POBillTo match
City and Street under InvoiceTo, rather than under
DeliverTo, because Bill is a synonym of Invoice but not of

Deliver. The result is a structural similarity coefficient,
ssim, for each pair of elements.

The weighted similarity (wsim) is a mean of lsim and
ssim: wsim = wstruct × ssim + (1-wstruct) × lsim, where the
constant wstruct is in the range 0 to1.

In the third phase (mapping generation), a mapping is
created by choosing pairs of schema elements with
maximal weighted similarity.

In the next three sections, we describe the linguistic
phase, structural matching phase, and mapping generation
in more detail. We then extend the algorithm beyond tree
structures in Section 8.

5 Linguistic Matching
The first phase of schema matching is based primarily on
schema element names. In the absence of data instances,
such names are probably the most useful source of infor-
mation for matching. We also make modest use of data
types and schema structure in this phase. Linguistic
matching proceeds in three steps: normalization,
categorization and comparison.

5.1 Normalization
Many semantically similar schema element names contain
abbreviations, acronyms, punctuation, etc. that make them
syntactically different. To make them comparable, Cupid
normalizes them into sets of name tokens, as follows:
• Tokenization – The names are parsed into tokens by a
customizable tokenizer using punctuation, upper case,
special symbols, digits, etc. E.g. POLines → { PO, Lines} .
• Expansion – Abbreviations and acronyms are
expanded, e.g. { PO, Lines} → { Purchase, Order, Lines} .
• Elimination – Tokens that are articles, prepositions or
conjunctions are marked to be ignored during comparison.
• Tagging – A schema element that has a token related
to a known concept is tagged with the concept name, e.g.
elements with tokens Price, Cost and Value are all
associated with the concept Money.

The abbreviations, acronyms, ignored words, and
concepts are determined by a thesaurus lookup. The
thesaurus can include terms used in common language as
well as domain-specific references, e.g. specialized terms
used in purchase orders.

Each name token is also marked as being one of five
token types: number, special symbol (e.g. #), common
word (prepositions and conjunctions), concept (as
explained earlier) or content (all the rest).

5.2 Categorization
Next, Cupid clusters schema elements belonging to the
two schemas into categories. A category is a group of ele-
ments that can be identified by a set of keywords, which
are derived from concepts, data types, and element names.
E.g. the category money includes each schema element
that is associated with money (i.e. “money” appears in its
name or it is tagged with the concept of Money).

The purpose of categorization is to reduce the number
of element-to-element comparisons. By clustering similar

elements into categories, we need only compare those that
belong to compatible categories. Two categories are com-
patible if their respective sets of keywords are “name
similar” (defined below).

Categories and keywords are determined as follows:
� Concept tagging – a category per unique concept tag
in the schema.

� Data types – a category for each broad data type, e.g.
all elements with a numeric data type are grouped
together in a category with the keyword Number. (Like all
categorization criteria, data types are used primarily to
prune the matching and do not contribute significantly to
the linguistic similarity result.)

� Container – A schema element that “contains” other
elements defines a category. For example, Street and City
are contained by Address and hence can be grouped into a
category with keyword Address. Containment is described
in more detail in Section 7.1.

We construct separate categories for each schema. For
each element we insert it into an existing category (same
data type, same concept, or same container) if possible, or
otherwise create new categories. Notice that each schema
element can belong to multiple categories.

Name Similar ity
The similarity of two name tokens t1 and t2, sim(t1, t2), is
looked up in a synonym and hypernym thesaurus. Each
thesaurus entry is annotated with a coefficient in the range
[0,1] that indicates the strength of the relationship. In the
absence of such entries, we match sub-strings of the
words t1 and t2 to identify common prefixes or suffixes.

The name similarity (ns) of two sets of name tokens T1
and T2 is the average of the best similarity of each token
with a token in the other set. It is calculated as follows:

||||

),(max),(max

),(
21

22
21

1111
21

22
21

TT

ttsimttsim

TTns
Tt TtTt Tt

+

�
+

�
=

∈ ∈∈ ∈

��
������

����

Two categories are compatible if the name similarity of
their token sets exceeds a given threshold, thns.

5.3 Comparison
Next, we calculate the linguistic similarity of each pair of
elements from compatible categories. Linguistic similarity
is based on the name similarity of elements, which is
computed as a weighted mean of the per-token-type name
similarity (each token is one of five types). If T1i and T2i
are the tokens of elements m1 and m2 of type i, the name
similarity of m1 and m2 is computed as follows:

�
=

+
�

×

�
×

=
∈

∈
1where,

|)
2

||
1

|(

)
2

,
1

(

),(21 iw

i
T

i
T

i
w

i
T

i
Tns

i
w

mmns

TokenTypei

TokenTypei

Content and concept tokens are assigned a greater weight,
(wi) since these token types are more relevant than
numbers and conjunctions, prepositions, etc.

The linguistic similarity (lsim) is computed by scaling
the name similarity of the model elements by the
maximum similarity of categories to which they belong:

),(
,

max),(),(21
2211

2121 ccns
CcCc

mmnsmmlsim
∈∈

×=

where C1 and C2 are the sets of categories to which m1 and
m2 belong, respectively.

The result of this phase is a table of linguistic
similarity coefficients between elements in the two
schemas. The similarity is assumed to be zero for schema
elements that do not belong to any compatible categories.

6 Structure Matching
In this section we present a structure matching algorithm
for hierarchical schemas, i.e. tree structures. For each pair
of schema elements the algorithm computes a structural
similarity, ssim a measure of the similarity of the
contexts in which the elements occur in the two schemas.
From ssim and lsim, the weighted similarity wsim is
computed, as described in Section 4.

The TreeMatch algorithm in Figure 3 is based on the
following intuitions:
(a) Atomic elements (leaves) in the two trees are similar
if they are individually (linguistic and data type) similar,
and if elements in their respective vicinities (ancestors and
siblings) are similar.
(b) Two non-leaf elements are similar if they are
linguistically similar, and the subtrees rooted at the two
elements are similar.
(c) Two non-leaf schema elements are structurally simi-
lar if their leaf sets are highly similar, even if their imme-
diate children are not. This is because the leaves represent
the atomic data that the schema ultimately describes.

Figure 3 describes the basic tree-matching algorithm
that exploits the above intuition.

 TreeMatch(SourceTree S, TargetTree T)
 for each s ∈S, t ∈T where s,t are leaves
 set ssim (s,t) = datatype-compatibility(s,t)
 S’ = post-order(S), T’ = post-order(T)
 for each s in S’
 for each t in T’
 compute ssim(s,t) = structural-similarity(s,t)
 wsim(s,t) = wstruct.ssim(s,t) + (1-wstruct).lsim (s,t)
 if wsim(s,t) > thhigh
 increase-struct-similarity(leaves(s),leaves(t),cinc)
 if wsim(s,t) < thlow
 decrease-struct-similarity(leaves(s),leaves(t),cdec)

Figure 3 The Tree M atch Algor ithm
The structural similarity of two leaves is initialized to

the type compatibility of their corresponding data types.
This value ([0,0.5]) is a lookup in a compatibility table.
Identical data types have a compatibility of 0.5. (A max of
0.5 allows for later increases in structural similarity.)

The elements in the two trees are then enumerated in
post-order, which is uniquely defined for a given tree.
Both the inner and outer loops are executed in this order.

The first step in the loop computes the structural simi-
larity of two elements. For leaves, this is just the value of
ssim that was initialized in the earlier loop. When one of
the elements is not a leaf, the structural similarity is
computed as a measure of the number of leaf level

matches in the subtrees rooted at the elements that are be-
ing compared (intuition (c)). We say that a leaf in one
schema has a strong link to a leaf in the other schema if
their weighted similarity exceeds a threshold thaccept. This
indicates a potentially acceptable mapping. We estimate
the structural similarity as the fraction of leaves in the two
subtrees that have at least one strong link (and are hence
mappable) to some leaf in the other subtree, i.e.:

|)()(|

}),(),()(|{

}),(),()(|{

),(
tleavessleaves

xystronglinksleavesytleavesxx

yxstronglinktleavesysleavesxx

tsssim
∪

∈∃∧∈∪
∈∃∧∈

=

where leaves(s) = set of leaves in the subtree rooted at s.
We chose not to compute a 1-1 bipartite matching (used in
[12]) as it is computationally expensive and would
preclude m:n mappings (that often make sense).

If the two elements being compared are highly similar,
i.e. if their weighted similarity exceeds the threshold
thhigh, we increase the structural similarity (ssim) of each
pair of leaves in the two subtrees (one from each schema)
by the factor cinc (ssim not to exceed 1). The rationale is
that leaves with highly similar ancestors occur in similar
contexts. So the presence of such ancestors should rein-
force their structural similarity. For example, in Figure 2,
if POBillTo is highly similar to InvoiceTo, then the struc-
tural similarity of their leaves City-Street would be
increased, to bind them more tightly than to other City-
Street pairs. For similar reasons, if the weighted similarity
is less than the threshold thlow, we decrease the structural
similarities of leaves in the subtrees by the factor cdec. The
linguistic similarity, however, remains unchanged.

The similarity computation has a mutually recursive
flavor. Two elements are similar if their leaf sets are simi-
lar. The similarity of the leaves is increased if they have
ancestors that are similar. The similarity of intermediate
substructure also influences leaf similarity: if the subtree
structures of two elements are highly similar, then
multiple element pairs in the subtrees will be highly
similarity, which leads to higher structural similarity of
the leaves (due to multiple similarity increases). The post-
order traversals ensure that before two elements e1 and e2
are compared, all the elements in their subtrees have
already been compared. This ensures that e1’s and e2’ s
leaves capture the similarity of e1’ s and e2’s intermediate
subtree structure before e1 and e2 are compared.

The structural similarity of two nodes with a large
difference in the number of leaves is unlikely to be very
good. Such comparisons lead to a large number of
element similarities that are below the threshold thlow. We
prevent this by only comparing elements that have a
similar number of leaves in their subtrees (say within a
factor of 2). In addition to only comparing relevant
elements, such a pruning step decreases the number of
element pairs that need to be compared.

Instead of using leaves, we could consider only the
immediate descendants of the elements being compared.
Using the leaves for measuring structural similarity identi-

fies most matches that this alternative scheme would. In
addition, using the leaves ensures that schemas that have a
moderately different sub-structure (e.g. nesting of
elements) but essentially the same data content (similar
leaves) are correctly matched.

The post-order traversal results in a bottom-up match-
ing of the two schemas. Such an approach is more expen-
sive than top-down matching [10], because a top-down
approach can use high-level mismatches to prune away
attempts to match lower-level descendants. But, a bottom-
up approach is more conservative and is able to match
moderately varied schema structures. A top-down
approach is optimistic and will perform poorly if the two
schemas differ considerably at the top level.

7 Mapping Generation
The output of schema matching is a set of mapping
elements, which were described in Section 2. Mapping
elements are generated using the computed linguistic and
structural similarities. In the simplest case we might just
need leaf-level mapping elements. For each leaf element t
in the target schema, if the leaf element s in the source
schema with highest weighted similarity to t is acceptable
(wsim(s, t) ≥ thaccept), then a mapping element from s to t
is returned. This resulting mapping may be 1:n, since a
source element may map to many target elements.

The exact nature of a mapping is often dependent on
requirements of the module that accepts these mappings.
For example, Query Discovery might require a 1:1
mapping instead of the 1:n mapping returned by the naïve
scheme above. Such requirements need to be captured by
a data-model-specific or tool-specific mapping-generator
that takes the computed similarities as input.

To generate non-leaf mappings, we need a second
post-order traversal of the two schemas to re-compute the
similarities of non-leaf elements. This is because the
updating of leaf similarities during tree-match may affect
the structural similarity of non-leaf nodes after they were
first calculated. After this re-calculation, a scheme similar
to leaf-level mapping generation can be used.

The mapping that is produced by the scheme described
above consists of a list of mapping elements or
correspondences. A further step would be to enrich the
structure of the map itself. For example, the mapping
element between two XML-elements e1 and e2 would
have as its sub-elements the mappings elements between
matching XML-attributes of e1 and e2. Such a mapping
would be consistent with the vision of model management
as outlined in [2], which proposed treating both schemas
and mappings as similar objects (models). However, we
defer such treatment to future work.

8 Extending to General Schemas
8.1 Schema Graphs
The schemas we have looked at so far are trees. Real-
world schemas are rarely trees, since they share sub-
structure and have referential constraints. To extend our

techniques to these cases, we first present a generic
schema model that captures more semantics, leading to
non-tree schemas. We then extend our match algorithm to
use it by handling shared types and referential constraints.

In our generic schema model, a schema is a rooted
graph whose nodes are elements. We will use the terms
nodes and elements interchangeably. In a relational
schema, the elements are tables, columns, user-defined
types, keys, etc. In an XML schema the elements are
XML elements and attributes (and simpleTypes, complex-
Types, and keys/keyrefs in XML Schema (XSD) [17]).

Elements are interconnected by three types of relation-
ships, which together lead to non-tree schema graphs. The
first is containment, which models physical containment
in the sense that each element (except the root) is contain-
ed by exactly one other element. (Containment also has
delete propagation semantics, though we do not use that
property here.) E.g. a table contains its columns, and is
contained by its relational schema. An XML attribute is
contained by an XML element. The schema trees we have
used so far are essentially containment hierarchies.

A second type of relationship is aggregation. Like
containment, it groups elements, but is weaker (allows
multiple parents and has no delete propagation). E.g. a
compound key aggregates columns of a table. Thus, a
schema graph need not be a tree (a column can have two
parents: a table and a compound key).

The third type of relationship is IsDerivedFrom, which
abstracts IsA and IsTypeOf relationships to model shared
type information. Schemas that use them can be arbitrary
graphs (e.g. cycles due to recursive types). In XSD, an
IsDerivedFrom relationship connects an XML element to
its complex type. In OO models, IsDerivedFrom connects
a subtype to its supertype. IsDerivedFrom shortcuts con-
tainment: if an element e IsDerivedFrom a type t, then t’s
members are implicitly members of e. E.g. if USAddress
specializes Address, then an element Street contained by
Address is implicitly contained by USAddress too.

8.2 Matching Shared Types
When matching schemas expressed in the above model,
the linguistic matching process that we described earlier is
unaffected. We may, however, choose not to linguistically
match certain elements, e.g. those with no significant
name, such as keys. Structure matching is affected. Before
this step, we convert the schema to a tree, for two reasons:
to reuse the structure matching algorithm for schema trees
and to cope with context-dependent mappings.

An element, such as a shared type, can be the target of
many IsDerivedFrom relationships. Such an element e
might map to different elements relative to each of e’s
parents. For example, reconsider the XML schemas in
Figure 2. Suppose we change the PurchaseOrder schema
so that Address is a shared element, referenced by both
DeliverTo and InvoiceTo. POShipTo.Street and POBill-
To.Street now both map to Address.Street in Purchase-
Order, but for each of them the mapping needs to qualify

Address.Street to be in the context of either DeliverTo or
InvoiceTo. Including both of the mappings without their
contexts is ambiguous, e.g. complicating query discovery.
Thus, context-dependent mappings are needed. We
achieve this by expanding the schema into a schema tree.

There can be many paths of IsDerivedFrom and
containment relationships from the root of a schema to an
element e. Each path defines a context, and thus is a can-
didate for a different mapping for e. By converting a
schema to a tree, we can materialize all such paths. To do
this, the algorithm, shown in Figure 4, does a pre-order
traversal of the schema, creating a private copy of the
subschema rooted at the target t of each IsDerivedFrom
for each of t’s parents essentially type substitution.

schema_tree = construct_schema_tree(schema.root, NULL)
construct_schema_tree(Schema Element current_se,
 Schema Tree Node current_stn)
 If current_se is the root or current_se was reached

through a containment relationship
 If current_se is not_instantiated then return current_stn
 new_stn = new schema tree node corresponding to current_se
 set new_stn as a child of current_stn
 current_stn = new_stn
 for each outgoing containment or isDerivedFrom relation
 new_se = schem element that is the target of the relationship
 construct_schema_tree(new_se, current_stn)
 return current_stn

Figure 4 Schema Tree Construction
For each element we add a schema tree node whose

successors are the nodes corresponding to elements
reachable via any number of IsDerivedFrom relationships
followed by a single containment. Some elements are
tagged not-instantiated (e.g. keys) during the schema tree
construction and are ignored during this process.

We now have a representation on which we can run
the TreeMatch algorithm of Section 6.

The similarities computed are now in terms of schema
tree nodes. The resulting output mappings identify similar
elements, qualified by contexts. This results in more
expressive and less ambiguous mappings.

Schema tree construction fails if a cycle of contain-
ment and IsDerivedFrom relationships is present. Such
cycles are the result of recursive type definitions. We do
not have a complete solution for this case and defer
treatment of cyclic schemas as future work.

In Section 8.4, we describe optimizations to mitigate
the increased computation costs due to the expanded tree.

8.3 Matching Referential Constraints
Referential integrity constraints are supported in most
data models. A foreign key in a relational schema is a
referential integrity constraint. So are ID/IDREF pairs in
DTDs, and key-keyref pairs in XSD.

Referential constraints are represented by RefInt
elements in our model. Referential constraints are directed
from a source (e.g. foreign key column) to a target (e.g.
primary key that the foreign key refers to). Such RefInt
elements aggregate the source, and reference the target of
such relationship (“reference” is a new relationship type).
E.g. the modeling of a foreign key is shown in Figure 5.

 SQL Table A SQL Table B

Foreign key

ForeignKeyColumn PrimaryKeyColumn

 Containment Containment

Aggregates References

SQL Table A SQL Table B

Foreign key

ForeignKeyColumn PrimaryKeyColumn

Aggregates References

Figure 5 RefInts in SQL Schemas and XM L DTDs

The aggregates relationship is 1:n. For example, a
compound foreign key aggregates its constituent columns.
The foreign key references the single compound primary
key element of the target table (which aggregates the key
columns of that table). The 1:n nature of the reference
relationship allows a single IDREF attribute to reference
multiple IDs in an XML DTD.

We augment the schema tree with nodes that model
referential constraints. The description below is for rela-
tional schemas, but a similar approach applies elsewhere.

We interpret referential constraints as potential join
views. For each foreign key, we introduce a node that
represents the join of the participating tables (see Figure
6). This reifies the referential constraint as a node that can
be matched. Intuitively, it makes sense since the referen-
tial constraint implies that the join is meaningful. Notice
that the join view node has as its children the columns
from both the tables. The common ancestor of the two
tables is made the parent of the new join view node.

Purchase Order Customer

OrderID

ProductName
CustomerID

Order-Customer-fk

Address

CustomerID
Name

Purchase Order Customer

OrderID

ProductName
CustomerID

Order-Customer-fk

Address

CustomerID
Name

Figure 6 Augmenting the Schema Tree

These augmented nodes have two benefits. First, if two
pairs of tables in the two schemas are related by similar
referential constraints, then when the join views for the
constraints are matched, the structural similarities of those
tables’ columns are increased. This improves the
structural match. Second, this enables the discovery of
mappings between a join view in one schema and, a single
table or other join views in the second schema.

The additional join view nodes create a directed acyc-
lic graph (DAG) of schema paths. Since the inverse-topo-
logical ordering of a DAG (equivalent to post-order for a
tree) is not unique, the algorithm is not Church-Rosser,
i.e. the final similarities depend on the order in which
nodes are compared. To make it Church-Rosser, we could
add more ordering constraints. E.g. we could compare the
RefInt nodes after the table nodes. However, determining
which ordering would be best is still an open problem.

If a table has multiple foreign keys, we add one node
for each of them. We also have the option of adding a
node for each combination of these foreign keys (valid
join views). However, we choose not to, in the interest of
maintaining tractability. Similarly, the join view node that

is added may also have a foreign key column (of the
target table). We could expand these further thus
escalating expansion of referential constraints, but choose
not to, both for computation reasons and due to the lower
relevance of tables at further distances.

8.4 Other Features

We now discuss some other features of Cupid.
� Optionality: Elements of semi-structured schemas may
be marked as optional, e.g. non-required attributes of
XML-elements. To exploit this knowledge, the leaves
reachable from a schema tree node n are divided into two
classes: optional and required. A leaf is optional if it has
at least one optional node on each path from n to the leaf.
The structural similarity coefficient expression is changed
to reduce the weight of optional leaves that have no strong
links (they are not considered in both the numerator and
denominator of ssim). Therefore, nodes are penalized less
for unmappable optional leaves than unmappable required
leaves, so the matching is more tolerant to the former.

� Views: View definitions are treated like referential
constraints. A schema tree node is added whose children
are the elements specified in the view. This represents a
common context for these elements and can be matched
with views or tables of the other schema.

� Initial mappings: The matcher uses a user-supplied
initial mapping to help initialize leaf similarities prior to
structural matching (cf. Section 2). The linguistic
similarity of elements marked as similar in the initial map
is initialized to a predefined maximum value. Such a hint
can lead to higher structural similarity of ancestors of the
two leaves, and hence a better overall match. The user can
make corrections to a generated result map, and then re-
run the match with the corrected input map, thereby
generating an improved map. Thus, initial maps are a way
to incorporate user interaction in the matching process.

� Lazy expansion: Recall that schema tree construction
expands elements into each possible context, much like
type substitution. This expansion duplicates elements,
leading to repeated comparisons of identical subtrees, e.g.
in the example used in section 8.2, the Address element is
duplicated in multiple contexts within the PurchaseOrder
schema and each of these duplicates is compared separate-
ly to elements of PO. We can avoid these duplicate
comparisons by a lazy schema tree expansion, which
compares elements of the schema graph before converting
it to a tree. The elements are enumerated in inverse
topological order of containment and IsDerivedFrom
relationships. After comparing an element that is the
target t of multiple IsDerivedFrom and containment
relationships, multiple copies of the subtree rooted at t are
made, including the structural similarities computed so

far. This works because when two nodes are compared for
the first time, their similarity depends only on that of their
subtrees. Similarly, the similarity of the leaves would
reflect only those nodes that have already been traversed
thus far. Hence the computed similarity values will
remain the same as in the case when the schema is
expanded a priori. We thus avoid identical recomputation
for the context-dependent copies of the subtree.

� Pruning leaves: In a deeply nested schema tree with a
large number of elements, an element e high in the tree
has a large number of leaves. These leaves increase the
computation time, even though many of them are irrele-
vant for matching e. Therefore, it may be better to consi-
der only nodes in a subtree of depth k rooted at node e
(pruning the leaves).

While comparing nearly identical schemas, it might
seem wasteful to compare the leaves. To avoid this, the
immediate children of the nodes are first compared. If a
very good match is detected, then the leaf level similarity
computation is skipped.

9 Comparative Study
In this section we compare the performance of Cupid with
two other schema matching prototypes, DIKE [12] and
MOMIS [1], using simple canonical examples and real
world schemas. The only prior published evaluation we
know of is a comparison of the SEMINT and DELTA
systems on US Air Force database schemas [4].

The three systems – Cupid, DIKE and MOMIS – are
roughly comparable, in that they are purely schema-based
and do element-level and structure-level matching. Cupid
and MOMIS also have a linguistics-based matching-
component, though these components are significantly
different. The three systems differ in their structure
matching algorithms. A quantitative comparison of these
systems is not possible for two reasons: (i) matching is an
inherently subjective operation, and (ii) DIKE and
MOMIS were designed with a primary goal of schema
integration, so some of their features are biased towards
integration, e.g. the type conflict resolution in DIKE, and
the class level matching in MOMIS. Still, we believe
experimental evaluation is essential to make progress on
this hard problem.

The Cupid prototype, presented in Sections 4-8, cur-
rently operates on XML and relational schemas. The
output mappings are displayed by BizTalk Mapper [8],
which then compiles them into XSL translation scripts. In
Table 1 we give a brief description of the criteria for
setting the different thresholds and parameters used in the
algorithm and present some typical values for them.

Parameter Description Typical Value

thns

Name similarity threshold for determining compatible categories. The choice of value is
not critical, as it is used merely for pruning the number of element-to-element linguistic
comparisons.

0.5

thhigh
If wsim(s,t) ≥ thhigh then increase the structural similarity between all pairs of leaves in the
two subtrees rooted at s and t. Should be greater than thaccept.

0.6

thlow
If wsim(s,t) ≤thlow then decrease the structural similarity between all pairs of leaves in the
two subtrees rooted at s and t. Should be less than thaccept.

0.35

cinc

The multiplicative factor by which leaf structural similarities are increased. Typically a
function of maximum schema depth or depth to which nodes are considered for structural
similarity.

1.2

cdec The multiplicative factor by which leaf structural similarities are decreased. Typically
about cinc

-1 0.9

thaccept wsim(s,t) ≥ thaccept for s and t to have strong link or be a valid mapping element 0.5

wstruct
Structural similarity contribution to wsim. Typically this value is different for leaves and
non-leaves – lower for leaf-leaf pairs than for non-leaf pairs.

0.5-0.6

Table 1 Typical Threshold Parameter Values

Table 2 Compar ison based on Canonical Example

The DIKE system [12] operates on ER models. The
input includes a Lexical Synonymy Property Dictionary
(LSPD) that contains linguistic similarity coefficients
between elements in the two schemas. The schemas are
interpreted as graphs with entities, relationships and attri-
butes as nodes. The similarity coefficient of two nodes is
initialized to a combination of their LSPD entry, data
domains and keyness. This coefficient is re-evaluated
based on the similarity of nodes in their corresponding
vicinities nodes further away contribute less. Conflict
resolution is also performed on the schemas, e.g. an
attribute might be converted to an entity to get a better
integrated schema. The output is an integrated schema,
and an abstracted schema (a simplification of the former).

The MOMIS mediator system [1] accepts schemas as
class definitions. The WordNet system [16] is used to
obtain name affinities among schema elements. For each
element name, the user chooses an appropriate word form
in WordNet and narrows down its possible meanings to
the most relevant ones. The description-logic-based ODB-
Tools [1] is used to infer name affinities from inter-class

relationships in the schema. ARTEMIS [3], the schema-
mapping component of MOMIS, computes the structural
affinity for all pairs of classes based on their name affinity
and their respective class attributes. The classes of the
input schemas are clustered into global classes of the
mediated schema, based on their name and structural
affinities. The attributes of clustered classes are fused, if
possible, to determine the exact global class definitions.

9.1 Canonical Examples
We compared the matching performance of the three tools
on canonical examples that try to isolate their matching
properties. The test schemas used were object-oriented
schemas with a small number of class definitions. For
DIKE we used a corresponding ER schema. In DIKE, we
consider schema elements to be mapped to each other if
the corresponding entities and attributes are merged
together in the abstracted schema. Similarly, in MOMIS
we consider schema elements to be mapped to each other
if the corresponding classes are clustered into a single
global class and the corresponding attributes are fused
together.

 Description Cupid DIKE
MOMIS-

ARTEMISβ

1 Identical schemas Y Y Y
2 Atomic elements with same names, but different data typesχ Y Y Y

3
Atomic elements with same data types, but different names (a prefix or suffix is
added)

Y Yα Y

4 Different class names, but atomic elements same names and data types Y Y Y
5 Different Nesting of the data – similar schemas with nested and flat structures Y Y N
6 Type Substitution or Context dependent mapping Y N N
α - LSPD entries have to
added to identify
corresponding elements

β - for each name the corresponding matching entry in the
WordNet dictionary has to be chosen to ensure correct
mappings

χ - data type
compatibility tables
are used by each tool

We performed the following tests of the sensitivity of
the different tools to data types, names, nesting and type
substitution. The results are summarized in Table 2. We
use the terms atomic elements and attributes
interchangeably in the following examples.
1. Identical schemas. The two schemas, Schema1 and
Schema2, have a single class: Customer
(Customer_Number: integer (key), Name: string,
Address: string). Cupid correctly identifies the
corresponding elements, even without any thesaurus
information. DIKE duplicates the key attribute (two
copies in the abstracted schema) even though it has the
same name and data type. For MOMIS, the correct senses
of the schema element names have to be chosen,
especially the class name, for the identical classes to be
clustered together.
2. Atomic elements with identical name, but
different data types. The telephone attribute is added to
both classes: as a string in Schema1, and as an integer in
Schema2. The matching is performed by the three
systems in the same way as in (1). All the systems make
use of data type compatibility tables for this purpose.
While these tables are accessible and tunable in the case
of Cupid and MOMIS, they are hidden in DIKE.
3. Atomic elements with the same data types, but
slightly different names. A prefix or suffix is added to
each of the names in schema 2 – Address becomes Street-
Address, Name becomes CustomerName, etc. The
linguistic matcher in Cupid is tolerant of name variations,
and is able to perform the matching correctly. LSPD
entries associating the corresponding exact element names
are needed for DIKE to perform the integration correctly.
The corresponding attribute pairs are mapped in MOMIS
only if the user explicitly adds a synonym relationship
between each corresponding element.
4. Different class names, but the atomic elements
have the same names and data types. In Schema2, the
class name is changed to Person. Since the leaf-level
comparisons are unaffected, Cupid is able to determine
the correct mappings. DIKE merges the entities together
even without an LSPD entry. For MOMIS, Person is
identified as a hypernym of Customer (after correct senses
are chosen) by WordNet, and the classes are clustered
together.

5. Different nesting of schema elements.
Nested-Schema:
 Customer (SSN, Telephone, Name (FirstName,
 LastName), Address (Street, City,
 State, Zip))
Flat-Schema:
 Customer (SSN, Telephone, FirstName, LastName,
 Street, City, State, Zip)
Cupid is able to find the correct mapping, but the
difference in nesting is reflected in lower similarity
coefficient values. DIKE creates a single entity with all
the attributes merged correspondingly. MOMIS clusters
the two Customer classes together, but not the two other
classes.
6. Type Substitution and Context Dependent
mappings.
Schema 1:
 PurchaseOrder (OrderNumber, ProductName,
 ShippingAddress: Address,
 BillingAddress: Address)
 Address (Name, Street, City, Zip, Telephone)
Schema 2:
 PurchaseOrder (OrderNumber, ProductName,
 ShippingAddress: ShipTo,
 BillingAddress: BillTo).
ShipTo and BillTo are defined identically to Address, but
as separate classes/entities. Cupid is able to determine the
correct mappings – the Name, Street, etc. of
ShippingAddress in schema 1 are mapped to those of
ShipTo in schema 2, and so on. For DIKE the results vary
depending on intermediate user interaction. The
PurchaseOrder entities are integrated together, but
ShippingAddress and BillingAddress are either kept
separate (as required) or merged into one relationship.
MOMIS clusters the two PurchaseOrder classes together,
but the other three classes are in independent clusters.

We make a few observations based on these canonical
examples:
1. Cupid is able to overcome some differences in
schema element names due to the normalization
performed as part of the linguistic matching. This requires
user effort for the other tools.
2. Cupid is robust with respect to different nestings of
schema elements due to its reliance on leaves rather than
on intermediate structure. DIKE is also able to handle
different nestings due to its entity merging operation.
3. Cupid is the only tool that can disambiguate context
dependent mappings. The results for DIKE are heavily
dependent on the user feedback.

 PO

POHeader

PODate
PONumber ContactName

ContactEmail

Contact

ContactFunctionCode

ContactPhone

POBillTo

Street4
Street3

PostalCode

attn

StateProvince
City

Street2

Country

Street1

entityIdentifier

POShipTo

Street4
Street3

PostalCode

attn

StateProvince
City

Street2

Country

Street1

entityIdentifier
startAt

POLines

partno

Item

line

qty

unitPrice
uom

count

PurchaseOrder

partNumber

unitPrice

Item

itemNumber

unitOfMeasure

Items

Quantity

itemCount

yourPartNumber

partDescription

DeliverTo InvoiceTo

street2

city
stateProvince

street3

country

Address

street1

postalCode

street4

contactName

e-mail

Contact

companyName

telephone

yourAccountCode

orderDate
ourAccountCode

orderNum

Header

Footer

totalValue

CIDX Purchase Order Excel Purchase Order

Figure 7 Purchase Order Schemas

CIDX →→→→ Excel element mappings Cupid DIKE M OM IS – ARTEM IS
POHeader → Header Yes Yes Yes
Item → Item Yes Yes
POLines → Items Yes Yes

The two Item elements and the Items element in a
single cluster. POLines is in its own cluster.

POBillTo→InvoiceTo Yes No
POShipTo→DeliverTo Yes No

Clustered together with the Address element

Contact→Contact Yes Yes Yes

PO→PurchaseOrder Yes Yes
Yes, classes clustered, but corresponding elements
not mapped.

Table 3 M apping Compar ison for CIDX-EXCEL Example

9.2 Real world example
We used two XML purchase orders, CIDX and Excel,
from www.BizTalk.org (see Figure 7). We chose these
particular schemas because, while somewhat similar,
they also have XML elements with differences in
nesting, some missing elements, non-matching data
types and slightly different names. For DIKE, we had to
remodel the schemas as an appropriate ER model.

The linguistic input to the systems differed as
follows. For MOMIS the best possible meanings were
chosen for each of the schema elements. For Cupid, the
thesauri had a total of 4 abbreviations (UOM, PO, Qty,
Num) and 2 synonymy entries (Invoice,Bill;
Ship,Deliver) that were relevant to the example. For
DIKE, we added linguistic similarity entries (in the
LSPD) that were similar to the linguistic similarity
coefficients computed by Cupid.

The XML-element level mapping inferred by the
three systems is summarized in Table 3. We make the
following observations about the mappings:
1. DIKE: The abstracted schema depends on the choice
of equivalent ER models for these XML schemas. We
first chose to model the root elements and all XML-
elements that had any attributes, as entities (and so

DeliverTo and InvoiceTo are relationships). In the
abstracted schema that results, entities POShipTo and
Address are merged into a single entity, and the entities
PO, POBillTo and PurchaseOrder are merged into
another entity. There are three relationships between
these two entities (named PO-POShipTo, InvoiceTo and
DeliverTo). We believe that some but not all the desired
mapping was achieved –POShipTo and POBillTo are
(correctly) not merged together, but there are multiple
relationships between these entities. The XML-
attributes within the entities are matched according to
the LSPD entries.

As an alternative, we chose to model POShipTo,
POBillTo, POLines, POHeader and Contact as entities
in the CIDX ER model with a single PO relationship
involving all of them. In the Excel ER model Header,
Address, Contact and Item are entities. PurchaseOrder
is a single entity. DeliverTo and InvoiceTo are ternary
relationships between PurchaseOrder, Address and
Contact. Item is a relationship between PurchaseOrder
and Item with a single attribute. DIKE correctly
identifies mappings POBillTo→InvoiceTo and PO-
ShipTo→DeliverTo, but not POLines→Items. The
entities POBillTo, POShipTo and Address are merged

into one entity that has two relationships, InvoiceTo and
DeliverTo, with the PurchaseOrder entity. Again in this
case it is difficult to say whether the desired mapping
was in fact computed.
2. MOM IS: In ARTEMIS, the five classes
(POShipTo, POBillTo, InvoiceTo DeliverTo, Address)
are clustered together, but the corresponding elements
in the PO and PurchaseOrder cluster are not mapped to
each other. Hence we believe that it did not achieve the
desired mapping. This might be because, unlike Cupid,
MOMIS does not perform context dependent matching.
Not all possible attribute level matches are performed:
e.g. the Street(1…4) attributes in the two schemas are
not mapped 1:1 (though their meanings in WordNet are
the same, the names themselves are distinct, and hence
we would expect them to match correctly). The XML-
element Items was clustered with the Item classes (and
not POLines). Since attribute matching is done only
within global clusters (after the clusters have been
decided), the XML-attribute itemCount (in Items) was
matched with Quantity (in Item).
3. Cupid: Cupid identifies all the correct XML-attrib-
ute matching pairs (leaves in the example). Cupid is the
only one to identify CIDX.line to correspond to
Excel.itemNumber (there were no supporting thesaurus
entries). This matching was based purely on the data-
type and structural matching. In addition, there are two
false positives (e.g. CIDX.contactName is mapped to
both Excel.contactName and Excel.companyName).
This is due to the naïve mapping-generator; for every
XML attribute in the target schema it returns the best

matching XML attribute in the source (whether or not
the latter was already mapped). The data types and
elements in the vicinity of these XML-attributes
strongly match and thus these mappings are reported.
This demonstrates the need for a more sophisticated
scheme to generate mappings from the similarity
values. The XML-element mappings in Table 3 are
reported based on their respective structural similarity
values.

We tried to demonstrate further the utility of
exploiting referential constraints as join nodes. For this
purpose we used a second example, whose goal was to
map a relational schema RDB to a Star data warehouse
schema (see Figure 8). A good mapping would map the
join of Territories and Region to Geography,
Customers to Customers, Products to Products, and
Orders or OrderDetails (or a join of the two) to Sales.
1. DIKE: In the absence of any linguistic
information, DIKE identifies the two Products entities
to be the same, the OrderDetails entity is merged with
the Sales and Time entities, and Region is merged with
Geography. The Customers entities are also merged
when LSPD entries corresponding to their respective
attributes are added.
2. MOM IS clusters the two Products and two
Customers classes together. The attribute (table
column) matches in these two cases are correct except
that the StateOrProvince and State columns are not
matched. The other two possible matching tables are
not clustered.

GEOGRAPHY
PostalCode

TerritoryID
TerritoryDescription
RegionID
RegionDescription

CUSTOMERS
CustomerID

CustomerName
CustomerTypeID
CustomerTypeDescription
PostalCode
State

TIME
Date

DayOfWeek
Month
Year
Quarter
DayOfYear
Holiday
Weekend
YearMonth
WeekOfYear

SALES
OrderID
OrderDetailID

CustomerID (FK)
PostalCode (FK)
ProductID (FK)
OrderDate (FK)
Quantity
UnitPrice
Discount

PRODUCTS
ProductID

ProductName
BrandID
BrandDescription

Star Schema

SHIPPINGMETHODS
ShippingMethodID

ShippingMethod

REGION
RegionID

RegionDescription

PAYMENT
PaymentID

OrderID(FK)
PaymentMethodID(FK)
PaymentAmount
PaymentDate
CreditCardNumber
CardholdersName
CredCardExpDate

PAYMENTMETHODS
PaymentMethodID

PaymentMethod

BRANDS
BrandID

BrandDescription

ORDERDETAILS
OrderDetailID

OrderID(FK)
ProductID(FK)
Quantity
UnitPrice
Discount

TERRITORYREGION
TerritoryID(FK)
RegionID(FK)

TERRITORIES
TerritoryID

TerritoryDescription

EMPLOYEETERRITORY

EmployeeID(FK)
TerritoryID(FK)

EMPLOYEES
EmployeeID

FirstName
LastName
Title
EmailName
Extension
Workphone

PRODUCTS
ProductID

BrandID(FK)
ProductName
BrandDescription

ORDERS
OrderID

ShippingMethodID(FK)
EmployeeID(FK)
CustomerID(FK)
OrderDate
Quantity
UnitPrice
Discount
PurchaseOrdNumber
ShipName
ShipAddress
ShipDate
FreightCharge
SalesTaxRate

CUSTOMERS
CustomerID

CompanyName
ContactFirstName
ContactLastName
BillingAddress
City
StateOrProvince
PostalCode
Country
ContactTitle
PhoneNumber
FaxNumber

RDB Schema

GEOGRAPHY
PostalCode

TerritoryID
TerritoryDescription
RegionID
RegionDescription

CUSTOMERS
CustomerID

CustomerName
CustomerTypeID
CustomerTypeDescription
PostalCode
State

TIME
Date

DayOfWeek
Month
Year
Quarter
DayOfYear
Holiday
Weekend
YearMonth
WeekOfYear

SALES
OrderID
OrderDetailID

CustomerID (FK)
PostalCode (FK)
ProductID (FK)
OrderDate (FK)
Quantity
UnitPrice
Discount

PRODUCTS
ProductID

ProductName
BrandID
BrandDescription

GEOGRAPHY
PostalCode

TerritoryID
TerritoryDescription
RegionID
RegionDescription

CUSTOMERS
CustomerID

CustomerName
CustomerTypeID
CustomerTypeDescription
PostalCode
State

TIME
Date

DayOfWeek
Month
Year
Quarter
DayOfYear
Holiday
Weekend
YearMonth
WeekOfYear

SALES
OrderID
OrderDetailID

CustomerID (FK)
PostalCode (FK)
ProductID (FK)
OrderDate (FK)
Quantity
UnitPrice
Discount

PRODUCTS
ProductID

ProductName
BrandID
BrandDescription

Star Schema

SHIPPINGMETHODS
ShippingMethodID

ShippingMethod

REGION
RegionID

RegionDescription

PAYMENT
PaymentID

OrderID(FK)
PaymentMethodID(FK)
PaymentAmount
PaymentDate
CreditCardNumber
CardholdersName
CredCardExpDate

PAYMENTMETHODS
PaymentMethodID

PaymentMethod

BRANDS
BrandID

BrandDescription

ORDERDETAILS
OrderDetailID

OrderID(FK)
ProductID(FK)
Quantity
UnitPrice
Discount

TERRITORYREGION
TerritoryID(FK)
RegionID(FK)

TERRITORIES
TerritoryID

TerritoryDescription

EMPLOYEETERRITORY

EmployeeID(FK)
TerritoryID(FK)

EMPLOYEES
EmployeeID

FirstName
LastName
Title
EmailName
Extension
Workphone

PRODUCTS
ProductID

BrandID(FK)
ProductName
BrandDescription

ORDERS
OrderID

ShippingMethodID(FK)
EmployeeID(FK)
CustomerID(FK)
OrderDate
Quantity
UnitPrice
Discount
PurchaseOrdNumber
ShipName
ShipAddress
ShipDate
FreightCharge
SalesTaxRate

CUSTOMERS
CustomerID

CompanyName
ContactFirstName
ContactLastName
BillingAddress
City
StateOrProvince
PostalCode
Country
ContactTitle
PhoneNumber
FaxNumber

SHIPPINGMETHODS
ShippingMethodID

ShippingMethod

REGION
RegionID

RegionDescription

PAYMENT
PaymentID

OrderID(FK)
PaymentMethodID(FK)
PaymentAmount
PaymentDate
CreditCardNumber
CardholdersName
CredCardExpDate

PAYMENTMETHODS
PaymentMethodID

PaymentMethod

BRANDS
BrandID

BrandDescription

ORDERDETAILS
OrderDetailID

OrderID(FK)
ProductID(FK)
Quantity
UnitPrice
Discount

TERRITORYREGION
TerritoryID(FK)
RegionID(FK)

TERRITORIES
TerritoryID

TerritoryDescription

EMPLOYEETERRITORY

EmployeeID(FK)
TerritoryID(FK)

EMPLOYEES
EmployeeID

FirstName
LastName
Title
EmailName
Extension
Workphone

PRODUCTS
ProductID

BrandID(FK)
ProductName
BrandDescription

ORDERS
OrderID

ShippingMethodID(FK)
EmployeeID(FK)
CustomerID(FK)
OrderDate
Quantity
UnitPrice
Discount
PurchaseOrdNumber
ShipName
ShipAddress
ShipDate
FreightCharge
SalesTaxRate

CUSTOMERS
CustomerID

CompanyName
ContactFirstName
ContactLastName
BillingAddress
City
StateOrProvince
PostalCode
Country
ContactTitle
PhoneNumber
FaxNumber

RDB Schema

Figure 8 Relational Schemas for Comparative Study

3. Cupid matches the join of Orders and
OrderDetails to the Sales table. The columns of the two
Products and two Customers tables are matched. The
columns of the Geography table are mapped to those of
Region, Territory and their join table: RegionID and
TerritoryID map to the columns of the Territory-Region
table. The three PostalCode columns in the Star
Schema are all mapped to the Customers.PostalCode
column in the RDB schema. This is desirable, since a
Query Discovery module can then get the PostalCode
column in each case by joining the corresponding tables
with Customers. There were no relevant synonym and
hypernym entries in the thesaurus.

None of systems matched the CustomerName
column in the star schema to either the
ContactFirstName or ContactLastName columns of
Customers in RDB. This matching would have been
possible if there had existed a synonymy entry for
(Customer:Contact) in the thesaurus.

9.3 Experimental Conclusions

We draw the following conclusions from our
experiments.
1. L inguistic matching of schema element names
results in useful mappings. Cupid performs simple
token manipulation to be tolerant to variations in
element names. Unlike Cupid, DIKE and MOMIS
expect identical names for matching schema elements
in the absence of linguistic input (via LSPD or the user
interface to WordNet respectively). MOMIS uses the
description logic based ODB tools to infer name
affinities within a single schema (by exploiting object
hierarchies and referential constraints), and also infers
additional name affinities by transitive closure
calculations — both are helpful features.
2. The thesaurus plays a crucial role in linguistic
matching. The effect of dropping the thesaurus varies.
With Cupid, the resulting mapping is comparatively
poor in the CIDX-Excel example, but it is unchanged in
the Star-RDB example. The WordNet interface of
MOMIS provides a useful tool for the user to pick from
alternative meanings in a thesaurus, but can be a bit
restrictive (only one applicable word form). The sense
of a word is often domain-specific; e.g. the correct
sense of Header does not exist in WordNet, and the
synonym has to be manually added. The tokenization
done by Cupid, followed by stemming, can aid in the
automatic selection of possible word meanings during
name matching (done by the user in MOMIS) and make
it easier to use off-the-shelf thesauri. A robust solution
will need a module to incrementally learn synonyms
and abbreviations from mappings that are performed
over time.
3. Using linguistic similar ity with no structure
similar ity, Cupid cannot distinguish between the
instances of a single XML-attribute in multiple contexts

(there are 18 such XML attributes in the CIDX-Excel
example). So, to make a fair evaluation of the utility of
just the linguistic similarity, we compared elements in
the two schemas using just their complete path names
(from the root) in their schema trees. While in the
CIDX-Excel example only 2 of the correct matching
XML attribute pairs went undetected, there were as
many as 7 false positive mappings. In the RDB-Star
example only 68% of the correct mappings were
detected, because the names could only include the
table and column names.
4. Granular ity of similar ity computation. The
ultimate goal in MOMIS is a mediated schema, so
mappings are performed at a class level granularity. As
we have seen, class-level similarity computation can
sometimes lead to non-optimal mappings. Single
classes might be nested or normalized differently (with
referential constraints) in different schemas.
5. Using the leaves in the schema tree for the
structural similar ity computation allows the Cupid
approach to match similar schemas that have different
nesting. Also, reporting mappings in terms of leaves
allows a sophisticated query discovery module to
generate the correct queries for data transformations.
6. Incorporating structure information beyond the
immediate vicinity of a schema element leads to better
matching. Thus, in the CIDX-Excel example, Cupid is
able to match POBillTo, POShipTo and POLines to
InvoiceTo, DeliverTo and Items respectively. For the
same reason, DIKE finds many of the matches.
ARTEMIS tries to incorporate such information using
the ODB-Tools during the name affinity computation.
7. Context-dependent mappings generated by con-
structing schema trees are useful when inferring
different mappings for the same element in different
contexts.
8. Per formance parameters. Some of the mapping
results for these tools might not be the best achievable
by them, in that improvements may be possible by
adjusting few of their parameters. Tuning performance
parameters in some cases requires expert knowledge of
these tools. Thus auto-tuning is an open problem, and a
requirement for a robust solution.
9. User Interaction. Schema matching is a very
subjective operation and hence user interaction is a
crucial resource. One of the drawbacks of the current
approaches is the limited means of capturing user
interaction, e.g. in Cupid this is restricted to initial
mappings that are supplied at the beginning of the
matching procedure. Some useful future work would be
to design a comprehensive way of incorporating user
interaction.

10 Summary and Future Work
In this paper, we studied schema matching as an inde-
pendent problem. We provided a survey and taxonomy
of past approaches. We presented a new algorithm that

improves on past methods in many respects, for
example, by including a substantial linguistic matching
step and by biasing matches by leaves of a schema. We
implemented the algorithm as an independent
component. And we compared our implementation to
two others. This demonstrated the strengths of our
approach and is a possible model for future algorithm
comparisons.

While we believe we have made progress on the
schema-matching problem, we do not claim to have
solved it. A truly robust solution needs to include other
techniques, such as machine learning applied to
instances, natural language technology, and pattern
matching to reuse known matches. Some of the
immediate challenges for further work include:
integrating Cupid transparently with an off-the-shelf
thesaurus; using schema annotations (textual
descriptions of schema elements in the data dictionary)
for the linguistic matching; and automatic tuning of the
control parameters. Scalability analysis and testing are
necessary to study the performance on large-sized
schemas. And much more comparative analysis of algo-
rithms is needed. Our long-term goal is to enhance
Cupid to make it a truly general-purpose schema
matching component that can be used in systems for
schema integration, data migration, etc. The work
reported here is just one step along what we expect will
be a very long research path.

Acknowledgements
We are very grateful to S. Bergamashchi, S. Castano,
A. Corni and F. Guerra for providing us with the
binaries for MOMIS and for their technical support; and
to L. Palopoli, G. Terracina and D. Ursino for providing
us the same for DIKE. The analysis in Section 9 would
have been impossible without this generosity.

References
1. S. Bergamashchi, S. Castano, M. Vincini: Semantic
Integration of Semistructured and Structured Data
Sources. SIGMOD Record 28(1), 1999, pp. 54-59.
2. P.A. Bernstein, A. Halevy, R.A. Pottinger: A Vision
for Management of Complex Models. SIGMOD Record
29(4), 2000, pp. 55-63.
3. S. Castano, V. De Antonellis: A Schema Analysis
and Reconciliation Tool Environment. IDEAS’99, pp.
53-62.
4. C. Clifton, E. Hausman, A. Rosenthal: Experience
with a Combined Approach to Attribute-Matching
Across Heterogeneous Databases. Proc. 7th IFIP Conf.
On DB Semantics, 1997.
5. A. Doan, P. Domingos, A. Halevy: Reconciling
Schemas of Disparate Data Sources: A Machine-
Learning Approach. SIGMOD 2001, pp. 509-520.
6. W. Li, C. Clifton: SEMINT: A tool for identifying
attribute correspondences in heterogeneous databases
using neural networks. Data & Knowledge Engineering,
33(1), 2000, pp. 49-84.

7. J. Madhavan, P.A. Bernstein, E. Rahm: Generic
Schema Matching using Cupid. VLDB 2001.
8. Microsoft Corp., BizTalk Mapper:
http://www.microsoft.com/technet/biztalk/btsdocs
9. R. Miller, L. Haas, M.A. Hernandez: Schema
Mapping as Query Discovery. VLDB 2000, pp. 77-88.
10. T. Milo, S. Zohar: Using Schema Matching to
Simplify Heterogeneous Data Translation. VLDB 1998.
11. P. Mitra, G. Weiderhold, J. Jannink: Semi-
automatic Integration of Knowledge Sources, FUSION
99.
12. L. Palopoli, G. Terracina, D. Ursino: The System
DIKE: Towards the Semi-Automatic Synthesis of
Cooperative Information Systems and Data
Warehouses. ADBIS-DASFAA 2000, Matfyzpress,
108-117.
13. E. Rahm, P.A. Bernstein: On Matching Schemas
Automatically. MSR Tech. Report MSR-TR-2001-17,
2001.
14. J.A. Wald, P.G. Sorenson: Explaining Ambiguity in
a Formal Query Language. ACM TODS 15(2), 1990,
125-161.
15. Q. Wang, J. Yu, K. Wong: Approximate Graph
Schema Extraction for Semi-Structured Data. EDBT
2000, pp. 302-316.
16. WordNet – a lexical database for English:
http://www.cogsci.princeton.edu/~wn/.
17. XML Schema: http://www.w3.org/XML/Schema.

